
1

Buffered Editor

Specifications

Copyright 1977/78 Tandbergs Radiofabrikk A/S.
' . • e- < ’ • * r*»

Tandberg reserves

Part no.: 367594
Publ. no. :
September i

i
l
i

5003
1978

T A N D B E R G
» ss x x =5 - x x z: x = x - s; -

T.DV-2100 series.
X S3 » X = ss s? x S3 x x s: = xr. x ■ x

TANDBERGS RADIOFABRIKK A/S
Data div.
P.O. Box 9, Korsvoll
Oslo 8, NORWAY
Tel.: (47-2) 23 20 80
Telex: 16441 tanra n

CONTENTS
PAGE

1. Introduction 1
2 : Accessing the buffered editor 2

3. Text addressing 3• ■

5
6

7

7e

8
Interrupting commands5.3 8

5.4 Defining function iteration 8
96. Commands

I

6.4

5. Operating the buffered editor

1

»
u

Tabstop handling..........
Setting tabstops
Display current tabstops....
Pack output according to tabstops ...
Stop packing of output

Miscellaneous commands
Clearing text buffer
Return to TOS

15
1515

14
1414
14

3
4
4
4
4
4

.5.1, General .B
: 5.2Deleting typographic errors

r
'1

6.4.1
6.4.2

6.1
6.1.1
6.1.2

- ; 6.1.3
6.1.4

... 9

...9

... 10

... 10

... 10

. 12
, 12
. 12
. 13
. 13

3.1 Line address
3.1.1 Line number ...

’’3.1.2 Text string ...
’■“’3.1.3 Current pointer
■.' ■•■. 3.1.4 First line

■ . ' 3.1.5 Last line
3.2 Text interval

” r ? ’ ■ ’■-■ r ••• • • •

4. Screen layout

6.3 Auxiliary input .
’ ‘ ' 6.3.1 Auxiliary assign

6.3.2 Auxiliary include
6.3.3 Auxiliary skip ..

i 6.2 Input/output commands............. H
“ ‘ ‘ 6.2.1 Reading lines from standard input 11
- 6.2.2 Writing textbuffer on standard output 11 .

6.2.3 Output Close
' 6.2.4 Output Assign ...

• * 6.2.5 Copy-until
' 6.2.6 Skip-until
* 6.2.7 Normal exit

PA

7. Text handling functions 16

7.1

7.2

7.3 Insert line 19
7.4 20Insert text string
7.5 20Copy line of text

217.6 Move lines of text
7.7

7.8 <•

247.9
... 247.10 Line concatenation

25Control function keys8.

269.; . How to use the editor
- \

. .. \ - •Appendices: f

31A - Command summary
32Error messagesB

7.1.17.1.27.1.3

7.2.17.2.2

7.8.1
7.8„2
Find functions

Fiad text string forwards
text string backwards

17
17
17
17

23
2323

18
18
18

Current pointer adjustment
Numerical adjustment
Start of line
Last character

Delete functions
Delete line
Delete character

Substitute functions
Substitute text string
Substitute word

... 26

... 26

... 27... 28

... 28

... 28

... 28

...29... 29... 29

... 30

. 21

. 21
, 227.7.1

7.7.2

Creation of a new element......
Updating existing elementWhat to do when no more space on output media
How to find all occurrences of a string
Remove all lines containing a specific text .
Change strings through the whole file
Insert characters at the end of all lines *..
Create copies of special part of memory ...

-■ 9.19.2
. 9.39.4

; 9.5
; 9.6.... 9.7- 9.89.9 ’ Sideways move..............
9.10 Converting assembly list file to source file

• j 9.11 Generation of EXEC files
■ - •

Li X ft G S ’pZ X & © o o o s a

1. Introduction

J

J?

■

a

The text lines may be altered directly when shown on
the screen, or by a well defined set of text handling
functions.
Different search and roll functions enables the user
easily to find actual information in the text buffer.

The screen is used as a window of the buffer containing
the text lines.

The buffered editor for use with the TOS21 operating system, has taken into consideration that the display
screen is an integrated part of the TDV-2114.

. i • ■-

2 -

2. Accessing the buffered editor
-

Examples:

Requi rements:

If no input file is to be edited, the assignment of the
standard input (SI) should be omitted.

- Minimum amount of memory is 32K of RAM, but 48K is
recommended to increase the capacity of the editor.

EDIT so=abc
EDIT si=abc,so~abcd,sl=abcd.1
EDIT si-abc.?sa>~de,rai-aux

The command is typed by the user on the.console keyboard.
The editor copies information from the input file to the
output file under control of commands from CI, the
console input. ’ ' '
The list file is identical to the output file, but in front
of each line, the new line number is given. ‘

The buffered editor is invoked by the command ' '

EDIT si=<input file>,so=<output file>,sl=<list file>,
ai=<auxiliary input file> .’j.-- : . y.

- 3 -

3. Text addressing
• -V . .1

possible.

Shorter lines causes the amount of lines in memory to increase.
- ■■■■■■ .i. ■

3.1 Line address

The contents of the text buffer is divided into two categories.

There are fiv® different ways to address a line:

• ■ •

-i < '?l V,;i b?

be addressed directly
i as

More restricted addressing rules applies on the latter category
than the first one. See below.

All text currently in the text buffer can L_
Therefore it is an advantage to have as large buffer area

the text lines read from the standard input file
the new or altered text lines.

To each line address a signed decimal constant may be added,
i.e. $+5 or .-10 .

With 32k of memory, the buffer may contain approximate 50 lines
of length 80 characters. With 48k the amount of lines are
approximate 250.

1 " lin@ aumber (decimal number)
2 - text string
3 - current pointer ($ key)
4 - first line (; key)
5 - last line (. key)

-- 4 -

3.1.1 Line number

3.1.2 Text string

These pointers are later referred to as the current pointer.
The line pointer can be addressed by typing the $ (dollar) key.

3.1.4 First line

3.1.5 Last line

The character pointer is updated either by the user, by
altering the position of the cursor, or by the different
commands or functions.

A text string may contain one or more VERTICAL BAR characters..
Characters in the position specified by the VERTICAL BAR
characters are not tested. ■ -

A line can be directly addressed by
...the line. The string .must be typed enclosed by the character ".

The values of these pointers are dependend on the editing
function performed. . • >

The first line in the text buffer can be addressed by typing
the : (colon) key.

The last line in the text can be addressed by typing the
character . (dot) .

a line poineo?
a character position pointer.

3.1.3 Current pointer
The editor has current pointers,

a text string occurring in

• VERTICAL BAR i.e. 7EH. On ECMA keyboards the symbol is
represented by the —i character.

Each of the lines read from the standard input file can be
addressed directly by its line number. The user only has to type the decimal number. . , ■ ■
New or altered lines can not be addressed in this way.

- 5 -

3.2 Text interval I

*

Later in this manual a text interval will be referred to as I.
I = L

or I = Li,Lj,(if j < i then j = i)
If Li is blank then Li = first line
if Lj is blank then Lj = last line

The last specified text interval may be referred to
by a

A text interval is an interval of one or more consecutive
lines. The first and the last line of the interval must
be specified, separated by comma. If the interval contains
one single line, only this line must be specified.

6

4. Screen layout

: r:

column 1

the

column 2-72
column 20-72
column 73-77
column 78
column 79-80

b) The screen will be used in two different ways, depending on
the last executed command:

contains an asterisk when the editor is ready
to accept a new command or function
command/function field
will contain (error) messages from the editor
gives current line number or "NEW"
separator "/"
gives current character position number (1-80)

- as a window showing 24 lines of the text buffer
(23 lines if automatic roll mode).

- as a display of lines containing certain information
In the first case, initially or when certain commands are
executed, line 13 on the screen always will contain the line
located by the current pointer. The cursor indicates the
current character on this particular line.
The contents of the screen (line 2-25) may be altered,
either by using the control function keys combined with
the alpha-numeric keys or by pressing the HOME key
followed by a new command.
In the latter case, the prompting asterisk is given and the
previous specified command may be excuted once again, just
by pressing the CP. button.
If the first character entered is an alpha-numeric key,
command field is cleared and the character entered is
displayed.

The message field will be cleared when the HOME key is
pressed.
On termination of a command, the cursor will either be
located at the character pointed out by the current pointer
or remain in the cownand field. This is dependend on the
last command executed (see section 6 and 7).
When an error si'feaation is detected, a relevant message is
displayed. A new command should then be specified after
having pushed the HOME key.

The screen is divided into 2 parts: *
a) line 1 - command and message line •
b) line 2-25 - data part of the screen
a) command and message line

’>5.1 General

Three types of commands may be given when operating the editor:

Commands may be entered in upper or lower case lettes.

Commands in a

sb

the CR

the command

When specifying a command, a block cursor identifies the next
available position of the command field.

- general commands
- text handling functions
- control function keys

Commands may be entered singly or in strings,
string must be separated by a semicolon (;).
Commands in a command gfcring are executed in the sequence they
are entered.

Carriage return (CR) indicates that the specified command or
command string should be executed. If the command string is
empty, the editor returns to edit mode.

Commands may be abbreviated as specified in each individual
description. This is indicated by enclosing optional
characters in brackets.

When a command is finished, the cursor will either be
positioned in the command field of line one (command mode),
or in the 13th line of the screen (edit mode). This is
dependend on the last command executed.
If edit mode, the position of the cursor may be altered by
using the control function keys (section 8).
A new command can only be given after the HOME key is pressed.
This causes the last command string specified to be displayed.
The block-cursor is located at the end of the command.

The text editor signals its readiness to accept commands by
prompting with an asterisk (*) in first position of the first line.

5. Operating the buffered editor

If one of the commands in a string could not be performed or
gives an erroneous result.? rest of the string is skipped.

If the same command string is to be executed once again,
may be pressed.
If a new command is to be given, the command may be entered
directly. The first printable character causes the command
field to be cleared.
The editor allows the record length of the Standard Input file
(SI) to be more than 80 characters long. Only the first 80
characters of a line will be shown on the screen and acted
upon.
The maximum length is 128.

- 7 -
• y

8 -

5.2 Deleting typographic errors (LEFT CURSOR, DEL)

5.3 Interrupting commands (!).

The syntax of the iteration is:
n <'function or function string’>

Where n has to be in the range 1-255.
13

The interrupt is acted on only during a time consuming operation,
i.e. input/output operation, others are executed completely.
If a function string is specified, rest of the string is
skipped.

A function or function string can be repeated any number of
times by enclosing the string in angle brackets •<• and ’>',
proceeded by a decimal number, specifying how Dany times the
iteration is to be performed.

After the command terminator is entered and the commands are
being executed, the operation can be terminated by pressing the
1 key.

5.4 Defining function iteration
MB BM MB MB MB MB BB* MB MB MB «« MB OM SB Ti -SO » JU 1>M AB » <3M <**• MB

Any typographic errors in entering a command can be removed by
pressing the '<-• LEFT CURSOR key once for each character to be
removed. (If the cursor is located in the first position of a
line, the will have no effect). , , .
Pressing the DEL key causes the characters in the command field
to be deleted. The editor will again prompt an asterisk.

9

6. Commands

E[XIT]

Al [n] [*L]

* I.

6.1 Tabstop handling

NB!

6.1.1 Setting tabstops
The command for setting tabstops is divided into 4 sub-commands:

)

The first sub-command

On input the lines will be expanded according to the current
tabulator setting.

It is the responsibility of the user that the tabsetting
used on output and later on input corresponds.

- may be written as:
E, EX , EXI or EXIT

* L

On output, if the TP command (below) has been given, the
lines are packed according to current tabsetting.

Default values are: 1,9,17,25,
The value of the current pointer is not altered and the editor
remains in command mode.

Command: T[n,m,....]
TC
TA
TF

The editor may read files containing tabulator characters
(09H and 18H) and produce output containing the tabulator
character 0 9H.

where n,m...=decimal numbers
COBOL tabsetting (1,8,12,16,....
ASSEMBLER tabsetting (1,9,16,26)
FORTRAN tabsetting (1,6,7,10,13,16,.)

(T[n,m..J) may be used when a special
, tabsetting is required. The tab stops are specified by decimal
numbers separated by commas.
If no numbers are specified, the default values are assumed.
Max number of tabstops is 15.
Previous defined tabstops are automatically cleared when a
.command is given.

- may be written as:
Al
Al
Al n
Al n

This section describes the commands for performing input/
output operations and tabulator handling.
The characters [] is used to identify optional information.
Examples:

- 10 -

TD

The value of the current pointer is not altered.

6.1.3 Pack output according to tabstops
Command: TP

6.1.4 Stop packing of output
Command: TU

This command cancels the effect of the TP command.
The value of the current pointer is not altered, and the
editor remains in command mode.

The value of the current pointer is not altered, and the editor
remains in command mode.

This commands signifies that lines to be written on standard
output (SO) should be packed according to current tabulator
setting.

6.1.2 Display current tabsetting
Command:

This command causes the current tabsetting to be displayed in
the message field of line one.

NB! This command should only be used when handling PROGRAM
source. STRINGS OF SPACES IN QUOTES may cause surprise
during compilation/assembly. In such cases the TP command
should not be used.

11 -

6.2 Input/output commands

*1 input/dutput

(n = decimal number)Command: R[EAD] [n]

When n is omitted, the editor will

an

,6.2.2 Writing textbuffer on output file (SO/SL).
(n = decimal number)W[RITE] [*] [n]Command:

all lines written

When a read is performed,
line 13 of the screen.

If a tabulator character is encountered, the input line will
automatically be expanded according to the current tabsetting.

Current pointer, as well as the cursor, will be located on
the beginning of line 13.
If the pack tab command previously is given, all lines written
on standard output (SO), will be packed according to the curren
tabulator setting. .

The written lines will be removed from the text buffer unless
the write command is followed by the character *.
The current pointer will be located at the beginning of the text
buffer.

6.2.1 Reading lines from standard input file (SI) to textbuffer.

Current pointer, as well as the cursor, will be located at the
beginning this line.

If this causes a line to be of more than 128 characters,
error message is given.

This command will make the editor read n lines from standard
input file to textbuffer.
read until the textbuffer is 3/4 full.

the last line read will be shown on

This command will make the editor write n lines of the text­
buffer on the specified output files. If n is omitted, the
whole textbuffer will be written.

Before performing an input/output operation, an f
file must be specified. This is done when selecting i/o device (see section 2 and 6.4).
If the standard listfile (SL) is assigned, all output written on
the standard outputfile (SO) is also copied to the SL-file. In
addition the corresponding line number is inserted in front of each line.

- 12 -

6.2.3 Output close
Command: OC

closed.

and the editor

6.2.4 Output Assign
Command: OA ^string"

6.2.5 Copy until

)

buffer.
will be located at

' If no output file was assigned, an error message is given.
• • • .■ •

The value of the current pointer is not altered,
remains in command mode.

Current pointer, as well as the cursor,
the beginning of line 13.

If specified line number is less than the first line in buffer
■ or SI or SO not assigned,

If no match for the specified text string, the whole file will
_ _ —. • J ... _ . . •

This command causes a new output file on SO to be assigned and
opened. The string must satisfy the format of a standard TOS
filename. Only single file is allowed, see TOS21 Users Guide
Part 2.

This command followed by the Output Assign command is specially
useful when the mass storage media is full or not useable any
more (see section 9).

an error message is given.

This command causes the current’output file on SO/SL to be

be copied. ’ ' ’
The current pointer will be located at the beginning of the text

If SO already was assigned or the TOS-filname specified already
existed, an error message is given.
The value of the current pointer is not altered, and the editor
remains in command mode. - •

Command: CU <line number> !
CU "string"

This command will copy lines from SI to SO/SL until the
specified line number or text string is found. :
This line is placed as the first line in text buffer, and the
editor will then read until end of file or text buffer is 3/4
full.

- 13 -

6.2.6 Skip until
) Command:

.1

, i .■ *

6.2.7 Normal exit
E[XIT]Command:

For tabulator expand/pack, see the commands READ/WRITE.

Current pointer, as well as the cursor, will be located on
the beginning of line 13.

This command causes the editor to copy the rest of the input
file, including the current textbuffer, to the output file
directly. -
The control is then returned to the operating system, TOS, which

- will close the assigned files.

If the specifed line number is less than the first line in the
text buffer or SI not assigned, an error message is given.

The current pointer will be located at the beginning of the text
buffer. i■ .

If no match for the specified text string, rest of the input
file is skipped.

SU <line number> !
SO "string" £ ■..< . , ,

This command will read from SI until the specified line number
or text string is found. This line will be placed as the first
line in text buffer, and the editor will read until end of file
or text buffer is 3/4 full.

- 14 -

6.3 Auxiliary input ' ••

s?

• .

Command: AA "string"

. -J

Auxiliary Include
Command:

(Where: n= decimal number, ,L= line address)

is omitted, current line is assumed.If

The file is automatically closed upon end of file.

Auxiliary Skip6.3.4
Command:

(Where: n= decimal number)

*

The current pointer will be located at the last line read.
Current pointer, as well as the cursor, will be located at
the beginning of line 13.

If n is omitted, the editor will read until the text buffer is
3/4 full. - - ■ ...

The file is automatically closed upon end of file.
The value of the current pointer is not altered, and the editor
remains in the command mode.

AS [n] 1
AS "string"

6.3.1 Auxiliary Assign

This command causes the editor to read n lines or until a
match for the specified text string is found from the auxiliary
input file and append the lines to the specified line address L.

^6.3.3

L’

Al [n] * L
Al "string"

This command causes n lines or all lines until a match for the
specified text string to be skipped (inclusive the matching line).
If n is omitted or a match for the specified text string could
not be found, rest of the auxiliary input file is skipped.

Where the string parameter is a TOS filename in standard
format. Only single file is allowed. (For further
information, see TOS21 Users Guide).

i L

The editor has the possibility of merging two input files.
The following commands may be used.

,.£.f ,

? This command may be used when a merge file is desired.
The value of the current pointer is not altered, and the editor
remains in command mode.

•i. b i’-.. ■
■■■

. i• ■

- 15 -

6.4 Miscellaneous commands

The value of the current pointer is not altered.
Cursor will be in the first position of the command field.

6.4.1 Clearing text buffer •?''■

MILL]Command:

This command causes the entire textbuffer to be cleared.

Return to TOS
Q[UIT]Command:

This command causes immediately return to TOS.
The assigned files will be closed.

The commands described in this section are not used during a
normal editing Operation.. However, now and then these may be
helpful to the user.

- 16 -

7. Text handling functions

Given a line address without specifying a function name, the
current pointer will be updated to point to the beginning of
the actual line.

This section describes the functions for altering text in the
text buffer.
General syntax of the functions:

<addr.ref> <func name> <func par>

16 -

7. Text handling functions

Given a line address without specifying a function name, the
current pointer will be updated to point to the beginning of
the actual line.

This section describes the functions for altering text in the
text buffer.
General syntax of the functions:

<addr.ref> <func name> <func par>

- 17

7.1 Current pointer adjustment

These will usually be' used in complex function iterations.

7.1.1 Numerical adjustment
Syntax:

<sign> <dec. const>

The current pointer will not be moved outside the actual line.
Current value of the pointer is assumed.I

PN3Examples:

pn-5

,7.1.2 Start of line
Syntax:

7.1.3 Last character
Syntax:

This function causes

<addr.ref>
<func name>
<func par>

<addr.ref>
<func name>
<func par>

:= <empty>
:= PS
:= <empty>

:= <empty>
:= P[N]
: = <

These functions are used to alter the current character position pointer.

::= <empty>
: := PL .
; := <empty>

the current pointer to be moved to the
last non-blank character of current line.

This function causes the current pointer to be moved to the
beginning of current line.

<addr.ref>
<func name>
<func par>

Current pointer is moved the number of characters specified by
the decimal constant, either to the right (sign= empty or +) or
to the left (sign= -).

The cursor will be located at the character corresponding to the
new value of the current pointer.

- causes the cursor to be
moved 3 positions to the
right.

- causes the cursor to be moved 5 positions to the
left.

- 18 -

7.2 Delete functions

rDelete lines ■ ' -: c, : c>.‘;
Syntax; iT

The lines included in the address reference specification aredeleted.

The current line will be shown on line 13 of the screen.
Examples; lOOdl

:,"xxx"dl7

7.2.2 Delete character
Syntax;

If no value is specified, 1 is assumed.

Examples:

The last postions on the line is space filled. , \ .
Current pointer (as well as the cursor) indicates the character
next to the deleted one.

<addr.ref>
<func name>
<func par>

<addr.ref>
<func name>
<func par>

- line number 100 is removed
from the text buffer.

■ - the first line and up to
(including) the first line
containing the string "xxx"
will be deleted.

- delete one character
- delete 5 characters
- if match for the text

:= <text interval>
:= DL
:= <empty>

If the function parameter is either empty or a decimal constant,
■ the number of characters specified, starting with the character
located by the current pointer are removed.

Current pointer will be located to the first position of the
line following the last deleted one. If the last line in the
text buffer has been deleted, the current pointer will be
located to the first position of the new last line.

"tl",
all characters from current
position up to "tl" are
deleted

d
dc5
d"tl"

:= <empty> '
:= D(C]
;= <empty> ! <dec. const> ! "string"

If a text string is specified, all characters starting with the
character located by the current pointer, up to (not including)
the match of the specified text are removed.
No deletion is performed if a match on current line could not be
found. ■-■3-...;
All characters to the right on the same line are shifted the
actual number of positions to the left.

’7.2.1

- 19 -

7.3 Insert line
1 .

Syntax:

may be used.

Function parameter: <empty>

Remaining lines of the screen are filled, if appropriate.

Function parameter: <dec. const>

The editor enters the insert line mode which causes the
line number 13 on the screen to be erased and cursor located
in the first position.

In case IL, the specified line will be found on line 14 of
the screen, otherwise on line 12.

These functions must be the last one in a function string,
otherwise their appearence has no effect.

The specified number of blank lines will be created and
placed in front of or after the specified line address
depending on the actual function name used.

<addr.ref>
<func name>
<func par>

- insert in front of specified line
— append after specified line r
If the address reference specification is empty, the line
located by the current pointer is assumed.

To be able to insert lines in front of the first line in
the text buffer or append lines to the last, two functions

These two functions have effect on the CR and *->' control
function keys (see section 8).

= <empty> ! <line address>
= I [L] ! A[L]
= <empty> ! <dec. const.>

The insert line mode will be in effect until any control
function keys causes the cursor to leave the current line
(except for CR, LEFT CURSOR, RIGHT CURSOR, FORWARD TAB or
when passing column 80 enterring alpha-numeric character).

20 -

7.4 Insert text string
9 Syntax:

IT"xx"Examples:

AT"yy"

Copy Line7.5

Syntax:

Current pointer (as well as the cursor) will be located at the
first character after those inserted.

by the current pointer,
this character.

<addr.ref>
<func name>
<func par>

<addr.ref>
<func name>
<func par>

- insert the string "xx" in
front of the character located
by cursor.

- insert the string "yy" after
the character located by
cursor.

If the length of the line exceeds 80, no insertion will be
. performed and a message is given.

If the IT function name is used, the specified string is
inserted into the text buffer in front of'the character located

Otherwise the string will be appended

:= <empty>
:= IT ! AT
:= "string"

:= <empty> ! <line address>
:= C(L]:= <empty> ! <text interval>

This function causes the the specified text interval to be copied and placed in front of the specified address reference.
If the address reference is empty, the line located by the
current pointer is assumed. If no function parameter is
specified, current line is copied.

21 -

7.6 Move lines of text

J Syntax;

front of the specified address reference.

If no function parameter is specified, current line is moved.

Examples: 100m20,30

Substitute functions

7.7.1 Substitute text strings
Syntax:

Examples:

If no address reference is specified, the current line is
assumed.

<addr.ref>
<func name>
Cfunc par>

<addr.ref>
<func name>
<func par>

- the lines in the interval of
20-30 are removed and placed
in front of line number 100.

7.7

= <empty> ! Cline address>
= M[L]
= <empty> ! Ctext interval>

This function causes the specified text interval to be moved in

If the address reference is empty, the line located by the
current pointer is assumed.

The current pointer (as well as the cursor) will be located at
the character following the last substituted.
Number of substitutions will be shown in the message field of
line one if the function appears as the last one in a function
string.

:= <empty> ! Ctext interval>
:= S[T]
:= "stringl" "string2"

Through use of this function a text string, stringl, can be
substituted by another string, string2, in the specified
address reference. The string2 must not contain vertical bar
characters.

100s"xx""yy"

The last line on which a substitution is performed, will be
displayed on line 13 of the screen. Remaining lines are filled,
if appropriate.

:,"xx"ST"y""zz"

- the strings "xx", if any, on
line 100, will be changed to
wy y11 •

- all occurences of the string
"y" in the specified inter­
val, i.e. from the beginning
of the textbuffer until the
first occurences of the
string "xx", will be altered
to "zz".

22 -

7.7.2 Substitute word
Syntax:

Through the use of this function.

abc"

The current pointer (as well as the cursor) will be located at
the charcter following the last substituted.
Number of substitutions will be shown in the message field of
line one if the function appears as the last one in a function
string.

<addr.ref>
<func name>
<func par>

If no address reference is specified,' the current line is
assumed.

- as for substitute text, except
if the strings "xx" or "ABC"

' are parts of a longer string.
In this case no substitution
is performed.

;:= <empty> ! <text interval>
: : = SW
::= "stringl M"string2"

a text string representing a
word, stringl, can be substituted by another string, string2,
in the specified address reference. The string2 must not
contain vertical bar characters. '

The last line on which a substitution is performed, will be
displayed on line 13 of the screen. Remaining lines are.filled,
if appropriate.

Examples: 100sw"xx""yy"
:,"zz"SW"ABC""

23

7.8 Find functions

h.8 -1 Find text string Forward
Syntax: : =

If no match, a message is given.
The value of the current pointer is in this case not altered.

7.8.2 Find text string Backwards
Syntax:

3

If a text interval is specified, the function will search within
the specified interval, starting from the beginning.

The line containing the match, will be displayed in line 13 and
the rest of the screen is filled, if possible.

If no match, a message is given.
The value of the current pointer is not altered.

<addr.ref>
<func name>
<func par>

If the value of the current pointer is not altered after a match
is found, the current pointer is moved one position ahead, and
the search is performed once more.

The function will search backwards in the text buffer until the
first match of the "string", starting from the character
specified by the current pointer.
The line containing the match, will be displayed in line 13 and
the rest of the screen is filled, if possible.

:= <empty>
:= FB
:= "string"

<addr.ref>
<func name)
<func par>

If no address reference is specified, the function will search
forward in the text buffer until the first match of the
"string", starting from the character specified by the current
pointer.

<empty> 1 <text interval>
:= F[F]
:= "string"

24 -

Syntax:

This function causes current line to be divided in two.
A new line is created and appended current line.

The value of the current pointer is not altered.

TTxO Line concatenation

Syntax:

<addr.ref>
<func name>
<func par>

<addr.ref>
<func name>
<func par>

:= <empty>
:= LS ! LSL
:= <empty>

:= <empty>
: = L[C]:= <empty>

7.9 Line split—

This function causes current line and the next to be concatenated. Leading spaces on the second line will be scanned
off.

The text, starting from the position indicated by the current
pointer, is moved to the new line. If the second function
name, split line left justify, is used, the text on the new line
will be left justified.

If the concatenation causes the length of current line to exceed
80 characters, this line is filled up to contain 80 characters.
In this case the remaining contents of the next line is left
justified. Otherwise the next line is deleted.
The value of the current pointer is not altered.

The following non destructive cursor positioning keys areavailable:

These keys causes the cursor to move:
LEFT CURSOR to the previous character on the current line.
RIGHT CURSOR

UP CURSOR to the same position on the previous line.
DOWN CURSOR to the same position on the next line.

to HOME CURSOR

CR

ROLL UP

ROLL DOWN

CTRL+I

CTRL+G

The following editing function keys are available:
CTRL+P

DELETE CHARACTER (01H)CTRL+A rest

Last position is space filled.
Erase contents of lineDEL

contents of the screen is rolled one line up if
more lines in the text buffer, otherwise no
effect. Cursor position is not altered.

DELETE CHARACTER (01H) (ONLY edit mode)
The character located by cursor is deleted,

to the previous tabulator stop on the current
line.

to the next tabulator stop on the current line.
If no more tabstops, this function key acts as
the RIGHT CURSOR.

a) if insert-line mode:
to the next tabulator stop on current line

b) otherwise
to the next character on the current line.

a) if insert-line mode:
the lines in front of included the current
line are rolled one line up. Current line is

.. erased and cursor located in the first
position.

b) otherwise
positions to the first character of the
current line.

25 -
• j

to the first position of the first line on the
screen.

8. Control function keys

INSERT CHARACTER (10H) (ONLY edit mode)
" Insert one space character in tee- position

located by cursor. Rest of the text on the line
is move one position to the right. If the line
exceeds 80 characters, the last character on
line is lost.

contents of the screen is rolled one line down
if not on the top of the text buffer. Otherwise
no effect. Cursor position is not altered.

- 26 -

9. How to use the editor

J
use the commands and

9.1 Creation of a new element J 7

edit so=newelm
When loaded, the editor responses with the message

TANDBERG BUFFERED EDITOR VER. X.X
The editor is now ready to accept commands.
At this stage, the append line function may be used.

The control is then passed on to the operating system.

Updating existing element

To invoke the editor, the following call could be given:
edit si=newelm,so=newelm.new .

"READ"

This section contains examles of how to
functions of the editor.

The last command to be given is the "EXIT" command.
This causes all information entered to be written
onto the diskette. .

If another command should be given, press the HOME-
button followed by the actual command.

In this case the first command to be given is the
command.

To invoke the editor to create a new element, the
call should be: •, .

9.2

The editor is now in the insert line mode, and the user
may now enter all lines of information.

This causes the information to be read from nevelm and
placed in memory. .
The editing session should again be completed by giving
the "EXIT" command.

The previously generated element, newelm is to be
updated. •

Type "al" followed by a push on the carriage return
(CR) button.

27

9.3 What to do when no more space on media

If the error message : 'j

E29: No more space on diskette/cartridge

The following steps should be performed:
1. OC
2. READ1000

remove the full diskette and insert a new3.
OA "scrtch"4.

3

5.

I. WRITE
II. - output close

V

IV.
QUITV.

EXIT

If the TDV 2114 has more than one diskette unit,
the "scrtch" file should be assigned such that
input- and output- files are on different units.

Goto I.
Change diskette

- close output file
- ensure that as much input as possible

is read.

- assign a new output file named
"scrtch".

4b. If more than one diskette unit ■.
- output rest of information in
memory and on input file

is displayed, rest of the information in memory must be
written on another diskette/cartridge.

The next operations depends upon the number of diskette
units available.

If end of input
OC
Goto IV.

ill. If not end of input
Change diskette - insert the ordinary input/output

diskette.
READ1000 - read as much input as possible
Change diskette - insert the scratch diskette

- insert the ordinary input/output
diskette- return to the operating system

The two output files may now easily be concatenated
by using the utility routine MOVE.

5a. If only one diskette unit.
- output rest of information in .
memory

28 -

9.4

This may be done by typing followed by the CR.
The actual find function may now be typed:

f"wanted string"

9.5 Remove all lines containing a specific text

Command:
n<f"abc"; dl>

Change strings through a whole file9.6

Command:
n<r; :,.s”abc

Insert characters at the end of all lines in memory9.7

Command:

Where n is a decimal number, large enough to read the
whole file.

All lines in memory containing the text "abc" should'
be deleted.

Where n is a decimal number, large enough to find
all occurrences of the specified text.

n<pl; at"."; $+1>;‘,.s"..
Where n is a decimal number equal or larger than the
number of lines in memory.

N II W

To locate the next occurences of the text, the HOME
button followed by the CR button have to be pressed,
and so on.

This example shows how to insert a missing final dot
on each line of a COBOL program.

""cba"; &s"xyz""zyx"; w>

This could create lines containg double dots, such
occurences will be substituted to one single dot.

The strings "abc" and "xyz" should be changed to "cba"
and "zyx" respectively.

How to find all occurences of a string' in memory

The current pointer (cursor) should be placed at the
beginning of the memory.

29 -

9.8

Command:
10<.cl20,25>

9.9 Sideways move :• ■ .

Command:
p-3; $+l>

9.10 Convert assembly list file to source file

All blank lines and the line containing heading text
should be deleted.

Command:

Move the same part of the next five lines three
positions to the right.
Before performing the command, the current pointer
(cursor) should be located at the right position.

5<it"

If all source files of an element are lost or destroyed,
a list file may easily be converted.

From each line of the assembly program, the first 26
characters should be deleted.

n< 6<dl>; 38<dc26; $+l>; 4<dl>>
Where n is large enough to cover all pages in memory.
The 6<dl> removes the heading text on top of each new
page. '
The 38<dc26; $+l> deletes the 26 first characters of
each line (38 lines) of the assembly code on each
page.
The 4<dl> removes the blank lines at the bottom of
each page.

The example runs on a list file generated with a page
length of 48 lines. No $e directive must have been
used.

Ten copies of the lines 20 to 25 (inclusive) of the
memory should be created and placed in front of the last line in memory.

Create copies of special parts of memory

- 30 -

9.11 Generation of EXEC files

A large program is usually divided into several modules
(elements).

!elemnQ%elemnQ&
and all elements should be assembled.
The command for this is:

,h,sl=:lp:"rasm si=:fl:";
The result of this operation will be:

si=:fl:elemnQ,so=elemn.h,sl=:lp:rasm

:,.s"!

The result of this operation will be:

.• iu-

delete$elemnQ

To perform a deletion of the elements with the extension
"h", the command reads:

During the debugging phase, the following utility
routines may be used several times on the elements:

The name of the elements, which should be of equal
length, should be entered and placed in an element.

!elemnl%elemnl&
!elemn2%elemn2&
!elemn3%elemn3&

rasm
rasm

delete$elemnl
delete$elemn2
delete$elemn3

Suppose the following element is previously generated:

rasm si=:f1:elemnl,so=elemn.h,sl=:Ip:
si=:fl:elemn2,so=elemn.h,sl=:lp:
si=:f 1 :elemn3 ,so=eler.in. h,sl= :lp:

,so="; &s,’&n”:,. s" !" ’■

Where is the vertical bar character, see section 3.1.2.

RASM, XREF, LINK, DELETE, RENAME, MOVE

""delete$"; &s"%||||I |&"".h"

31 -

Appendix A - Command summary

2
Commands

J .

Functions .

Control function keys

A[L]
AT
C[L]
D[C]
DL
FB F IF]
I [L]
IT
L[C]
LS
LSL
M[L]
PL PIN]
PS
S(T].
SW

Delete character
Insert character
Forward tab
Backward tab
Erase line

AA
Al
AS
CU
E[XIT]
K[ILL]
O[A]
OC
Q[UIT]
R(EAD]
SU
T[n,m...]
TA
TC
TD
TF
TP
W[RITE]

LEFT CURSOR
RIGHT CURSOR
UP CURSOR
DOWN CURSOR
HOME CURSOR
CR
ROLL UP
ROLL DOWN
CTRL+A
CTRL+P
CTRL+I
CTRL+G
DEL

■' ‘ ' •’ • • '• ’

Auxiliary Assign
Auxiliary Include
Auxiliary Skip
Copy Until ? . .
Normal return to TOS
Clear text buffer
Output Assign
Output Close
Escaping to TOS
Read from standard input (SI)
Skip Until
Setting tab stops
Setting ASSEMBLY tabstops
Setting COBOL tabstops
Display current tabsetting
Setting FORTRAN tabstops
Pack output according to tabstops
Write text buffer on output file (SO/SL)

Append Line(s) (insert line mode)
Append text
Copy Line
Delete Character
Delete lines
Find string Backwards
Find string Forward
Insert Line(s) (insert line mode)
Insert text string
Line Concatenation
Line Split
Line Split Left justified
Move lines of text
Adjust current pointer: Last character

: Numerical
: Start of line

Substitute Text strings
Substitute Word

- 32 -

Appendix B - Error messages

J

E00:

E01:

E02:

Too many function iterationsE03:
Illegal or misspelled commandE04:
Illegal value of address refE05:

E06:
E07:
E08:
E09:

No match for specified textE10:
Specified line number not foundEll:
No output device assignedE12:

& E13:

The Tos21 Users Guide.
Input device not assignedE14:

E15:
E16:
E17:

No insertion is performedE18:
El 9:
E20:

& E21:
E22:

Text buffer overflow
The text buffer is full, delete or write to achieve
new work space.
Freelist area too small
The text buffer is full, delete or write to achieve
new work space.

Illegal tabulator value
Too many tabulator stops specified
No line to be copied from

Illegal value of decimal constants
Illegal syntax of command/function
Concatenation not performed, missing second line
Commands interrupted by operator

Illegal start of text string
Conflicting numbers of " in text string

Illegal syntax of address ref.
Missing number after +/- in adr. ref

Internal error
Please, report on a TANDBERG Software Error Report
to TANDBERG or to your local service representative.

System error code xxll
A system error code was returned during input/output
operation, please find the corresponding message in

The error messages are ment to be self-explanatory,
however, some of them needs an additional explanation.
This is attached to the specific error message.

- 33 -

E23: Tab characters
E24:
E25: No charcter to be deleted
E26: Attempt to read after end of file
E27: Vertical bars in string2 of substitute
E28: Commands must be separated by a ;
E29: No more space on diskette/cartridge
E30: Output file already on diskette/cartridge
E31:

E32: Output device already assigned
E33: Input device already assigned
E34: File could not be opened due to lack of memory

E35:

causes input line to exceed 128
Text buffer empty

Illegal filename specified
An illegal file name was specified, please refer to
the T0S21 Users Guide for the correct format.

The necessary amount of memory space for a new file
control block does not exist. This may, however, be
solved by closing existing output (OC) and auxiliary
input (AS) files. Try the auxiliary file first.
Buffer conflict. Too many files assigned
More than 4 files must not be assigned to the SI, SO,
SL or Al when invoking the editor.

