
A e e AR L a2 e e i SR W - . A - , i o T i e gt
- AT B S el A B s e e et e e et N ST e L e AR T

UNI-ASM

and

MICRO~-LIRK

A common relocating cross assembler package

and a linking loader

for a wide range of microprocessors

implemented for NORD-10/100 computers

by

Bans Eriksson, Pir H8glund, Anders Rundgren

Departhent of Computer Technology

Institute of Techntlogy

University of Uppsala

Uppsala, Sweden

Date: 80.10.11

REVISION=-A

-

UPNOD

/”"w -Luuo{sfro':"

s e

A N

Table of contents:

IntroductioNececsesscsoesossccseccssssnansoone

UNI-ASM:
General caracteristics

How to start up an assembleTesccosscccase

Relocation directiveSececoscece

List control directivessesessese

Conditional assemblyeccascsne

Expressions and operators...

8085 special sectioNesecececss
280 speclal sectionecscecesss
THS 9900 special sectiomeecsese
MC6800/6801 special section.
MC68000 special sectiomesecss
6502 SPECifll sectioneececes e

MICRO-LINK:

Introductioneceeees

CommandSeecesosccos

Input formateeecsecs.
Output formatesooeso

@ e 9 ® v 9 0 8o

Building your own library...

Error messagesSsecse.

A real session with the systemec.e..

s e 0 e

Referenceso..o.-.;o.......c.ooo.o...o'oo

Implementation (not in user’s guide)....

Installation guide....li..'....o...clo'o

Indexo.o.ltll.ut-Ql..ut.-o-nc.....n..o.l

18
20
22
24

31

34
35
40

43
44

45

appe

appe.

apPe

appe

appe

Y

O
w

>

o

R s et Ll e T A P e,

Abstract

This user’s guide presents the UNI-ASM package
consisting of a number of relocating cross assemblers and

MICRO-LINK, a single linking relocating loader supporting all
the assemblers.
Although the assemblers are all derived from the same basic
package they incorporate a high degree of compatibility with
the microprocessor manufacturers assemblers. All the
assemblers behave in a similar manner and emphasis has been

put on such things as, ease of use, simple ©but efficient
design and good diagnostic messages.
Macros are not supported in the basic assembler package but
will later be introduced with the help of an universal macro

pre-processor now under development.

The 1linking loader is similar to the NRL from ND and this

should make the transition a simple task for present ND

user’s.
Both the assemblers end the linking loader are writtem in
PS-Pascal([l,2) implemented by R. Cailliau and M. Kriger at
CERN, Geneva.

Introduction
———

This package is the result of a long term committment of
the 1Institute of Technology to supply high quality software

for use in education and by various research groups in the

university cowmmunity. The work on this project started

already in late 1977 by Lars~Gunnar Béacklin and Gtran
Lundstrdém{3)] who worked out the principles £for the first
generation of absolute assemblers.

Why use & minicomputer for program development ?
e S e A e e SSe S S Sms e e G e e Gmm e G e e e S S T S S

There are several reasons for this, but the ones most often

heard of are:

1. Cost
2. Flexibility

Cost 18 a rather obvious reasonm with litterally hundreds of

.students and researchers doing things with microprocessors.

Faced with &a situation where many people are involved the

usual solution, the dedicated development system, becones
elmost impossible. The penalty you have to pay when you are

using & wminicomputer is mainly speed (single wuser versus

timesharing) and 1in some cases the hardware emulation
facilities. The latter is not always true since there now

exists a wide range of products[4) on the market which

actually are intended to work with a host computer.

“EAC A ma s

¥

-

Flexibility is maybe not so obvious but the dedicated systems

have wuntil very recently not supported several simultaneous

user’s and large discs, which is nescessary whe: a large

number of people are using the same files or programs. A

flexibility factor is also that the very same system can, as
in the case of ours, be used for "everything" from simple

student programs in assembly language to complex research

systems using LISP.
A mainframe 1is of course also a possibility (if you can

afford it), but since the use of a host computer as a

development station for microprocessor programs, normally

involves very high amount of terminal I/0, because of all
downloading of code, at least the "standard", the IBM 370

with i1its heavy focus on batch is not very pratical. The

availability (uptime) of a mwminicomputer installatiom 1is

normally also higher than that of a mainframe. But things

are changing very rapidly im this field, so today’s solution

may not be the best tomorrow.

Why have we developed this package ?
S S —

It has always been possible to buy cross support software

from the chip-manufacturers and others, but the problem has
been (and it still is) that they are most often writtem in

FORTRAN for DEC, DG and IBM computers. It is of course

possible to —convert those products, but in an environment
where a lot of ~very different processors from various

manufacturers are used, it wvill ©be rather complicated

especlially when you want all system products including the

assemblers to behave in a uniform wmanner which is very

important when dealing with mnon professionals (1. e-.

students). Every time you get a new release, rework of the
system has to be done which is very awkward.

Another important factor is that most chip-manufacturers are

only interested in selling development systems and therefore

their support of <cross software 1is often minimal. Some
American software houses|[5) have interestimg products to

offer but in most cases only available in object form (at
reasonable cost) and very seldom for ND computers.

Other microprocessor cross support software developed by us

for wuse on NORD computers includes, at the time of writing,

two non-relocating «cross assemblers (for the RCA 1802

microprocessor and the 1Intel 8748/8741A single chip

microcomputers) and two crosscompilers (MISCAL, a Pascal

subset and PL/M, a copy of the Intel product with the same

name) both producing code for the Intel 8080/8085

microprocessors.

Some currently running software projects includes: The
already mentioned macro pre-processor, relocating cross

assemblers for the RCA 1802, Motorola MC6809 and Intel 8086

processors, and a Pascal cross compiler for the Motorolsa

MC68000 microprocessor.

>)

UNI-ASM General -5-

General caracteristics of the assemblers
- ———

All the assemblers are of the two pass type writtem as

single programs and none of them uses any extra files for

storing intermediate results.

This document is only in conjunction with the referenced

manuals specified in the special sections a complete

description of the assembly 1language for a particular

Processor. That is there are no complete 1instruction lists

included in this manual, consequently the user must have the

manuals specified in order to fully utilize the system.

Since our intention was to develope a system using a

common base, some compromises had to be done with respect to

compatibility with the microprocessor manufacturers

assemblers. Especially the wish to use one linker for all

assemblers did put restrictions on the relocation mechanisms,

which are in fact a subset of the ones offered by Intel corps

for their 8085 processor. This is not as bad as it may look,

since the 8085 relocation directives are powerful emnough for

most user’s needs. What is then compatible and what is not 2

The table below gives an idea’ about the degree of

compatibility that can be found im this package.

Compatible

Machine instructions (names and syntax)

Constant defining directives (names and syntax)

Space allocation directives (names and syntax)

Delimiters
Labels

Constants

The basic operators (+,-,*,/)

ORG:s and EQU:s

Absolute output format (MICRO-LINK)

Not compatible

UNI-ASM Relocation

Extended operators (in some cases)
Conditional assembly

Assembler options (list control etc.)

Macros (no macros at alll)

UNI-ASM General -6-

Source line format
- ——— ——

A source line can consist of:
1. A blank line (a single CR or spaces or tabs followed by

a CR).
2. A single comment (see special section for syntax

detalls).

3. A single label in some cases followed by a comment (see

special section for syntax details). The label will be
assigned the +value and type of the <current locatioen
counter (PLC).

4, A statement (see special section for symtax details).

S <$><filename> This 1is a directive to the assembler

which enables the user to include files in the source

code. The dollar sign must be located to the first

position of a source line and no extra characters are
allowed between the $ and the filenmame. The filename
should be terminated with a CR. Included files —camn Dbe
nested to a maximum level of three.

A source line can be of any length but only the first 80
characters are significant. Tabs are not expanded which means

that if comments <containing lots of spaces are to be

correctly 1listed, then when editing with QED, you must |wuse

the MTO(0) optionm.

Parity on files
e -

The output from the assemblers as well as from MICRO-LINK

always have the parity bit reset. That means that if files
created by those programs are to be read by QED, a MPI(0)

must be i1ssued before the read command. The parity bit on

input files 1is ignored.

Object format
- ——

The object format is the same for all assemblers because the

object is meant to be processed by the MICRO-LINK. The object

format is described in the section covering MICRO-LINK. The

output from MICRO-LINK is an absolute format which in most

cases is compatible with the manufacturers debugger programs

(monitors).

How to start up &an assembler
e e e S e e e S e S

Two modes of operation are available:

1. Interactive mode

2. SCRATCH mode

In the interactive mode the assemblers prompts the user for

input files (source), list files, object files and options.

In the SCRATCH mode the assemblers takes all directives, list

file, object file and the source code from the SCRATCE file

(file 100). This mode is mainly intended for use with «cross

UNI-ASM General -7~

compilers and other pre-processors.

Interactive mode (user input is underlined):

@XXXXX All extra parameters except "!" are ignored.

XXXXX ASSEMBLER VXX.XX.XX

SOURCE FILE=XXXX Default type = :3SYMB

LIST FILE=XXXX Default type = :$SYMB

OBJECT FILE=XXZXX Default type, see special sections

OPTIONS: X,X,X

Filenames can be created wusing the standard Sintran

conventions and the file types can be overiden imn all cases.

The object file type is unige for every assembler which

enables the user to easy manage objects for different

processors. If the user do not want a list or object file,

then the wuser should answer with a single CR (carriage

return). If no 1list file is provided, assembly errors will

be printed on the terminal.

The available options are:

C: A cross reference and symbol table 1is produced.

Default 1is no table output. The C option is

equvivalent to the LSTXRF directive.

T: The output 1list is not formatted into pages. Default

is a paged output list. The T option is equvivalent

to the PAGOFF directive.

N: Only one line is listed for each source line.

Default 1is that all code is listed. The N option

is equvivaent to the LSTILN directive.

F: List <total lines><nest level><local line>. Default

is that only the total number of source lines read

is 1listed. The F option is -equvivalent to the

LSTWID directive.

P: After the P option is given the user 1is asked to

specify the wanted number of lines/page. Default

is 69 lines/page. The P option 1s equvivalent to

the PAGSIZ directive.

2: Gives the user a menue of the available optiomns and

then asks the user againm to specify the wanted

optionse.

UNI-ASM General -8~

SCRATCH mode:

@XXXXX !

When a "!" has been found in the command input string the
assembler assumes that the SCRATCH file containms the

following:

line Content

1 {<1list file name>}

2 {<code file name>}
3 « The source code

4 o

n END (last line)

Both files are optional and their type 1is by default the same
as for the interactive mode. The file names must be located

to the first position of the line and should be terminated
with only a CR. If options are to be used they can only be

given as directives in the source code.

User defined symbols
- S e

All user defined symbols can be up to 60 characters long and
21l characters are significant. The allowed characters imn a

symbol are given in the special section for each processor.

Error messages

All errors are complete messages and not a number only, i. e.

the messages should be self-explanatory. Error messages are

as few as possible and errors are reported as soom as
possible. This means that if an error is flagged in the first

pass it will in most cases not be reported im the second
pass.

e

UNI-ASM Relocation -9-

Relocation directives
—— i — -

The assemblers support three sements, two Trelocatable

(CSEG and DSEG) and one absolute (ASEG). The relocatable

items can only be 16 or 32-bit values, 1. e. no special Dbase
page (0-255) 1s supported. The purpose of the absolute

segment is mainly:

1. For systems written as single modules.

2. To supply trap or interrupt vectors.

The other two segments which are relocatable are identical to

use with one exception, only the code segment (CSEG) can have

a program entry address in it. Although segments can be wused

in any way the following use is probably the most logical in

most microprocessor systems:

CSEG: Program code and constant data.

DSEG: Variable data.

This division reflects the physical hardware of a typical

system, i. e. the <code is put into mnon volatile storage

(ROM/PROM) and the variables in read/write memory (RAM). The

relocation is controlled by the following directives:

NAME <symbol> assigns a name to the module, and if NAME 1is

used it must be the first non comment in the source

code. 1If NAME is not used the module will be assigned

the default name "MAIN". The symbol specified in the

name directive has no other function after the directive

is used. That is the symbol is undefined and may be used

as any other symbol including the declaration of the

symbol as PUBLIC or EXTRN. The latter means that an

entry and a module may have the same name.

PUBLIC <symbol>{,<symbol>}... makes symbols available to

other modules. The symbols declared as PUBLIC can only
be assigned values using them as labels (i. e. not using

EXTRN) and the symbols are said to belong (be

relocatable or absolute) to the segment where they are

defined, or in the case of SET and EQU directives, to

the expression type.

Although the symbols are declared as PUBLIC they can be

used in expressions with the same rules as for any other

non external symbols.

The PUBLIC directive can appear anywhere inm the source

code, - but the symbol(s) specified im the PUBLIC

directive must not be defined in the first pass when the

PUBLIC directive is encountered but always im the 1last

(second) pass. That means that the order between the

PUBLIC directive and the source line where the PUBLIC

declared symbol(s) is actually defined, depends on which

pass the symbol(s) is defined in.

UNI-ASM Relocation =10~

EXTRN <symbol>{,<symbol>}... defines symbols as extermal to

ASEG
CSEG
DSEG

ORG

this wodule. The symbols defined as EXTRN can be wused

in expressions although the allowed arithmetic is

limited to adding or subtracting constants (useful for

common block im FORTRAN).

The EXTRN declaration must precede any usage of the

synbols defined by it.

All instructions and data following a ASEG, CSEG or

DSEG directive are assembled and made relocatable (CSEG

and DSEG) or absolute (ASEG) to the specified segment.

The assemblers have three separate location counters,

one for each segment which makes it possible to switch

segment anytime without the need to save the current

location counter for the current segmente.

<expression> sets the location counter of the current

segment according to the wvalue of the expression.

The result of the expression must be of the same type as

the current segment (i. e. it is not valid to use ORG 10

under CSEG since the expressionm is absolute).

The expression must be completely defined in both passes

(i. e. wpust mnot contain any mnon defined symbols),
otherwise the statement will be flagged as invalid.

Some assemblers have more than one ORG~directive, but

the —rtules stated above are valid for those types too.

The ASEG (absolute) mode is the default mode of all the

assemblers in this package.

All the location counters (PLC:s) are by default set to
zero at the beginning of an assembly.

END {<expression>)} terminates the assembly, and this is the

only directive which cannot be disabled wusing the

conditional assembly directives.

If the optional expression is supplied it will be output

in the object code as a transfer (program entry)

address, and the transfer address should be relocatable

to the code segment (CSEG).

<symbol> SET <expression>
<symbol> EQU <expression> assigns a value to the symbol

specified in the label field.

Besides the value some other qualities of the expression

are assigned to the symbol and these are:

1. Expression type (ASEG, CSEG, DSEG or EXTRN)

2. A flag which tells if the expression contains any

not yet defined symbols.

3. 1f the directive is a SET the symbol is marked as

variable which means that it may be redefined.

UNI-ASM Relocation -11-~

Because this implementation also tranfers the type of
the expression, a label can be set equal to an external

symbol with an optional displacement added to it. All

further use of the assigned symbol will be treated as-

references to the external symbol in the expression.

This will also show up in the cross reference listing.

Syntactic description of the relocation directives
— e e S N G e G G e S e S W SEe S SN S S A S -

{<label>} NAME <symbol> {<comment>}

{<label>} PUBLIC <symbol>{,<symbol>}.. {<comment>}

{<label>} EXTRN <symbol>{,<symbol>}.. {<comment>}

{<label>)} ASEG {<comment>}

{<label>) CSEG {<comment>}

{<label>} DSEG {<comment>}

{<label>} ORG <expression> ({<comment>}

{<label>} END {<expression>} {<comment>} *

<label> SET <expression> {<comment>}

<label> EQU <expression> {<comment>)}

On directives where labels are optional (i. e. mot EQU and

SET) a label will be assigned the value and type of the

location counter after the directive is in effect.

All delimiters between different items in the source line are

the same as for any cther source line £for the oparticular

assenbler with one exception (*). In assemblers which do not

have a special character (not only space or tab) to separate

comments from operands the END-directive can only have a

comment if a transfer address is specified.

)

UNI-ASM List control -12-

List control directives
—— - ————— T ———

LSTON enables listing (Default active).

LSTOFF disables all listing except for error messages. Code

generation is not affected.

1STAILL will force the assembler to list all source, even the

parts of the source which is not generating code because

of a previous conditional statement (IF,ELSE or ENDIF).

LSTALL is active by default. :

LSTCND is the opposite of LSTALL (i. e. 1lists only wused

source) .

LSTACD will expand the listing of the output code to more

than one line 1if needed (i. e. long ASCII strings will

generate severel lines of listing because of all code

they generate).

LSTACD is by default active.

LST1LN will only list one line of code.

PAGON formats the assembly output list into pages.

This directive is active by default.

PAGOFF suppresses the paging of the assembly output list.

PAGSIZ <expression> sets the number of lines per page in the

assembly output list according to the expression.

The number of lines per page is default set to 69.

The expression must be absolute and in the range of

10-150.

¥

UNI-ASM List control -13-

PAGE will generate a new page in the output list if paging

is active.

TITLE ‘header’ fills the page header whith the strirg in the

operand field.
The header string cannot exceed 60 characters (including
the nen).

PTITLE ‘header’ is equivalent to TITLE+PAGE.

LSTNAR formats the assembly output list in the following way

(default active):
¢

<TL><AF><CF><SF>.

1LSTWID formats the assembly output list in the following way:

<TL><NL><LL><AF><CF><SF>

<TL> ::= Total number of lines of source read

<NL> ::= Nesting levels of files

<ILL> ::= Local linenumber in current file

<AF> ::= Address field

<KCF> ::= Code field

<SF> ::= Source field

LSTXRF will generate a cross reference table at the end of

the assembly output list. The table displays besides

values and linenumbers also the type of the symbol. The

types are!

Xhh External with relative declaration

number (in hex) = hh.

A Local symbol in the absolute segment.

C local symbol in the code segment.

D Local symbel in the data segment.

AE Entry in the absolute segment.

CE Entry in the code segments

DE Entry in the data segment.

v Variable type (SET has been used).

U Undefined symbol.

o)

aa e TN R R L NS e e

UNI-ASM Llist control 14~

Syntactic description of the list control directives
—— i ——— e S e S S R e W - ——— e ————————

{<label>} LSTON {<comment>)

{<label>} LSTOFF {<comment>}
{<label>} LSTALL ({<comment>}

{<label>} LSTCND ({<comment>)}
{<label>)} LSTACD {<comment>}

{<label>} LSTILN {<comment>)

{<label>) PAGON {<comment>}
{<label>} PAGOFF <{<comment>}

{<label>} PAGSIZ <expression> ({<comment>}
{<label>} PAGE {<comment>} '

{<label>} - TITLE <’header’> {<comment>}
{<label>} PTITLE <‘header’> {<comment>}
{<label>} LSTNAR <{<comment>}
{<label>)} LSTWID {<comment>} i

{<label>} LSTXRF {<comment>}

All delimiters between items follows the same rules for the
list control directives as for any other source line for the

particular assembler used.

The optional label will be assigned the value and type of the

current location counter.

N
X

UNI-ASM Conditional assembly) -15-

Conditional assembi&I’

The conditional assembly facilities makes it possible to

control the assembly process at assembly time wusing the

directives 1F, ELSE and ENDIF.

The effect of an IF directive is that 1f the condition 1s not

true, the code that follows will not generate any code (i. e.

it will not be assembled) until an ENDIF or ELSE directive is

found. Otherwise the IF directive has no effect.

The conditional assembly directives are:

{<label>} IF <expression> {<comment>}

{<label>) ELSE {<comment>}
{<label>} ENDIF {<comment>}

The assembler evaluates the expression (must be

absolute) 1in the operand field of the IF directive. 1If the

expression 1s equal to zero it will be considered false and

the following statements will not be assembled.

411 assewbler directives with the exception of END may be

disabled with the conditional directives.

An IF directive must be terminated with an ENDIF directive.

The ELSE directive is optional and if used it must be inside

of a block IF-ENDIF.

The optional label will be assigned the current value and

type of the location counter only if the assembly 1is not

disabled after the directive is in effect, otherwise the

label will not be defimned.

All delimiters follows the same rules for the conditional

assembly directives as for any other source line for the

particular assembler used.

The IF~ENDIF and IF-ELSE-ENDIF blocks may be nested to any

level.
—

Example 1. Simple IF-ENDIF Block:

IF OPTION=3

. Assembled if OPTION=3.

ENDIF

Example 2. IF-ELSE-ENDIF Block:

IF OPTION=3

. Assembled if OPTION=3

ELSE

: Assembled if OPTION<>3

iNDIF

UNI-ASM Expressions and operators

An expression consists of operands and

possible operands in an expression are:

In order

1. User defined symbols (labels).

2. Constants

3. The location counter

microprocessor

operands

assemblers

to keep a high degree of
manufacturers

and operators is not equivalent for

in this package,

(numeric and ASCII).

(PLC) symbol.

assemblers,

-16-

operators. The

compatibility with the
the syntax of

the different

and the user 1s advised to read

the special sections covering the particular assembler. This

assembler

involving

package will accept a wide range

arithmetic and logical operations.

of expressions
All arithmetic

and logical operations are using a 32-bit integer format and

rangechecking

generate codes

Expressions will be evaluated from left to
order depends on which operator used.

The available operators are:

The

shift

OPERATOR

OR

XOR

EQ or =

NE or <>

GE or »>=

LE or <=
GT or >

LT or <

UGT

ULT

operators can be divided into

operators.,

FUNCTION

Unary minus

Logical KOT

lowbyte of

Highbyte of

Multiplication

Division

Addition
Subtraction
Modulo

Logical shift right
Logical shift left

Logical AND

Logical OR

Logical XOR

Equals

Not equals

GCreater or equal
Less or egual
Greater than

Less than
Unsigned greater than
Unsigned less than

aritmetic,

All operators except LOW,

only done when an expression 1s used to

right but the

ORDER

\
l
\
l
\
l
\
l
\
l
\
l
\
l
\
l
o
\
a
‘
w
w
w
W
w
a
v
a
—
'
o
—
l
H

logical and
HIGH, KOT and

unary minus are binary (i. e. need operands on both sides of

the operator).
of operators.

Parantheses can be used to overide the order

UN1-ASM Expressions and operators -17-

The modulo (MOD) operator is defimed as:

X MOD Y = X-Y*(X/Y)
(using integer division)

The shift operators (SHL and SHR) shifts the first argument

right or left by the number of positions given in the second

argument. Zeros are shifted into the high or low order bits,

respectively. An example:

45 SHR 2 will generate a result equal to 1l

The 8 comparison operators (EQ, NE, GE, LE, GT, LT, UGT, ULT)

will evaluate to a logical True (all omnes) if the comparison

is true, else the result will be a logical false (all Zeros) .

The operators LT, GT, GE and LE compares signed arguments

whereas UGT and ULT assume unsigned arguments.

Arithmetic operations and relocation
—— R S e R S G S S e G e S s e

Besides a value an expression also have a type associated to

it. The possible types are: ;

Absolute

Relocatable (CSEG or DSEG)

External

Not all operations are possible to use with relocatable and

external arguments.

The allowed operations on external symbols are:

<external symbol>+<absolute expression>

<external symbol>-<absolute expression>

The result of one of these operations on an extermal symbol

is a value (offset) with the type external.

The allowed operations on relocatable symbols and the

resulting types are:

OPERATION X(rel),Y(rel) X(rel),Y(abs) X(abs),Y(rel)

X + Y invalid relocatable relocatable

X = Y absolute relocatable invalid

When two relocatable asrguments are involved they must be

relocatable to the same segment.

8085 special section -18-

Reference manuals:
—— e e S e S e -

1. 8080/8085 Assembly language programming manual.

Order Number: 9800301C

2, MCS-85 User®s Marnual.

Order Number: 9800366D

Both of these manuals can be obtained from the manufacturer,

Intel <corporation (Santa Clara, Calif.) and their 1local

distributors.

Delimiters
——

The format in the 8085 assembly language is a free format, {.

e. labels and dinstructions can be located anywhere in a

source line. The items in a source line must be separated

with delimiters and in the 8085 assembly 1language the

following delimiters are valid:

For a source line with onlyv a label:

1. The label may be preceded with tabs or spaces.

2. The label should be terminated with a colon or oaly a

CR.
3. If a comment is used it must be separated from the

label with a2 semicolon.

For a comment only source line:

1. Spaces or tabs may precede the comment.

2. A semicolon must precede the comment stringe.

For an ordinary statement:

l. Tabs or spaces may precede the label or imstruction.

2. If a label is used it must be separated from the

instruction with a colon, spaces or tabs.

3. Instructions and operands must be separated with tabs

or spaces.

4. Operands must be separated with commas only.

5. Comments must be separated from instructions or

operands with a seumicolon.

Label syntax

The first character of a label must be alphabetic (A-2Z) or

the special characters "?", " " or "@". The following

characters (if any) <can be any of the already mwmentioned

characters or the decimal digits (0-9).

All instructions, registers and operators are reserved words

and cannot be used as labels.

8085 special section | -19~

Constants
- ——

This 1implementation conforms to the Intel assembler manual

which means:

‘A’ = ASCII constant

‘AB’ = ASCII constant
78 = Decimal constant

56H = Hexadecimal constant

10110B = Binary constant
457Q = Octal constant

Expressions
—— - —

The available operators are the same as the omnes described inm
the general section of this wuser’s guide. A difference

compared to Intel products is that registers and instructions

are not allowed in expressions. Spaces or tabs are ignored in

expressions.

Pseudo directives

Besides all the directives listed in the general section the

DS, DB and DW directives are also implemented. They are

identical to the Intel definition.

Object file type
—————— -

The assembler object file type is by default equal to :R80.

;fij

280 special section -20-

Reference manual:
—— - ——

1. 280 Assembly language programming manual.

REL. 2.1 3.0 d.s (1977)

This manual can be obtained from the manufacturer, Zilog 1inc.

(Cupertino, Calif.) and their local distributors.

Delimiters

The items in a source line must be separated by delimiters

and in the 280 assembly language the following delimiters are

valid:

For a source line with only a label:

l. The label must begin in the first position.

2. The label should be terminated with a colon or only a

CR.
3. If a comment is used it must be separated from the

label with a semicolon.

For a comment onlv source line:

2. A senmicolon in the first position must precede the

comment stringe.

For an ordinarv statement:

l. Instructions cannot begin in the first position.
2. If &a label is used it must be separated from the

instruction with a colon, spaces or tabs. If there is no

label the instructionm should be preceded with tabs or

spaces.

3. Instructions and operands must be separated with tabs

OT spaces.
4, Operands must be separated with commas only.

5. Comments must always be separated from instructions
or operands with a semicolon.

Label syntax

The first character of a label must be alphabetic (A-Z, a-z)

or the special characters "?", "@" or "_". The following

characters (if any) can be any of the already mentioned

characters or the decimal digits (0-9).
All registers and flags are reserved words and cannot be used

as labels.

Object file type
—— -

The assembler object file type is by default equal to tRZ280.

280 special section ~21-

Constants

This implementation conforms to the Zilog assembler wmanual
but one extension have also been included:

‘A’ = ASCII constant

“AB” = ASCII constant
78 = Decimal constant

56H = Hexadecimal constant

101108 = Binary constant
457Q = Octal constant
"1.0E3 = Floating point constant (Extension)

Floating point constants are stored in the proposed IEEE

standard for single precision (32-bit) numbers and the syntax
for the —comnstants is with the =exception of the first

character identical to the Pascal standard. Floating points

constants can be used as any other number but no operators

are implemented (i. e. "6.0%"4.0E-20 is not invalid but vill
not generate the correct answer).

Expressions

Everywhere a constant is specified in the Zilog assembler

manual the constant can be substituted with an absolute

expression with a valid range. This applies for inmstance to

bit instructions where the bit number can be an expression.

The available operators are the same as the ones described in
the general section of this wuser’s guide but symbolic

operators (names) must have periods ".'" attached to each end.
An example:

AND => + AND.

Spaces or tabs are not allowed in expressions.

Pseudo directives
e

All the directives 1listed in the gemneral section are

implemented but since SET is a machineinstruction this

directive has been renamed to DEFL which 1s the original

Zilog mnemonic for that directive.

The DEFB, DEFW, DEFS and DEFM directives are also
implemented. The definition of DEFB and DEFW is —compatible

with the 21log manual but also adds an extension: The

directives may have more than one operand where the operands

should be separated with coanmas.

In addition to DEFB and DEFY a new directive DEFD (define

double word) has been defined. This directive works 1like

DEFB and DEFW but the operands must be absolute expressions

only. The DEFD directive stores 4 bytes in reversed order

and is specially wuseful for defining floating point

constants.

TMS 9900 special section -22-

Reference manual:
e e

1. Model 990 Computer and
TMS9900 Microprocessor
Assembly language Programmer’s Guide

Order Number: 943441-9701

This manual can be obtained from the manufacturer, Texas

Instruments (Austin, Texas.) and their local distributors.

Delimiters

- -

The items in a source line must be separated by delimiters

and in the TMS9900 assembly language the following delimiters

are valiad:

For a source line with only a label:

1. The label must begin in the first position.

2. The label should be terminated with a colon or only a

CR.
3. No conments are allowed on this type of source line.

For a commeéent only source line:

l. The first position in the line must be "*".

For an ordinary statement:

1. Instructions cannot begin in the first positione.

2. If a label is used it must be separated from the

instruction with a colon, spaces or tabs. If there is no

label the instruction should be preceded with tabs or

spaces.

3. Instructions and operands must be separated with tabs

or spaces.

4., Operands must be separated with commas only.

5. Comments must be separated from instructions or

operands with tabs or spaces.

Label syntax
——— - -

The first character of a label must be alphabetic (A-Z) or

the special characters "?" or "_". The following characters

(1f any) can be any of the already mentioned characters or

the decimal digits (0-9).

The registers RO-R15 are predefined symbols with +values

according to the register number.

Constants
——————

This implementation conforms to the TI assenbler manual but

some extensions are also included:

TMS9900 special section -23-

‘A’ = ASCII constant
AB’ = ASCII constant
78 = Decimal constant

>56 = Hexadecimal constant

101108 = Binary constant (Extemsion)
457Q Octal constant (Extension)

Expressions

The available operators are the same as the ones described in

the general section of this wuser’s guide, but symbolic

operators (names) must have periods "." attached to each end.

An example:
AND => «AND.

Since the character ">" is used to identify hexadecimal

constants, the following operators are only available 1in

symbolic form:
> - « GT.
>= =5 «.GE.

Spaces or tabs are not allowed in expressions.

The assembler object file type is by default equal to :R99.

Pseudo directives
- e S e

Besides all the directives listed in the gemeral section the

following directives are also avazilable:

BSS, BES <absolute expression> {<comment>}
DATA, BYTE <operand(s)> {<comment>}

EVEN {<comment>}

TEXT {<->)<’string’> {<comment>}

DXOP <symbol>,<expression> {<comment>}

NOP {<comment>}
RT {<conment>)}

The DXOP directive requires a symbol which <cannot —contain

more than six characters. 1Instructions that must reside omn a

word boundary are automatically aligned by the assembler.

Register numbers, Shift counts, CRU bits and XOP levels can

always be coded as absolute expressions with the range 0-15.

AORG and RORG are replaced (not implemented) with ORG, ASEG,

CSEG and DSEG.

TMS 9940 and TMS9985 cperation
e =

As the assembler only accepts the basic 9900 instructions and

the 9940 is to be used, the additional instructiems (DCS, DCA

and LIIM) must be defined with DXOP:s.

<

MC6800/6801 special section -24-

Reference manual:
——— B S —— -

1. MC6800/6801/6805/6809 Macro Assembler

Reference Manual.

Order Number: M68MASR(D) .

This manual can be obtained from the manufacturer, Motorola

Semiconductors (Austin, Texas.) and their local distributors.

Delimiters

The 1items in a source line must be separated by delimiters

and in the MC6800/6801 assecbly language the following

delimiters are valid:

For a source line with only a label:

1. The label must begin in the first position.

2. The label should be terminated with a colon or only a

CR.
3. No comments are allowed on this type of source line.

For a comment onlv source line:

l. The first position in the line must be "*".

For an ordinarv statement:

1. Instructions cannot begin in the first position.

2. 1f a label is used it must be separated from the

instruction with a colon, spaces or tabs. If there 1is no

label the instruction should be preceded with tabs or

spaces.
3. Instructions and operands must be separated with tabs

or spaces.
4., Operands must be separated with commas only.
5. Comments must be separated from instructions or

operands with tabs or spaces.

Label syntax
- —— -

The first character of a label must be alphabetic (A-Z) or

the special characters "?", "." or "_". The following

characters (if any) can be any of the already mentioned

characters, "$" or the decimal digits (0-9).

The 1index <register X and the accunulators A and B, are

reserved words and cannot be used as labels.

.,

MC6800/6801 special section -25-

Constants

This implementation conforms to the Motorola assembler manual

except for ASCII counstants which means:

‘A’ = ASCII constant

‘AB° = ASCII constants must always be surrounded
with "°"

78 = Decimal constant

$56 = Hexadecimal constant
4 5H = Hexadecimal constant

%10001 = Binary constant
10110B = Binary comnstant
4570 = QOctal constant

457Q = QOctal constant

Expressions
- ———

The available operators are the same as the ones described in

the general section of this wuser’s guide but symbolic

operators (names) must have exclacmation points "i'" attached

to each end. An exanple: ’

AND => P'AND !

Spaces or tabs are not allowed in expressions.

Object file type
—— .

The assembler object file type is by default equal to :R68.

Pseudo directives
—— -

Besides all the directives listed in the general section the

following directives are also available:

RIB <absolute expression> {<comment>}

FCB, FDB <operand(s)> {<comment>)

FCC <constant>,<ASCII characters> {<comment>}

FCC <‘string’> {<comment>}
MC6801 {<comment>)

The RMB, FCB, FDB and FCC directives works as describred in

the manual with one exeption: The string delimiters im the

FCC directive must only be "'". As the assembler only

accepts the basic 6800 instructioms, the user must in order

to assemble code for the 6801 (applies also to 68701 or 6803)

use, an option "1" given at startup, or the directive MNC6801

in the source code.

—,

MC6800/6801 special section -26-

Addressing modes and relocation
e S S

Since the MICRO-LINK does not support the relocation of 8-bit

values the wuse of relocatable symbols in addresses always

forces the assembler to select the extended addressing mode.
The only way to get the direct addressing mode is:

l. The address expression is absolute.

2. The expression is completely definmed in the first

pass (i. e. no undefined symbols).

3. The value of the expressiomn is in the range (0-255).

Note that all those conditions above wmust be fulfilled 1if the

direct addressing mode is wanted.

MC6B8000 special section ~27-

Reference manuals:
-

1. MC68000 Cross Macro Assembler Manual.

Order Number: M68KXASM(D3)

2. MC68000 User’s Manual.

Order Number: MC68000UM(AD)

Both of these manuals can be obtained from the manufacturer,

Motorola Semiconductors (Austin, Texas.) and their local

distributors.

Delimiters

—— i —————

The items in a source line must be separated by delimiters

and in the MC68000 assembly language the following delimiters

are valid:

For a source line with only a label:

1. The label nust begin in the first position.

2. The label should be terminated with a colom or only a

CR. ¥

3. No comments are allowed on this type of source line.

Tor a comoment onlv scurce line:

l. The first position im the line must be Tkt

For an ordinary statement:

l. Instructions cannot begin in the first position.

2. If a label is used it must be separated from the

instruction with a colon, spaces or tabs. If there is no

label the instruction should be preceded with tabs or

spaces.

3. Instructions and operands must be separated with tabs

Oor Sspaces.

4., Operands must be separated with commas only.

5. Comments must be separated from instructions or

operands with tabs or spaces.

Label syntax
———

The first character on a label must be alphabetic (A-Z) or

.the special characters "?", "@" or " ", The following

characters (if any) «can be any of the T already mentioned

characters or the decimal digits (0-9).

All registers (DO-D7, AO-A7, SP, PC, USP, CCR and SR) are

reserved words and cannot be used as labels.

e

MC68000 special section -28-

Constants

This implementation conforms to the Motorola assembler manual

but some extensions are also included:

‘A’ = ASCII constant
‘AB’°C’ = ASCII constant
78 = Decimal constant

$56 = Hexadecimal constant

10110B = Binary constant (Extension)
457Q = QOctal constant (Extension)

"1. 0E3 = Floating point constant (Extension)

Floating point <constants are stored im the proposed IEEE

standard for single precision (32-bit) numbers and the syntax

for the —constants is with the exception of the first

character identical to the Pascal standard. Floating points

constants can be used as any other number but no operators

are implemented (i. e. "6.0%"4.0E-20 is not invalid but vill
not generate the correct answer).

Expressions
—— - —— -

The available operators are the same as the ones described in
the general =section of this wuser’s guide but symbolic

operators (names) must have periods "," attached to each end.

An example:
AND => «AND.

Spaces or tabs are not allowed in expressions.

Object file type

The assembler object file type is by default equal to :R68K.

Pseudo directives
———— -

Besides all the directives listed in the gemeral section the

following directives are also available:

DS, DS.B, DS.W, DS.L <absolute expression> {<comment>}

pc, DC.B, DC.W, DC.L <operand(s)> {<comment>}

RORG <expression> {<comment>}

ORG <expression> {<comment>}

ORG.L <expression> {<comment>}

ORG.W <expression> {<comment>}

RELAD {<conment>}

LONGAD {<comment>}

ABSAD {<comment>}

WORDAD {<comment>)

The DS and DC directives works as describred in the manual

with one exception: No extra zero is inserted after a DC.B

generating an odd address. Instructions that must reside on &

word boundary are automatically aligned by the assembler.

MC68000 special section -29-

Addressing modes and relocation
. S S e W S e e e S

This assembler will in the same way as the original Motorola

cross assembler choose the addressing mode of an operand

which is an expression only and where the operand is allowed
to have more than one possible mode. Since this 1is a

relocating assembler and the Motorola cross assembler is not,

some differences <concerning the address mode selections
exist, namely the term relative expression does not exist but

instead expressions can be relocatable which in most <cases
are equvivalent. All the ORG:s specified by the Motorola

manual are included as well as four extra directives (RELAD,

ABSAD, WORDAD and LONGAD) which further enables the user to

specify the default addressing modes. The function of the

extra directives are:

RELAD Generate position independent code.

ABSAD Generate only direct addresses.

WORDAD Generate short addresses when the direct mode

is used.

LONGAD Generate long addresses when the direct mode

is used.

In addition to the default addressing mode selection anmn

extension has been implemented which enables the wuser to

overide the selections. The syntax for these extensions are:

expression(PC) gives PC-relative adr.

<expression gives short direct adr.

>expression gives long direct adr.

When the position independent mode is selected (with overide

or by default) the assembler will flag the line as invalid if

the expression is not of the same type as the current segment

or if the range is exceeded. The position independent mode is

by default on. 16-bit relocatable items should be imn the

range =-$8000 to $7FFF but this is in the current version of

MICRO-LINK not completely checked.

All addressing modes which are program counter relative (i.
e. BRA Expr, JMP Expr(PC) and JMP Expr(A4.L)) must have an

expression which is of the same type as the current segment.

The address register indirect indexed mode (Expr(AS5,D4. W))

requires an absolute expression in the range of -128 to 127.

.An alternative syntax for the program counter rTelative

indexed mode 1is: Expr (PC,Rn).

&

MC68000 special section -30-

The exact default selection donélrgy the assembler
demonstrated in the the flow chart below:

is

Default on: (RORG *+0,WORDAD,ASEG]

 Memory

Alterable?
No

ABSAD,ORG

ORG.L or LONGALZ

RORG ,ORG. W, WORDAD V=Expr-pLC-2 ¥

MODE=Short

 Expr absolute? -3000<=V<=7FF

Yes

Yes

Y

MODE=Long lMODE=Short

ERROR

ERROR

6502 special section
-31-

Reference manuals:
-.——--—.--o-q.-..-__—_.-.q.—-.

1. AIM 65 USER’S GUIDE (ROCKWELL) 2. KIM-1 USER°’S GUIDE (MOS TECHNOLOGY)

This wmanuals can be obtained from the manufacturerers. and their local distributors.

Delimiters
——————

The items in a source line must be Separated by delimiters and in the 6502 assembly language the following delimiters are valid:

For a source line with only a label:

l. The label must begin in the first position. 2. The label should be terminated with a colon or only a CR'

3. No comments are allowed om this type of source linpe.

For a comment onlv source line-

1. The first Position in the line must be ke,

For anm ordinary statement:

l. Instructions cannot begin in the first position. 2. If a label is used it nust be Separated from the instruction with a colon, spaces or tabs. If there is no label the instruction should be preceded with tabs or Spaces.,
3. Instructions and operands must be Separated with tabs Or spaces.
4. Operands must be separated with commas only. 5. Comments must be separated fron instructions or °perands with tabs or spaces.

Label syntax

The first character of a label must be alphabetic (A-Z) or the special characters "?" or " ". The following characters (1f any) can be any of the already mentioned characters, "gv or the decimal digits (0-9). The index registers X and Y and the accumulator A, are reserved words and cannot be used as labels.

= SRt AT LR R ST

6502 special section -32-

Constants
- -

This implementation conforms to the 6502 standard except for
ASCII constants which means:

‘A’ = ASCII constant
“AB° = ASCII constants must always be surrounded

With men

78 = Decimal constant

$56 = Hexadecimal constant
4 58 = Hexadecimal constant
210001 = Binary constant

101108 = Binary counstant
4570 = QOctal constant

457Q = Octal constant

Expressions
- ————

The available operators are the same as the ones described in
the general section o¢f this wuser’s guide but symbolic
operators (names) must have exclamation points "!"™ attached
to each end. An exaunple:

AND => LARD!

Spaces or tabs are not allowed in expressions.

Object file type
—— -

The assembler object file type is by default equal to :R65.

Pseudo directives

Besides all the directives listed in the general section the
following directives are also available:

<label>=<expression> equivalent with the EQU directive

*=<expression> equivalent with the ORG directive
=%+<absolute expression> {<comment>}
.BYTE,.WORD <operand(s)> {<comment>}

The « DBYTE, .SKIP, . PAGE and . OPT directives are

not implemented.
The *= *+, BYTE and . WORD directives works as describred in

the manual

®.)

6502 special section -33-

Addressing modes and relocation
. e e S e e e S e e S S -

Since the MICRO-LINK does not support the relocatiom of 8-bit
values the wuse of relocatable symbols in addresses always

forces the assembler to select the extended addressing mwode.

The only way to get the direct addressing mode 1is:

l. The address expression is absolute.

2. The expression is completely defined in the first
pass (i. e. no undefined symbols).
3. The value of the expression is in the range (0-255).

Note that all those conditions above must be fulfilled if the

direct addressing mode is wanted.

L e R

MICRO-LINK Introduction -34-~

Introduction
—————— -

MICRO-LINMK handles the step between the assembly of a program

and the execution of it. The relocatable code produced by

the assemblers is read by MICRO-LINK and transformed to a

format readable by the monitors of the various systems. The

transformation process includes the addition of library

routines referenced by the program. Via commands the |user

can place the program at any address legal for the actual

cCpu.

The input file consists of at least one module. A module 1is

a undividable piece of code and data. The header contains

information such as the name of the module, type and

relocation base. Then the actual code and data follows with

specifications about public symbols (entry points), extermal

references, absolute data and so on. The tail may have an

address which is the start address for the program.

To make it easy to separate code and data, code is

relocatable to three segments onto which the code is placed.

One segment, Absolute, is handled completely by the user. The

code is placed where the user has specified. As for the other

two segments, Code and Data, the user decides where they

start and then MICRO-LINK will place modules in increasing

addresses from there on.

For example, the interrupt routines (or vectors) in a system

could be placed via the absolute segment. The user routines

are relocated to the code and data segments, whose addresses

the user may decide at load time.

In all examples, user input is underlined.

MICRO-LINK Commands -35-

Commands
- - ——

e e S e S e e S S e e e e e -

Let’s assume that you have a program written in 8085-code and

it has been processed by the R8085 cross assembler. The only

commands you have to know is DEFINE-CPU, LOAD and DUMP. The

LOAD command will read the file produced by the «cross

assembler and relocate your program and the DUMP command will

produce executable code in 8085 format on another file. The

procedure is as follows:

@MICRO-LINK

Micro Linking loader. V80. 06. 26

*DEFINE-CPU

CPU: 8085
Ccde seg. start: 0000
Data seg. start: 4000

- *LOAD

File: MAIN

Code: 02D4 Data: 4150

*DUMP

File: MY~PROG

*EXIT

On the file MY-PROG you will now have an executable version

of your program. It may be entered into an 8085-system and

rune.

Command format
——— -

The commands may be abbreviated a“la Sintran and since the

system also uses the edited command buffer of Sintranm 2all

control characters have the szme function in MICRO-LINK as in

Sintran.

MICRO-LINK also prompts the user for missing parameters in

the same way as Sintran does.

Only spaces or commas may be used to separate commands and

parameters.

When a parameter is surrounded by "{" amd "}" it is optional.

A "..." after a parameter means that it may be repeated.

Some exzmples:

LOAD,<file>{,<file>}... definition

LOAD,TEMP one file to load

LOAD,TEMP,MATH, IOLIB several files to load

A

iaa ke

MICRO-LINK Commands -36-

Command to define the CPU

—— . - e S S

Before any loading is done, the target CPU must be defined.

Also the start addresses for the Code and Data segments must

be specified.

LIST-CPU-TYPES will 1list all CPU types handled by the system.

This command will also list input and output filetypes

and output format used by the loader for the different

CPU:s.

DEFINE-CPU,< cpu type>,<code start>,< data start> will define

the target CPU and set up the start addresses for code

and data segmentse. These addresses should be

hexadecimal numbers. Also the default Sintran file

types and the default output format will be defined.

CPU Input Qutput Format

Zilog - Z 80 RZ 80 280 T

Intel - 8085 R80 : 8085 I

Motorola - 6800-1 :R68 : 6800 M

Texas Instr. - 9900 tR99 : 9900 T

Motorola - 68000 ¢:R68K 68K M

MOS/Rockwell - 6502 tR65 16502 1

Commands to load files
————————————— i — — -

There exist two commands to load files, mnamely LOAD and

LIBRARY~LOAD. The difference between them is that the ©LOAD

command will load all modules in the file but the

LIBRARY-LOAD command will only load those modules which has a

referenced entry point.

LOAD,<file>{,<file>}... will load all modules in the

specified file(s).

LIBRARY-LOAD,<file>{,<file>}... will load only those modules

in the file(s) which has a referenced entry point.

LIBRARY-SCR-FILE,<file> must be specified before any

LIBRARY-LOAD can be issued. The file type 1is by default

s IMAG.

L e

MICRO-LINK Commands =37=

Lo et

Command to specify load addresses
—— G e R e

The command SET-LOAD-ADDRESS enables you to specify the

starting load addresses for the code and data segments. This

is seldom needed since the addresses normally are given 1in

the DEFINE-CPU command.

SET-LOAD-ADDRESS,<segment>,<address> will set the load

address for <segment> to <address>. <segment> should be
'Icll or llD " .

<address> should be a hexadecimal number.

B L R NN A I A

MICRO-LINK Conmands -38~

J Commands to examine the symbol table

——— . . e e S e S e S S S S e ———

MISSING-ENTRIES{<,file>} will print the names of external

references not yet resolved and the names of the modules
which reference them. The output will be directed to

the terminal if no <file> is specified.

Ex. *MISSING-EKNTRIES

IOHANDLER is undefined
Referenced by:

MONITOR

WHAT-I1S,<symbol> will print information about that symbol.

Ex. *WHAT-1S,IOHANDLER

Entry in IO

Extern io MONITOR
*WHAT-IS, I0

e) Module

SET~-SYMBOL-VALUE,<symbol>,<value> will assign a value to the

specified symbol. The symbol must be an external with

no entry. The symbol will be added to the last loaded

module and the type will be absolute. This command 1is

useful for setting system constants at loadtime.

MAP{,<file>} prints the modules defined, their load addresses

in the absolute, code and data segments, the entry

points defined in that module with their addresses and

types. The output will be directed to the terminal if

no <file> 1is specified.

Ex. *MAP
A-seg. C-seg. D-seg.

MONITOR - 0200-122F 2000-3324%

INTERRUPT c 0200
MONITOR c 0273
IODATA D 2000

10 0000~-0002 1230-17D3 3325-3D86
IOHANDLER C 1230

TTYIN C 1301

TTYOUT C 1350

TTYDATA D 3F66

)

MICRO-LINK Commands -39~

Commands to dump the memory image
—— S S T S G

When your loading is finished, i. e. all routines needed are

loaded you should dump the memory image onto a file.

DUMP,<file> will dump the memory image onto <file> 1in a

format readable by the loader for the actual cpu.

Miscellaneous Commands

- i —— -

The command RESET will reset all pointers and clear all

tables, i. e. restart the program for another loading or when

your current load has been messed up.

When you are ready the command EXIT will terminate

MICRO-LIKK.

To get all availeble commands enter HELP{,< command>}. If no

parameter is given in the EELP command only a simple 1list of

all commands will ©be displayed, else all commands which

matches the ©parameter will be displayed with a syntax and

function description.

LIST~-CURRENT-CPU prints the name of the target CPU and the

output format.

SET -NEW-FORMAT,<format> enables the user to overide the

default output format. The available formats are listed

in the section MICRO-LINK Output format and the format

parameter should be I, ¥ or T.

T

MICRO-LINK Input format =40~

<input file>

<module>

<header>

<body>

<taill>

<svmbol>

<type>

<rel base>

<absolute item>

<relocatable item
in code segment>

<relocatable item
in data segment>

<relocatable
external item>

<negative

relocatable item
in code segment>

<negative

relocatable item
in data segment>

<neagative
relocatable
external item>

<entry item>

<external item>

<org item>

<transfer flag>

oo

.o

Input format
———

=<module> | <module><input file>

=<header><body><tail> | <nothing>

=QM<symbol><type><rel base>

=<absolute item> | <relocatable item> |

<entry item> | <external item> |

<org item> | <nothing>

=Qz<transfer flag><transfer address>

=<symbol length><ASCII string>

=<0>

=<address>

:=<hex byte>

=QR <address>

=QS <address>

=QT <rel id><address>

=QN<word>

=Q0<word>

=QP<rel id><word>

=QE<symbol><seg 1d><address>

:=QX<symbol><rel id>

=Q<seg id><address>

=0 | 1

w Tt et T L T T T e D Bk A

MICRO-LINK Input format -4]1-

, <transfer address>::=<address>

<symbol length> ::=<hex byte>

<ASCII string> ::=<ASCII char> | <ASCII char>

<ASCII string>

<rel id> t:=<hex byte>

<seg i1id> t2=A | C | D

<word> ::=<hex byte><hex byte>

<address> ::=<word> | L<word><word>

<hex byte> ::=<hex digit><hex digit>

<hex digit> ::2=0 | 1 | 2 | 3| 4| 5617|819/
A|B|]C|DJ|E]|TF

<nothing> i =

ar

MICRO-LINK Input format =42~

Semantics
———— ———

<symbol> 1is 1 t> 80 characters consisting of any ASCII

characters which all are significant but in the symbol table

(MAP) only the leftmost 16 characters will be displayed.

Module names and names of entries have no 1interrelationship

which means that they may have the same name.

<type> 1in header may seem redundant but it is there for

future extensions.

<rel base> is also zero in most cases but some assemblers, as

Norsk Data’s MAC, start assembly at location one, IBM:s

starts at any specified address. It is subtracted from all
addresses relocatable to the module.

<rel id> is the relative number of an extermal in a single

module. Beacause <rel id> 1is a hex byte the number of

external declarations in a module cannot excede 256 (0O0-FF),

but the total nunber of symbols that can be loaded is more in
the range of 1000.

QR,QS and QT are the normal id:s for relocatable items but in

those cases when negative addresses (displacements) are used,

a special id QN,Q0 or QP is used. QN,Q0 and QP records can

only be 16-bit values. The reason for this special treatment

of mnegative values is that range checking becomes almost

trivial since you only have to check if there was a carry to

detect an error-condition.

<address> for an entry point is relative to the specified

segment. For an absolute entry point, segment A is

specified.

If <transfer flag> is not zero, them <transfer address> 1is

the start address of the relocated program. If several

modules has <transfer address> specified, the first

encountered is valid. The <transfer address> 1s supposed to

be relative to the code segment.

In the file, carrige return and line feed is ignored.

MICRO-LINK OQOutput format -43-

Output format
————

"I - Intel 8080, 8085; Zzilog 280; MOS/Rockwell 6502:

tnnppppffddddddddce

where:

nn 1is number of data bytes (gg) in record.

pppp is load address.

ff is a flag: 00 normal data record. Ol end of file record.

dd are the data bytes which are 1 to 16 in a data record.

cc is the checksum, and the sum of all bytes nn, pppp, ff, dd

and cc should be zero.

"M - Motorola MC6800/6801, MC68000:

Slnnppppddddddddce Data record with a 16-bit address.

S2nnppppppddddddddce Data record with a 24-bit address.

$9030000FC End of file record.

where:

nn is the number of bytes (pp+dd+cc) in record.

pppp is the load address.

dd are the data bytes which are 1 to 16.

cc is the checksum and

cc 1= (255+(SUM(dd)+SUM(pp)+nn)) HOD 256.

- e e S S Se e ——— -

9aaaaBddddBddddBddddBdddd7ccccF Data record.

: End of file record.

where:

Saaaa Load address

Bdddd Data word

Jecce Checksum

F End of 1line

The checksun (cccc) 1s the negated sum of all characters in

the line upto and including the checksum tag (7).

Building your own library ~44-

Building your own library
——— -

One of the zreatest advantages of having a relocation

and linking facility is that it pushes a more structured way

of programming 4i.e. it helps the user create software in

modules instead of in one big program. After some time most

users realises that it would be nice to save the most

frequently wused routines so that they could be used in the

next project. One obvious way to do that is of course to

save each pilece of software on a file in source form, but

that approach has (at least) three drawbacks. First you have

the problem associated with keeping track of an ever

increasing number of files but a more disturbing problem is

that in order to use a particular module you often have to

edit the internal labels since the possibility of duplicate

labels increases with the total amount of source code.

The third type of problem you may run into cannot be

solved without using separately assembled modules and that is

the fact that the symbol table in our cross assemblers as

well as in most others is not unlimited. The usable size in

our assemblers is in the range of 1000-2000 symbols (with =a

mean length of six characters) depending on which particular

assembler you are wusing and whether you are using the

crossreference option which also takes some space.

So the cure is to assemble and document each reusable

piece of software and put the object code in a library.

later you or your colleages can load the library with the

1IBRARY-L0AD command (Do not use LOAD since then you always

get all the stuff in the library and that is mnot what

librarys are for !).

Since every assembly only produces one nodule on one

file you must merge several files (modules) into one file in

order to create a library. This 1is easily accomplished with

the standard ND editor QED.

@QED Get the editor

*UPI (0) Turn off parity

*R FILE-1:R80
*R FILE-2:R80

Get the first file (module)

Cet the next file (module)

*y "MY-LIB:R8O" Write the modules on a file

Don’t forget the filetypel!

It’s done ! 38

23
0
2
O

38

3

B
0

e
3

*EX

MICRO-LINK Error messages -45-

- —

All errors will »e printed on the terminal with a short

message (not a meaningless number only!) and errors cam be

split into three categories which should be dealt with

differently.

The categories are:

l. Sintran errors

2. Command errors

3. Fatal loading errors

Sintran errors

The only Sintran errors you should get is from the file

system (No such filename etc.) and those errors have no

effect on the loaded modules (if any) so the loader does not

terminate and if possible you can just retype the aborted

command.

Command errors

These are:

1. No such command (self-explanatory)

2. Ambiguous command (self-explanatory)

3. **x%%* No such CPU (self-explanatory)

4. *%k*x*%* Ambiguous CPU-name (self-explanatory)

5. x**% CPU-type undefined

If you try to load or dump files without first using

the DEFINE-CPU command, the loader don‘t know what

format to expect.

6. *%%* Cannot change CPU-type now

I1f you already have loaded modules you must stick to

the CPU you have chosen. After RESET you can start

all over again.

7. *k%%* Value out of range

An address parameter is to large for the CPU type

specified (for 8085 O0<=val<=FFFF)

8. *x*x% Jllegal parameter
Bad parameter in the HELP counxand or non hexdigits in

an address parameter.

9. **k%x* Jllegal segment

Segment specifier inm SET-LOAD-ADDRESS is not C or D

.y

MICRO-LINK Error messages -46-

10.

11.

12.

13,

14'

15.

*%%x*x Unknown symbol

1f you specify an non existing symbol in the WHAT-IS

and SET-SYMBOL-VALUE commands you will get this mes-

sage.

**%x* Already defined .

If you try to redefine a symbol with SET-SYMBOL-VALUE

you naturally get an error.

% Not an external

Only non resolved externals can be assigned values

with SET-SYMBOL-VALUE.

**** Can‘t get the HELP-file!

Check 1if you have the file MICRO-LINK-HELP:DATA.

**%*%* Forgotten to DUMP ?
This message will be printed if you do EXIT

after loading one or more modules and not

proceded with a DUMP. If you don’t want to dump

repeat EXIT.

x**% Use LIB-SCR before any LIB-LOAD!

See command description of LIBRARY-LOAD

Command errors have no effect on loaded modules so you

can always continue since the faulty command 1s just ignored.

Fatal loading errors
- ———

These are:

1.

2‘

3.
4.
5.
6.
7.

9.

***%% Jllegal hex digit: “x°

*x*x* Record doesn’t begin with ‘Q°

k%*%x Jllegal record id: “x’
k%x*xx Jllegal segment id: ’x
*%**%* Record out of sequence

%x Illegal symbol length

**k*x External not found

If you use files created by our assemblers and until

e’

now have not got any fatal loading errors you should

not get these errormessages.

*x*x* Doubly defined modulename: XXXXX

**** Doubly defined entrypoint: XXXXX

(self-explanatory)

MICRO-LINK Error messages -47-

10. k%*%x Address out of rfinge in module: XXXXX

A module is loaded outside the address range or the

used address mcde of the target CPU.

11. xk** Word or long on uneven address in module: XXXXX

This message only applies to CPU:s which demand that

Word or Long data nust be located on even addresses.

(i.e. TMS9900 and MC68000)

12. *kx* Overflow in reference to: XXXXX in module: YYYYY

A reference to an extermnal is relocated out of range

during LOAD or LIBRARY-LOAD.

13. *%x%* Qverflow in referemnce to: XXXXX

A reference to an external is relocated out of range

during DUMP.

14, xx*k* Data item out of range in module: XXXXX

15. **** Code item out of range in module: XXXXX

A relocatable item is relocated out of range.

16. *x*** Can’t reopen the LIB-SCR

Someone have stolen your file!

17. *x*% FExtra program entry in module: XXXXX

Only one module is allowed to have a transfer address.

18. xx** Fptry: XXXXX out of range in module: YYYYY

An entry point is relocated outside the address range

of the target CPU.

19. **L OADER ABORTED**

If you have got more than 32 errors the loader ter-

ninates.

After a fatal error the symbol table may be affected so

in order to start again you must issue a RESET.

The loader immediately aborts the current comnand when a

fatal error is encountered.

A real session with the systenm -4 8-

A real session with the system
- ————— T — — — -

A complete example whlich shows how to use the relocation

directives in the source code and how they are used by the

loader is given on the folloving pages. Although the example

uses 8085 assembly language it is completely relevant for the

other assemblers as well.

v/ @CC ASSEMBLE THE FIRST MODULE (THE MAIN PROGRAM)

@Rr8085

8085 ASSEMBLER V80. 06.26

SOURCE FILE=UAIN

1IST FILE=TERMINAL

OBJECT FILE=MAIN

OPTIONS:

C,T

Pass 1 complete, no errors.

1 0000 NAME MYPROG
2 0000 EXTRN LOGX,COSX
3 0000 CSEG

i 4 0000 210700 START: LXI H,7
) 5 0003 CD000O CALL LOGX

- 6 0006 220000 SHLD BUFFER
7 0009 CD00OO CALL COSX
8 000C 240000 LHLD BUFFER
9 O0O0OF CF RST 1

10 0000 DSEG
11 0000 BUFFER DS 2
12 0002 END START

Assenbly complete, no errors. 16 bytes of code generated.

Symbol and cross-referencetable

EEEsoSESCSSSSESSSEESSEESES=E=E=S=
S

Symbol Value Type Defline Referenced in line

BUFFER 0000 D : 11 6 8

A real session with the system -49-

COSX 0000 XO01 2 7

LOGX 0000 X0CO 2 5

MYPROG 0000 A 1

START 0000 C 4 12

@CC ASSEMBLE THE SECOND MODULE

@RBO8BS

8085 ASSEMBLER V80.06.26

SOURCE FILE=T=-1:TEST

LIST FILE=TERMINAL

OBJECT FILE=T-=-1

OPTIONS: c,T

Pass 1 complete, mno errors.

1 0000 NAME MATHI

2 006060 CSEG

3 0000 PUBLIC LOGX,SINX,COSX

4 0000 EXTRN FLOAT

5 0000 3E00 LOGX: MVI A,O

6 0002 C9 RET

7 0003 CDO0O8OO SINX: CALL COsSX

8 0006 AF XRA A

9 0007 C9 RET

10 0008 CDFCFF C0SX: CALL FLOAT-~4

11 000B C9 RET

12 000C END

Assembly complete, nO errors. 12 bytes of code generated.

Symbol and cross-referencetable
En oS ESEE ST ESSCSSOEENEESEEEEEE=ESS

Symbol Value Type Defline Referenced in line

CosXx 0008 CE 10 3 7

FLOAT 0000 X00 4 10

iOGX 0000 CE 5 3

MATH1 6000 A 1

SINX 0003 CE 7 3

-

Pestraacas e v il et e a0 N ST e TR

A real sessionmn with the systen -50-

@CC ASSEMBLE THE THIRD MODULE

@GR8B0O8S

8085 ASSEMBLER V80. 06.26

SOURCE FILE=T-2:TEST

LIST FILE=TERIMINAL

OBJECT FILE=T -2

OPTIONS: c,T

Pass 1 complete, mno errors.

1 0000 NAME MATH2Z2

2 0000 PUBLIC READ,WRITE

3 0000 PUBLIC BUFFER

4 0000 CSEG

5 0000 DB77 READ: IN 7780

6 00602 C9 RET

7 0003 D345 WRITE: QUT 45H

& 0005 C9 RET

9 0000 DSEG

10 0000 BUFFER DS 80

11 0050 END

Assembly complete, no errors. 6 bytes of code generated.

Symbol and cross-referencetable

===t:====:fl========fi===
======fl:=

Symbol Value Type Defline Referenced in line

BUFFER 0000 DE 10 3

MATH 2 0000 A 1

READ 0000 CE 5 2

WRITE 0003 CE 7 2

@CC_ ASSEMBLE THE LAST MODULE

@GRBOS8S

8085 ASSEMBLER VB80. 06. 26

SOURCE FILE=T-3:TEST

1IST FILE=TERMINAL

OBJECT FILE=T-3

OPTIONS: c,T

Pass 1 complete, 0O eIrTOrs.

e

A real session with the system -51-

0000 . NAME MATH3

1
2 0000 PUBLIC FLOAT

3 0000 CSEG

4 0000 CDO60O FLOAT: CALL MODIF

5 0003 307 MVI A,7
6 0005 C9 RET

7 0006 0A MODIF: LDAX B

8 0007 c9 RET

9 0008 END

Assembly complete, no errors. 8 bytes of code generated.

Symbol and cross-referencetable

Symbol Value Type Defline Referenced in line

FLOAT 0000 CE 4 2

MATH3 0000 A 1

MODIF 0006 C 7 4

ECC CREATE A 1IBRARY FILE

@QED
QED 4.1
*MPI(0)

¥R T-1:R80

58 WORDS READ

*R T-2:R80

51 WORDS READ

*R T-3:R80

33 WORDS READ

*11,8

MOSMATHIOOOOOQAOOOOQCOOOOQXOSFLOAT003EO0QE04LOGXCOOOOC9CDQRO

D08QEQ4SINXCOO0O0 3AF

C9CDQPOOFFFCQEO4COSXC0008C 9QZ 00000

M OSMATH200000QA 0000QC 0000DB 77QEO4READC 0000C 9D 345QEOSWRITECO00
03c9QD0000QD0O0S50
QEO6BUFFERD 0000QZ 00000
MOSMATH300000QA 0000QC 0000CDQRO006QEOSFLOATCO0003E07C 90AC9QZ 0

0000
*yY MATH-LIB:R80
143 WORDS WRITTEN

*EX

D S N

A real session with the system -52~

@CC LINFK MAIN WITH THE LIBRARY

GUMICRO-LINK

Micro Linking Loader V80. 06. 26

*DEF-CPU 8085 1000 8000

*LIB-SCR 1
*L0AD MAIN
Code: 100F Data: 8001

*LIB-L0O MATH-LIB

Code: 1023 Data: 8001

*MAP

A-seg. C-seg. D-seg.

MYPROG ~ 1000-100F 8000-8001

MATH1 - 1010-101B -

COosSX cC 1018

SINX c 1013

LOGX C 1010

MATH3 - 101Cc-1023 -

FLOAT cC 101cC

Program entry at location: 1000 in module: MYPROG

*DUMP CODE

*EXIT

@CC AS YOU CAN SEE IN THE MAP, MATH2 WAS NEVER

@CC LOADED AS IT IS NOT REFERENCED

@CC DISPLAY RESULT!

@COPY TER CODE: 8085

:10100000210700CD1010220080CD18102A0080CFBB

:101010003E00C 9CD1810AFC9CD1810C9CD22103E61

:0410200007C90AC929
¢t 00000001FF

END OF FILE

References -53-

(1]

(2]

(3]

[4]

(51

References

The Pascal language is defined 1a:

Pascal User Manual and Report (Wirth,Jensen 1975)

Springer Verlag, Heldelberg

The CERN implementation of Pascal on NORD~10/100

computers 1s described in:

PS-Pascal User’s Guide (R. Cailliau, M. Kruger, J. Mc

Cullough 1979)

PS division CO group CERN, Geneva

The principles for the original universal assembler dis

described in:

Riktlinjer for utveckling av generell korsassemblator

(Lars-Gunnar Backlin, Goran Lundstrom oct. 1977) (in

swedish)

UPTEC 77 64 R (Institute of Technology, Uppsala)

Some available hardware emulation products which camn be

vsed with a host computer:

The 8001 Microprocessor dev. lab.

Tektronix inc. (Beaverton,Oregon)

The Micro System Analyser

and the Micro System Designer, both available from:

Millenium Systems Inc.(Cupertino,Calif)

Some available micro computer cross software:

Compilers etc. for 8080, 280 and 8086
Pased systems. “S——

Manufacturer: Microsoft Co. (Bellevue,Washington)

BSAL (Block-Structured-Assembly-lLanguage) for the 8080.

Manufacturer: Hupro Imnc. (Sunnyvale,Calif)

SMAL (Structured-Macro-Assembly-Language) for the 8080.

Manufacturer: Chromod Associates (Rew York)

References -54-

Forth (high level language available for many types of

processors)

Manufacturer: Forth Inc. (Manhattan Beach,Calif)

PLMX (machine independent high level language)

Manufacturer: System Consultants Ince. (San Diego,Calif)

PL/W (high level language for the 6800)

Manufacturer: Wintek Corp. (Lafayette,Ind)

UCSD-Pascal (a machine independent Pascal systen

implemented on a varity of computers)

Distributor: Softech Inc. (San Diego,Calif)

Installation guide -55~

Installation guide
- ——— - —

Although MICRO-LINK =&nd the assemblers rumns on any

NORD=-10/100 under the Sintranm III operating system, some

features must be available in the system for the package to

run correctly, and these are:

1. The output file terminal must have exactly the

name TERMINAL and not TERM as it is called in some

systems.

The SCRATCH file system (file 100) is used by

MICRO-LINK for temporary storage.

Both MICRO-LINK and the assemblers may be placed as reentrant

segments.

MICRO-LINK is mnormally delivered on one floppy disc

containing:

l.

2.

3.

MICRO-LINKR-XXXXX: PROG The linking loader.

MICRO-LINK-HELP:DATA This file contains the

text used by the HELP command.

MANUAL:INF This file contains this manual

and it can be output to a DIABLO, QUME or

lineprinter.

MAIN:R80, T-1:R80, T-2:R80, T-3:R80 These files

are the ones used in the sample session and they

are included only for demonstration and testing

purposes.

e
5 Installation guide -56-

An assembler 1is normaifgfideliféneaQ;;1dde floppy disc

containing:

1.

"XXXXX" on
delivered pr

Bug reports

If a bug

report onm it

Comput
Instit
P.0. B

§-751
SWEDEN

a PROG file with the cross assembler.

R8085-XXXXX:PROG for the 8085 processore.

RZ 80-XXXXX: PROG for the Z80 processor.

R9900-XXXXX: PROG for the TMS9900 processore.

R6800-1-XXXXX: PROG for the MC6800/6801 proces-

SOrs.

R68000~XXXXX: PROG for the MC68000 processor.

R6502-XXXXX:PROG for the 6502 processor.

One or more test programs, where the start file

has the same name as the PROG file. In those

cases when more than one test file i1s provided

the other files are included by the start

file.
The names of the test programs are:

R8085:TEST
RZ80:TEST

R9900: TEST

R6800-1:TEST

R68000: TEST

R6502: TEST

the file names contains the release date cf the

ograme.

is discovered, we would very much appreciate a

, sent to the following address:

er dept.
ute of Technology

ox 534

21 Uppsala

P Y

Index

SPNT <ASM 5 i 6502 special section 31

8085 special section 18 Operators 16

Librarys 44 PAGE 13

MC6800/6801 special section 24 PAGOFF 12

MC68000 special section 27 PAGON 12

MICRO-~LINK, PAGSIZ 12

Command format 35 PTITLE 13

DEFINE-CPU 35, 36 PUBLIC 9

DUMP 35,39 Relocation 9

EXIT 39 Relocation syntax 11

Error messages 45 SCRATCH mode 8

HELP 39 SET 10

Input semantics 42 Source line 6

Input syntax 40 Startup 6

Installation 55 TITLE 13

LIBRARY-LOAD 36 User defined symbols

LIBRARY-SCR-FILE 36 280 special section 20

LIST-CPU-TYPES 36

LIST-CURRENT=-CPU 39

LOAD 35,36

MAP 38

MISSING-ENTRIES 38

Output format 36,39,43

RESET 39

SET ~-LOAD -ADDRESS 37

SET-NEW-FORMAT 39

SET -SYMBOL-VALUE 38

WHAT-1I8 38

Parity 6
TMS9900 special section 22
UNI-ASM,

ASEG 10

CSEG 10
DSEG 10

ELSE 12,15
END 10

ENDIF 12,15

EQU 10
EXTRN 10

Expressions 16

General 5
IF 12,15
Installation 55

Interactive mode 7

LSTI1LN 12

LSTACD 12
LSTALL 12
LSTCND 12
LSTNAR 13
LSTOFF - 12
LSTON 12

LSTWID 13

LSTXRF 13

list control syntax 14
NAME 9

ORG 10

Object format 6

-57-

