
I

I

TDV 2100 ASSEMBLER

USER'S MANUAL

I

k

I

Nov. 1976

(

>6

4:

I O
I

I
& L9

i

TABLE OF CONTENTS

1. INTRODUCTION
2.

i

5
6

3.1

3.2

3.3

3.4
!

4.1

2.1
2.2
2.3
2.4
2.5
2.6

13
14
14
15

11
11
11
12
12

10
10
10

8
8
8
8

10

2
.2
4
5
5
5

6
6
6
7
7
7

b I

i
i

f1

Ii

I

>4,0)

Page
1

Pseudo Instructions
3.4.1 Set Origin (ORG)
3.4.2 Define Storage (DS)
3.4.3 Equate (EQU)
,3.4.4 End of Program (END)

Assembly Language Format
3.2.1 Label Field
3.2.2 Code Field
3.2.3 Operand Field
3.2.4 Comment Field

Data Statements
3.3.1 Define Byte of Data (DB)
3.3.2 Define Word of Data (DW)

If I
a
I s & L

.9 ’

7

3. THE TDV 2100 ASSEMBLY LANGUAGE
Basic Elements of the TDV 2100 Assembly
Language

3.1.1 Characters
3.1.2 Numbers
3.1.3 Symbols
3.1.4 Expressions
3.1.5 Examples

4. USE OF THE TDV 2100 ASSEMBLER
Assembly Commands

4.1.1 List Device
4.1.2 Object Code Output

THE HARDWARE ENVIRONMENT OF THE TOS 21 ASSEMBLER
Working Registers
Memory
Program Counter
Stack Pointer
Input/Output
Program Representation in Memory

° i
i j

Table of contents (cont'd)

Page

16

185. ASSEMBLY INSTRUCTION REPERTOIRE

APPENDIXES
A k
B
C
D

i

4.2
4.3

Assembly Listings
On-line Features

Instructions and Subinstructions
TDV 2100 Character set
Summary of Assembly commands
Error Messages

15
16
16
16

16
17
17
17

k-
,11J

5O

£
I 5 a L 9

4.1.3 Initialization of the assembler
4.1.4 List Defined Symbols
4.1.5 List Undefined Symbols
4.1.6 Kill Defined Symbols
4.1.7 Start Execution of Program
4.1.8 Call to the TOS 21 Monitor
4.1.9 Return to TOS 21

i '-o

&

1

1. INTRODUCTION

k

I

I

4A
’t-

I o

' I

b i1 a a L9
J

This manual has been written to assist the reader to program
the Tandberg TDV 2100 in assembly language. Accordingly,
this manual assumes that the reader has a good understanding
of logic and is familiar with programming.

£

'b

2

-J 2.

(1)

Memory which may hold instructions and/or data.(2)■

(3)

(4)

(5)

2.1 Working Registers

D,

1. Additional floppy disc drives (up to 4 total)
2. Additional cartridge drives (up to 4 total)
3. Line printer.

The minimum hardware configuration required for operation of the
assembler is a TDV 2114 with floppy disc or cartridge.

Depending on the individual demands of the customer, one may add
additional memory (RAM) and additional input/output devices such
as:

Seven working registers in which all data operations occur,
and which may be used for addressing memory.

The program counter, the contents of which indicate the
next program instruction to be executed.

The stack pointer, a register which enables various portions
of memory to be used as stacks.

Input/Output, which is the interface between a running program and
the outside- world.

i-

I

/

I

To the programmer, the computer is represented as consisting of the
following parts:

L

1°
.j

11

- £

In the TDV 2100 Programmable Terminal the programmer is provided
with an 8-bit accumulator and six additional 8-bit "scratch-pad"
registers. These seven working registers are accessed via the
letters B, C, D, E, H, L and A (for the accumulator), respectively.

The purpose of ah assembly language is to symbolically represent
words in a computer. Therefore, before the specifications of the
TOS 21 Assembler is described, it is appropriate to provide the
reader with a functional overview of the TDV 2100 CPU module (and
the 8080 CPU). This section will give the programmer the neccessary
background information in order to write efficient programs.

THE HARDWARE ENVIRONMENT OF THE TOS 21 ASSEMBLER

3

REGISTER PAIR REFERENCE

Register Pair B—?i CB

Register Pair D—> D E

H

AA

special status bvte

I

The different bits of the status byte have the following meaning:

Bit

)

control, and

1) TOS 21 = Tandberg Operating System for TDV 2114

0 :
1 :
2 :
3 :
4 :
5 :
6.:
7 :

NOTE: When register pair PSW (Program Status Word) is specified,
the last (least significant) 8 bits referenced are a special byte
reflecting the current status of the machine.

iu

i

1
l

I

L

If
!The Assembler is loaded and executed under TOS 21’’’^

control is transferred to TOS 21 after completion.

Carry
Free (1)
Parity bit (even)
Free (0)
Aux.carry
Free (0)
Zero
Sign

IS1
I

Some operations on I'
the letters B, D, II and PSW.
follows:

the working registers in pairs are referenced by
. These correspondences are shown as

When entered in On-Line mode, the assembled program may be entered
directly into RAM in executable form. The source program which is
typed on the console can be saved for later editing and reassemb­
ling. The operator may exit to Monitor and run parts of his pro­
gram, and later re-enter the Assembler with the symbol table intact.

The Tandberg TDV 2100 Assembler is written as a one-pass assembler
and can be used as an on-line one-pass assembler with console key­
board input, or as a two-pass assembler with diskette input and
output files.

Register Pair II—

Register Pair PSW !

4

I

i

Data statements like DB (define byte) and DW (define word) .

2.2 Memory

memory.

The CPU Module may contain different types of memory::l

x

xli

jumper must be set in the proper

I

A description of the different types of memory used in TDV 2100
folloes:

A set of pseudo instructions are available in order to direct the
assembly process, like ORG (define origin), EQU (assign symbol
value), DS (define storage) and END (end of program).

The RAM Memory Module is a random access memory module containing
16384 8-bit Bytes.

2k byte of Random Access Memory (RAM); range of memory
address is 2000-27FFH.
The Monitor is contained on the CPU Module and occupies
4k bytes-from addresses 0 to OFFFH.

The PROM Memory Module is
containing 16384 8-bit Bytes.
PROMS which are reprogrammable,
used in place of the PROM's if so is desired.

k- ' *
Li)

7?I a&•ILi

A set of interactional assembly commands to control the information
flow of the source program, listing and object code, and to help with
the debugging process.

8k byte of Programmable Read Only Memory (PROM); range of
memory address is 0-1FFFH (H=Hexadecimal).

<< O

I

The symbol tables may be placed anywhere in RAM memory and with
variable size.

&1
■

■ > a programmable read only memory
It has sockets for 16 Intel 8708

The mask programmed 2308 can be

The TDV 2100 can be used with both read only memory and read/write
A program can cause data to be read from any type of

memory, but can only cause data to be written into read/write
memory.

The specific location in the 65kByte memory space of both memory
modules is selected in 16kByte steps by setting bits 12-15 to the
proper value. For this purpose a jumper must be set in the proper
position on the board.

Each source statement may be written in free format.

Symbolic addressing is permitted and both defined and undefined symbols
are allowed in constants. Expressions may consist of symbols and
octal, decimal and hexadecimal numbers, the binary operators +
and - and codes for ASCII-characters.

The programmer visualizes memory as a sequence of bytes, each of
which may contain 8 bits. The bits stored in a memory byte may
represent the encoded form of an instruction or may be data.

5

to 27 FFH.

2.3 Program Counter

2.4 Stack Pointer

2.5 Input/Output

Program Representation in Memory2.6
A computer program consists of a sequence of instructions.

4

■

I I
i

I

■

aX9

i

A stack is an area of memory set aside by the programmer in which
data or addresses are stored an retrieved by stack operations.
Stack operations are performed by several of the machine instruc­
tions and facilitate execution of subroutines and handling of program
interrupts. The programmer specifies which addresses the stack
instructions will operate upon via a special 16-bit register called
the stack pointer (SP).

1 s

The program counter (PC) is a 16-bit register, which is accessible
to the programmer and the contents of which indicate the address of
the next instruction to be executed.

St

*
O

A program will be stored in memory as a sequence of bits which represent
tlie instructions of the program, and which will be represented by hexadecimal
digits. The memory address of the next instruction to be executed is held in
the program counter. Just before each instruction is executed, the program
counter is advanced to the address of the next sequential instruction. Program
execution proceeds sequentially unless a transfcr-of-control instruction
(jump, call or return) is executed, which causes the program countei' to be
set to a specified address. Execution then continues sequentially from this
new address in memory.

The minimum configuration of the TDV 2114 contains one 16k byte
RAM Memory Module at address C000H. 8k byte of this, memory is
reserved for TOS 21 use (addresses E000H - FFFFH), and the remain­
ing 8k is used by the Assembler for program and symbol table. Of
the 2k Byte on the CPU Module, TOS requires 256 bytes from 2700
to 27 FFH. The remaining is at the users disposal.

To the TDV 2100 CPU the outside world consists of 256 input ports
and 256 output ports. Each device connected to an I/O port commu­
nicates with the central processing unit via data bytes sent to
or received from the accumulator, and each port is assigned a
physical device number (from 0 to 255). The instructions which
perform these data transmissions are described in Section 5.
Communication with peripheral devices may be programmed directly,
or I/O routines located in the Monitor may be used. It is strongly
recommended that the user use the Monitor routines, especially for
floppy disc and data cartridge I/O. See the TOS 21 User's Manual
for details.

"■■■■. Each

instruction enables an elementary operation such as moving a data
byte, and arithmetic or logical operation on a data byte, or a
change in instruction execution sequence. Instructions are des­
cribed individually in Section 3.

6

"J

3. THE TDV 2100 ASSEMBLY LANGUAGE

I

in a computer,

Basic elements of the TDV 2100 Assembly Language

I

3.2.1 Numbers’i

<-

A class of instructions (referred to as transfer-of-contol instructions)
cause program execution to branch to an instruction that may be anywhere
in memory. -

I;
' *!

I

r
There are three kinds of numbers in the TDV 2100 Assembly language,
octal numbers, decimal numbers and hexadecimal numbers.
Octal numbers are formed from the digits 0 through 7 and terminated
by the character O or Q.

A program in the TDV 2100 Assembly language, as in most assembly
languages, consits of a series of lines, each of which contains
a command to the assembler or an instruction or constant which is
to be assembled into a particular memory location. The particular
memory location is selected by the value of an internal variable
called the location counter. After each instruction or constant
is assembled, the location counter is incremented to the next
available memory location. Thus, instructions and constants on
successive lines are assembled into successive memory locations.

i5

I *
0
k

'In X

s
9

£

'4J

It is up to the logic of a program to insure that data is not misinterpreted
as an instruction code. The machine instructions may require 1, 2 or 3
bytes, to encode an instruction; in each case the program countei- is auto­
matically advanced to the start of the next instruction. In order to avoid
errors, the programmer must be sure that a data byte does not follow
an instruction when another instruction is expected.

3.1
ZS^^^l.1.1 Characters

11

The purpose of assembly language is to symbolically represent words
in this case the 8-bit bytes of the TDV 2100 CPU.

Therefore, before the TDV 2100 Assembly language is described,
it is appropriate to introduce the reader to the basic elements of
the language.

' exam^n*J1S ^ie contents of a memory byte, there is no way’ of telling
" lether the byte contains an encoded instruction or data.

Some characters have a special-meaning, either as commands, arith­
metic operators or special symbols. Letters and digits are generally
used to construct more complex linguistic elements. An ASCII-
constant is a single character enclosed in quotes (')•

The most basic element is a character from which all more complex
elements are formed. The character set used is seven bits ASCII
right justified in an eight-bit field with left bit (parity bit)
zero.

7

: l

t
to

3.1.3 Symbols

3.1.4

I:

Examples3.1.5

Internal Representation (hexa)Legal Constants

■I

I

Legal Symbols

I'
I ■

Every symbol either has a numeric value and is said to be defined or does
not have a value and is said to be undefined.

The value of an expression is the arithmetic
symbols and numbers.

All symbols included in an expression should be defined. Undefined
symbols are not permitted.

A
AB
XYZ
C123
A1X2B
LONGLABEL

Expressions consists of numbers, symbols and/or ASCH-constants sepa­
rated or proceeded by the arithmetic operators + and -.

0064
FF9C
0040

. FFC0
1234
EDCC
FFFF
FFFF
FFFF
7FFF
8000
8000
0041

! t

100
-100
+ 100Q
-100Q

1234H
-1234H

65535
-1

177777Q
32767
32768

-32768
•A'

5
Q
k

*

sum of the values of the

r

Decimal numbers are

I

y
&

•>

the range of possible double byte integer values is from -327681Q
32767 Alternatively, integer numbers are often considered
to range from 0 to 256 _ (single byte) or from 0 to 6553510 (double
byte) when having no sign.

I
a

5 -
;/

Symbols consist of a string of letters and digits starting with a letter.
Any number of letters and digits may be used in a symbol, but only the
first five characters distinguish symbols. Thus, ABCDE1 and ABCDE2 are
treated as the same symbol.

formed from the digits 0 through 9,

Hexadecimal numbers are formed from the digits 0 through 9 and the
letters A through F and terminated by the character H. A hexadecimal
number should always start with a digit.

All types of numbers may be proceeded by an unary operator + or -.
Negative numbers are represented internallj’ in two's complement notation,
and if the arithmetic numbers are considered to be signed integers, the
range of possible single byte integer values is from -12810 to 127 and

8

Legal Expressions (symbols

Assembly Language Format

I
3.2.1 Label Field

3.2.2 Code Field

Spaces separating the label field and the code field are optional.

3.2.3 Operand_Field

r

4

This field contains information used in conjunction with the code field in
order to define precisclj' the operation to be performed by the instruction.
Depending upon the code field, the operand field may be absent, or may
consist of one item or two items separated by a comma (,).

This field contains a code which identifies the machine operation (add,
subtract, jump, etc.) to be performed. There are altogether 78 different
basic operations and each of these are identified by a mneumonic consisting
of a two-to-four-letter symbol.

1.
2.
3.
4.

Spaces and/or tabulators separating the label field and the code
field are optional.

When a symbol is defined to be a label in this way, the value of
the symbol will be the current value of the location counter.

Label Field
Code Field
Operand Field
Comment Field

ii

&
L

5
O
k

A+10
IFII-AB
XYZ-A+25
77Q+0FH-19
LABEL-100H
’A'-'Z'+l

!

■

The label field is an optional field, which if present consists
of a symbol followed by a colon (:).

are assumed to be defined)

x'

When the operation code requires a succeeding operand, then the code
field and the operand field must be separated by at least one space or tabulator.

3.2

Ab

The assembly program consists of a sequence of symbolic statements.
Each statement belongs to one of three statement cathegories: assembly
instructions, pseudo instructions or commands.

I
I i

The assembler allows free format input of symbolic source state­
ments, that is, the different fields may be separated by any num­
ber of blanks or tabulators. As tabulator can be used the right
arrow (—s*) on the cursor pad on the keyboard.

Assembly language instructions must adhere to a fixed set of rules
as described below. Each instruction is divided into four separate and
distinct fields in the following order:

I

9

J
I

1. Register or memory reference

Information that might be required is as follows;

I'l Specification Representing

i |

RepresentingSpecification

SP

Data2.

The information required is specified either

VJ

3 of the complete object code with byte
2 as the least significant part.

Several of the basic machine operations is divided into sub-operations
by additional information specified in the operand field. This infor­
mation will be combined with the basic operation code byte, thus
generating a complete machine instruction, i.e. the first byte of
the object code.

B
D
H
PSW

B
C
D
E
H
L
M
A

i

5
Q
k

I

£ t
5 &
1
9

A single byte data operand will be decoded and stored into
byte No. 2 of the complete object code.

A double register to serve as the source or destination in a data
operation. Register pairs are specified as follows:

This type of information is requested when the complete machine
instruction requires a single or double byte data operand.

II

IT

It

II

It

A memory reference
Register A

Register B
C
D
E
H
L

! xi

£

A single register (or code to indicate memory reference) to serve
as the source or destination in a data operation. Registers are
specified as follows:

There are two types of information that maj' be requested as items of
an operand field:

as a number,
a symbol, and expression or as an ASCII constant.

A double byte data operand will be decoded and stored into
byte No. 2 and No. 1 ' ’ J
No.

Register pair B and C
" ■ " D an d E
" " H and L

One byte indicating the state of
the condition flip-flops (bits),
and Register A
The 16—bit stack pointer register

10

3.2.4 Comment Field

The comment field is optional.

A comment is introduced by the character • (semicolon) and continues to

A comment can stand alone on a line.

Data Statements3.3

Define Byte of Data {DB)_3.3.1

Label Code Operand Comment

symbol: listDB

where the label and the comments are optional and

1.

2. Strings of ASCII characters enclosed in quotes.

The different elements of the list must be separated by commas (,).

I • Thus, the statement:

'TEXT', 9937Q,DBLABEL:

Define Word of Data (P\Y)_3.3.2

Operand CommentCodeLabel

; DEFINE WORDlistDW

1

i

1

i

The different ways in which data can be specified by an assembly program
will be described below.

Numbers, symbols and arithmetic expressions which evaluate to
eight-bit data elemtns.

require six byte of memory storage and the next instruction will be assembled
into memory address "LABEL + 6".

The eight-bit values generated by the data list will be stored sequentially
into memory starting with the byte addressed by "symbol".

Numbers, symbolsand arithmetic expressions which
evaluate to sixteen-bit data elements.

5
O k

b
2
£
3
a
L
9

I,

I

In order to define a sequence of double byte (word) data elements one must
apply a statement in the following format:

"list" is a list of either:

fl

£
Ci

I *

symbol:

where the label and the comments are optional and "list" is a list of: .

In order to define a sequence of single byte data elements one must apply a
statement in the following format:

the end of a line. As already stated, comments are ignored by the assembler
Any characters may occur within a comment, except a carriage return
which would end the comment.

; DEFINE BYTE

11

The different elements separated by commas.

LABEL: 123411,999DW

3.4 Pseudo Instructions

DescriptionMnemonic

3.4.1 Set Origin_ [O?P)_

Operand CommentCodeLabel

symbol: ORG expr

where the label and the comments are optional and "expr" is

3.4.2 Di'll Sto £2 £® (P_SJf

'J

I
I

I

require four byte of memory storage and the next instruction will be
assembled into memory address "LABEL +4".

To set the location counter of the assembler, a statement in the following
format may be applied:

The purpose of pseudo instructions is to direct the assembler and to define
symbol values required by an assembly program.

Set origin of program counter
Define storage
Assign value to symbol
End of source record
End of source file

ORG
■DS
EQU
END
EOF

k
i

I

!

I

I

a single number,
symbol or arithmetic expression. Only defined symbols are allowed.

The next instruction will be assembled at memory location (value of "expr").

In order to reserve a specific number of memory bytes for data stoia’ge,
a statement in the following format may be applied:

5
Q iThe value of "symbol" will be equal to the value that the location counter

had before the ORG pseudo-instruction was executed.

Un

I
&
L

*

7

£
; SET ORIGIN

Pseudo instructions do not cause any' object code to be generated. The
following instructions are available:

of the list must be
IeauenSn^bYtValUeS 9enerated bY the data Hst will be stored
sequentially into memory, starting with the byte addressed bv
symbol and with the least significant byte preceeding the other.

Thus, the statement:

12

Label Code Operand Comment

LABEL: DS expr

where the label and the comments are optional and "expr1

Equate_(_EQLQ

the

OperandLabel CommentCode

; EQUATEEQU exprname

where the comments are optional.

CodeLabel Comment
symbol: END
where the label and the comments are optional.

>
is defined to be a sequence of lines terminated by

!

i

l *

I
I i

■" is a single
number, symbol or arithmetic expression. Only defined symbols are allowed.
No data values are assembled into this data storage; in particular the pro­
grammer should not assume that these bytes will be zero, or any other
specific value.

|

s
■ L
9

i *

-/

In order to assign a specific value to a not previously defined symbol,
EQU pseudo-instruction should be used:

A program
the END statement.

the table of undefined symbols will be updated and the value of "name" will
be assembled into every memory address from where the symbol was
referenced.

The next instruction will be assembled at memory location (value of
"symbol" + value of "expr").

The DS pseudo-instruction can perform a function equivalent to the ORG
(set origin) pseudo-instruction. One may consider the DS instruction to
be a relative modification and the ORG instruction to be an absolute modi- .
fication of the location counter.

[<<
Oi k

J . 4.4 End_of _Proq,ram__(END2

<Q>

The symbol "name" is assigned the value of "expr” by the assembler,
ever the symbol "name" is encountered subsequently in the assembly,

When-
this

value will be used. If the sjrmbol was previously referenced but not defined,

; END OF PROGRAM

The END statement signifies to the assembler that the end of
the program has been reached. The statement has the following
format:

; DEFINE STORAGE

13

4. USE OF THE TDV 2100 ASSEMBLER
The TDV 2100 ASSEMBLER is invoked by the command
ASM

I
The command is typed by the user on the console keyboard.
The assignments are specified as follows:

Examples:
) S i=PROG.SRC,so=PROG.HEX,s1=PROG.LSTASM

si=PROG. SRC', al=: LP:ASM
list file,

ASM ao=PROG.SRC

•^list file? may be a diskette or cartridge file or a physical
device, or the assignment may be omitted.

5T
O

! t

|l
a

i j i:

III I, r

si=^input f ile , so=<hex file?,sl=<List file>,ao=
^source output file?,al=<error list file?

«<hex file? may be a diskette or cartridge file or a physical
device, such as line-printer or console output, or the assignment
may be omitted.

<error list file > may be a diskette or cartridge file or a
physical device, or the assignment may be omitted. If this assign­
ment is made, all error messages will be output to the error list
file and will not appear on the standard list file. If omitted,
error messages will appear on the standard list file.

<source output file? may be a diskette or cartridge file or a
physical device, or the assignment may be omitted. This assign­
ment is intended for use when the programmer enters a program
from keyboard in on-line mode, and the assembler can thus save the
source program on a diskette file for later editing and reassemb­
ling.

will assemble PROG.SRC, produce no hex file and no
and list any errors on the line printer.

will cause a program in a diskette file named PROG.SRC to be
assembled. The assembler creates a diskette file called PROG.HEX
which will contain the hexadecimal output, and another file
called PROG.LST which contains the listing of the program and
error messages if any.

will cause the assembler to enter the one-pass on-line mode,
assemble the program as it is entered on the keyboard and give
error messages, and save the source on the diskette.

<input file) must be a diskette or cartridge file, or the assign­
ment may be omitted, in which case the assembler will run in on­
line mode as a one-pass assembler and take input from the console
keyboard.

14

J

4.1 Assembly Commands

physical devicelogdev
NONErh
LP

pi RAM

List Device4.1.1
•A L = logdevFormat of command:

where logdev is either NONE or LP

Thus, the command
.A L= NONE
will turn off the listing.

error messages

■!

dummy device
line printer
read/write memory

I

■

Il

Mr

f
f

o
k

I
-

i

If the list stream is connected to the dummy device,
are output to the console screen.

When used in on-line mode, the assembler will respond to direc­
tives called assembler commands.

ft
II
/

I

S’

This command will determine which of the available output devices
to be connected to the list data-flow.

A detailed description of the different assignment commands is
given below.

The available physical devices are each denoted by a symbolic
logical device (logdev). The physical devices and their indenti-
fiers are:

I

£
ft

The assembler program occupies 5k bytes of RAM from CCOOH, leaving
3k bytes for symbol tables. The operator has the opportunity to
release some of the space intended for symbol tables by using the
•I command (see next section) when in on-line mode.

If neither input nor output files are specified, the assembler
will enter the on-line mode and will store the assembled code in
RAM, ready for execution. It is then the programmer's responsibi­
lity not to interfere with TOS 21, the assembler or its symbol
table.

Assembler commands have a number of different formats. All commands
are directives to the assembler to take some action but never to
cause any instructions to be assembled. In this section all
commands available will be described in detail. Most commands start
with a point (.) followed by a single letter.

15
r 'b.

.A M = logdev

Thus, the command:
.A M = NONE

directs the assembler not to store the object code into memory.
4.1.3

Format of command: .1

The assembler will respond by printing :
YYYYH :

Thus the following conversation:

to

;'ll
I .I '

This command will clear the symbol tables of the assembler so that
another program may be assembled without confusion due to doubly
defined symbols, and without restarting.

The limits will be set initially the first time the assembler is
entered after power-on.

This automatic assignment of devices will have the same
the following sequence of commands:
. A L = LP
.A M = RAM

Ii

2-lS-£_C<ade-Output

The generated object code may be placed directly into memory.

Format of command:

I o
k

I

. I
SYMBOL TABLE AREA : C000H-CBFFH:2000H,26FFH1

4.1.2
'J

where XXXX and YYYY are the lovzer and upper limits of the memory
area set aside for symbol tables (hexadecimal addresses).

The initialization command also include the automatic assignment of
physical devices to the logical list and object outputs.

effect as

IISI
7

The assembler now expects the user to specify a new symbol table
area to the right of the last colon (:). If the old limits are
acceptable the user should type a carriage return CJ.) .

This command will determine whether the assembled program is to be
stored into memory or not.

'J

' will initiate the assembler and reserve the memory area from 2000H
26FFH for the symbol tables. The text underlined is typed by the
user.

i

*

! ID

SYMBOL TABLE AREA : XXXXH

16

• S
i •

defined symbols on the

4.1.5 List_Undefined_Symbols
Command • U

rSs.1.6 Kill_De fmed Symbols

. K symbolCommand:

11

Symbols deleted in this fashion, may be reused as if they had never existed.

Start Execution of_Program4.1.7

Command: .G' expr

,4.1.8 Call to the TOS 21 Monitor

Command: • M

Som of the.main features of the monitor are as follows:

G

I

,i

The command to start execution will act like a subroutine call. The return
address to the assembler will be pushed into the stack, so that the program
execution may be terminated by transferring control back to the assembler
if desired.

This command will transfer control of operation to the system
monitor, which is a handy tool for program debugging.

Register examine/change
Memory examine/change
Hexa dump of memory areas
Program execution under break-point control
Return to the assembler' is achieved by the command:

For detailed description of the monitor see the TOS 21 manual.

5
O
k

ined_Symbols

Command:

1
s

£

l

.4.1.4

f-
I xi

LU

This command is used to remove a sequence of symbols from the defined
symbol table. All symbols which were defined later (in time) than the
"symbol" specified with the command, "symbol" included, will be removed
from the table.

where "expr" is the start address of the assembled program, "expr" may
be any legal number, defined symbol or arithmetic expression.

t

sj

This command prints out all of the user
device associated with the list stream.

The memory addresses from where the symbols are referenced are
printed as hexadecimal numbers.

This command will print out on the assigned list device all sym­
bols that are referenced but not defined.

The corresponding values are printed as hexadecimal numbers.

17

►j4.1.9 Return_to_T0S_21

Command .X
This command will transfer control to the operating system.

4.2 Assembly Listings■

The
■ i

Any)

zeroes

4.3 On-line Features

The
The

I
i

.1

field which is not required to represent a complete statement
will be filled with blanks.

When the computer is operating in on-line mode with source program
input from Console Keyboard, the assembler will display as a
heading on each line the current value of the location counter.

If a source output file is specified, the source will be written
in this file.

i

O
k

I

1.
2.
3.
4.
5.

The format of the assembly listing is shown in App. G.
meaning of the fields in the listings are as follows:
Fieldn

it
I!
it

Absolute hexadecimal address of every statement.
Machine instruction code.
The least significant byte of the operand.
The most significant byte of the operand.
Original symbolic assembly statement.

r I&' a L
g

p
M -7

Symbols not yet defined when referenced will be printed as
(field 3,4). This applies to on-line operation only.

t-

1£

A feature for examining the contents of memory is provided by the
command: /
When typing the slash (/) immediately after the printed location
counter, the assembler will print out the contents of the three
following memory locations. The location counter will not be up
dated.

The assembler displays an error message immidiately if an error
is detected. The operator has the option of retyping the entire
statement, in which case he types a carriage return, or he may
delete characters in the statement by using the left arrow key (<) •

The operator may now enter his program in free format,
assembler will assemble the program as it is entered, displaying
the assembled code on the screen as the typing progresses,
assembler will tabulate to the next tab stop when the right
arrow key (—>) is depressed. Spaces will be converted to tab codes
except if spaces are typed beyond column 32. (comment field).
Op-codes are moved to the op-code field if they are started at
the beginning of the line.

5. ASSEMBLY INSTRUCTION REPERTOIRE

JI

THE 8080 INSTRUCTION SET

fron Intel CorporationChapter 5 is reprinted by permission

The 8080 instruction set includes five different types
of instructions:

! o

d

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti­
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory.

1 t

5
Q u.

?•

i
I 5
a

br

"£•

are programs available which convert the programming lan­
guage instructions into machine code that can be inter­
preted by the processor.

One type of programming language is Assembly Lan­
guage. A unique assembly language mnemonic is assigned to
each of the computer's instructions. The programmer can
write a program (called the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions (called the Object
Code). Each assembly language instruction is converted into
one machine code instruction (1 or more bytes) by an
Assembler program. Assembly languages are usually ma­
chine dependent (i.e., they are usually able to run on only
one type of computer).

• Data Transfer Group —move data between registers
or between memory and registers

o Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

« Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

o Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

• Stack, I/O and Machine Control Group - includes
I/O instructions, as well as instructions for main­
taining the stack and internal control flags.

A computer, no matter how sophisticated, can only
do what it is "told" to do. One "tells" the computer what
to do via a series of coded instructions referred to as a Pro­
gram. The realm of the programmer is referred to as Soft­
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer's software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to per­
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logicdecodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer's Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com­
puters implement certain arithmetic operations in their in­
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con­
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer's instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an I/O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can "tell" the com­
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1's and 0’s), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

18

19

■

Dq Op Code

Dq Op CodeByte One D7

T T T TByte Two O7

Dq Op CodeByte One

1 T
Byte Two

^DoTd?1Byte Three

Sign:

Parity:

Carry:

I

I

I

Addressing Modes:
Often the data that is to be operated on is stored in

memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

o Direct — Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register - The instruction specifies the register or
register-pair in which the data is located.

• Register Indirect — The instruction specifies a reg­
ister-pair which contains the memory

Data or
Address

Data
or
Address

j

When a register or data word contains a binary num­
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, BIT 0 is re­
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MSB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

5 o

I

DATA WORD

O7 C>6 D5 D4 D3 Dj Di Dq

MSB LSB

If the result of an instruction has the
value 0, this flag is set; otherwise it is

reset.

If the most significant bit of the result of
the operation has the value 1, this flag is
set; otherwise it is reset.

If the modulo 2 sum of the bits of the re­
sult of the operation is 0. (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

If the instruction resulted in a carry
(from addition), or a borrow (from sub­
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is

reset.

L
J?
a

I

Condition Flags:
There are five condition flags associated with the exe­

cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is "set" by forcing the
bit to 1; "reset" by forcing the bit to 0.

Unless indicated otherwise, when an instruction af­
fects a flag, it affects it in the following manner:

Zero:

The 8080 can directly address up to 65,536 bytes of mem­
ory, which may consist of both read-only memory (ROM)
elements and randomaccess memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary
integers:

Three-Byte Instructions

D/ ' 1 1 1 1

Single Byte Instructions

d7' I 1 1 1 1

Two-Byte Instructions

1 [I I I T

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

• Immediate — The instruction contains the data it­
self. This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu­
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe­
cuted in one of two ways:

o Direct-The branch instruction contains the ad­
dress of the next instruction to be exe­
cuted. (Except for the 'RST' instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

o Register indirect — The branch instruction indi­
cates a register-pair which contains the
address of the next instruction to be exe­
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc­
tion (usually used during interrupt sequences). RST in­
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

1 rz~~DoD?7

20

rh

rl

PC

SP

rm

MEANING

accumulator
I addrJ

data
()data 16

byte 2

byte 3

Inclusive OR

Addition

*
REGISTER NAMEODD or SSS

n

NNN

rP

RP

REGISTER PAIR

One of the registers A,B,C,D,E,H,L

The bit pattern designating one of the regis­
ters A,B,C,D,E,H,L (DDD=destination, SSS=
source):

Register A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction

The third byte of the instruction

8-bit addressof an I/O device

00
01
10
11

A
B
C
D
E
H
L

A

V

Two's complement subtraction

Multiplication

"Is exchanged with"

The one's complement (e.g., (A))

The restart number 0 through 7

The binary representation 000 through 111
for restart number 0 through 7 respectively.

B-C
DE
H-L
SP

V
+

w

3=

port

r,r1,r2

DDD.SSS

5 o
k

*

d
X

Auxiliary Carry: If the instruction caused a carry out

of bit 3 and into bit 4 of the resulting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre­
ments, decrements, comparisons, and log­
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

The first (high-order) register of a designated
register pair.

The second (low-order) register of a desig­
nated register pair.

16-bit program counter register (PCH and
PCL are "used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through 0 from left to right).

Z,S.P,CY,AC The condition flags:
Zero,
Sign,,
Parity,
Carry,
and Auxiliary Carry, respectively.

The contents of the memory location or reg­
isters enclosed in the parentheses.

"Is transferred to"

Logical AND

Exclusive OR

Symbols and Abbreviations:
The following symbols and abbreviations are used in

the subsequent description of the 8080 instructions:

SYMBOLS

111
000
001
010
011
100
101

One of the register pairs:

B represents the B,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and Las the low-order register;

SP represents the 16-bit stack pointer
register.

The bit pattern designating one of the regis­
ter pairs B,D,H,SP:

RP

a

i

£

Description Format:
The following pages provide a detailed description of

the instruction set of the 8080. Each instruction is de­
scribed in the following manner:

1. The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first
line,

2. The name of the instruction is enclosed in paren­
thesis on the right side of the first line.

3. The next line(s) contain a symbolic description
■ of the operation of the instruction.

4. This is followed by a narative description of the
operation of the instruction.

5. The following line(s) contain the binary fields and
patterns that comprise the machine instruction.

21

’J

T0 0 D D D 1 1 0

data
I

I
0 D D D S S S1

T 1 o0 10 0 11

data

01D 1D D1

TTr 1oop0

low-order data

TTT high-order dataSSS0110 •1

J

I

Data Transfer Group:
This group of instructions transfers data to and from

registers and memory. Condition flags are not affected by
any instruction in this group.

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

I

MVI M, data (Move to memory immediate)
((H) (LI) — (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

MVI r, data (Move Immediate)
(r) -.— (byte 2)
1 he content ol byte 2 of the instruction is moved to
register r.

3
10
immediate
none

3
10
immed./reg. indirect
none

2
7
immediate
none

2
7
reg. indirect
none

1
5
register
none

2
7
reg. indirect
none

6. The last four lines contain incidental information
about the execution of the instruction. The num­
ber of machine cycles and states required to exe­
cute the instruction are listed first. If the rnstruc-
tio.n has two possible execution times, as in a
Conditional Jump, both times will be listed, sep­
arated by a slash. Next, any significant data ad­
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

I
a&

1

LX I rp, data 16 (Load register pair immediate)

(rh) -«— (byte 3),
(rl) -•— (byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in­
struction is moved into the low-order register (rl) of
the register pair rp.

I <
I
i I'

f J

MOV M, r (Move to memory)
((H) (L)) — (r)
The content of register r is moved to the memory lo­
cation whose address is in registers H and L.

I
I *

MOV r1, r2 (Move Register)
(rl) — (r2)
The content of register r2 is moved to register rl.

MOV r, M (Move from memory)
. (r) ((H) (L))

The content of the memory location, whose address
is in registers H and L, is moved to register r.

§
■

R~^

22

I

I

T T 00 0 1 0 1

To o 1 o i
high-order addr

low-order addr

high-order addr

T Too R P 01 1
T n T 7T T To o 0 01 1 0

low-order addr

high-order addr

(Store accumulator indirect)

T To 0 • R P 0 1

T TTT T o 1 00 0 1

low-order addr nrr TT 1o11high-order addr

fl

b

I

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
’ Flags:

5
16
direct
none

4
13
direct
none

4
13
direct
none

1
4
register
none

2
7
reg. indirect
none

5
16
direct
none

<Q>

STA addr (Store Accumulator direct)
((byte 3)(byte 2)) (A)
The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction.

STAX rp
((rp)) — (A)
The content of register A is moved to the memory Id­
eation whose address is in the register pair rp. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

XCHG
(H)
(L)
The contents of registers H and L are exchanged with
the contents of registers D and E.

2
7
reg. indirect
none

Q

b

I
5
3
L

I

*

LDAX rp (Load accumulator indirect)
(A) ((rp))
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp~D
(registers D and E) may be specified.

(Exchange H and L with D and E)
-(D)
-(E)

£

LDA addr (Load Accumulator direct)

(A) — ((byte 3)(byte 2))
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

SHLD addr (Store H and L direct)
((byte 3)(byte 2)) -— (L)
((byte 3)(byte 2) + 1) — (H)
The content of register L is moved to the memory Io-
cation whose address is specified in byte 2 and byte
3. The content, of register H is moved to the succeed-
ing memory location.1 1 1

low-order addr

LHLD addr (Load H and L direct)
(L) ■«— ((byte 3)(byte 2))
(H) — ((byte 3)(byte 2) + 1)
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca­
tion at the succeeding address is moved to register H.

*0

1 0

T~o

n

23

J Arithmetic Group:

T0 0 0 1 s s s

T T To o o o s s s

TT T T o 1 1 1 o1 0 0

l.i

I'll

T T 1 o1 o 0 0 1 TT TTT T T 1 o1 o 0 1 11

data

T T T T 1 01 1 00 0 1
*sTT S01001data

| _

i

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

' Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

(Add immediate)
(A) + (byte 2)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator.

ADI data
(A)

1
4
register
Z,S,P,CY,AC

1
4
register
Z.S.P.CY.AC

1
4
register
Z,S,P,CY,AC

2
7
reg. indirect
Z.S.P.CY.AC

ACI data (Add immediate with carry)
(A) (A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The result is placed in the
accumulator.

ADC M (Add memory with carry)
(A) (A) + ((H) (LI) + (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The result
is placed in the accumulator.

2 '
7
immediate
Z.S.P.CY.AC

2
7
reg. indirect
Z.S.P.CY.AC

2
7
immediate
Z.S.P.CY.AC

II!-

I 4S

5
0

This group of instructions performs arithmetic oper­
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All -subtraction operations are performed via two’s
complement arithmetic and set the carry flag to one to in­
dicate a borrow and clear it to indicate no borrow.

ADD M (Add memory)
(A) (A) + ((H) (LI)
The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

<r

.

t-

SUB r (Subtract Register)
(A) — (A) - (r)
The content of register r is subtracted from the con­
tent of the accumulator. The result is placed in the
accumulator.

ADD r (Add Register)
(A) (A) + (r)
The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

*

I
5 a
L
9

ADC r (Add Register with carry)
(A) — (A) + (r) + (CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

‘j

T T F T T1 o o 1 i oi 1 10 1 1 1 0

data

rT T1 oi 0 1 1 0

00D 1D0data

T TT s s10 0 11 TTT T T3 oi0 0 11

TTTT T oD00 01 011 10 0

I

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

SUB M (Subtract memory)
(A) — (A) -((H) (L)f
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator.

1
4
register
Z.S.P.CY.AC

2
7
reg. indirect
Z.S.P.CY.AC

2
7
immediate
Z.S.P.CY.AC

1
5
register
Z.S.P.AC

3
10
reg. indirect
Z.S.P.AC

1
5
register
Z.S.P.AC

2
7
immediate
Z.S.P.CY.AC

SUI data (Subtract immediate)
(A) (A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

2
7
reg. indirect
Z.S.P.CY.AC

DCR r (Decrement Register)
(r) — (r) — 1
The content of register r is decremented by one
Note: All condition flags except CY are affected.

SBI data (Subtract immediate with borrow)
(A) — (A) - (byte 2) - (CY)
The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted
from the accumulator. The result is placed in the
accumulator.

I

>
b
i

o
k

t-

Ife
li)

J

INR M (Increment memory)
((H) (L>) ((H) (LI) + 1
The content of the memory location whose address
is contained in the H and L registers is incremented
by one. Note: All condition flags except CY are
affected.

L'

I
J

S'
'4j

SEB r (Subtract Register with borrow)
(A) ■— (A) - (r) - (CY)
The content of register r and the content of the CY
flag are both subtracted from the accumulator. The
result is placed in the accumulator.

' d

SEB M (Subtract memory with borrow)
(A) (A) -((H) (L)) - (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula­
tor. The result is placed in the accumulator.

n

1~D

s”^

o r

INR r (Increment Register)
(r) — (r) + 1
The content of register r is incremented by one.
Note: All condition flags except CY are affected.

24

25

1.

T T T To o 1 1 0 1

2.

NOTE: All flags are affected.

T T To 0 11

T0 0 R P 0 0 11
i

h

T To o R P 1 11

T T so1 01

TT iTTTT T oio0010 10 0R P

vi
Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

1
5

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on condi­
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:
Flags:

1
4
Z.S.P.CY.AC

3
10
register
CY

1
5
register
none

1
4
register
Z.S.P.CY.AC

3
10
reg. indirect
Z.S.P.AC

ANA r (AND Register)
(A) (A)A(r)
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

2
7
reg. indirect
Z.S.P.CY.AC

i
|

5
o
k

£
ia
a
JL

1

INX rp (Increment register pair)
(rh) (rl) ■— (rh) (rl) + 1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

DCX rp (Decrement register pair)
(rh) (rl) (rh) (rl) - 1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

DCR M (Decrement memory)
((H) (L)) ((H) (L)) - 1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit Binary-Coded-Decimal digits by
the following process:

If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

If the value of the most significant 4 bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumulator.

ANA M (AND memory)
(A) (A) A ((H) (D)
The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY flag is cleared.

DAD rp (Add register pair to H and L)
(H) (L) (H) (L) + (rh) (rl)
The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H. and L. Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

Cycles:
States:

Addressing: . register
Flags: none

^0

^s

I

a

n •o

n

o'

1 s

1 1 '0

I 0

f*r/*

26

J

T T □o !■ 1 ST T T T1 1 i 11 o
data

(Exclusive OR Register)

TT T T i o 1 i1 0 01 1 s s s

.1

|!

T T TT o11 1 o 11

T data1 0 1 1 1 0
i

TT TT 1 i 1 11 i
TT sss101data

J
Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

I

Cycles:
States:

Addressing:
Flags:

1
4
register
Z.S.P.CY.AC

2
7
immediate
Z.S.P.CY.AC

1
4
register
Z.S.P.CY.AC

2
7
reg. indirect
Z.S.P.CY.AC

1
4
register
Z.S.P.CY.AC

2
7
immediate
Z.S.P.CY.AC

2
7
reg. indirect
Z.S.P.CY.AC

CMP r (Compare Register)
(A) - (r)
The content of register r is subtracted from the ac­
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A) = (r). The CY flag is set to
1 if (A) <(r).

2
7
immediate
Z.S.P.CY.AC

■

<< o
k

XRA M (Exclusive OR Memory)
(A) — (A) V ((H) (!_))
The content of the memory location whose address
is contained in the H and L registers is exclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

I

I

XRI data (Exclusive OR immediate)
(A) — (A) V (byte 2)
The content of the second byte of the instruction is
exclusive-OR'd with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

ORI data (OR Immediate)
(A) — (A) V (byte 2)
The content of the second byte of the instruction is
inclusive-OR'd with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

-a

’ ,11)

XRA r
(A) (A) V (r)
The content of register r is exclusive-or'd with (he
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

ANI data (AND immediate)
(A) (A) A (byte 2)
The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

ORA r (OR Register)
(A) — (A) V (r)
The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

ORA M (OR memory)
(A) (A) V ((H) (LI)
The content of the memory location whose address is
contained in the H and L registers is inclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

I
b
!

a

Iz

0
^~0

n

T~0 'o

0

n

27
F4.

‘I I
(A0)

(A0)

T T0 0 0 0 1 1 1 1

T T T T1 o 1 1 i 1 0

T TT o 1 1 10 0 0 1

T T1 1 1i 1 0

data

T T 11o 10 0

(A7)

TTT ioTT 11i11oo10 10 0 0

Cycles:
States:

Addressing:
Flags:

1
4
CY

Cycles:
States:
Flags:

Cycles:
States:
Flags:

Cycles:
States:
Flags:

Cycles:
States:
Flags:

1
4
CY

1
4
CY

1
4
CY

CPI data (Compare immediate)
(A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is
set to 1 if (A) = (byte 2). The CY flag is set to 1 if
(A) < (byte 2).

Cycles:
States:

Addressing:
Flags:

Cycles:
States:
Flags:

1
4
none

!

a

2
7
immediate
Z.S.P.CY.AC

2
7
reg. indirect
Z.S.P.CY.AC

5
Q
k

i

I

II
5
9
£J

RAR (Rotate right through carry)
(An) — (An+1) ; (CY) — (A0)
(A7) — (CY)
The content of the accumulator is rotated right one
position through the CY flag. The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Only the CY flag is
affected.

RRC (Rotate right)
<An> — (An.,) ; (A7)
(CY)
The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi­
tion. Only the CY flag is affected.

CMP M (Compare memory)

(A) - ((H) (L)|
The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un­
changed. The condition flags are set as a result of the
subtraction. The Z flag is set to 1 if (A) = ((H) (L)).

■ The CY flag is set to 1 if (A) < ((H) (!_)).

RAL (Rotate left through carry)
(An+1) (An) ; (CY) (A7)
(A0) — (CY)
The content of the accumulator is rotated left one
position through the CY flag. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

'4j

CMA (Complement accumulator)
(A) — (A)
The contents of the accumulator are complemented
(zero bits become 1, one bits become 0). No flags are
affected.

<2
I 2X

n

RLC (Rotate left) '
(An+1) — (An) ;(A0) -
(CY) — (A7)
The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi­
tion. Only the CY flag is affected.

I o n I n * n '

n

/I
28

“J

T T T1 1 o o 0 0 1 1

T low-order addrT T T T To 1 1 1 1 1
high-order addr

(Conditional jump)

T1 i 1 i 1

T T o1 1 c c c 0

low-order addr

high-order addr

i|

Branch Group:

I'

cccCONDITION

TTT T 1oo1

low-order addr

high-order addrJ

NZ
Z

NC
C

PO
PE

P
M

Cycles:
States:
Flags:

Cycles:
States:
Flags:

1
4
CY

1
4
CY

000
001
010
011
100
101
110
111

dress is specified in byte 3 and byte 2 of the current
instruction.

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

— not zero (Z = 0)
— zero (Z = 1)
— no carry (CY = 0)
— carry (CY = 1)
— parity odd (P = 0}
— parity even (P = 1)
— plus (S = 0)
— minus (S = 1)

JMP addr
(PC)

3
10
immediate
none

3
10
immediate
none

a
’t-

(Complement carry)

— (CY)

5
17
immediate/reg. indirect
none

ST
<<
O
k

1
CALL addr (Call)

((SP) - 1) — (PCH)
.((SP) -2) *- (PCD

• (SP) (SP) - 2
(PC) — (byte 3) (byte 2)

The high-order eight bits of the next instruction ad­
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad­
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con­
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

CMC

(CY)
The CY flag is complemented. No other flags are
affected.

lb

I£

5
B

• t

L7

£

Jcondition addr
If (CCC).

(PC) — (byte.3) (byte 2)
If the specified condition is true, control is trans
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other­
wise, control continues sequentially.

STC (Set carry)
(CY) 1
The CY flag is set to 1. No other flags are affected.

r
This group of instructions alter normal sequential

program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi­
tional and conditional. Unconditional transfers simply per­
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are
as follows:

(Jump)
(byte 3) (byte 2)

Control is transferred to the instruction whose ad-

O'

0^

.’X
29

'i El

T T n1 1 0 1

I ■ I

T T1 1 o o 1o i

DI

TT T1 1 o o 11 1 1

T T o1 1 1 o 1

T TT T T i11 o1 1

TT T To1 1 1 1 1 1

port

T 0o00

I

TI 11i

port

-

I
II

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:

Addressing:
Flags:

Cycles:
States:
Flags:

Cycles:
States:
Flags:

Cycles:
States:
Flags:

Cycles:
States:
Flags:

Cycles:
States:

Addressing:
Flags:

3
10.
direct
none

3
10
direct
none

5
18
reg. indirect
none

1
4
none

1
7
none

p
i

1
5
register
none

1
4
none

1
4
none

ST
<4;
O

(Disable interrupts)

The interrupt system is disabled immediately fol­
lowing the execution of the DI instruction.

OUT port (Output) ’
(data) ->— (A)
The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec­
ified port.

IN port (Input)
(A) ->— (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

lo

(Enable interrupts)

The interrupt system is enabled following the execu­
tion of the next instruction.

i’t)

I
k

II I I

£II z

o *

SPHL (Move HL to SP)
(SP) — (H) (L)
The contents of registers H and L (16 bits) are moved
to register SP.

! 0

0 *

n

XTHL (Exchange stack top with H and L)

(L) ((SP))
(H) —- ((SP) + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
.of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

Chapter 5 is printed by permission
from Intel Corporation.

n

*0

HLT (Halt)
The processor is stopped. The registers and flags are
unaffected.

* 0

*00 I

o NOP .(No op)
No operation is performed. The registers and flags

■ are unaffected.

JLX 30

INSTRUCTION SET

Summary of Processor Instructions

Mnemonic Mnemonic DescriptionDescription

'I

0 0 0 0 1 100 0 1LXi 0

> 0 0 0 0 1 100 1 04 LXI H

1 1!0 1 0 1 01 1PUSH D

0 1 II0 0 I1 IPUSH H

110 1 0 111 11

100 0 10 01 I 0POP 81

1C0 0 101 I 0 1POP 0

100 00 0 11 1 1POP H

to00 0 I1 1 1 1F-jgsPOPPSV.-

0

0

I

0

11 1

7

1

b

1. DDD or SSS - OOO BNOTES.

0

I
0

0

I

I

0

I
0

0

I

0
1

0

1
0
1

0

1

0
1

0

1
0

5
7

0
I

1
0

1
0

0
1
0

1
0
1
0

0

I
0

1
0

0

1
4
4

ANA M
XRA M

ORAM
CMP M

ADI
ACI

SUI
SBI

ANI
XRI

OR1
CPI
RLC

RRC

RAL
RAR

0
0

0
0
0

0
0
0

0
0

Instruction Code
0? Dg ^5 0-s Dj 0? Di Dq

1

1
I

1
1

I

I
I

1
1

1 0

1
1

1
1

1
1
1
1

1
1

1
1

1
1

1
1

I
1
1

1
1
1
1
1
1

1

1
1
1
0
0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0

0
0
0

I
t

0
0
0
0

1

1

0

1
0
0

1
I

0

0
0

0

I
1

1

1
0

0

0
0

I

0
0

0
0

1
1
0
0
0
0

1

1

1

1

0

1
0
1
0

1
n
0
I

1
0
0

1
I

0
0
I

0
0

1
1

0
0

1
1
0
0

0
0

1
0
0

0

1
1

0

0

1
1
0

0
0

0
1
0

I
0

0
I
1

0

1

1
0

1
0
0
1
1

0
1
1
0

1
I
1

1
1

s
s
s
s

s
s
s
s
1
1

0

0
0

0

0
0
0

0

0

1
I
1
1
1
I
1
I
1
0
0
0

1
1
1
1
I

1
1

1
1

1
0
0
0

0
0
0
0
0
0
0
0
0

s
s

0

0
0

0

s
s
s
s

s
s
s
s
I
1

1
I

1

I

1
I

1
1
1

!
1

1
1

1
1
1

1
1

1

1
1
1
1

s
s
0
0
0
0
0

I
0

s
s
s
s

s
s
s
s
0
0
0

0

0
0
0

0
0
0

0
0

0
0

0
0

1

0
0
0

0
0
0

0
0

1
0

0
0

0
0
0
0
0
1
0
0

1
I

Clock •
Cycles

7
7

10
5
5

10

10

1
7
7

1

I
7

7
1

LXI SP

PUSH B

si A

LOA
XCHG

Instruction Code
0; D6 Ds 04 Dj 0? Di Dq

1
I
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
I
0

1
1
1
1
1
1
1
1
1
0

0
0
I

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
1
0

I
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
I
I
1
1
1

1
I
1

0
1
0
1
1
0
0
0
1
1
0

0
I
0
0

I
1
0

1
1
1
0
1
0
0
1
1
0
0

0
0
1
I
0
A
1
0
0

0
0

I
0
0
I
1
0
0
0
0
1

0
1
1

0
1
1
1
1

1
0
0
0
0
0

0
c
0
0
0

0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1

o .1I
I
1
1
I
1
1
1

0
0
0

1
1
1
1
0

0
c
0
0
0
0
1
1
1
0

0
0
0
0
0
0

0
0

I
1
1

0
0
0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
0
1
1
1

0
0
I

1
1

I
1

16
16

i?
13

10
II

7
5
5
5
5 s
5
5
5

MOV.i.,2
MOV M r

MOVr.M
HLT
MVI r

MVI M

INR r
OCR i
INR M

OCR M

ADO r

ADC r
sub r

SBBr

1
1

0
0

0
0

I

1
1

1

1
1

1
1
1
1

1
1
1
1

1
1
1
I
I
1
1
1
1
1
1
1
1

0
0
0

0
0

1
1
1
1
0

0
0

0
0
1
1
1
1
0
0
0

1
0
0

1
1
0
0
0
1
1

D

0
9
0

0
0
0
D
0

0

0

s
s
I
1

1
1
I
1
1

1

10
10
10
10

10
10

10
10

10
17

11 17
11 17
11.17
11-17
11.17
1117
11 17
1117

10
5/11
5/11

7
7
4

7
1
1

XTrIL
SPHU

PCHL
DAO B
DAO O
DAD H
DAD SP

STAX B
STAX 0
LDAX B
LDAX 0

INX B
INX 0

INX H
INX SP

OCX 8
OCX D

OCX H
DCXSP
CMA
STC
CMC
DAA
SHLO
LHLO
El
01
NOP

I
I
I
1
I

1
1

1
1
0

0
0
1

0
0
I

1

1
I

A
0

0
0

0
0

I
1

0

0
A
1

1
0

1
1
1
I
1
I
1
1
0
0
I
I
0

Clock •
Cycles

S 11

5 11
5 II
5 11
Sil

5/11
11
10
10

10

18
5

5
10
10
10
10

RZ
RNZ

RP
RM
RPE

RPO

RST

IN
OUT

LX! B

4S

A:

ANA r

XRAr
ORA r

CMPr

ADO M
ADC M

SUB M
SBB M

JMP

JC
JNC
JZ
JNZ

JP

JM
JPE

JPO

CALL
CC
CNC
CZ
CNZ

CP
CM
CPE
CPO
RET
RC
RNC

Mo»e reg-ste' to r«*g*c ter

Move »eq<ster tn memory
Move memory to register

Halt
Move immediate register

Move immediate memory

Increment register
Decrement register

Increment memory
Decrement memory

Ado register to A

Add register to A with ca«v
Subtract register from A
Subltact register from A

With borrow
And register with A
Exclusive Or register with A

Or register with A
Compare register with A

Add memory to A
Add memory to A with carry

Subtract memory horn A

Subtract memory from A

Wth borrow
And memory with A
Exclusive Or memory with A

Or memory wdh A
Compare memory with A

Add .mmed ate to A
Add -rnrrediate to A with
earry
Subtract immediate trim A

Sub’ract immediate trum A

with borrow
And immediate with A
Exc'usive Or immediate with

A
Or immediate with A
Compaie immediate with A

Rotate A left

Rotate A r.ght
Rotate A left through carry
Rotate A right through

carry
Jump unconditional

Jump on carry
Jump on no carry

Jump on zero
Jump on no zero
Jump cn positive

Jump on minus
Jump on parity even

Jump on parity odd
Call unconditional

Call on carry

Call on no carry
Call on zero
Call on no zero
Call on positive
Call on minus
Call on parity even
Call on parity odd

Return
Return on carry
Return on no carry

5 o
k

I
a
L
9

X

1. DDD orSSS - OOO B -001 C - O1O D -011 E - 100 H - 101 L - 110 Memory - 111 A.

.2. Two possible cycle limes, 15/111 indicate instruction cycles dependent on condition Hags.

Return on ze'D
Return on nj zero

Reium on positive
Return on mi-“uS

Return pa' ty even

Return on parity odd
Restart

Input
0 input

Load immed ate register
Pair BSC

Load immediate register
Pau D & E

Load m-ec.afe register
Pa-r H & L

Load immediate stack pointer
Push register Pair 3 & C im

stack
Push register Pair D £ E or

stack
Push register Pair H & L on

Stack
PUSH PS’.V Push A j-d F;ag$

on stac*
Pop register pa'r 8 S C off

stack
Pep register pa<r D & E off

stac*
Pr,p reg.siet pair H & L oil

stack
Pop A a-’

o»t stack
Stv-Afl

E xchj-ige C S E h & L

Registers
Exchange’:p stack H&L

H8 L h stac* a smter
H 8» L td program counter
Add B £ C to H & L
Add D & E ’j H & L
Ari-1 H & L Jo H & L
Arid stac* center to H i L

Store A ir.fl rect

Store A "direct
Load A md-recr
Load A indirect
Increment B & C registers

Increment 0 & E registers

Increment H & L registers
Increment stack pointer
Decrement B & C

Decrement D & E
Decrement H & L
Decrement stack pointer
Complement A

Set carry

Complement carry
Decimal adjust A
Store H & L direct
Load H & L direct
Enable Interrupt*

Disable interrupt
No operation

£

'4J

1r

APPENDIX A 1
SUMMARY OF INSTRUCTIONS AND SUB-INSTRUCTIONS
MOV 1 BYTE 6 states

r2 = SOURCE

B C D E II L M A

B 40 41 42 43 44 45 4G 47
49J- C 48 4A 4B 4C 4D 4E 4F

D 50 51 52 53 54 55X • 5G 57
E 58 59 5 A 5B r5C 5D 5E 5F-
H 60 61 G2 63 64 65 66 67
L G8 G9 GA GB GC 6D GE GF£ I

71M 70 72 73 74 75 76 77
a A 78 79 7A 7B 7C 7D 7E 7F

INCH EM ENT/D ECR ENT INSTRUC TION 1 BYTE

I

B C D E H L M(x) A

INR r 04 0C 14 1C 24 2C 3C34
DCR r 0D05 15 ID 25 2D 3D35

MVI INSTRUCTION 2 BYTES

CB D E II L M(x) A

MVI r 06 0E 16 IE 26 3E2E 3G

ACCUMULATOR ARITHMETIC ' 5 slates (x): S slates

AM(x)E I.C D IIB- •

S7SGS5S3 848281SO
SFBESC SD8BSA89SS
9796959493929190[SUB r
9F9E9C 9D9B9A9998
A 7AGA5A 4A3A 2AlA0
AFAEAC ADABA AA 9AS
B7BGB5B4B3B2BlB0
BFDEBDDCBBBAB9BS

II

!SDB r

[ANA r

5 states
(x): 11 suites

8 stales
(x): 11 slates

I

A
Ir2

L'

I a a
i.
9 'If I
V

£

!ADD r

SADC r

■NR A r
’ | OR A r

•CMP r

£

2/

Mnemonic Code Bytes States Mnemonic Code Bytes States

I

.7

IN
OUT
CMA
STC
CMC

2
2
1
1
1

5
0
k

si
i
i
i
i
3
3
3
3
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
1
J
2
2
2
2
1
1
1
1
1
1
1
1
3
3

-

27
FB
F3
00
76
01.
11
21
31
C5
1)5
E5

CG
CE
DG
DE
EG
EE

■ ,FG
FE
07
OF
17
IF
C3
DA
D2
CA
C2
F2
FA
E2
E2
CD
DC
D 1
CC
C4
Fl
FA
EC
E4
C9
DS
DO
C8
CO
F0
F0
E8
E0

5
5
5
5
8

13
13
13
13
14
14
14
14
13
13
13
13
1G
16

5
23

G
13
13
13
13

9
9
9
9
6
6
6
6
G
6
6
6

21
21

2
2
2
2
2
2
2
2
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1

9
9
9
9
9
9
9
9
5
5
5
5

13
13
13
13
13
13
13
13
13
22

14/17
14/17
14/17
14/17
11/17
14/17
14/17
14/17
6/12
6/12
6/12
6/12
6/12
6/12
G/12
6/12
6/12
14
12
12

5
5
5

Cl
DI
El
Fl
32
3 A
ED
E3
E9
09
19
29
39
02
12
OA
1A
03
13
23
33
OB
IB
2D
3B
22
2A

X I
r
§
§
1.

I

£

DA.A
El
DI
NOP
I l LT
LXI B
LXI D
LXI H
LXI SP
PUSH B
push D
PUSH II
PUSH PSW F5
POP B
POP D
POP II
POP PSW
STA
LDA
XCHG
XTHL
PCHL
DAD B
DAD 1)
DAD H
DAD SP
STAX B
STAX D
LDAX B
LDAX D
INX B
INX D
INX H
INX SP
DXC B
DXC D
DCX H
DCX SP
SH1.D
LHLD

ADI
AC1
SUI
SDL
ANI
XRI
OBI
CPI
RLC
RRC
UAL
RAR
JMP
JC
JNC
JZ
JNZ
JP
JM

' JPE
JPO
CALL
CC
CNC
CZ
CNZ
CP
CM
CPE
CPO
RET
RC
RNC
RZ
RNZ
RP
RM
RPE
RPO
RST (ref. tab. 2.4) 1

DB
D3
2F
37
3F

APPENDIX B

TDV 2100 character set

Graphic Comments
I

■■

ERP

SP

+

Hexa
Value

Decimal
Value

Abbrevia­
tion

*
$ 9;
&

LF4
Rollup
CR
UL
Norm
CL

(
)*

(
)

I

STX
ETX
ERL
ENQ
ACK
BEL

0
1
2
3
4
5
6
7
8
9
A
B.
C
D
E
F

10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
213
2C
2D
2E

5
Q
k

■ 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31.
32
33
34
35
3G
37
33
39
40
41
42
43
44
45
46

f

1!
S' 9? &

&
!*•

Kot used
Not used
Video off
Video on
Erace line
Enquiry
Acknowledge
Bell
Backspace (cursor left)
Not used
Line feed
Cursor down
Roll up
Carriage return
Underline
Normal
Cursor load
Not used
Not used
Not used
Not used
Negative acknowledge
Lamp clear
Roll Down
Cursor right
Erase page
Not used
Not used
Cursor up
Cursor home
Not used
Not used
Space
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus
Comma.
Hyphen (Minus)
Period (Decimal)

NAK
LCLR
Rolldwn

II I

a
s
\,

I /

it

2

Graphic Abbreviation Comments

■ I
<

Decimal
Value

Hexa
Value

5T

Q

2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E .
4F
50
51
52
53
54
55
56
57
58
59
5A

I
5 : &

i >.
!:9

I

/
0
1
2
3
4
5
6
7
8
9

>

ra>
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
Z

?

A
B
C
D
E
F
G
II
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

/
0
1
9

3
4
5
6
7
8
9

4 7
48
49
50
51
52
53
54
55
56
57
58
59
GO
Gi
62
63
64
65
GG
67
G8
69
70
71
72
73.

. 74
75
76
77
78
79
80
81
82
83
84
85
86
87
8S
89
90

i 'u
I'D

Slant
Zero
One
Two
Three
Fou r
Five
Six
Seven
Eight
Nine
Colon
Semi-colon
Less than
Equals
Greater than
Question mark
Commercial at
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase II
Uppercase I
Uppercase J
Uppercase K
Uppercase L

. Uppercase M
Uppercase N
Uppercase O
Uppercase P
Uppercase Q
Uppercase R
Uppercase S
Uppercase T
Uppercase II
Uppercase V
Uppercase W
Uppercase X
Uppercase Y
Uppercase Z

£

4
IGraphic Comments

Hexa
Value
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Decimal
Value

91
92
93
94
95
96
97
98
99

100
101
102
103
104
10 5
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121-
122
123
124
125
126
127

Abbrevia­
tion

Uppercase IE
Uppercase 0
Uppercase A
Circumflex, up-arrow
Solid block
Grave accent
Lowercase a
Lowercase b
Lowercase c
Lowercase d
Lowercase e
Lowercase f
Lowercase g
Lowercase h
Lowercase i
Lowercase j
Lowercase k
Lowercase 1
Lowercase m
Lowercase n
Lowercase o
Lowercase p
Lowercase q
Lowercase r
Lowercase s
Lowercase t
Lowercase u
Lowercase v
Lowercase w
Lowercase x
Lowercase y
Lowercase z
Lowercase ae
Lowercase 0
Lowercase a
Left vertical line
Delete, rubout

r

&
t-

5O
k

a
b
c
d
e
f
g h

3 k
1
m
n
o
P
q
r
s
t
u
v
w
X
y z
0
I

IE
0 A
E

' , GRA
a, LCA
b, LCB
c, LCC
d, LCD
e, LCE
f, LCF
g, LCG
h, LCH
i, LCI
j , LCJ
k, LCK
l, LCL
m, LCM
n, LCN
o, LCO
p, LCP
q, LCQ
r ,LCR
s ,LCS
t,LCT
U, LCU
V, LCV
W, LCW
X, LCX
y, LCY
z, LCZ
ffi,LC£
0,LC0
a,LCAI
DEL

7E
0 A
D.

I
•jj

■

J

3

/ APPENDIX C

SUMMARY OF ASSEMBLY COMMANDS

Command format Description

.S

.U

Memory examine

i

i
■i

5
Q
k

*

k b
*!

E i E fi
I

it£

Assignment of list device
Assignment of memory
Initialization of assembler
List defined symbols
List undefined symbols
Kill sequence of defined symbols
Start execution of program
Call to monitor

•A L = logdev
•A M = logdev
.1

.K symbol
•G expr
.M

2

11

’b sJ

AAPPENDIX D

7
ERROR MESSAGES

ERROR XX LC = YYYY
I

error

Error no. Description
1

J)

5
. 6

9
10
11
12
13
50,-^j
51
52

location counter,
list device.

53
54
55
56
57

7
8

2
3
4

>
r

)J

o
k

! 71) :I !» oX ;
I:

where XX is error number and YYYY is the current value of the
Error messages will be printed on the assigned

If the dummy device is used as list device,
messages will be printed on the system console.

*
k ; *
■

&
■ >

is

a message will be printed in the following

Illegal instruction (first charcter)
Illegal instruction (last item)
Illegal instruction (first item)
Pseudo instruction syntax error
Doubly defined symbols
Symbol table full
Missing end of string
Expression syntax error
Illegal terminator of expression
Missing operand
Missing constant (DB, DW)
Undefined symbol in expression
Missing END
Input record too’long
Illegal logical source device
Illegal logical list device
Illegal logical object device
Illegal assembly command
Insufficient disc or cartridge space
Disc or cartridge not ready
Cartridge is write-protected

When an error occurs,
format:

