
X~ D C //// /-f

!

*

TOS 21 Users Guide
January 1977

specifications' Tandberg reserves the right to change the
contained herein without prior notice.

(—/& J

>
r’

Bl.;
kr*

■

'H i

! I
; i

olIIJ
i!!

iR li* I 5? ,«<tl<
4

||

■ ■

A
n I

I

LU

/

CONTENTS

Introduction

PART 1 The monitor

1,1 Kernel Commands
S-command
X-command
G-command
D-command
F-command
L-command
R-command
A-command
T-command
User callable routines

1,3
1,4

Operating SystemPART 2 TOS21
2,1 Loading TOS21
2,2

DIR
DELETE
RESCUE
RENAME
ALIAS
ATTRIB
ANALYZ

MPACK
MINIT
MEMDMP
HEXBIN
MOVE

I

11
■ i

DROP
MYLOAD

Programming note
Error Codes from monitor

2,3
3

/

3,1
3,2
3,3
3,4
3,5

1,1,1
1,1,2
1,1,3
1,1,4
1,1,5
1,1,6
1,1,7
1,1,8
1,1,9
1,2

Commands ~ an introduction
Logical units and physical files
Utility programs
FORMAT

3,6

3,'7

3,8 • ■

3,9

3,10

3,11
3,12

3,13

3,14
3,15

I

.J
is

l^t, I
I fl
lilt *

I I

I.
f
I'

e

2

PART 2 TOS 21

COPY

EXEC

DEBUG

ASSIGN

RELEAS

ALLOC

EDIT

XREF

ASM

HEXLST

DCOPY

oDIRPAC
.• ■

4.

5.

ii

A

B

C

D

■

G

3,16

3,17

3,18

3,19

3,20

3,21

3,22

3,23

3,24

3,25

3,26

3,27

4,1
4,2

4,3

4,4

E

F

e

,lh
*

. I
I I *

!

I,

!J

o pi
II

II • « if i

h Hr
Is

vr*
3?

t

'! . I1

I

!

APPENDIXES
System error codes
File control block format
Internal formats
Internal system functions
Intel diskette format
IBM diskette format
Tandberg tape cartridge format for use with TOS21

Programming using TOS21
Storage layout
Systems area
Use .of TOS21 functions
User handling of interrupts .under TOS

Usage hints
5,1“ ■ How to patch a program
5,2 How to reopen an input file

3

Introduction.

L

The

i

1
.-•S J

■ i'

I ',

TOS21 system.
user

II

:i

ilL?k,I

one
discussing the complete

a TOS21
details of the monitor.

il'itl

"f

The Tandberg Operating System (TOS21) is
the Tandberg TDV 2100
available to the user
a command interpreter
file assignment mechanism used both by system

i

i

I

$ I

i : V ***

-15

intended for use with
series display terminal. It makes

generalized input/output routines,
for program invocation and a general

and user programs.

TOS21 system consists of two parts:
- a PROM monitor
- The RAM based i/o system, command interpreter

and assignment interpreter
This publication is divided into two distinct parts:
discussing the monitor and one

Except for special debugging purposes,
need not be familiar with the

TOS may easily be reconfigured to suit paricular user needs,
and if desired a user may redefine completely specific system
functions.

3bc-

’J i

I

''

PART 1

THE MONITOR ii

i

i

i r

*

H*

■ ■

ji £
I 4
<

!fcl
-

1 «
Illi

j I
. I

sp,

4

1.1 Kernel commands

residing in PROM will be entered normally

are;

I

the following CR means Carriage Return button, Sp means -SpacingIn

itWhen the

Type: Sp

The monitor
either:

i

fli

I II
' 11

hexadecimal address or value is requested, any mumber of
Each hexadecimal digit represents four

Left zeroes are
To correct errors in .

S Memory inspect/substitute
X Register .inspect/substitute
G Start execution with or without brakpoints
D Display memory
F Fill memory
L Load binary file
R Load resident monitor .
A Display all possible codes
T Act as teletype
H Help - display a command summary

7
$

7

I
i

i' I

t *

The monitor will display current program counter (not when power
is turned on) and will display a dot as a prompting symbol, ready
to accept commands.
The commands

■ liK
III*J

a

bar.
When a
digits may be entered.
bits, and superfluous digits are shifted out.
inserted when too few digits are entered.
typing: Simply go on until the error is shifted out.Simply go

monitor discovers an erroneous command character,
will respond with an X and revert to the prompting symbol.

1 T s conVnand-Memory inspect and substitute

Key in: S<Address>Sp
The contents of the addressed memory location is displayed.
To display the contents of the next location:

- When power is turned on and any key on the keyboard is depressed.
- When a breakpoint is encountered during execution

(program under debugging)
- When Reset button is pressed or
- If a JMP to address zero is executed

location and display the

Ki

:•

r

II
rL;

sp.
4

i

i
i !►

To change the contents of the displayed
next:

Type: <value>Sp
To return to the prompting symbol:

Type: CR „ •

' *
b

f

To change the contents of the displayed location and returnto the
: prompting symbol:

Type: <value> CR

■

*
I

i I w

IF

6

1,1,2

Key in:

The register identifiers <. aare the following:

P
S

MX

To change the register contents:
i

->

I"

!

Program counter
Stack pointer
All registers

Af
F

i

f
I1 '
r «.
1 >

L

*

r

xxOxOxlx
-> Carry flag
■$=» Parity flag

Auxiliary Carry flag
Zero flag

-> ■ Sign' flag

E, H,

X < register identified
This is adequate when a breakpoint in the user's program is
executed, or after a button Reset. The contents of all registers
are then stored and may be scrutinized.

X__comma nd-Register inspect and substitute

The contents of the selected register is displayed.
To return to the prompting symbol: Type CR

Type <value> CR
The two double word registers P and S cannot be changed directly.
To change P: . •

The pseudo registers Q and R represents the upper and
lower half of P

To change S: ■
The pseudo registers T and U represents the upper and
lower half of S

The F-register (status flip-flops) contains the conditions
flags packed as follows:

7 6 5 4 3 2 1 0

L: Single registers
: Status register (Flip-flops)

B, C r D t

7

G-command - Start

Syntax:

r

as the

I

:'i

I

Syntax:

D <address>, <number> CR

G
G
G
G
G
G

When it is omitted,
i.e. restart after a breakpoint.

Address 1 is the desired starting address,
the current address is used,

CR
<address 1> CR
Sp < address 2 > CR '
<address 1> Sp <address 2> CR
Sp < address 2 >Sp 4 address 3> CR
<address 1> Sp <address 2> Sp ^address 3>CR

*

il

lv

program execution^

r
I

*

5

Address 2 and address 3 are breakpoints and will be set if
those addressed are entered.

I

I
I

i

i,i,3 r

If one breakpoint is executed, both breakpoints will be reset.
The breakpoints will also be reset if the program is inter­
rupted by the Reset button.

1/1f1} | D-command - display memory j

To set a breakpoint, the monitor will substitute the user’s
program instruction by a RST 0. If this instruction is used
in the program, it may cause confusion.

A number exceeding 170 (hexadecimal) will be of no use,
first displayed information then will be rolled out.

The typed starting address is.rounded down to the nearest 10
(hexadecimal).
The displayed part of memory will always be in groups of 10
(hexadecimal) words.

Memorv is displayed as lines starting with a 16 bits address
followed by 16 8-bits values. .

M
i 6 1

I

8

1.1.5 r-com.ma n d

Syntax:

F •x lower address > , <value > CR<higher address> f

All

1.1.6 L~ -command

Syntax CR

1.1.7 R-ccmmand

fill the 'screen with all codes*"^1.1.8> A-conunand -

This is a hardware test facility.
i

H
a
on

!■ i

are

■7-5

■!

replaced by the typed value.
cannot be filled by use of the F-command.

Syntax
Function:

memory locations from and included the lower address to
and included the higher address, will have their contents

Note that the area FFQO to FFFF

Syntax : fRi
This command is an abbreviation for

L:Fi:TOS21 CR
(Note that Carriage return is not required)

I u
i >

: : A CR
Codes OOH to FFH are entered on the screen

number of times until all but the last position
. the screen is filled (to avoid roll).

:ll11’ ,

|L
L Fn -J name extension^

ill,
! I

load extended monitor, TOS J

Function on line:
Characters entered from the keyboard
transmitted asynchronously.
Incoming characters are displayed.

5

1 II
i
I

n is unit (0-3) 0 is default
name is 1-6 alphanumeric character
extension is 1-3 " " "

~ load binary program file

a teletype—|1.1.9 ^T--command - act as
Syntax : T CR
Function off line:

Each character entered from the keyboard is
echoed on the screen

/•
*

iu|
I

*

i'i!

111 I *
R

fill memory

9

User callable routines
The monitor kernel contains a number of user callable routine

are entered by

FunctionRoutine

no control char.

*

£
X)DSWRA67

INDISPGA
DSWT6D
DCALW70

X)DSWAW7F u
RCVI82

i

Require .TOS 21 support.30

II
I

40
43
46
49
4C
4F
52
55
58
5B
5E
61
64

73
76
79
7C

85
88
8B

DSRDW
DSWRW
DSDLW

X)DSRAW

LOCDIR
LOAD
LINK

Address
(hexadecimal)

DCAL
DSRD
DSWR
DSDL

X)DSRDA

, Locate Intel format directory entry.
Load program from diskette.
Load program and start its execution.
NORMALLY NO RETURN.

TTI
TTO
TTONC
CURSOR
MON
ERROR
PRINT
DTST

i

*
<4

I

11I I

I

11
I

!l>If'h

Wait for completion of diskette
operation

Initiate Calibrate and wait for
completion.

Initiate Read and wait for completion.
Initiate Write and wait for completion.
Initiate Delete and wait for completion.
Initiate Read convert to ASCII and
wait for completion.

Convert to EBCDIC, initiate write and^.
wait for completion. vJ1

Receive from host (UART)

I
J

i'j

Ii&
!.

r

I]

$

5

1,2

These are entered by a
should be entered by JMP)

Read from keyboard
Write on screen

.. Write on screen,
Position cursor
Enter monitor-NO RETURN
Display error message
Print character
Test for completion of

diskette operation
Initiate Calibrate diskette
Initiate Read diskette sector
Initiate Write diskette sector
Initiate Delete diskette sector
Initiate Read diskette sector and
convert to ASCII.

Convert to EBCDIC and initiate write
diskette sector

Read charater from screen

a CALL instruction(with exception of MON which
) and returns to user (except MON,LINK and CLINK)

hf 10

Routine Function

8E CTST

91 CCAL

94 CBRD
97 CBWR
9A CBED

9D CBTM

AO CBSF

A3 CBSB

A6 CUN

A9 CRW
AC CWT

AF CBRDW

B2 CBWRW

CBEDWB5 /

CBTMWB8 I. I;

CBSFWBB

CBSBWBE

CLOCD
CLOAD
CLINKC7

XMIOCA

J
I

Address
(hexadecimal)

Cl
C4

*

I.
■!l

1 i!
■!

i |!

I

I >

i <1

of cartridge.
Initiate rewind of cartridge.
Wait for completion of
cartridge operation.
Initiate read and wait for
completion (cartridge)
Initiate write and wait for
completion (cartridge)

• Initiate rewrite and wait for
completion (cartridge)
Initiate write tape mark and
wait for completion (cartridge)
Initiate search forward and
wait for completion (cartridge)
Initiate search backward and
wait for completion (cartridge)
Locate directory entry (cartridge)
Load program from cartridge
Load program from cartridge
and start its execution
(Normally no return)
Send to host (UART)

Test for completion of cartridge
operation.
Initiate rewind (calibrate)
cartridge.
Initiate Read Cartridge block
Initiate Write Cartridge block
Initiate rewrite (edit) of a
cartridge block.
Initiate write tape mark on
cartridge
Initiate Search Forward on
cartridge.
Initiate Search Backward on
cartridge
Initiate rewind and unload

i

!

. ,L I

k) £

t
*
*

A
(11

r:—«

INDISP, RCVI and

K . —

I

i

I

i
■ft
I •*..>

I v»

R

Note that in a system supporting diskette only, the cartridge
routines will contain a jump to an error routine and vice versa.

I I! IF
i S-

o.

TTI, TTO, TTONC, CURSOR, MON, ERROR, PRINT,

X11IO are present in all systems.

Ill INI
p

I
!

"12 "

1

and
I (4 OH)

Read one character from keyboard.
The routine will not return until .1

The character is returned in A-register.

(4311)TTO

;li

The character to be written is in the A-register.

L The cursor is advanced one position for other characters.
(46H)TTONC
Write a character in the current cursor position on the screen.
The character to be written is in the A-register.
All characters are interpreted as data characters.
The cursor is advanced one position.
(49H)CURSOR

on the screen to the desired character

(0-24)desired lineH
■ L - desired character position within line (0-79)

(4CH)MON
monitor. Does not return to user.Enters the

carry cleared
carry set -

exception specified above in the case of error return,
, all registers are saved and restord.

the carry flag is used to indicate whether an. error routine:

z

*►

I

Characters with value less than or equal to 31(lFH)are inter--
preted as control characters.

- normal completion
error occurred, A-register contains error code.

Positions the cursor
position.

With the r~
results as indicated below,

TTI

'll
I

■

O?rcharZc?e?Uo!idS thS 8peClfied ran9e will position to line

I ■; i i

Write a character in the current cursor position on the screen.

a character has been received.

11I .I

u
n !. L I
R i

HR ’ ll pi
iir

w
sII I V*

I c

Upon return to user,
occurred in the

13

error (4FH)

Returns to user if .error number.

PRINT (52H)

Print the character contained in the A-register.
DTST (55H)

A and

o
Carry not set - operation is not yet completed.

(58H)DCAL

for ; I

(5BH)DSRD

(5EH)DSWR

(61H)DSDL

r

Tests for status of diskette operation and set result in
-“3 carry as follows:

Initiate Delete of a diskette sector.
As DSWR, but a deleted data mark is written in the sector
data header.

Initiate Write of a diskette sector.
As DSRD, but initiates output of a specified sector.
The output buffer must not be altered until completionhas
been checked.

message ERROR nn (where
.a screen.

Displays the r
number) on the

*

'I
I

■e

I!

!
V.

I

I
I I

Register A contains the
carry was cleared.

Initiate Read of a diskette sector.
Parameters. A-unit, B-track, C-sector, HL-buffer address.
Initiates reading a specified sector from a specific unit.
Performs necessary seek operations. Returns before operation
is completed, the DSWT routine must be called prior to (
initiating another diskette operation.

n
i

Initiate Calibrate diskette. Parameter: A-unit (0-3).
Initiates a calibrate operation (position to track 0)
the specified diskette unit.
Returns before operation is completed, the DSWT routine
must be called prior to initiating another diskette operation. I <

Carry set - completed operation
A - 0 - normal completion
A / 0 - error, A contains error code

nn is a hexadecimal

hl
r

i

h- 14 “

DSRDA

DSWRA

INDISP

DSWT

DCALW

a

DSRDW

Equivalent to

DSWRW

a

DSDLW

a call

/

i

!

I

Equivalent to
call on DSWT.

%

5
i

. 1

f'
*

't
I •*;*1 X

-J

(70H)
Initiate Calibrate diskette and wait for completion,

a call on DCAL immediately followed by

(6DH)
Diskette wait for completion.
No parameters. Wait for completion of previously initiated
operation and return with status in A.
Carry is set if an error occurred, and A contains the error
code. Carty is cleared if the operation was completed normally.
A is in this case set to zero.

S I
II

h I(6 AH)
Read a character from the screen (the current cursor
Position) . Cursor is moved to the next position.

(76H)
Initiate write a sector and wait for completion.
Equivalent to a call on DSWR immediately followed by
call on DSWT

(79H)
Initiate delete of a sector and wait for completion.
Equivalent to a call on DSDL immediately followed by

on DSWT.

(73H)
Initiate Read of a sector and wait for completion,

a call on DSRD immediately followed
by a call on DSWT.

(64H)
Initiate Read of a sector and convert from EBCDIC to ASCII.
As DSRD, but with conversion after read. Note that an error
will occor, if the required conversion table is not available
in RAM memony.
(67H)
Convert from ASCII to EBCDIC and initiate write of a sector.

As DSWR, but with conversion before write.
Note that the buffer contents are changed to EBCDIC, and that
an error will occur if the required conversion table is not
available in RAM momony.

15

DSRAW

DSWAW

sector and vzait for

RCVIJ

LOCDIR

.■

LOAD

link
from an Intel-formatted diskette and start

■

*

|
i

i

(7FH)
Convert to EBCDIC,
completion.
Equivalent to a call
on DSWT.

(82H) (
Read a character from host.
Waits until a character arrives and returns it in A-register.
(Up to 31 characters will be buffered automatically).

I
:ii

i
i

V

!
Returns:

'HL-starting address of program

(85H)
Locate directory entry on Intel-formatted diskette.
Parameters: A-unit. HL-address of 9 character name area.

I

i
I

i
1 *;; I!

i,r

on DSWR7X immediately followed by a call

initiate write of a

Returns:
HL-address of directory entry.

(For further information more detailed knowledge of the
Intel directory format is necessary.
This routine is not normally used outside systems programming) .

o

IM
b ! jpl

!
*
*

C
a

(88H)
Load a program from an Intel-formatted diskette.
Parameters: A-unit, HL-adress of 9 character name area.

of a sector, convert to ASCII and wait for

(8BH)
Load a program
execution.
Parameters: as LOAD.
Returns only if an error occured.

(7CH)
Initiate read
completion.
Equivalent to a call on DSRDA immediately followed by a
call on DSWT.

16

CT 5 T
(8EH)t of cartridge operation

■block on thenext

'lDE-block length
C&ZD
(9AH)

>A6H)

CBS3
(A3H)

CGIZ D
(94H)

I

C6T>7

(9DH)

CCfiL
(91H)

(AOH)

■Il

II

I

II||

■I
: I !

(97H)

Write tape mark
A-unit B-track
Initates writing of a tape mark.

Ift
’■‘--a

S’
■<r>

I
I

I* I

Rewrite a block.
A-unit B-track DE-block length HL- buffer adr.
Initiates rewrite (edit) of a block.

Test status
Returns:

Carry set - operation completed
A = 0 normal completion
A / 0 error, A contains error code

Carry not set - operation is not yet completed

■ u
I I11

I' II
I I

Rewind (calibrate) cartridge
A-unit.
Returns before operation is completed, the CWT
routine must be called prior to initiating another
cartridge operation.
Read a block from cartridge
A-unit B-track HL-buffer address.
Initiates reading of the
specified track. Returns before operation is
completed. The CWT routine must be called prior
to initiating another cartridge operation or using
the data in the buffer.
Write a block to cartridge.
A-unit B-track DE-block length HL-buffer adr.
Initiates writing of a block on the specified
unit/track. The output buffer must not be altered
until completion has been checked.

Search Forwards
A-unit B-track C-no of tapemarks
Initiates a forward search for the specified
number of tapemarks ’ • ■■
Search Backwards
A-unit
Initiates
tapemarks.
Rewind and unload.
Initiates a rewind and unload operation.

B-track C-no of tapemarks.
a backward search for the specified no. of

17

CRW

CWT

CBRDW

call on CBRD immediately followed by aa o75
CBWRW

CBEDW

CBTMW

call on CBTM immediately followed bya

CBSFW
f

I

E

cartridge. A subsequent operation
rewind is completed (up to 60 seconds) .

I <b

!

*

I;
!.

p

I

error code,
ted normally.
(AFH)
Initiate Read of
completion.
Equivalent to
call on CWT.

I.
I
l,

it
't
5

a block from cartridge and wait for

(BBH)
Initiate a forward search on cartridge and wait for
completion.
Equivalent to a call on CBSF immediatley followed by a
call on CWT.

(A9H)
Initiate rewind of
Wait until the
(ACH)
Cartridge wait for completion.
No parameters. Wait for completion of previously
initiated operation and return with status in A.
Carry is set if an error occured. and A contains the

Carry is cleared if the operation was comple-
A is in this case set to zero.

(B8H) •
Initiate write of a tape mark on cartridge and wait for
completion.
Equivalent to
a call on CWT.

(B2H)
Initiate write of a block on cartridge and wait for
completion.
Equivalent to a call on CBWR immediately followed by a
call on CWT.
(B5H)
Initiate rewrite of a block on cartridge and wait for
completion.
Equivalent to a call on CBED immediately followed by a
call on CWT.

I
S <• 9
!:i J r Ih I

(18

CBSBW
on cartridge and wait for

a

CLOCD
i

HL

HL

CLOAD

I'area.
Returns:

HL - starting address of program
CLINK

XMIO

kZ

a

to

(C1H)
Locate
Parameters:

.1
■i

i <

I]

(BEH)
Initiate a backward search
completion.
Equivalent to a call
call on CWT.

directory entry on cartridge
A - unit, HL - address of 9 characters ' p I

&

■Ji
•St'C'
5

on CBSB immediately followed by

(C7H)
Load a program from cartridge and start execution.
Parameters: as CLOAD
Returns only if an error occurred.
(CAH)
Send a character to host.
Parameter: A-character to be sent.

1,3 Programming note.
Whenever no processing is required in paralell to diskette or
cartridge transfer, the routines which wait for completion of
the operations ought to be used. Note that when an operation
is initiated, -the data area must not be accessed until the
completion of the .operation has been checked. Errors when this
condition is violated may be extremely difficult to detect, as
the effect may be timing dependent, and two otherwise identical
program executions may yield different results.

that if a diskette or cartridge routine is called prior
completion of a previously initiated diskette operation,

until the first operation is completed. If
in the first operation, it will not be reported

Note
to the
delay will occur

an error occurs
the user.

(C4H)
Load a program from cartridge
Parameters: A - unit, HL - address of 9 character name

Note: The routine will wait
if the transmit buffer is
full.

name area.
Returns: HL - address of directory entry.
(For further information, more detailed knowledge of the
Tandberg cartridge format is necessary. This routine is
not normally used outside systems programming).

19

1
I

■ iifM*

I
I3

*

li
!

li
i

■ k

I

a subset of TOS

i

!
r
$

4
l^r

5

s
•<p-

1,4 Error codes from monitor
The error codes returned by the monitor is
error messages. Refer to appendix A for codes.

/

19b

I

i

PART 2
TOS 21 Operating System

I

I tI

L

’ISI

lip I

Isr

20

Section 3

2,1
,1

that

Commands- an introduction2,2
on

I
I on the TDV 2100, insert a system

any diskette unit (or cartridge in cartridge unit).

TOS 21 will then be loaded automatically and identify itself by
TOS 21 VER x-y

.Where x-y identifies the particular TOS 21 version.

I
tl
■

, *

■

i

contains a description of the utility programs
supplied on the TOS 21 system diskette.
Loading TOS 21

1
9

When the power is turned
diskette in

I! I! f

J

!

Execution of a program are initiated by specifying its name.
If the diskette containing the program is not on unit 0, the
unit must also be specified.
In addition, most program requires specification of the
name and location of the files (data and results) on which the
program should operate. The program will refer to files lo­
gically by a name (there are eight such names, see below).

L
£

A number of details which is mainly of interest to' system
programmers, and some reference material, such as error codes,
are included as appendices.

Programs for use with the TOS 21 system are stored
diskettes in a special format (see Appendix E), and are iden­
tified by a name. (If the system was suitably configurated
at system generation time, programs may also be loaded from
cartridge).

I
The command prompt (X) will then be give to signify
TOS 21 is expecting a command from the keyboard.

This part gives partly an informal introduction to the use of
TOS 21, partly a more formal description of the facilities
available.

A21

*

I

we

C

■

i!I I.

file.
• which

A program called MOVE which is supplied with the TOS 21 system
(on the same diskette) may be used to copy from one such file
to another.

quence of assignments,
detail later.)

The MOVE program
of the

the system diskette^

■e

(LU

i i

Assuming that the system diskette is on unit 0, we indicate that
want to execute the program by typing

MOVE t_j

is a blank character).

That a
to physical units both

How this works is probably best illustrated with an example.
Assume that we have some text .information (as opposed to binary
data or executable programs) stored on a diskette. This (physical)
file will then contain a number of lines separated by carriage
return and linefeed characters

SI=
:F1:
that this
letters are
cartridge).
the data

w

i
&

5

If

also need to know an output file where the copy
input shall be written. Assuming that we want a copy on

with the name TEXT.OLD we can continue by

program may be written refering to logical rather than
simplify programming (since the programmer

usually need not think about what sort of files might be actually
used) and use (since only one method of expressing files to be
used by programs need be learned, rather than having different
convension for each program.)

must specify the file we want to copy from. Assuming that
t the diskette on unit 1 and that its name is TEXT, we

by typing

Next we j
it is on
specify that it is the input file

SI=:F1:TEXT
specifies that we are assigning the Standard Input file,
indicates that the file is on a diskette on unit 1, and

diskette is in the so called "Intel" format (other
used for other formats and for other media, such as
The remaining part specifies the name under which

is stored on diskette.

en execution of a program is started, the command must indicate
which physical file should correspond to each different logical

(Assignment need only be given for these logical units
are referenced by the program.) This is expressed by a se-

The format of these will be discussed in

22

typing:
,SO=TEXT.OLD

,SO=:FO:TEXT.OLD
J

The actions of TOS 21
>

1. a file named MOVE (

2 .

3.

4.

i

MOVE SI=:F1:TEXT,SO=:LP:
results from the use in programs of logical unitThis simplicity

references.

1.
2.

comma is required to
indicates that

When we
’v It'looks like:

C a

I
I

the command will be executed.
Sl=:Fl:TEXT,SO=TEXT.OLD

I

11
Ik

The
SO=
The absence of
the file
diskette has

i.e. the program) is
load it into memory.

a file named TEXT is present on the diskette
allocate buffers and read the first sector

Pi

I ■

L

*

8%

'>.S

C
5

separate the two individual assignments,
we are assigning the Standard Output file.

a unit specification (:etc) indicates that we want
on diskette unit 0 in "Intel" -format. (The system

automatically this format). We could, with the same
effect have written

After completion of the execution, TOS 21 will again regain control,
and will

Check that
present on the diskette om unit 0,
Check that
on unit 1,
of the file.
Check that no file named TEXT.OLD is present on the
diskette on unit 0 (since at is an output file to be
produced by the MOVE program) , allocate buffers for the
file and reserve storage of the diskette.
Start program execution.

now type carriage return
MOVE

are now.

The same MOVE program may be used if we had a printer available,
and wanted to print the file. The physical designation recog­
nized by TOS 21 for a printer is :LP:, so our command would look
like ' ' '

Release the buffers assigned to the input file
Release excessive storage reserved on the diskette
for the output file, update the diskette directory with
information about the file and release the buffers

3. Return to wait for the next command.

23

I
DEL

I

we

• i
■i

DIR S0=:C0:$:F2:
(:C0: designates the screen)

*

II 3If we at
CO (which

might ' Jl

Some programs may require parameters, or requests information
during execution from CI (normally the keyboard), The editing
facilities discussed above may be used also when entering this
information. If the parameters to a program are few, they may be
entered on the same line as the command. The assignment and the
parameter information (to be read by the program) is then seperated
by a $.

L/} J&

- J

■

£ %

5

- will cause the line to be deleted
~ will cause the last character to be deleted.

Without going into details on how this is achieved (but when a
user has more experience, it will be no problem for him to build
a file structure with similar characteristics) the line or
characters will disappear from the screen when editing is per-,
formed so that a user always sees his command exactly as TOS 21
will receive it.

S0= indicates that we are assigning the Standard Output file.
/CO indicates that SO should be assigned to the same file as
CO is assigned to (which happens to be the physical file :C0:,
i e the screen.) The complete command will in this case be

As an example. A standard program called DIR produces a listing
of the names in the directory of an Intelformatted diskette. It
requires as a parameter, the number of the diskette unit.
Assuming that we want the listing to appear on the screen and that
the diskette is on unit2, the command required is:

the present time have :C0: as the logical output file
L incidentally is the default when TOS 21 is started),
write the assignment as

so=/co

e of the first things we need to know is how to correct our
typing errors when typing commands. Commands are read from the
logical unit CI and the file corresponding (by default) to CI
is a so-called line-oriented file, i.e. a complete line of infor­
mation ..s prepared at a time, and until a carriage return is re­
ceived the line may be altered by two edit control characters:

C
II

1 24

DIR SO = /CO$:F2:

DIR$;F2:
If we

will do that.
I

found in the section

i- *

o
I !>

I

<
I

DIR SO=DIRLST$:F2:
and print by

MOVE SI=DIRLST,S0=:LP:
Further examples on program invocation are

• "Utility programs".

c 5

i

I
I i i 1

■

i

I|i iJi' :

!’■

!

want a listing on a printer
DIR SO=:LP:$:F2:

Logical unit designators (e.g. SI, SL etc.) and physical unit
designators excepting filenames (e.g.: LP:,:CO: etc.) may be
written in lowercase with the same meaning as in uppercase.
If the program is contained on one diskette and data on another,
and only one diskette drive is available, the program name and
assignments may be separated as follows

programname/CR
(change diskette)

. .. . ■ assignment (or $ if no assignment)

ii

program (DIR) a default option has been
program, since a directory listing usually is
If no assignment for SO is given, the assignment

implicitly performed. We have thus the "short

Program names (such as DIR and MOVE in the examples above) may
■.be written in lowercase letters provided that no file exists with
the name in lowercase. TOS will first search for the program with
the lowercase name, and if this is not found, it will try to find
the’ name in uppercase.

I ,

■e
*

i

You can even put it on diskette for subsequent listing by use of
MOVE: ’ '

For this particular
built into the
desired on CO.
SO=/CO will be
form":
3‘J • •

24A

Example:

t

■

,1

I I

I
!I

I

to produce a listing of the directory other than the one
containing the DIR program.

i i

•I
h

I|

DIR/
S0=:LP:$:FO:

*
*

I
■ c

11 S

iI I

'K

I L
&

CAUTION: Wait until the program loading is finished before
changing diskette. The selected light in the diskette drive
must be off.

I1^

25

?
2.3 Logical unHc and physical files

This

commands,

L

3

Consult the

o:BB:
:NF:
:CI: V
:CO:

x):CR:

X)

!
I

that the reader is familiar with the BNF syntax
A frequent reference to the examples at the end of

i may be useful for readers not familiar with this
expression.

IL -t

>

r
iiL

•i

Very few programs will use all these logical units,
individual program description for details.

:LP:
:XM:
:RC:

only if configurated on TOS generation.

IRI I ■

It is assumed
notation,
the section
syntatic form of

I

!

y

TOS 21 recognizes eight different logical units which may be
assigned (and buffer space automatically allocated and deallo­
cated) through the assignment interpreter.
These are.

£

section gives a more formal and complete description of
logical units, files and assignment.

The full list of physical files which may be assigned to the
logical units are:

- byte bucket file
- null file
- keyboard
- screen
- sequential reader
- sequential output
- remote transmit
- remote receive

CI - console input
CO - console output
SI - standard input
SO - standard output
SL - standard list
Al - auxiliary input
AO - auxiliary output
AL - auxiliary list

26

ext
: li: f ilename

: Ai:filename

1

is an output ("byte bucket"): BE :

:NF:
but will return end-of-file whenever

:CI:

:LP:
:XR:
:RC:

1

:Fi: filename
: Fi: filename.

: Mi:filename
: Mi:filename.

is a line-image file representing the usual keyboard
with echo on screen (:C0:).

file which is always open.
The informasjon written to this file is simply discarded.

remaining options designes a file on a diskette unit
and with specified name (max. 6 characters) and

3 characters). Name and extension may consist

diskette file on unit 0
(Intel format)

diskette file on unit i (0<i<3)
(Intel format)

i J

I

i

I

■I
I

is an input file ("null file") which is always open,
referenced

pI li * r

diskette file on unit i
(0 < i < 3) , IBM format
EBCDIC code
diskette file on unit i
(0 < i < 3), IBM format
ASCII code
cartridge file on unit i

ext (0<i<3), Tandberg format

II |<V I u i

IIIII I' I

J!
h

’i
I x

a

:CO: is the usual console output (screen) operated as a TTY
equivalent (except when screen control characters are
used) .
is a printer
is the UART used to transmit to host computer and
is receiving from the host.

The first four
Intel format
extension (max.
of letters and digits only.u

The meaning of these physical file designations are:

filename
filename . ext

27

This

Appendix

one

!

I

o

I

!•

3

I

I

i

g
I

■

i

fl
J

To prevent excessive tape movement, TOS 21 will only accept
file assigned per physical cartridge unit.

epresentation I

I
£

> £

\z
k* ■

C sIS I

II

Note: Conversion is only possible if the conversion table was
configurated on TOS generation.
M designates a file on a cartridge with Tandberg format,
format is designed to give the cartridge as good performance
as possible compared to a diskette in Intel format.
G describes the format.

The I and A options designates a file on a diskette unit in IBM
format and with specified name (max. 8 characters). Name may
consist of letters and digits only. :Ii: indicates that the
diskette contents is in EBCDIC representation and should be
converted to ASC lion input and from ASCII to EBCDIC on output.
:Ai: indicates that the diskette contents is in ASCII r

i! p
i'
*I *

, I1

!
L I

I
Pl

28

The remaining

and

I

where <blanks>
<assign sequcnce>

command consists of a command part and an optional assignment
The command part is a reference to a diskette or cartridge

ii
i

i

15 5

■e

& $ u) I

If a program is not found on the specified unit, TOS
will try a second time with all letters converted to
upper case. This does not apply to filenames given
in assignments.

part.
file.
The optional assignment part specifies which physical files
should be assigned to the various physical units.

A‘ command may extend over more than one line if the rules for
continuation of the assignment part below are followed. The
first part of the command is processed when the first carriage
return is used. The execution of the program is not initiated

■ until the whole command has been processed.

i!

ll

A command indicates that execution of a particular program
should be initiated. The initiation occurs when the carriage
return (CR) key is depressed.

r

i command is terminated by CR or by a dollar sign which indicates
that the remaining part of the CI lines will either be read by
the invoked program, or when a command again is required and read
from CI.

L k

The second form of the assignment may be used when the program
should be loaded from one diskette (cartridge) , data is to be
taken from another diskette (cartridge) , and only one diskette
unit is available. When the / followed by a carriage return is
encountered, the specified program is loaded. After loading,
assignments is expected from CI.

We have already given some examples of commands. '
details are given here.
Formally, the command syntax are:

<command>: := <file> CR |
<file>/CR <assign sequence;*!
<file_> <blanks> ^assign tail> I
<file> <blanks> ^assign sequence)>

is one or more blank character. ^assign tail^
are defined later.

29

The

1

Formally, the syntax of the assignment part is defined by:

o

<block file name > :

■(composite^ :

An

I
ill

(

i

<assign tail> :
<logical unitp* :

<assignment » :
■(.assign sequence ' :

<echo_>
<double>
<name> :

An
is

1

deletion of one character and a echo
the line to be

:= ^logical unit > = <fi].e designator)
:= Assignment > Assign tail?1 I

Assignment > , <assign sequence^
:= <carriage return> | $
:= CI J COiSII SO ISL|Al|AOjAL

<file designator> :

j

■ £

I

5

^standard file > : :
<file_> : := <jinit designator _>
<unit designator> : := <empty> |

:F < integer > : |
: I ((integer > :
: A < integer > :
:M -(.integer > :

:= (,name?|
(name^> . (name)

:= ((echo) I
((double)

- (((file designator>/ (file designator>)
:= (<file designator > , (file designator))

=’ (letter)| <digit>| (name) <letter> ((name) (digit) H
I

assignment sequence consists of a sequence of individual
assignments separated by comma. | |

The «-
of
deleted.

:= (empty) |
/< logical unit>|
(composite) |
(standard file> |
<file>
:NF:|:BB:I:CI:I:C0:1:CR:1:LP:|:XM:|:RC:

<block file name)

The format is
((logical unit> = <file designator>

assign sequence is continued on.the next line if .,. . . , J-ine it a comma
immediately followed by a carriage return.

character from CI causes
space on CO. The RUBOUT character causes

The echo is ERASE LINE.
(Horisontal) tab character causes positioning to the nex

character whose number is a multiple of 8. Blanks are inserted
in the intervening characters.

- -30

J

empty

/logical unit
!

standard file

block file

■

Mote that with
performed
The.

’d be taken from
'the first file and echo d to the second.

echo e.g. CI=(:CI: XYZ)
indicates that input she

|

SI=ABC,SO=/SI
different meaning from

..... SO=/SI,SI=ABC
Five different file designators are recognized:

double e.g. SO=(ABC.X,:CO:)
indicates that for output files, the output
will be written on both, while on input it
indicates concatenation of the two files.

i

e.g. SL=:BB:
indicates that the file on the right hand
side is assigned to the left hand logical
unit. ■ . .

e.g. SI=:F1:ABC,X ’
indicates that the diskette file on the
right hand side is assigned to the left
hand logical unit.The same type of file
designator is also used for cartridge assignments [
A composite file is. further subdivided into
two categories

e.g. SI =
indicates that no file will be assigned
to the specified logical unit. Any access
to SO will cause an error.
e.g. SL=/SO
indicates that the file assigned to the
right hand side logical unit is also as-
.signed to the left hand one. In the example,
SL will designate the same file as SO.
(Merging output..’

I I ' i I

isl
r-

£
L-

the exception of CI and CO, all assignment are
one by one from left to right in the command.

sequence

has thus a

h 5 « !' ft
I

31

J 3. Utility programs
The

FORMAT
DIR
DELETE
RESCUE
ALIAS It

ANALYZ
DROP
MYLOAD
MPACK
MEMDMP

HEXBIN

MOVE
•COPY I
EXEC
DEBUG
ASSIGN
ALLOC
EDIT
XREF

3 - JASM
MINIT
RELEAS

renameRENAME
file in hexadecimal form

a

For
in

copy
pack

. P-.

1
H

follovzing utility programs are included on the TOS 21 system
diskette:

IIEXLST -
DCOPY -
dirpac -

list a
a diskette

diskette directory

*

I.

H

I

i S

"Hex" format to executable

mark sectors as not useable
load from MYCRO-1.formatted program diskette.
copy non-deleted files from one cartridge to another
output a specified memory area as an executable
program.
convert from Intel
(binary) format,
copy a line-oriented file
copy a block oriented file
execute a "command library element"
execute program in debugging mode,
assing a file -for more than one command
allocate space for a file on an IBM formatted diskette
sequential editor
produce cross-reference listing of an assembly program
assembler
initialize a cartridge
release a file which was previously assigned

a file

II

simplicity it is in all program descriptions and examples
this section assumed that the system diskette is mounted

on unit 0. If it is mounted on another diskette unit or the
program should be .loaded from cartridge, the program name must
be prefixed by :Fn: or' :Mn: where n is the appropriate unit
number.

initialize a diskette in Intel format
produce directory
delete a file
reclaim a deleted file
define an alternate filename

ATTRIB - change the attributes of a file
check a diskette for errors

32

3.1 FORMAT

or
S

II

Examples:
FORMAT $:F2:LIB.BM

|l

I

I

I

will format a system
and copy­

diskette on unit 2, give it the name SYS.V3
files with S and F attribute from the diskette on unit 0.

program is used to initialize
cartridge in Tandberg format.

The first form of the command will format a diskette containing
only usage map (ISIS.MAP), directory (ISIS.DIR) and label
(ISIS.LAB).

• I
!

ft

!

s

*

F

!.

The FORMAT
format or
It is invoked by

1%Jj
I w

S’

The latter form is used to create a system diskette. In this
case all files having the S-attribute set (see ATTRIB program
description, section 3,7) will be copied from the second unit
to the first. If both units specified are diskettes, files
having the F-attribute set will also be copied.

L
a diskette in Intel-

where unit is in the form used in assignment (:Fi:, :Mi:), and
volume name is the name to be given to the diskette. The format
of the name is as for files, i.e. a name of maximum six alpha­
numerical characters followed optionally by an extension of up­
to three alphanumeric characters.

will format a diskette on unit 2 to contain usage map and directory.
The name of the diskette will be LIB.BM.

FORMAT $:F2:SYS.V3, S

FORMAT $ unit volume name,
FORMAT $ unit volume name,

33

3,2 DIR

The

:Mi: ,:Ai:,

and SO =/C0 is then used as default.
an Intel-formatted diskette:

!

For a

JIJ

|i

n’

alias names are noted as such
the total number of blocks (sectors) in use on the diskette

listing of the names and characteristics
on a diskette or a cartridge.

! :
|!

C ail

dir
or DIR

where unit is
etc.) .

[i

a

I
h •

I

$

DIR will produce a
of the non-deleted files

program is invoked by
SOoutputfile $ unit
$unit

in the form used in assignment (:Fi:,
The unit may be omitted if it is :F0:

The assignment may be omitted,
The listing contains for

- the volume name
- the name of the file
“ the number of blocks in the file
- the file length in bytes

. - the attributes of the file (see ATTRIB program description
in section 3,7). Files with the I attribute set will not
be included in the list.

t of the tracks 1 through 3.
track is full).

The listing contains for an IBM-formatted diskette:
■■ - the volume name
- the name of the file
- track/sector of beginning and end ’

of the space allocated to the file
and end of information written on the file

- listing of file flags (see IBM publication describing
the diskette format.)
cartridge, the listing contains:
the volume name

- the name of the file
- the number of blocks in the file
- the file length in bytes
- the attributes of the file (see ATTRIB program

description in section 3,7)
- the block size
- the track and file number of the first file segment of

the file.
number of filesegments and number of blocks on each

(Also indication if the

4
34

Examples:

*

i

• i

H

iI

I

4

1
!
■

Ik

DIR $:F1:
will produce a listing on CO for the Intel formatted diskette
on unit 1.

I
I

i

I. <'

DIR SO=CAR1$:M1:
will produce a listing
cartridge on unit 1.

DIR SO=:DP:$:A2:
will produce a listing on pri liter for the IBM (ASCII code) for­
matted diskette on unit 2,

*

■J

:l *
II

. £
$

as a file on :F0: named CAR1 for the

35

-4 3,3 DELETE

The program is invoked by

comma.
:!

o

DELETE $:F1:ABC,:M2:QPR,:A2:IBM

and these

(on CO):Messages from program
NOT FOUNDfilename

I
i 11

II

Jntel-formatted diskettes and Tandberg-formatted cartridges,
will be. searched for alias-names,

If the file designator specifies an IBM-formatted diskette, the
dataset label sector corresponding to that file is rewritten
with a "deleted data" mark. Since allocation of space is not
automatic on IBM-formatted diskettes, no actual release of
sectors take place.

DELETE $ filespecifications
where filespecifications is a sequence of filedcsignators (as
used in assignments) separated by comma. The command cannot
be extended beyond one line.

The filename did not exist on the
specified unit. Processing continues
with the next name in the list.

J i iI
I£ I

L

I
e.g

For
the directory
will also be deleted.

S’
M'4
5

J/

If the file designator specifies a Tandberg-formatted cartridge,
the file directory block for that file is marked as deleted.
The space used for the file will not be reused.
Different file designators may be mixed in one delete statement,

Example:
To delete two files, ABC and'DEF on unit 1, and the file

TEMP on unit zero, the program could be invoked by
DELETE $:Fi:ABC,:Fl:DEF,TEMP

-

k‘a

DELETE will delete specified files from a diskette or cartridge.
For an Intel-formatted diskette, the space will be released for
use by other files.

-

-

36

filename PROTECTED

filename DELETED

filename ALIAS

)(
aliasname DELETED ALIAS

*

!

i;

b

I £

The specified unit designator vzas not
valid. Processing is aborted.

>

I

k
*

£
a

I I

IMPROPER PARAMETER LIST
An error was detected when processing
the parameter list. Processing is aborted.

The attributes of the file specifies
that it cannot be deleted. Processing
continues with the next name in the list.
The deletion completed normally. Processing
continues with the next name in the list.
The specified filename is an alias
for another name. The original name
must be given to release the space,
hence only the directory entry is deleted.
Processing continues with the next name in
the list.

The specified filename (shown in the last
"DELETED" message) had an alias associated
with it which was also deleted;-

IMPROPER UNIT SPECIFICATION

37

J~3r4 RESCUE^!

NOTE: CAUTION SHOULD BE EXECISED WHEN USING THIS PROGRAM

file <5

i

i • The program is invoked by
• RESCUE $ filename

:F2:XYZ
:F2:XYZ

wrong.

filename NOT FOUND
name

filename LOST

■. i

I
i
j

■j
i
i
i

Messages from program:
filename RECLAIMED

No deleted file with the specified
was found in the file directory

■

i
i

ii

i

f i

Intel-formatted disette:
- No output files was created on the diskette since

the deletion.
IBM-formatted diskette:

- No new data set labels was created cn the
diskette since the deletion

- The space occupied by the deleted file was not re­
used by overlapping files.

Example:
DELETE S
RESCUE $

i r
I

•a

The file has been reestablished
-hopefully properly. At least the
RESCUE program did not detect anything

1l''

ck
Reclaiming of the file was not possible
due to violation of one of the rules
specified above.

If by mistake or accident a file was deleted. RESCUE may be
used to re-establish the file under certain conditions:

There are no restirction on reclaiiming a deleted file 'ion a
Tandberg-formatted cartridge.

I

38

3/5 RENAME

l;

I

file on a

Messages from program:
filename NOT FOUND

filename EXISTS

V

When

r-

i
I

I

filename RENAMED
filename PROTECTED

The rename operation was performed.
The attribute of the file specifies
that it cannot be renamed.

name of a specified file on a diskette
program is invoked by

l
I’

4
'i

i
I*
i *

i

i

I'
v

RENAME will change the'
or a cartridge. The

e

IMPROPER PARAMETER LIST
An error was detected when processing
the parameter list. Processing is
aborted.

on unit 1 (Intel formatted)

RENAME ^filename, newname
where filename designates the file to be renamed, newname in
the new name in the usual format (without unit specification)
Example:

To rename a file ORANGEto APPLE:

IMPROPER UNIT SPECIFICATION
The specified unit designator was
not valid. Processing is aborted.

I

RENAME is used on an alias, the new name is also on alias.

The filename did not exist on
the specified unit. •
The new name already’ exists’as
filename on the specified unit.
The old name is retained on the file.

RENAME $:Fi:ORANGE, APPLE
Note that the number of rename operations on one
cartridge should be limited as much as possible.

39

3,6 ALIAS

Except

The program is invoked by
ALIAS $ filename, name

Example:
ALIAS $:F3 zSTALIN,IRON.MAN

. Messages from

filename EXISTS as oI li
name MADE ALIAS

i

!

program:
filename NOT FOUND The filename did not exist on

the specified unit.
The alias already exists
filename on the specified unit.
No alias is created.

ALIAS is used
in the

The operation completed normally
IMPROPER UNIT SPECIFICATION

I

•<r-
aborted.

IMPROPER PARAMETER LIST An error was detected when
processing the parameter list.
Processing is aborted.

to establish an alternate name for a file.
case of deletion (see DELETE), and alteration of attributes,

an alias will act as if it were the original name of the file.

The specified unit designator
was not valid. Processing is

l t
Ci

40

I
A file have the

S
F
W . i

I

and

F

■I
!

r
«vi

Examples:

to alter file attributes.
which may be set or reset:

will set
and ciear

ATTRIB $:Fl:FIL.X,+1, ~W
the invisible (I) attribute of the file FIL.X on unit 1
the protect (W) attribute of the file.

I

i

if*

attribute is set if a file should not be included in the
listing produced by the DIR command.

- System attribute
*- Format attribute
-Write protect attrobute
- Invisible attribute.

A - Alias attribute

ATTRIB is used
following attributes

The ATTRIB program will allow alteration the S, W and I attributes
only. It is invoked by

in 3,7 ATTRIB

i

I ll

£
A - attribute is set for names created as an alias for other

files (see section 3,6)

W - attribute is set if a file is to be protected from deletion
or rename.

attribute is set for specific formatting system files,i.g.
usage map, directory and error message file.
They will be copied by the FORMAT program if
creation if a system diskette is specified.

The attributes have the following' effect:
S - attribute is set for system programs, i.g. TOS21

the utility programs. They will be copied by
the FORMAT program if creation of a system diskette
is specified.

ATTRIB $ filename, attribute list
f

where attribute list is a sequence of specifications of the form
+ attribute or - attribute sepatated by comma (attribute is
either S, W or I)•

41

UNKNOWN ATTRIBUTE

IMPROPER UNIT SPECIFICATION

ATTRIBUTE LIST ERROR

i
I I

/11

PJ

system (S) and protect (W) attribute of the file
cartridge on unit 1. . .

messages:
the specified file was not
found on the specified unit,
the specified attribute was not
I,S or W
The specified unit designator
was not valid
The list of attributes was not
in the correct format.

I w

I 1

ATTRIB $:M1:FILY,+S(+W
will set the
FILY on the
Program

filename NOT FOUND

42

3,8 ANALYZJ

The program is invoked by
SO=outputfile $ unitANALYZ

etc.) .: Ai:
omitted if it is

Note:

1

1/

I

ANALYZ will check a diskette to locate sectors with errors
(usually CRC errors).

‘ J

&

1I

i v*• L <•

• ?
•w

■ X1

5

<»!

o

Sectors with deleted data is not considered as being in
error, even through the occurrence of such sectors on an Intel-
formatted diskette is illegal.

L

I II

The assignment may be omitted, and SO=/CO is then used as
default.

or ANALYZ $ unit
where unit is in the form used in assignment (:Fi:,
The unit may be omitted if it is :F0:

The program produces a list (on SO) of sectors with errors.
The list may be used subsequently as input to DROP to mark the^e
sectors as 'in use' so that they will not be allocated to
files (Intel-formatted diskettes only):.

2

43

DROPor

track 10 sectors 4,8 and 9 of ths

2.

3.

i

I I

I

ANALYZ
DROP
DELETE

1

I

SO=TMP$:Fl:
SI=TMP$:F1:
$TMP

?!

I U :

3.9 DROP

Ik

'■t--

w

s
I

case, SI=/CI is assumed as

DROP will mark specific sectors as "in use" to prevent them
from being allocated to new files. The DROP program applies only
to Intel-formatted diskettes.

It reads a list of track and sector numbers from SI and sets
the bit in the diskette map to mark the sector as "in use".

It is invoked by either
DROP SI=inputfile$unit

$unit
In the latter case, SI=/CI is assumed as default assignment.
Unit is of the form :Fi: where i is the unit number of the

diskette unit.
The inputfile contains track/sector specification in the

following format:
T/S, T/S, T/S carriage return
The input is terminated by an empty line. . ■.
Example:
1. To mark as "in use"
diskette on unit 1:

DROP $:F1:
10/4,10/8,10/9

Assume that we want to check the diskette on unit 1
and mark the sectors where errors are found: :

ANALYZ
DROP
DELETE

As 2, but assume that we also want a list on :LP:
SO=(TMP,:LP:)$:F1:
SI=TMP$:F1: : ‘
$TMP

44

3.10 MYLOAD

I

r

i

. I

I'

i1.

in
Pi

a MYCRO-1 for-
assuming that the TOS diskette is on unit 1:

MYLOAD assignments $ programname
assignments are the required TOS assignments if the

program was written on that computer for use under
where/

MYCRO-1

TOS on TDV 2100.

Example: To load a program named MYC from
matted diskette,

!
|i

1

:F1:MYLOAD$MYC
If only one drive is available, use
MYLOAD/
Change diskette after program has been loaded
$MYC

MYLOAD will load a program from a program diskette with
the load format used for the MYCRO-1 microcomputer (produce
by A/S MYCRON), and initiate its execution.

Loading is always from unit 0.
The program is invoked by

£
i. 5

. J

4 5-

3.11 mpack

same name.

name already exists on outunit,

l!
output on:LP:

i

i ■

I

i

J

MPACK
MPACK

i
I

IK

t

a new name.
and listing of the names of the copied

or
In the latter

program reads from the
those files which

outunit must contain a
initialized with MINIT.

If a file with identical
MPACK will construct

Alteration of names
files are output on SO.

Example:
. To copy from unit 0 to unit 1,

MPACK SO=:LP:$0,1

MPACK will copy all non-deleted files from one Tandberg-
formatted cartridge to another.

It is invoked by
SO=outfile?inunit,outunit
$inunit,outunit.
case, SO=/CO is assumed as default. The

cartridge on unit number inunit and writes
are not deleted onto outunit with the

cartridge which has been previously

*

.! ft
rr £

Ki

-46-

3.12

1

i
i

I

i M

pi

L
a

*
■&

; I ||'
!

I 1V

a cartridge with directory and special
"Tandberg-formatted" cartridges.

2’
2

: I

MINIT
or MINIT

where unit is a digit 0-3.
lization.

The program will check to see if the cartridge is already
initialized. If so, and the R-option was not present, the
cartridge will not be reinitialized. Otherwise the required
control blocks and tapemarks will be written onto the cartridge.

MINIT |

MINIT initializes
blocks required on

It is invoked by
$unit,volumename
$unit,volumename,R

The latter option indicates reinitia-

M -

is a

The area 2000H-27FFH cannot be written out.Note: ■■

I!

i

i

I
I

r

I

F*^

&

I
r

3.13 MEMDMP "|
MEMDMP may be used to dump an area of RAM as a binary file
which may subsequently be loaded for execution.
It is invoked by

MEMDMP SO = outputfileSxxxXj—jyyyy
where xxxx is the (hexadecimal) starting address, >—j
space and yyyy is the (hexadecimal) length of the area.
The program when loaded will start execution at xxxx.

l|

■ 1 *

111 £
5

f
" 48 "

3.14 HEXBIN

5

RECORD TYPE ERROR

1

I

!

I
I

No subcommands from CI are required during program execution.

Program messages:

HEXBIN
or HEXBIN

[

v)

I

Indicates that program found a
hex-record with an unacceptable type
code. The program terminates execution
at this point. Normal return to TOS21.

1

>;!

I•i i

I

i

In the latter case, the start address is taken from the END-
card of the assembly.

r j

In the former case, the created binary file will contain the
specified starting address. The format is xxxx where x is a
hexadecimal digit.

SI = input file, SO = output file $ start address
SI = input file, SO = output file $

h
I
I
I

V I j K, I
X I

HEXBIN converts a program in Intel "hex" format on SI to a
program in loadable format on SO (see Appendix E) .
It is invoked by

J >

49J
3.15 MOVE

copy lines from one file to another. It is invoked

MOVE SI =
Example:

AO,

Example:

t

:C0: , AO = :LP:

I

i .

1

I

■

_ *

MOVE will
by

i1'

If an
that file,

!i%

will
(For further

i

we -could

If a printer only has uppercase letters, and we want
to display a text on the screen using both lower and
uppercase at the same time as printing itr
use:

assignment has been made to AO, the same text is put in-
but all lower-case letters are converted to uppercase.

MOVE SI = infile, SO =

11

lit
I i;

£

MOVE SI = QUITO.LST,SO = :LP:
copy from the file QUITO.LST to line printer,

examples see section 2.2).

h, i

infile, SO = outfile

- 50

3.16 COPY

NOTE:i

j

,1

' ■

*

‘d

i'

■I

!

tj
"O

S'
•<F>

5

COPY will copy blocks from one file to another.
It is invoked by

COPY SI=infile,SO=outfile

Acceptable assignments for COPY arc only block
oriented files, e.g. diskette or cartridge files.

rI I

Example:

COPY SI=FII.l, SO=: Ml: FILI. BAK
will copy the file FILI (on diskette unit 0) to a new file
named FILI.BAK on cartridge 1.

J

I

51 -

3.17 EXEC

'I'

I

a

i

<

i

'I

Hi
i

I

■e■I

I

I

i
il

■ i

•<r>

/

V)

sequence of commands residing on
a diskette or cartridge file. When the end of file is reached,
commands will again be requested from the keyboard.

The command sequence is initiated by
EXEC CI=infilc‘?'

EXEC is used to invoke a
cartridge file.

4 52 “

3.18.J DEBUG

Example:

■

I

H’t,

i!

o
,1

program and perform the required
Control is instead

where the commands of section 1

!

IB

■

I I

£
5

DEBUG?:Fl:NEWPROG SI=:NF:,S0=:CO:
will load the program NEWPROG from unit 1, perform the assign­
ments and enter the monitor kernel.

DEBUG is used to load a
assignment, but not start its execution,
passed to the monitor kernel,
may be used to control execution of the program.

The program is initiated by
DEBUG $ progname assignment

(The right hand side of ? is a complete command) .

I I

53 “

3.19 assign

so.

I

i

I

I.

II

£

41

•<r>
5

!<

V
I

Example:
ASSIGN SO=:LP:

Programs may now be invoked without assigning

to perform an assignment lasting more than
Usually, a file is opened when a program is inl­

and closed when it is completed. Through the use of
a file will remain open until a release command is

/

Ji

ASSIGN is used
one command,
tiated,
ASSIGN,
executed.

The command is simply
ASSIGN assignments

54

..
3.20

by the ASSIGN

list of logical units separated

□

1

!

JI

Example:
RELEAS $SO,SL i

iI

RELEAS is used to close a file kept open
command.

It is invoked by
RELEAS $logical unit list

vzhere logical unit list is a ---
by comma.

!|

(

- 55

3.21 ALLOC

is not yet

i

1

I
I

I
I

i

(The specifications for this program

complete) .

*

1

p
k''

"*»U»

S’
■/-

>'l

..

* Ir
I
!
I i
i
I E
i E

" 56

EDIT

user by
ENTER COMMAND:

on CO.

B

BI

BO

C

iCn

C+n
I

C"text"

I

t
I ;

I

DI
DO
H
I"text"

sequential editor for use with TOS.
It is invoked by

EDIT
The Editor
file under

jl

The following commands are available:
set the pointers of the input and output
buffer back to the first character in each.
(Equivalent to BI and BO)
set the pointer of the input buffer
back to the first character (equivalent
to a new scan of that line)
set the pointer of the output buffer
back to the first character (equivalent
to clearing the output buffer)
copy the remainder of the input buffer to
the output buffer, write the output buffer to SO,
read next input line, clear output buffer
(O4.n£99) as C followed by a direct copy
of the next n-1 input lines. _7
(Cl is equivalent to C)
(0<n£99) copy the next n characters from the input
buffer to the output buffer. If the end of the input
buffer is reached, the command is equivalent to C
copy up to (but not including) the next occurrence of
the specified text in the input file
display contents and position pointer of the input buffer
display contents of output buffer
end the editing, Remaining part of SO is skipped
insert the specified text in the output buffer
(The text cannot contain CR)
insert a number of lines in the output file
(see "Insert mode" below)' 1

iT

SI=input file,SO=output file
copies information from the input file to the output
control of commands from CI, the console input file.

With SI and SO
spectively.

I

1^
1’1

L^22
Edit is a

■e

5

are associated an input and an output buffer re-
With each of the two buffers is associated a pointer. When the Editor is started, the first line is read from SI into

the buffer, and it is displayed on CO as well. The position of
the pointer (the next character) is also indicated on CO.
Each time the Editor is waiting for a command, it will prompt the user bv

- 57

S
i

Sn Equivalent to S followed by
S+n

S"text"

X”text"

If

of file is encountered on the input file.
each terminated

I

Examples, on invocation of editor

1.

SI=input file,S0=(output file,:LP:)

5

J

A command uppercase

In this mode, i
by a carriage return.

I
I I

I i'

tively -> may be used to tabulate to the character whose number
is the next multiple of 8.
CTRL C followed by

Creating a new datafile.
Invoke the editor by

EDIT SI=:NF:,SO=output file
That the null file :N?: is used as input file, will cause the
editor to enter insert mode immediately.

I

*

i

2. Update with listing.
The double-file feature can be used to produce a listing of the
edited output:

EDIT

new lines may be entered one by one,
The keys «• and RUBOUT are available for

editing the line, indicating backspace and delete line respec-

out to SO as a line
(04n£99). Skip n-lines.Sn-1.
(0<n<99) skip the next n characters in the input buffer.
If the end of the input buffer is reached, the command
is equivalent to S.
skip up to (but not including) the next occurrence
of the specified text on the input file
(exchange) skip as many characters in the input buffer
as there are characters in the specified text, and insert
the characters of the text in the output buffer,
the end of the input buffer is reached, the text is
inserted and the output buffer written on SO.(but not the "text") may be written both in lower and

- J. ------ “• i*

Insert mode is entered when the I-command is given and when end

3. Two-file input.
The double-file feature can be used if more than one input file
should be edited together:

EDIT SI=(infile 1, infile 2),SO=output file

Carriage return indicates return from the insert mode to the
normal edit mode. If insert mode was entered as the result of
an end-of-file on input, a CTRL C followed by a carriage return
indicates end of edit.

skip the remainder of the current line. If the out
put buffer was not empty, the contents there is written

■k-'

- 58

4.

EDIT

o

o

ASSIGN
EDIT
EDIT

SI=file n
RELEAS $S0

SO=outputfile
SI=file 1
SI=file 2

Multiple input
If a large number of files should be edited together, it is
more convenient to use the ASSIGN feature:

J
•'i ;
Pi

I

(

~ 59

3.23

(The specification for this program is not yet complete).

i . .

11

I

1

I

b

*

ii

i k. £
' B l</) j tel

XhEF

Jz

" 60

^24 ASM

SL = list file

as

separately documented in "TDV 2100 Assembler -

1

o

■

I

Calling
ASM SI =

above.
SI
input.
in RAM.
The assembler is
User's Manual".

J•<r--

I *

II I
I *•i K,

sequence
input file, SO = hex file,

The Assembler is a two pass assembler when used as specified
It can be run on-line, as a one pass assembler if the

specification is omitted. Input is then taken from console
Code will be generated for each statement and stored

i
I

I
< ■

61

3.25 HEXLST
line

SO = outfileSI = infile,HEXLST

SO = :LP:

i

i

-

I i

Example:
HEXLST SI = FILI,

will list the file FILI on printer.
t

E

I

; S
$

■r- »

■

HEXLST will list a file in hexadecimal form, 16 bytes per
in groups of 8 lines.
It is invoked by

62

J

that

DCOPY
and wait for an operator reply

c

o

I

I •»

I
1

II

The program gives a message
before copying is started.

Any other reply than Y will cause

•a

£
5

The program copies from unit 0 to unit 1. Be careful so
your diskettes are in the proper unit.
It is invoked by

I!1
I

3.26 DCOPY^
DCOPY will copy an entire diskette regardless of its contents.
The diskette may not contained deleted data sectors or sector
with CRC errors etc.

KIN I iv^ i* B
return to TOS.

C. (C //./,;< c" ' 'i
'■ ■>- 7)

63

When

When the second

Example: on unit 2:

h

.1/

I

!
t

To pack the directory on the diskette
DIRPAC$:F2:

'I E

1 ,

I

IJ

a file is deleted
space in the
a number of deletions,
but with
pack the directory
It is invoked by

DIRPAC$ unit specification
DIRPAC?

■^3.27 PIRPAC

tr fe.

through use of the DELETE program, its
diskette directory will not be used. This means that after

the directory might be full (200 entries),
a number of deleted ones. The program DIRPAC will

so that the space might be reused.

or
where unitspecification is of the form :Fx: .
option is used, unit 0 is assumed.

64 "

' Li
4. Programming using TOS21

4.1

I.

II

•0

1

li

1

i

* Ik

j

Jr

•e

1J.
n '■P:

1 -4
1

zrj

Storage layout
TOS21 occupies the high end of the memory address area

while the PROM Monitor Kernel occupies the lower end of memory
space. Fig. 1 shows the storage layout. The start of the RAM
area available for user programs depends on the amount of RAM
in the TDV 2100.

The start of TOS code is determined when the system is
generated. Below that, buffers for i/o units are dynamically
allocated and deallocated, so that the RAM available for user
programs may vary according to space required for the assigned
files.

\

“ 65 "

FFFF

EOOO

I
I

User program
RAM 1

27FF • SYSTEMS AREA
2 5BF

I2000

OFFF

y/zo^/p
0

O

Storage layoutFig. 1

FDOO : t

I
i

J
i
1

AUX
RAM (default stack)

ZIFF
2<ro-o

I/O buffers & ctl.blks.
(dynamic)

RAM Configuration
dependent

NA L- hAtP
"r'j/Zzr

PROM
Monitor Korn.-l

4KB

k

5

i Resident code &
' tables (conf ^juration

dependent)

I

r- . , , y------

-i -TT-? -/ 7~r\

r
/ fo (X zf /I H

)

1=^FP ry~-------------
/ lb

f ' /

IH
lip I

•-

I bi/

Resident system
fixed area

i
] (dedicated area, buffers '

and jump table) :

66 -

4.2 Systems area
use.

I

■

I

I i

I I
i

I

j I I f

The area from FDOO to FFFF is reserved for systems
The layout is shown in fig. 2

p

/

" 67

FFFF

SYSTEMS
DEDICATED AREA I

I

i

-

1

J

I

System pointers

256 bytes

System jump table

FDOO [

Fig. 2.

I
I

i
• 512 bytes

FEOO
FDFF •a

't!

M|

II
ii

II

Reserved system area

- 68

The

I

!•

FDOO FD3F
FDCC
FDEB
FDFF

These functions are not

FDOO TOS21 FD03 FD06ERROR r».LOAD
FD09 INCHAR OUTCHAR GET

PUT PUTSTR GETBIN
PUTBIN OPEN READ

•; • WRITE CLOSE EDBH
EDHBEDWH EDHW

STIMERBUFALLOC

, l

I

FD40
FDCD
FDEC

FD12
FD1B
FD24
FD2D
FD36

FDOC
FD15
FD1E
FD27
FD30
FD39•I’’II I

Z

■ I

*
■a

User available TOS21 functions
Basic function jump table
Internal system functions
System pointers

FDOF
FD18
FD21
FD2A
FD3 3

BUFDEALLOC FD3C

CI
CO
SI
SO
SL
Al
AO
AL

FDOO through FDFF contains
to access system functions,

i •

LI

$

a jump table which is used
and system pointers.

i
I I

area FFOO through FFOF contains the current assignments
for the eight- logical units:

FFOO
FF0 2
FF0 4
FF06
FF08
FFOA
FFOC
FFOE

The addresses of the internal system functions and system
pointers are shown in Appendix D.
intended for other purposes than systems programming.

The following TOS21 functions are available:

The basic function jump table has the same structure as
the jump table of the monitor kernel. For systems where the
kernel contains both diskette and cartridge routine, the jump
table will simply refer to the relevant address in the kernel
jump table. For systems where only one of the devices are
supported by the monitor, the other device may have its routines
in the TOS21 RAM-part. References to the basic function
table of TOS rather than directly to the kernel will ensure
that programs may be run under other versions of the kernel
without alteration.

69 -
I

4.3 Pj?g of TOS 21 functions

I

I

FDOO TOS21

ERROR userFD0 3

LOADFDD 6

Unless otherwise specified, all regis-
are saved and restored except for those returning a result.

if an error occured.
the error code.

k 4

■

J

*

ft

i

Return to TOS21 command mode. May be entered by
JMP or call as it does not return .to user.
No parameters.

Display message ERROR xx on CO, and return to
if carry was not set on entry. :

operations require as a
(When

the user need not bother with the
but a rough outline is given in Appendix B) .

A TOS function is called by giving a CALL instruction speci­
fying the jump table address of the desired function. The approp­
riate parameters must have been placed in registers prior to the
call. Upon return, the carry flag will indicate whether the
routine execution completed normally (carry cleared) or an error
occured (carry set). In the latter case, the A-register contains
an error code (see Appendix A) . Note that when carry is set
and A is zero, this indicates end-of-file (on input) or end-of-
space (on output).

Routines involving input/output
parameter (in HL) the address of a file control block,
normal assignment is used,
control block formats, !
A user will normally use a LHLD instruction to fetch the contents
for the particular unit in the device assignment table (FF00-FF0F).

In the following, a brief description is given of the func­
tions available in TOS.
ters

Note: Return to TOS should normally be done by
a RET instruction as this will close all files
opened as the result of an assignment. Entering
TOS through TOS21 will cause the files to
remain open.
When returning to TOS through a RET instruction,
carry should be cleared for normal return, and set

A is then assumed to contain

Load a program from an Intel-
formatted diskette.
Parameters: as LOAD of monitor kernel.

70

j

The following functions are available:

I

(-

o

i

■ I

jvg
Pl

<1

read the next character (INCHAR)
write a character (OUTCHAR)
read text up to next CR LF into a user specified
buffer (GET) '
write a text from a user specified area up to CR
(PUT, PUTSTR) • '
read a specified number of characters into a user
specified buffer (GETBIN) ■
write a specified number of characters from a'user
area (PUTBIN)
read a block (READ)
write a block (WRITE)
close a block (CLOSE) •
open a file (OPEN), only used when open was not
performed by system.)

The jump table entries from FD09 through FD27 contains the
generalized i/o handling routines.

It is assumed that assignment to the logical units (CI/ CO,
SI, SO, SL, Al, AO, AL) have been performed by TOS21. The
assigned logical units will then have been opened by the system.

"71

Routine Input parameters Result
FD09 INCHAR HL - file control block A-character

error

FDOC OUTCHAR file control blockHL If carry set, error
eoeor

FDOF GET HL file control block error
DE user buffer or eot.

FD12 PUT HL file control block error
DE user buffer eoe.or

FD15 PUTSTR as PUT
FD18 GETBIN file control blockHL error

DE altered.user bufferDE
countB

FD1B file control blockPUTBIN HL error
or eoe.
If carry set,FD1E OPEN error

A

FD21 READ error

file control block If carry set,HLWRITEFD24 error
or eoe
If carry set,file control blockHLCLOSE errorFD27

EDBHFD2A

1

DE B
HL

*

i

If carry set,
or eof

If carry set,
or eof.

If carry set,
or eof

If carry set,
DE altered.

If carry set,
DE altered.

Edit byte hex
Parameters: A-Byte, HL-address of two byte
receiving area where edited hex value (in ASCII)
is stored.

The difference between PUT and PUTSTR is that PUT will
insert CR LF while PUTSTR will not.

If carry set,
DE altered.

- open code (l=input,
2=output)

HL - file control, block

user buffercount
file control block

All these routines requires a pointer to a file control block
in HL. For the normal files, and assuming equivalences defined
previously, this pointer may be conveniently loaded by the LHLD
instruction.

72 "

FD2D EDWH Edit word hex
Parameters:

FD30 EDHB

Result:
FD33 EDHW De-edit hex as word L

Parameters:
Result:

FD36 BUFALLOC

Result: HL-address of buffer.
FD39 BUFDEALLOC

FD3C Set interval timerSTIMER
DE-desired time interval in 20 msParameters:

o
!

units, HL-address where control should.be
passed on expiration of the limit.

HL-address of four byte area.
DE-word.

is

—*

DE-word, HL-address of four byte
receiving area.

• I ,
■!

*r
■Ia

l«n ?
IF I

Allocate a dynamic buffer
Parameter: HL-desired size

De-edit hex as byte
Parameters: HL-address of two byte area.

A-byte.

H

■

Deallocate a dynamic buffer
Parameter: HL-address of buffer.

should.be

- 73

User handling of interrupt under TOS.

Location to store address

4 I
5 027AAH

andon t

a

I

routine call STIMER is available to set the interrupt

I,

,4

are cleared to zero when power is turned
user when the interrupt occurs.

027A4H
027A8JI

I

Interrupts on
relevant for
buffer empty
stored on

Level
2

li
!
I

If we in a
and when an interrupt occurs enter

The clock interrupt (on level 1) each 2O.ms is not directly available
to the user. The user has, however, available an interval timer
feature, which permits him to request an interrupt after a specified
number of 20 ms. periods.

level 3 are passed on to the user only if they are
the UART and is not 'data available' or 'transmitter

'. The address of the user interrupt routine must be
location 27A6H.

Interrupt
Sync, interface
Cluster interface
Cluster interface II

*

Pl

5

r

!l
i

ItI 1!

These locations
if non-zero exit will be made to the
The user is responsible for saving and restoring of all registers,
and must enable interrupts prior
to

When an

to executing a RET instruction
exit from the interrupt routine.

Example: If we in a (assembly) program wants to capture interrupts
on level 4, and when an interrupt occurs enter a routine named
INTR4, we might use

LXI H,INTR4
SHLD 027A8H

interrupt occurs, the monitor . will execute a fixed
sequence of instructions. For interrupts on the following levels,
the user may gain control after the standard sequence by storing the
address of his interrupt routine in standard locations.

All interrupts occurring on level 4 after this sequence of instruc­
tions has been executed, will cause the interrupt routine INTR4
to be entered.

If the monitor only is used, the interrupt address is stored
in 27BOH, the desired interval(as a word) in 27BDH. Note that
the modification if these two location must be done with interrupts
disabled.

Under TOS, a
condition.

74

J

I

o

I

I J > '

t
i

J* |

I'

Interrupts on level 6 (diskette) and 7 (cartridge) are in
general handled by the monitor. If an interrupt address is
provided for one of these levels, control will pass to the
user only when the complete operation (read, write etc.) are
completed, and not when seek, retry etc. will be done.

- .—L "*

Pl
1 -^4

Interrupts on level 0 cannot be captured by the user.

75

5. USAGE HINTS
5.1 How to patch a program

name) the following

1.
2.

commands3.
4.

with suitable assignment5.

>

To patch a program and store it (under a new
method might be used:

Load TOS (if not already running)
Use the TOS command

DEDUG$program name
(without any filoassignments)
Patch the program using monitor
Restart TOS by RO command
Execute the MEMDMP program
and parameters.

p
J?'

76

5.2 How to

the code sequences are shown for SI).

LHLD SI
INX H
MOV
AN I
MV I
JZ
MVI

LI: ANA
MOV
INX
INX H
INX H
MVI
INX
MVI S’*.
MVI
LHLD
CALL OPEN
J.C f t r r f •

u

I

M,A
' H

A,M
20H

A,67H
M

M,128
H

A, 44H
LI

*

M,0
A,1
SI

Note that if a file control block should be reused, the
. BUFFER EXT field must be reset prior to opening the file.
Note further that this method will not work for a double
file assignment, e.g. SI-(ABC, XYZ)

reopen an input file
(As an example,

I I I

77 -

Appendix A
SYSTEM ERROR CODES.

ih

00

03

■

OA
I OB

OC
OD
OE

I*

*

ii

Hex
value

01
02

04
05
06
07
08
09

OF
10
11
12
13
14

LR
:<z)
'Fl
I

End-of file or end-of-extent
Sector missing on diskette
CRC error on diskette
Timing error during read/write data transfer.
No address mark * . ?.
Diskette operation timeout
Timing error in read operation
Eusy-bit timeout
Drive not ready
Name not in directory and no room for it.
Name not in directory
Program name not found
Illegal directory entry'
Directory size error during load
Data size error during load
Diskette map cannot be located
Non-valid diskette command
Improper unit specification
Conversion table missing

• -Drive no. nbt 0-3
(Number not in use)

II

S''mt-£

IIII

Upon exit from a system routine, the carry bit will be set if
an error occurred within the routine, cleared otherwise. The
A-register contains an error code.

78

non-output file d'

or

ID I

$ or space
J o

a**.

26

Q

IE
IF
20

15
16
17
18
19
1A
1B-
1C

•e

21
22
23
24
25
26
27
28
29
2A
2B
2C
•2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B

£

I *
VQ

Pl

Command
Command or
extension

De-cditing of non-hex digit
Input attempted from non-input file
Attempt to read after end-of-file
Attempt to write on
Unassigned device
Unknown device type

or filename did not start with letter or digit
filename longer than 6 characters
longer than 3 characters

Command did not refer to Intel diskette or Tandberg
formatted cartridge as device
TOS not loaded
Command not terminated by CR,
Deleted data record
Logical unit name unknown
Write attempted on filetype other than 5
No write or read routine supplied in control block
Read attempted on filetype other than 4 or 5
Line overflow for filetype 4
(Number not in use)
File already open
No open routine supplied in control block
File was not open when close was called
No close routine supplied in control block
Buffer chain destroyed
Buffer header improper
Improper file designator
Improper assignment format
No more space on diskette
(Nomber not in use) ■ • ‘ •
Non-existent filename for input file
Output file already on diskette
No more space on diskette
Filename longer than 8 characters
Track no >76
Sector no=0 or
Buffer address zero
Routine not available
Cartridge directory block not 32 bytes
Volume header missing
Directory block error

79

3C
3D
3E
3F
40

i

42
43
44
45
46

49
4A
4B
4C
4D
4E
4F
50
51
52

55
56

■

4 7
4 8

57
58

53
54

Reading erased tape
41 4- 4 2 4- 4 4

41--4F
41

*
*3»

i«O

■.

I
I

L

Tape mark detected
41 4- 4 8
4 2 4- 4 8
41 4- 42 4- 48
44 4- 48 • • •
41 4- 4 4 4- 48
4 2 4- 4 4 4- 4 8
41 4- 42 + 44 4- 48
Illegal unit number (cartridge)
Illegal track number (cartridge)
Block size illegal (cartridge)
Track change error (cartridge)
Cartridge unit not ready
Illegal buffer address (cartridge)
Cartridge not supported
Extra blocks in cartridge file
Continuation header missing

Output file already on cartridge
No more space on cartridge
Input file overrun
Extra or misplaced tape mark
End of tape error
I/O error on cartridge
Cartridge CRC error
Fatal cartridge error
41 4- 4 2
Non valid cartridge command or write protected
41 4- 44

" 80 ~ •

Appendix RJ

format - file control blocks

CHARACTER DEVICE (INTERRUPT)

COUNT
J

1 MODE

4

S’»»

CHARACTER DEVICE (DEMAND)

2 MODE

INCHAR and OUTCHAR are subroutine addresses.

ECHO DEVICE

MODE3

I
INCHAR

t_

I
OUTPUT DEV.

1

— p-
INPUT DEV.

___ I_____

10H
20H

1
2

I
OUTCHAR

.. - I__

15 BYTES

I

I
INPUT and OUTPUT DEV are addresses of other control blocks.
As character is read from the input device, it will be echoed
on the output device.

I '

If output file, OUTCHAR will be called with character in A.
All registers (except PSW for INCHAR) should be saved and re_
stored. Normally, only one of the fields contain an address.

R-
5

BUFFER ADR ’
____ I______ i

L
<T

If input file,
INCHAR is expected to return with character in A and carry cleared.
Carry is assumed set if an error occured.

Mode values:
“ opened for input
- opened for output
- do not suppress LF character
- Ibbit (next read will give end-of- file or end of extent)
- auto (file was allocated by the assignment interpreter and will ;

be closed, and buffer space released, when return to monitor) . J
40H - don't close (file should not be closed).
80H - eofbit (end of file/end of extent has been detected).

(

- 81

LIKE ORIENTED DEVICE

T
4 MODE BUFR EXT

±i

T
CHAR OR BLK DEV

±

BUFR PTR

I BUFR EXT length of buffer
BUFR ADR address of buffer
CHAR OR BLK DEV

-----“I
BUFFER ADR

I

character count showing next character in
buffer (starts on zero)

pointer to another control block which will be
called to receive characters •

I
BUFR PTR
_____ !_____

5

5 MODE
± 1

0 1 2 4 6

1
8 10 1412

DEV TYPE

J16
BUFFER PTR
BUFFER EXT oAddress of buffer

WRITE
OPEN
CLOSE

DEV TYPE

DISKETTE:

CURRENT T/SDSTYPEUNIT Q
18

For INTEL--formatted dis-DSNAME

I
!

DSTYPE

Future extension/)

n—
READ
—I___

i
BUFFER PTR

l
WRITE

I

I
BUFFER ADR

OPEN
I____

i
BUFFER EXT
---- 1______

I
CLOSE

DEV
TYPE

--- 1----
DSNAME

(9 BYTES)
_____i______

Device dependent routine addresses to read, write,
open and close.
Normally, only one of read or write is non-zero,
and open and close addresses depend-on whether it
is an input or output file

8
4
2
1

0 - diskette
1 - cartridge

17
UNIT

1 - cartridge
(PART 2)•

i II I

DEV)
DEP >
DATA <

!

BUFFER ADR
READ

Relative position within buffer of next character
Size of buffer

80H EBCDIC
40H 512 bytes /)
20H 256 bytes /)
10H not used

binary seg /)
• set S and I flags
IBM
INTEL

i’X *

I5
device type
0 - diskette

1
27 28

physical unit number (0-3)
dataset name on diskette,
kettes, the first 6 characters are the name, the
last 3 extent. For IBM-formatted diskettes the first
8 characters are the name. The 9th is reserved for
future extension (accesscharacter)

BLOCK ORIENTED DEVICE

- 83

J

(PART 3):

IBM-MODE

II 30
EOD or EOEt

INTEL-MODE

block'(input file)

DIR CNT

address of directory bufferDIR ADR

T
EOD

JL
30

Sector and track for last block of data setEOD
(PART 2)TAPE CARTRIDGE:

■I

DSTYPEUNIT
27 2818 no.

I DSTYPE:

!

I
EOD or EOE

I
DIR ADR

l

I
ERROR TRACKS
_______ I________

I
OVERRUN ADR
______ I________

III

CURRENT T/S Sector and track for current directory (INTEL-
format) or next record (IBM-format).

DSNAME
(9 BYTES)
______ i----- -

relative pointer to directory buffer, showing
sector and track of next data block

ECMA format
TANDBERG format

17
UNIT

1

32
number of information characters in last

HDR
SECTOR

•e

I
S

CHAR
LAST
BLK

30

I I c

—31
CHAR LAST BLK

80H
4 OH'
2 OH
10H5* not used
8
4 w
2
1

DIR
CNT

BINARY SEG^

*

I

is physical unit
EBCDIC

Future extension

32 34
Sector and track for.last block of input data set
or last allocated block of output data set

r
I I
I I

(

“84

OVERRUN ADR

BUFFER
V

EXTENT

TRK BLOCK COUNT

TRK

3%

CHAR LAST BLK

TANDBERG FORMAT,OUTPUT

FIRST TRK

FILE NO

II

(PART 3):
TANDBERG FORMAT

first
TRK

FILE
NO

CURRENT
SEG

CHAR LAST BLK
..... .* indicates the number of information characters

in the last block.

TRACK USE
INFO

track currently being read from/written to
BLOCK COUNT

is incremented for output files, decremented
for input files

CURRENT SEG
indicates the number of the segment currently
being read/written.

OVERRUN ADR1

1

►

'I
i

I 1

the number of the track where the first segment
of the file was written
the file number of the first segement on that
track

Y ■

(PART 4):
TANDBERG FORMAT, INPUT

is used to check for read overruns. Two bytes
with special values are placed after the buffer before read,
and it is checked after read to see that they have not been
changed:

i I

85

J

DOUBLE DEVICEI
6 MODE

41 20

i I

JI

—I—
DEV 1

l

i
DEV 2
____1_

l

!

DEVI and DEV2 are pointers to other control blocks (both input
or both output files).

TRACK USE INFO
is a copy of bytes 1-15 of the Cartridge Usage
Block (see appendix G).

*
■a

r?
ivq
'pb

IL

I
■

86 - .

Appendix C

Internal formats

without notice. I

»

o

}

'I I

■e

2
I

<1
Pl

iI

*

Ji

The formats shown here are for documentation purposes
only. A user should never alter these areas, since to do so
properly, requires knowledge of the internal operation of the
TOS system.

The formats are further subject to change

- 87

buffer area

Next buf ptr

i

Next buf ptr

800

II

■

j

lit1
i

I

i

ALLOC
CODE

I

l

I I

I
I

*

rs

S’
5

■ 1

Buffer lim ptr.
in ‘user prog blk’
points here

v) I

FF - returned
(80 - end of chain)

ALLOC
CODE —n ,- used

[/ ii J

“88

0/8 1/9 2/A 3/B

27B8 i
27B0

276 8 SECT FUNCTION CONV Diskette

2760 STATUS UNIT TRKCONT. ADR. ADRBUFR
V TI

11I

2738 B COUNT MAP 1 MAP 2 UNAM

2730 UNIT BADRTRK DCNTNAME
S'.~r Tl

1 Ii
ROLLCISAVE COSAVEFILE EXT2718

2710 FILE NAME»• CTL BLK
TT I TTI

+ t + T <
2778-

2770 Buffer for header read-diskette
+ t t t T

!PROG
STATUS

LG
CODE

SEC
CTR/

(60)

Z UTO
LOAD MSG
SV,'ITCH

RETRY
ADDRESS

MTH
(0)

(RESER
VED)

YEAR
(0)

/) Reversed count
(down)

Diskette
header
buffer

RETRY
COUNT

DAY
CTR

(0)
MIN
CTR /
(60)

Diskette
timer

(0)
DAY OF
MTH

(0)

J
!

TIMER
DATA

ctl

4/C
^0 MS
CTR /

__ (50)

System
work
area

1

HR
CTR/

._______ (24)
I INTERVAL
TIMER INTERRUPT
i ADR (0)

SWITCI System
_______ work

area
2

5/D’ 6/E
______ !------ Interval
Counter

(0)

Interval counter max = 1310.72 sek=»21 min
() Bootstrap value

89 -

II1

2758

2750 TIMER

2748 FUNC
T

2740 . STATUS TRKUNIT CONT ADR BUFR ADR

1
27A8 INT ADR 4 (INT ADR 6)5

> 8 OH 80H (INT ADR 1)27A0
+1

() normally not used

2790 (16 chairs)INFO

2780 COUNT (15 chars)INFO

3/B 4/C1/9 5/D 6/E

2728
r

PROGRAM NAME2720
TTT T TT

t 1 1 XI Al AO1 ALFF08

CO SICI SOFFOO
I T T T
I

i

i

i
(INT ADR 7)

I

0/8 ’
__________ i

---- 1--
INT ADR 2

I
INT ADR

PRINT
COUNTER

Interrupt
control
block

PROG
STATUS
,-------

RETRY
COUNT

SYSTEM
SWITCH

RETRY
ADDRESS

Keyboard
buffer

Cartridge
control
block

DEVICE
ASSGN
TAB

UNIT
0

PROGRAM
START

UNIT
3

DEBUG
SWITCHPROGRAM NAME

(EXT part)

f

• I

■

1

4-
SL

(INT ADR 3)

.1

blocklg/
COUNT

i(<• tel

V User
prog
blk

J

track flags
UNIT UNIT

1 2

7/F J____
BUFFER LIM

PTR

2/A *J

89b -

2 5FO INFO (16 chars) UART
25EO COUNT INFO (15 chars)

25DO INFO (16 chars)
25CO COUNT INFO (15 chars)

iy.

)
'f

<5

i

i
1

Transmit
buffer

Receive
buffer

-

1 ix
>

•e

l

L1 '

1Jiji

•w£

• ;
UART

i'

90 "

Appendix D

are assigned to internal system function jump

Jump entries:

FDCD FILENAME
FDDO 1BFILi
FDD 3 RELN
FDD 6 RELBLK
FDD9 GETN
FDDC GETBLK

functions in different format. These have the general format

FDEA
FDE8

7
Tandberg-format cartridge tableFDE6

RELNFDD3

RELBLKFDDG rl
<5GETNFDD 9

I

GETBLKFDDC

' 1

—-r

II
h

iIII

The following four routines assumes that the-unit number is stored in
(2730) and that MAPI and MAP2 (2739, 273B) contains track/sectors

Allocate a diskette sector
BC-track/sector

Release a number of diskette sectors
A-number
HL-address of list of sectors

iI1

*
0
3
6
9

0C
OF

Addresses:
These refers to separate six entry (18-byte) jump tables to handle file

Open input file
Open output file
Read input block
Write output block
Close input file
Close output file
Intel—format diskette table
IBM-format diskette table

Allocate a number of diskette sectors
A-count
HL-desired address of first entry

Release a diskette sector
BC-track/sector

UNIT
of map on this unit.

i

I
I
!

Internal system functions
The following addresses
entries and addresses

R i
I*-)

(\

91 “

7/F6/E0/8 1/9 4/C 5/D2/A 3/B

FDF8 EBCDIC ASCII

:CI:FDFO :NF: :C0::BB:

:PR:FDE8 :RD:

3

II

!RAM MEM
START

SYSTEM
START

’ I•I I

15 I

1

HI

1

The location of system pointers are:

" 92 "
-

J
Appendix E

Intel diskette format t

Piskette_layout:

Track
0
0

Diskette directory1
2 Diskette block usage map2 3
2 Available for data76

Diskette volume label

Diskstte_directory

11 14
FI,AG NB0

NAME

i

I
S2

1 I

T-- r-
EXTI

i

Track 1 Sector 1 Directory block for directory dataset
Track 1 Sector 2 through sector 26: Diskette directory.

Char 1-6
Char 7-9

0
1

4
26

Volume name.
Name qualifier.

-----n
DSDIR
______ t

<-8 A (Alias,used by TOS21 only)
W

iiII

Each sector consists of eight 16 byte entries with the
following possible formats:

1 7 10
--------—f

L h

80H F
4

Sector
1 T

25 J
26

26 J
1)

a?

i i ~
NAME

_________ iii iiil

Dataset is present

p L V) *
Pl

Available for data .
(may be used for system . program)
Diskette volume label

12---- (----
NBLK-1

I

dataset name
EXT - ext part of name
FLAG - flags (for meaning, see Intel documentation)

93 "/

T
FF

1 1

7F anything
1

Unused directory entry
J

Dataset_directory_.
A dataset'directory block tha the following format:

B flDATA 2DATA 1•—

DATA62-

Note:

C)PREV
i

DATA 62
isue

I

sector and track of last (62nd) data block belonging
to this directory block.

NB
NBLK-1
DSDIR

Sector 2 contain the map for track 0 sector 1 through
track 39 sector 10 while sector 3 contains the remaining part
of the map.

■

1

i

I .

i/

I

If less than 62 datablocks belong to this directory,
remaining entries are zero.

number of data bytes in last block
- number of data blocks minus 1
- sector and track of first dataset directory.

£
5

' ’ i i i i i—i—r

As for 00-type
-<—i_____ i iiii. i

Diskette block usage mag

PREV - sector’and track of previous directory block (if any)
SUC - sector and track of next directory block (if any)
DATA1 -sector and track of 1st. data block belonging to this

directory block.

Deleted dataset entry
(The information in the last 15 bytes provide history only, since
the space for the dataset has been released).

7rT

Track 2 Sector 1 Directory block for Map data set.
Track 2 Sectors 2 and 3: One bit corresponding to each sector
on the diskette,

" 94

Intel load f o rm a t

LG

LG
ADR

I
. ■■

ADR
__L_

!

, I E
■

i

I
I

1
i

i

•^1

I*
An executable program consists of a sequence of segments, each
with the format

LG — 0 indicates that this is the last segment of an executable
module. ADR indicates in this case the starting address.

INFO

- length of INFO in this segment
- address where info should be loaded

“95

-iSlS9i£e_ layout

Track Sector
0 1

Reserved0 4
0 5
0 6
0 7
0 8

I i Data set labels0
1 Available for data

74
75 Alternate track 1
75 26
76 Alternate track 2
76

£

Error_map

ill
7-8

I

!

1
26

Error map
Reserved
Volume label

v]

■a

1!

26 J

26 J
O

Track 0 Sector 5
Positions 1-5: ERMAP

: Blank or number of first defective track
(decimal)

Appendix F
IBM diskette format
(For more comprehensive information refer to "The IBM Diskette
General Information Manual." published by IBM)

I i
- •

I

In the following, only the parts relevant to use of IBM-format
diskettes with TOS has been included. Positions not specified

' must be assumed to be reserved.

11-12: Blank or number of second defective track
(decimal)

96 -

• - Vj

VOL 14 :
>

X)11

of tracks 1 through 7

K)77-78:

K) will probably be used in future extensions.

Track 0 Sectors 8 through 26

29-33

34

35-39

X)42

43

48-53
I X)

75-79

{

i!
! '

! II

54-57
67-72

38-51
76

Data set identifier
Beginning of extent (BOE)
First sector allocated to dataset
29-30 track number
32-33 sector number

V

L
II I

pi

Track 0 Sector 7
Positions 1-
5-10 :

Positions
6-3 3

~ !

¥)Physical record length
See position 76 of Volume, label
End of extent (EOE)
Last sector reserved for this dataset
Format as BOE
Data set security
Access character.

X)Write protect
blank - not protected

P - protected
Creation date

YYMMDD
Record length
Expiration date

YYMMDD
End of data (EOD)
Address of next unused sector
Format as BOE

volume identifier
volume accessibility field
owner identifier field
physical sector length7^ i

blank - 128 bytes
1 - 256 bytes
2 - 572 bytes

physical record (sector) sequence code

1-4: HDR1

A- 97

J Appendix G

TANDDERG tape cartridge format for use with TOS21I

still present)

sequence of file, segments.

CJ

track:

a’..
I

The excep-

The

*

I

!

88H .
Volume name

(Unused)

I

the output is continued on another track
A special continuation file

0-file present OFFH-deleted
Filename
Track number (of first file segment)
File number (of first file segment)

The tracks
Directory.

File directory block
Byts
o

1-9
10
11

II I

•e
'I

Ih *

fx 1

are numbered 0-3. Track 0 is used for the Cartridge
, - Tracks 1 through 3 are used for data. Assuming 128

Y e blocks, this gives a total data capacity for each cartridge of
approximately 750,000 bytes.

Track 0 contains:
- 1 volume header block
- one file directory block for each file

on the cartridge (whether deleted or
- 1 cartridge usage block
- Tape mark.

Tracks 1-3 contains each a s -
The format for each segment is

- 1 file header block
- a number of data blocks
- Tape mark
- 1 file trailer block
- Tape mark

After the last file segment of a
- 1 track end block
- Tape mark

Normally, a file segment and a file will correspond,
tion is when the end of a track is encountered during output of
a file. In this case,
if there is room on any of them.
trailer and file header will be used to ensure proper reading
of the file. Note, however, that continuation is time consuming
both during input and output, and should be avoided whenever
possible.
The block size may be chosen by the.user, but is minimum 32 bytes,

• maximum 2048 bytes. The different types of control blocks (volume
header, file directory, cartridge usage, file header, file trailer,
track end) are of fixed size 32 bytes.

format of the different types of control blocks are:
Volume header block:

Byte
• 0
1-9

10-31

<k - 98

J

14-15
16-17

"FLAGS")

6-10

File header block

'll

i <

iI
I

I /1

(Unused)

_By±e.
o

Ii

File trailer block

0

Track end block
Byis.
0
1-31

11-15
16-31

7FH
Usage information track 1
1- Number of filesegments
2- 3- Number of blocks on track (least sig­
nificant 8 bits in pos.2)
4- Track full indicator: 0 if no more
room on trk.
5- Unused
Usage information track 2
(Same as track 1)
Usage information track 3 ,(same as track 1)
(Unused)

J
i

18
19-31

Cartridge usage block:
iyie.
0
1-5

1-9
10
11
12-31

I- 9
10
II- 12
13-31

•a

!

I
p I-

I

• 1

Block size (min. 32, max. 2048)
(least significant 8 bits in pos. 12)
Bytes in last block (least significant 8
bits in pos. 14)
Number of blocks in file (least significant
8 bits in pos. 16)
Attribute byte (see appendix E,
(Unused)

• Ph
' *
!

’(' if first segment
if continuation

Filename
Segment number (first=0)
Block size
(Unused)

’)’ if last segment
' + ' if continuation
Filename
Number of next segment(0 if last)
Continuation track (0 if last)
(Unused)

File directory block

■Byte.
12-13

