
!

M u-F-e&.rV
■-

The MODUS Quarterlyo
CT>
03
t—I Issue #10
>1

July 1990pn

Modula-2 News for MODUS, the Modula-2 Users Associationo
t—I
=#=

(1) CONTENT
Pcoco Cover 2. MODUS officers and contacts directoryH

Page 1. Editorial

4. Call for Papers, First European Modula-2 Conference

5. Open Letter to MODUS Members, Stan Osborne

>i
i—i

P
6. Letter re Compiler Availability, Kevin P. Kleinfelterp

C/3 7. Letter re M2TOS, Peter SeewannD
QO 10. A Modula-2 Update Utility, Larry IrwinS
<1) "Language Independent" Programming, Dennis S. Martin12.A
Eh

17. An Extensible User Interface Toolkit in the PEM
Environment, Frode L. Odegard and Tomas Felner

22. Two Limitations of Modula-2, Rodney M. Bates

28. The Kernel of Modula-2 Integrated Environment,
Zheng Guoliang and Zhai Chengxiang

36. The Formal U.S. Response to ISO on the Draft Proposal
for Modula-2m

Cover 3. Membership form to photocopy

Cover 4. Return address

Copyright © 1990 by MODUS, the Modula-2 Users Association.
All rights reserved.

Non-commercial copying for private or classroom use is permitted.
For other copying, reprint or republication permission,

contact the author or the editor.

Directors of MODUS, the Modula-2 Users’ Association

Randy Bush
Pacific Systems Group
9501 SW Westhaven
Portland, OR 97225
(503) 297-8820

Tomas F. Reid
Contel Technology Center
15000 Conference Center Drive
P.O. Box 10814
Chantilly, VA 22021-3808
(703) 818-4505

Heinz Waldburger
Ancienne Forge
CH-1613 Maracon
(021) 907 75 75
Fax (021)907 97 42

K.N. King
Dept, of Mathematics and Computer Science
Georgia State University
University Plaza
Atlanta, GA 30303
(404) 651-2245
Problems? Missing a MODUS Quarterly issue? Do you want to subscribe? Contact your administrator
at one of the address given below.

Subscription, Administration and Publishing
Europe: Aline Sigrist

MODUS (Europe)
Chemin de Gort 3
CH-1801 Mt-Pelerin

USA: Stan Osborne
MODUS (America)
P.O. Box 51778
Palo Alto, CA 94303-0721
USA

Editor, MODUS Quarterly
K.N. King
Department of Mathematics
Georgia State University
University Plaza
Atlanta, GA 30303
(404) 651-2245

i
(

Submisions for publication

Send all submissions to the editor. Camer-ready copy is strongly encouraged; however, dot-matrix copy
is usually unacceptable. If camera-ready copy cannot be furnished, articles may be submitted on floppy
disk (IBM PC only, either 5-1/4" or 3-1/2") or by electronic mail. Articles submitted electronically must not
require subsequent formatting. Files must be either plain ASCII, in PostScript, or in Microsoft Word
format.

The MODUS Quarterly welcomes working papers, notes about work in progress, and examples of source
code.

Please indicate that publication of your submission permitted. Correspondence not for publication should
be PROMINENTLY so marked.

!

I

Editorial
j

MODUS Update
Astute members of MODUS may have noticed the large (i.e., two-year) gap between the
publication of MODUS Quarterly #9 and MQ #10. Reasons for this gap include a lack of
submissions (I’ve received only a handful of articles and letters over the last two years)
and organizational difficulties within MODUS. (Procrastination on the part of the editor
could be cited as another factor, but hey, who's writing this editorial, anyway?)

With the creation of a new board of directors and the appointment of Stan Osborne as
administrator and MQ publisher, we've made a big step toward solving our organizational
problems. The problem of insufficient material will persist, however, unless members
take the time to share their ideas and enthusiasm.

Many thanks to those who submitted letters and articles for this issue. And to the rest of
you: get moving! Finish that article that's been sitting on your desk for the past year.
Share that nifty code that you've developed. Tell us your opinion of the new draft stan
dard.► »

!i
■ I Status of Modula-2

With two years having passed since the last issue of the MODUS Quarterly, it seems like
a good time to assess the status of Modula-2, both in the U.S. and worldwide.

In the U.S., Modula-2 continues to gain popularity, but not at the pace anticipated a few
years ago. Although Modula-2 is now widely used in academia, it hasn't yet replaced
Pascal as the introductory language of choice.

Commercial use of Modula-2 in the U.S. isn't widespread but neither is it as small as
most people think. With several excellent DOS and OS/2 compilers available, Modula-2
is attracting an ever-growing number of microcomputer software developers. More sur
prisingly, Modula-2 enjoys a certain underground popularity among some prominent U.S.
corporations. For example, General Motors is allegedly using an internally developed
compiler for numerous mainframe applications. Unfortunately, companies that use Mod
ula-2 often shun publicity, perhaps for fear of embarrassment (after all, their competitors
use C!) or—as true Modulans believe—because they don't want the competition to know
about the edge that Modula-2 gives them.
There are several reasons for Modula-2's slow growth. Unlike Ada, C, and C++, Mod
ula-2 doesn't enjoy the backing of a large corporation or government organization. Major
compiler vendors, notably Borland and Microsoft, have given it the cold shoulder. Pascal
compilers now incorporate some of Modula-2's features, reducing the incentive for Pascal
programmers to switch to Modula-2. And, of course, Modula-2 has suffered from the
lack of a standard.

Ada continues to overshadow Modula-2, although the latter language occasionally gets
revenge. I've heard of Ada compilers written in Modula-2. I've also heard of military
contractors who write software in Modula-2 and then translate it to Ada before delivery.

:!
i

:

•!

► i •
i

- page 1

1

V

During the next few years, Ada is bound to suffer from DoD budget cuts, perhaps creat
ing new opportunities for Modula-2.

Fortunately, Modula-2 is doing much better outside the U.S. In the United Kingdom,
Modula-2 has replaced Pascal as the primary undergraduate teaching language at most
universities, and commercial interest in the language is strong. A one-day Modula-2 ex
hibition in London last May attracted 18 exhibitors and around 250 attendees, and the
British Computer Society now has a Modula-2 special interest group.

Britain isn't the only country in which Modula-2 is popular. According to major com
piler vendors, the language is prospering in German-speaking Europe, Scandinavia, Aus
tralia, and New Zealand, and is starting to make inroads in Canada and even Japan.

By at least one measure—the number of books available on the language—Modula-2 is a
success. According to Real Time Associates in England, there are now over 100 Mod
ula-2 books in print!

Do you know of an interesting use of Modula-2 in industry? Do you have a report on the
status of Modula-2 outside the U.S.? Write an article—or just a letter—and we'll print it. €>
Standardization Update
Since issue #9, standardization activity has continued at a vigorous pace. Here's an up
date on the activities of ISO/IEC JTC1/SC22/WG13, the working group that is preparing
the international standard for Modula-2:

August 1988: WG13 meets at Timberline Lodge on Mt. Hood in Oregon.

July 1989: WG13 meets at the University of Linz in Linz, Austria.

October 1989: The first draft proposed standard (DP) for Modula-2 is sent to national
bodies for comment and balloting. The puipose of the ballot is to determine whether the
DP should become a draft international standard (DIS) or be sent back to WG13 for revi
sion.

April 1990: The ballot results are announced. The DP fails to gain approval as a DIS,
with the U.S., France, West Germany, the Netherlands, and the United Kingdom voting
against the DP. Seven counties support the DP; eight countries don't vote.

June 1990: WG13 meets at the Open University in Milton Keynes, England, to respond
to comments on the first DP and resolve issues related to the preparation of the second
DP. The I/O library is hotly contested; a three-person subcommittee is appointed to re
vise it. One surprise: COMPLEX is added to Modula-2 as a pervasive type.

November 1990: The second DP is scheduled for release. Another round of balloting
begins.

July 1991: WG13 is tentatively scheduled to meet at Tubingen University in Blaubeuren,
Germany. If the second DP gains DIS status, the meeting will focus on future extensions
to Modula-2. If the DP isn't approved, the meeting will instead concentrate on the pro
duction of a third DP.

0

;

!

page 2 -

Upcoming Events
Two major Modula-2 conferences are currently on the calendar, both will be held in the
U.K. Wales will host the First European Modula-2 Conference during December 17-18,
1990 (the Call for Papers appears in this issue). The Second International Modula-2 Con
ference is set for Loughborough, England, in September 1991.

About This Issue
If you'd like to get a copy of the first draft proposed standard for Modula-2, use one of
the order forms in this issue. The DP can be ordered either from the IEEE or from
MODUS.
The DP was reviewed by PI 151—the U.S. Modula-2 working group—at its March 1990
meeting. The complete U.S. response appears on pages 36-40.

As always, your comments, ideas, and (of course) submissions are welcome. Write to me
at the address shown on the inside front cover or send E-mail.

#
KNK

I

#

i

- page 3 -

FIRST EUROPEAN MODULA-2 CONFERENCE

THE POLYTECHNIC OF WALES

17-18 December 1990

CALL FOR PAPERS

The First European Modula-2 Conference is being organised by the Department of
Computer Studies at The Polytechnic of Wales. The objective of the conference will be
to enable those interested in the the Modula-2 language and its environments to discuss
and exchange ideas on recent developments in commercial, industrial and educational
fields.

The Conference will comprise of presentation and discussion of submitted papers
together with the opportunity for delegates to discuss and view Modula-2 software with
vendors.

#1'i

A list of topics will be:-

Software Engineering
Industrial Applications
Real-Time
Systems and Program Teaching
Object-Orientated Design
Standards for Industry and Commerce

Papers on recent work in these or other current Modula-2 issues are invited. Papers
describing in detail case-study implementations using Modula-2 will be welcome.

Three copies of an extended abstract should be sent to:-

Dr M Al-Akaidi
Department of Computer Studies
The Polytechnic of Wales
Pontypridd, CF37 IDL
Mid Glamorgan, U K
Telephone: (0443)480480.FAX:(0443) 480558;
Email: malakaidi@uk.ac.pow.genvax

Dates: Abstracts required by
Notifications to authors
Final papers required
Conference

€)
:

;

31 August 1990
28 September 1990
20 October 1990
17-18 December 1990

Programme Committee:
Dr M Al-Akaidi; Steve Collins (RTA); D E Eyres.

The Conference will be held at The Polytechnic of Wales which is located 11 miles
north of Cardiff, and is easily accessible by road, rail and air. Accommodation will be
available on the campus.

- page 4 -

MODUS
P.O. Box 51778

Pak> Alto, California
USA 94303-0721

:

10 August 1990

Dear MODUS Readers,

This letter is to provide you with current information about the Modula-2
Users' Association (MODUS).
My name is Stan Osborne. I am the new "American Administrator" for the
Association. Like my predecessors I volunteered for this responsibility.
It is my hope that we will be able to publish an issue of MODUS Quarterly
every three months.
MODUS was formed to provide a forum for communication between all parties
interested in the Modula-2 language. The primary function of MODUS is to
publish the MODUS Quarterly. If my memory is correct, MODUS has also
sponsored two conferences.
As many of you are already aware, MODUS has not fulfilled its primary
function during the last two years. This is no longer the case. Issue #10
of the MODUS Quarterly is ready and being printed. Work has started on
getting material for Issue #11. All past and present members are being
notified by mail.
Within the next two years the international effort to produce the first
Modula-2 standard will be completed. The MODUS Quarterly is one way for
you to learn more about the standard and how it affects the future of
Modula-2.
You can help with reactivating the Association by:

• submitting a membership application
• sending in letters and articles for publication
• telling other Modula-2 users about MODUS

I

i

3

m My sincere thanks to you in advance for your help with the above. If you
have questions, comments, criticisms, or complaints about the operation of
the Association, please don't hesitate to tell me about them,
especially interested in suggestions you might have about how any aspect of
MODUS can be improved.

I am

Sincerely,

Stan Osborne
American Administrator

“ page 5

Kevin P. Kleinfelter
Management Science America

3445 Peachtree Road NE
Atlanta, GA 30326-1276

To the editor.

I have been working on a project involving System V UNIX on a 3B2, MSDOS, OS/2, and AIX-
PS/2. Code should be portable from one machine to another. Unfortunately, this seems to
mandate the use of C. Although there are multiple sources of DOS and OS/2 compilers for
Modula-2, we have been unable to locate a Modula-2 compiler for AIX-PS/2 or the 3B2. If any
reader of this journal can provide information on availability of compilers for these
environments, I would be very interested.

Modula-2 is a wonderful language, but until it is as available as C, I will be forced to stick with
C. Companies already selling Modula-2 take note: you could sell more compilers for the
environments you ALREADY support, if you would just support more environments.

€)

#>

- page 6 -

Editor MODUS QUARTERLY
K. N. KING

Department of Mathematics and Computer Science
Georgia State University

Dear Kim,

In issue #9 of MODUS QUARTERLY you introduced the ideas of publishing
articles about the use of M2 in industry and of instituting a list of
suppliers for M2-related software. To both items I like to contribute
in this letter.

I

Middle of 1986 I was engaged by the Austrian Federal Publishing Corp.
(Osterreichische Staatsdruckerei) to start up a production of CD-ROM
publications of jurisdictional literature. The project should begin
with the Constitutional Law of Austria together with all related
verdicts since 1909, then continue with an index of valid novellations
and is currently in the state of finishing the third publication, the
Decisions of the Supreme Court since 1945. Planned are about 25 more
items of similar nature. Target systems are 80286 computers, with a
graphic screen (Hercules or EGA standard) and a magnetic hard disk.

Being a rather new technology at this time, the use of optical disks
required access to hardware control. On the other hand, building up a
data retrieval system for mainly unstructured data in the size range
of 100 to 400 MB of course requires a high level language with certain
capabilities.
Other assumptions were that the database user should not be limited in
any way accessing the documents, which means structured search as well
as free input of any words, optionally linked together with relational
operators.
After some short evaluation I rejected my first idea of using ADA and
luckily ended up with Modula-2, system Logitech,
compiler was the only one worth considering, and even now that several
good products are on the market, Logitech's version 3.03 still seems
to be the only one really suitable for larger projects.
By the time this letter will be published, those last statements may
be outdated already, as I can see some very good systems on the way.
Some weeks from now I will be able to do some tests with the Taylor-
compiler, which from the technical specifications sounds promising.

The first two completed projects proved that the decision for M2 in
general was right, especially talking about the regular updates of the
CD-ROM publications and about the reusability of certain program
components. In the updates data structures changed significantly, yet
the adaption works on the software for the new releases turned out to
be in the range of 1 1/2 man-month only (anybody ever tried to update
a 150.000 source-line C program one year after first completion?).
In a similar way the developing time for the third production (Supreme
Court) was reduced to about 65 percent compared to that of the first
production (Constitutional Laws). Both figures are the best argument
for using a Modula-2 system in a series of related software products.

In 1986 this

m

- page 7 -

i

Another, quite different, argument for M2 against other general
purpose languages was the technical nature of the access to optical
disks. The advantage of CD-ROM's for data storage is their capacity
and certainly not their "speed" of data retrieval. Compared to
magnetic disk storage the access time can be 5 to 8 times slower, when
for some reasons a drive reset is required, that factor goes up one
magnitude.
To ensure a decent performance of the retrieval system, some work has
to be done already during data input by the user, commonly called
multitasking.

Finally, due to the very high ergonomical requirements every program
ended up with some 240K code in size, which needs a reliable overlay-

To show the complexity of the retrieval software, I wouldsystem.
like to list some of the features:
- boolean search links via and/or/not/adjacent - operators,
- left- and/or right-truncated search parameters,
- synonym recognition
- intermediate result lists with full document information,
- output to screen, printer and magnetic storage, graphic window

system
- text processing capabilities
- context sensitive help
- mouse or keyboard operated
- optimal hardware tolerance

i>

Of course, when the projects where first considered, I did not start
programming retrieval software right away.
produce an adequate library, which soon turned out to
subsystem rather than a library. This subsystem is currently marketed
separately from the CD productions under the name M2T0S (Modula-2 Task
Organized Subsystem), and is already in use in several major software

Its price is rather high but

The first thing was to
become a

producing companies in Austria,
developers seem to like it.
Modula-2 purists might say that some of the components of this system
would still suggest the use of ADA instead of Modula-2, and that some
of the things implemented cannot really be realized by using Modula-2
only. In fact, they can, if one considers the extensive use of CODE-
statements not too bad as a programming style. The modules which are %)
programmed this way are well packed and hidden, so to the application
programmer the subsystem looks like M2 still. The main objective in
this development was a practical approach rather than an academical.:

i
Some components of the M2T0S - package:

- real-time kernel with self-initializing tasks, message system, task
protection.

- re-entrant BIOS substitution
- run-time loading of drivers
- graphics library for different standards, access several graphic

controllers from the same program (run-time loaded drivers).
- text output is done in graphic mode only, via an XWindows-like

window system.

- page 8 -

- low-level support for most CD-drives, high-level support of external
CD-drivers and for MSCDEX

- virtual memory access and handling, both EMS and high RAM
- virtual data types (arrays without size limits)
- keyboard and mouse trap handler (macros up to the size of sub

programs can be logically linked to a key or to a gadget)
- text processing features with an object oriented approach
- printer spooler task

I think, from the range of items covered, it can be concluded that the
package is strictly "developers only", and rather not useful for
occassional users of Modula-2, but on the other hand provides help for
almost everything that could come up in application programming.

It might be remarkable that, in a development system initially
designed for doing database retrieval systems, there is not even an
indexed file system included. Fact is that the approach of several
100MB data cannot be done in an dBase-like manner anyway, so this part
of the retrieval software is developed and optimized separately for
each single production. In the projects mentioned above, this section
comprises approximately one fourth of the total code size.

It was suggested several times to adapt the package to other compilers
and to port it to other machines.
As to adaptions, I first intended to make a version for the JPI-
system, which unfortunately proved not powerful enough, especially
with using overlays and run-time loading of code. Their coroutine
transfer is also a bit too slow to work on more than 4 tasks at a time
(some of my programs run on 8 tasks, M2TOS at least theoretically
provides for 16).
A more promising adaption project (of minor priority, simply because
there is no actual market yet) is a version for the Taylor Modula-2,
which I hope to commence this year still.
Porting to other machines was even more frequently requested.
Currently I am working on a release for Unix machines (PCS, 68xxx).

Initially I mentioned that this letter will be both a project study
and a product announcement. The section project study of course was
not covered to the extent the topic would deserve, but I hope it
became obvious that M2 as a systems design language has its strong
position. In case there should be interest in the topic, I am ready
to supply a more detailed paper on implementation details of both
M2TOS and the CD-ROM projects. For specific questions please use the
mailing address below.

m

Yours sincerely

Ing. Peter Seewann
pHs software engineering
neusetzgasse 8
a-1100 Vienna Vienna, October 1988

- page 9 -

A Modula-2 Update Utility

Larry Irwin

Computer Science Department
Ohio University
Athens, OH 45701

irwin@ace.cs.ohiou.edu
LIRWIN0OUACCVMB.BITNET

•..!attIoucsaceiirwin

1. Introduction

Because of separate compilation, when a definition module is
changed, any module which depends on it must be re-compiled, which
leads to further re-compilations. With even a small program, the
network of dependencies can be confusing.1

€>The dependencies among modules can be represented as a
acyclic graph (DAG) with files as vertices, moreover

More structure comes
files for each

directed,
there is hierarchical order in the graph,
about because of the four-member family of
non-foreign, non-main module name, that is, the two source files
of definition and implementation and their corresponding compiled
versions? and these files are related as

X.DEF -> X.SYM -> X.OBJ <- X.MOD.
While imports are mentioned in the source file, they have their
effect from the corresponding compiled file.
file imports from SYM files in its own and other families.
Dependency is of two kinds: 1) because of effective import
(explicitly or implicitly) and 2) a compiled file depends on its
associated source file.

In effect, an OBJ

Each file has an associated date. Thus when a source file is
revised by editing, it obtains a new date. The update problem is
then to re-compile the revised source file and all its
descendents. The problem is solved by a depth-first traversal of
the hierarchical DAG with post-order compilation. The graph can
be built on-the-fly by starting with the main module and following
the import paths depth-first, taking into account also the files
implied in a family. A file is up-to-date when its date is later
than every file it depends on.

:

The update problem can be solved by a simpler, bottom-up,
breadth-first traversal of hierarchical levels, when one already
has the graph in-hand (because it
update).
numbered.

was saved from a previous
But this requires that the levels of the hierarchy be

Parnas [1] has defined a level numbering scheme: the
level number of a file is one more than the maximum level number
of files it depends on, or else it is 0 (when it is absolutely
dependent). Source files are level 0.

- page 10 -

mailto:irwin@ace.cs.ohiou.edu

2. Example

Consider the following up-to-date, small (but not so simple)
program of three module families:

Level Depends onFile Date

Ml.SYM, MO.MOD
Ml.SYM, Ml.MOD
Ml.SYM, M2.SYM, M2.MOD
M2.SYM, Ml.DEF
M2.DEF

3350MO.OBJ
Ml.OBJ
M2.OBJ
Ml.SYM
M2.SYM

3353
3359
2340
1330

The source files have not been put in the File column. The reader
is requested to draw the corresponding graph with arrows pointing
at the dependent file. For example, an arrow goes from Ml.SYM to
MO.OBJ, and an arrow goes from MO.MOD to MO.OBJ.

If a change is made to M2.DEF, then all of the source files
must be re-compiled, moreover Ml.DEF must be re-compiled before
M2.MOD. If a change is made to Ml.DEF, then only Ml.DEF and all
the MOD files must be re-compiled. As always in Modula-2, if a
change is made to any MOD file, then only that file needs to be
re-compiled.

3. The Utility

The utility was implemented in Hamburg Modula-2 for VAX/VMS
as a project in the Software Engineering Project course at Ohio and
is available at modest cost on a PC floppy disk containing the
source code, installation files and a user reference manual. The
utility is composed of 13 modules,
encapsulating the graph could be used for any similar update
problem, e.g., spreadsheet cells. Some modules encapsulate features
which may change during porting, such as directory search,
operating system services or a different compiler,
representation of the graph and its node contents are saved in a
so-called MUG file, so that unchanged source files need not be
re-read. Having specified the main module name, most of the time
the user needs only to enter the MU command with no parameters in
order to bring a collection of modules up-to-date.

The essential module

A

m
Reference

1 "On a Buzzword: Hierarchical Structure",
North Holland,

1. D. L. Parnas,
Proceedings of IFIP Congress 74, Amsterdam.
1974.

- page 11 -

"Language Independent" Programming

Dr. Dennis S. Martin
Department of Computing Sciences

University of Scranton
Scranton, PA 18510

BITNET:MARTIN©SCRANTON

Abstract.

How much of programming depends on the nuances of syntax in
At the University of Scranton, we have conducted aa language?

successful experiment in "language independent" programming
and Ada.

very
using a Language Sensitive Editor for Pascal, Modula-2,
YJe have observed that beginning students are not confused and have
not traded proficiency in tool-using for understanding. They make

transition from Pascal to Modula-2 to Ada, addinga very easy
concepts of programming instead of being overwhelmed with the
details of the syntax of new languages. There has been an increase
in productivity and quality in their software system development. d

Case Study: VAX Language Sensitive Editor f21

Our students start the major with a one semester introduction
to computer science using Pascal. Modula-2 is used for most of
the remainder of the coursework in the major and we use Ada in the
programming languages course in the junior year. We are using the
VAX Language Sensitive Editor (LSE) running on a VAX/VMS system to
support these languages (among others). This editor can be user-
customized for VAX supported languages and allows easy development
of support files for other languages. VAX Pascal is a very
powerful, non-standard version of the language and we chose to
modify the editor for a more standard Pascal. Modula-2 is not a
VAX supported language and we developed our own file for the
language,
facilities.

For Ada we have only modified the documentation

#The VAX LSE uses Extended Backus-Naur Form (EBNF) [1] to
generate programs. In addition to final code, the source file
contains placeholders, which will be replaced by appropriate code.
Placeholders have distinguishing delimiters, such as %{ }%
%[]%. These are standard printable characters which
syntactically meaningless in the language so the file is always
printable with the placeholders easy to observe,
delimiters determines if a placeholder is required or optional.
A placeholder is either typed over or expanded. __________
placeholder is a single element, such as an identifier, and must
be typed over. Placeholders are expanded using control keys. A
placeholder expands to a template of code, perhaps after choosing
the template from a menu.

or
are

The choice of

A terminal

Some placeholders, such as

- page 12 -

automatically duplicate with proper%[statement_list]%..,
indenting. Punctuation is inserted automatically.

A particularly convenient method of programming, illustrated
below, is to type in and expand a special placeholder called a
token. Tokens are language keywords, such as IF or FOR, which are
typed in and expanded to a template. This is much faster than
following a chain of menus and it is particularly useful when
editing an existing file. Tokens may be typed in without regard
to case and, when expanded, are corrected to the proper case.

A new file contains only a root placeholder, such as
%{program_unit}% for Pascal or %{compilation_unit}% for Modula-2.
Expanding %{compilation_unit}% in Modula-2, for example, produces
the following menu:

-> %{program_module}%
%{definition_module}%
%{implementation_module}%

The cursor control keys move the arrow to choose the appropriate
type of compilation unit. The chosen placeholder then expands into
the template for the chosen type of unit. This template contains
placeholders for the unit name, comments, library units imported,
declarations, and body,
appropriate blank lines.

9

indented withAll are properly

The LSE command COMPILE causes a copy of the source file to
be automatically saved and compiled,
unsuccessful, an error file is created.
REVIEW the error file.

If the compilation is
The programmer then can

This consists of an automatic process to
split the screen into two windows, one containing the source file,
the other the error file. The programmer reads an error in the
error window then switches to the indicted location in the source
file and corrects the error,
program compiles successfully.

This process is repeated until the

Modula-2 is a library based language with type checking across
module boundaries for the information needed to properly use
imported types, variables, functions, and procedures,
allows the programmer to use windowing to look at the definition
modules of imported units. This saves much time.

9 The LSE

We have tried to provide a common "look" for all three
languages. Our LSE version of Pascal was designed with a built-in
"Modula-2 style" and both the Pascal and Modula-2 editors use a few
nice Ada features. Modula-2 is a case-sensitive language. Our
Pascal editor follows Modula-2 case rules in code that it
generates. This produces much more readable Pascal code. Ada is
not case-sensitive but is generated by the VAX LSE using consistent
case rules. Unfortunately, it uses C case rules with reserved
words lower case,
consistency of case,
sufficient.

:

We have not found this a problem,
supported by a case-correcting LSE,

The
is

- page 13

Modula-2 requires end delimiters on IF, FOR, and WHILE,
requires 11 tagged11 end delimiters (IF ... END IF, FOR ... END LOOP).
We always generate tagged BEGIN ... END (* ... *) pairs in the
Pascal statements. This eliminates one of the most persistent
problem areas in Pascal coding. We add comment tags (END (* if *) ,
END (* LOOP *)) in Modula-2. We use similar indenting styles and
rules for the use of blank lines for all three languages.

Consider the expansion of the token Pascal placeholder IF.
Its template is

IF %(expression)% THEN BEGIN
%(statement_list}%..

%[END ELSE IF %(expression)% THEN BEGIN %(statement_list)%..]%. .
%[END ELSE %(statement_list)%..]%
END (* IF *)?

The placeholder

Ada

%%(END ELSE IF %(expression)% THEN BEGIN %(statement_list)%..]%

If expanded, itIt may be expanded or deleted.is optional,
becomes the template

END ELSE IF %{expression)% THEN BEGIN
%{statement_list)%

The ellipsis (..) indicates that the placeholder will be
optionally repeated.

This produces code in the following style:

• •

IF SexCode = 'M' THEN BEGIN
WriteLn (1Student is male.1)

END ELSE IF SexCode = 'F* THEN BEGIN
WriteLn (‘Student is female.1)

END ELSE BEGIN
WriteLn ('Error in Sex Code.1)

END (* IF *);

I

#

The similar statement in Modula-2 would be generated with very
similar keystrokes and would look like

IF SexCode = 'M» THEN
WriteString ('Student is male.');
WriteLn

ELSIF SexCode = 'F' THEN
WriteString ('Student is female.');
WriteLn

ELSE
WriteString ('Error in Sex Code.');
WriteLn?

END (* IF *)?

- page 14

Using the LSE, we can mimic features not in a language. For
example, following Ada, expanding the parameter placeholder yields
a menu of parameter types in both Modula-2 and Pascal of in, out,
and in-out. This corresponds to the data flow rather than to the
implementation-inspired variable/value distinction of these
languages. In parameters become value parameters and the others
become VAR parameters with the words in, out, and in-out remaining
in the comments. The data flow associated with a procedure, an
important design consideration, is exhibited.

A very important part of good design is to force the
programmer to articulate the reasoning behind the code. This is
accomplished when the programmer learns to develop useful internal
documentation for a program. Extensive documentation is not
necessary but good documentation is. The usual excuses for poor
or non-existent documentation include not knowing what
documentation is needed nor where it is needed. Another
consideration is the amount of time that it takes to type
documentation. These objections are answered by carefully chosen
documentation templates automatically inserted, with titles, at
the appropriate places in the code.

At the simplest level, documentation consists of a clear
explanation of input, processing, and output, that is, what
information is available, what the unit or procedure is supposed
to accomplish, and the results desired. For example, our unit
comments template expands to about a screen of text. It includes
places for author, title, unit type, date, abstract, unit input,
unit output, and modification history. Text automatically wraps
to the next line, properly indented. Comments for procedures and
functions are also standardized, requiring data flow, pre
conditions, post-conditions, implicit arguments, implicit results,
and a functional description. Another critical area for
documentation is in loops. Documentation must show under what
conditions an exit from the loop will occur.

Conclusion.

m As computer professionals, we need to use more computer
intensive tools to enhance programming. Good tools, used properly,
can be effective in transforming good algorithms into good code,
free from both syntactic and logical mistakes, in an efficient

With an LSE, the programmer uses fewer keystrokes.
The

manner.
producing more code per time period,
concentrate on concepts rather than syntax, letting the tools
provide the correct syntax, facilitating better quality code and
reducing the need for extensive syntactic corrections. With good
tools, it is easier to use better but less familiar language
features.

programmer can

Finally, the programmer is encouraged to adhere to
documentation standards, significantly reducing maintenance costs.
The emphasis in programming must shift from syntax to concepts.

Because the LSE is user modifiable, we will continue to adapt

- page 15 -

our templates as our understanding of what we want to accomplish
increases.

References.

Beidler and Jackowitz, Modula-2, PWS Publishers (1986).[1]
Guide to VAX Language-Sensitive Editor and VAX Source Co^p.[2]Analyzer. Digital Electronic Corporation, 1987.

VAX and VMS are trademarks of the Digital Equipment
Corporation.

I'
'

?

#

- page 16 -

An Extensible User Interface Toolkit in the PEM Environment

Frode L. 0deg&rd & Tomas Felner

Modula-2 CASE Systems A/S
Maridalsveien 139, N-0461 Oslo, Norway

e-mail: frode@m2cs.uu.no & tomas@m2cs.uu.no

3. NeWS: an Extensible Display Server

NeWS [Gosling89, Sun87a, Sun87b] was
developed by James Gosling et al. at Sun
Microsystems and introduces a new and
very exciting approach to display server
design. NeWS is an interpreter for the
PostScript
[Adobe85a, Adobe85b] with extensions
for light-weight processes, events,
display operations and object-oriented
programming.

PostScript is a general-purpose, stack-
oriented language with a device
independent graphics model; in many
ways it is a high-level variant of Forth.
Pointers are not supported (PostScript
has dictionaries instead) and garbage
collection is built into the language
interpreter.

Non-extensible display servers employ
fixed, low-level protocols resulting in
complex client-side toolkits. The X
[Scheifler86] window system is a good
example. Another problem with non-
extensible display servers can be the
amount of packets exchanged between the
server and its clients.

1. Introduction

With PEM [M2CS89], Modula-2 CASE
Systems (M2CS) provides an interactive
software engineering environment for
large-scale Modula-2 [Wirth88] projects.
PEM tries to bring the benefits of systems
such as Interlisp-D [Barstow84] and
Smalltalk [Goldberg83] to the Modula-2
user. PEM includes an object-oriented
database, an object-oriented script
language, a program synthesizer (editor,
interpreter, debugger), an incremental
compilation system, support for meta
programming, version and dependency
management and a hypertext system.

PEM is unique in the sense that it
supports exploratory programming and
rapid prototyping as well as cross
development (for embedded systems).
The PEM system runs on a Sun
workstation and offers a window and
mouse-oriented user interface.

We have chosen the NeWS window
system from Sun Microsystems as a basis
for our user interface toolkit This paper
explains why. It also introduces event
projection as a technique we have
employed with great success in dealing
with an extensible display server.

2. Primary Goals

Since the modules were to be used by
outside programmers as well as M2CS
employees, they had to satisfy the usual
demands for reusable components (simple
and clear semantics, ease of use, high
implementation quality).

The toolkit also had to be flexible and
easy to extend.

£ languageprogramming

§

NeWS was designed as an extensible
display server to solve these problems. It
has a real programming language as its
protocol and can work well over a modem
connection for some applications.

NeWS clients can be written entirely in
PostScript and downloaded to the server.
NeWS programs can open files and even
communicate over the network. On this
level, clients are usually machine
independent and are distributed in source
form. There are many public domain
utilities available, including multiple
window classes, a Smalltalk-like class

- page 17 -

mailto:frode@m2cs.uu.no
mailto:tomas@m2cs.uu.no

browser and a powerful, visual debugger.

NeWS clients can also be compiled
programs communicating with the server
on a suitable level of abstraction. Such
clients will typically transfer application-
specific PostScript code (procedures,
classes) to the server at startup. When
the client wants to do a complex graphics
operation, it sends PostScript code to call
a downloaded procedure. When a client
downloads PostScript code, NeWS allows
the client to decide whether the code is to
be kept for further sessions. This permits
reusable components (such as window
classes) to be filed in in a Smalltalk-like
manner.

object-oriented extensions. However,
dealing with events in a consistent
manner is almost impossible on the client
side without a set of reusable modules. If
events are not propagated to the client in
a consistent manner, reusability on the
PostScript side will be limited in large
projects.

4. Event Projection

When designing the toolkit, the first step
was finding a flexible and consistent
scheme for event handling. We soon
realized that there would be events on
different levels of abstraction. For
example, a PostScript button class would

t

■

Fig. 1: a sample NeWS/PEM session

want to tell the client about each button
click, while an icon editor could operate
entirely on the server side and only inform
the client when the user wanted to save
the bitmap (after having clicked on a
button). Furthermore, it was clear that
different
information would be supplied for different
types of events. For the icon editor it
would be desirable to send the whole
bitmap to the client side as part of the
event information when the user clicks on
the “save” button.

PostScript code can handle events locally.
For application-specific code, event
information can be sent to the client An
example would be a client which opens a
window with two buttons labeled
“Modula” and “Pascal”. The PostScript
code would handle the low-level events
like depressing a mouse button and would
send the string “Modula” to the client if
the corresponding button was clicked on
by the user.

Reusability is easily
PostScript code, since NeWS provides

(and types) ofamounts

achieved for

- page 18

• a handler in the client module called by
the EventListener

handler installed by a PEM
applications programmer called by a
gadget module

For each level of abstraction, an event
may or may not be propagated to the next

Starting on the PostScript side we
implemented a class UIEvent with a
method to send event information
(represented
PostScript array) to the client side. A
scanner was then written on the client
side to read event information from the
server.

• a
dynamic-lengthin a

I
EventListenerButton object

message:
"the user
clicked on
me!"

i
1

Button module

iI
Application!

0 NeWS Low-Level
-— event NeWS side I Modula-2 side

Fig. 2: different levels of event handling

level. Given En as the set of events which
may be propagated to a level n+1 from
level n, we have

An event packet sent from the server
consists of a two numbers identifying the
PostScript object responsible (a button,
for example) and a list of additional items.
When the event packet is read on the
client side, a handler procedure for the
event is found (typically in the module
Button in this example) and called.

Since the module reading event packets
cannot make assumptions about the
optional items, the stream connection is
propagated to the handler procedure which
subsequently reads any remaining items
in the event packet as well as the
termination symbol.

The handler then determines whether to
update data structures and/or call a user
handler (provided by the module which
imports from the toolkit).

To summarize, events can occur on many
different levels of abstraction:

• a primitive mouse or keyboard event
which activates the NeWS event
handling code

• a “mouse clicked in your area” event
propagated to a higher-level Post
Script object (such as a button)

• an event packet sent to the Modula-2
side

l

card En > card En+1.

Since we usually have

card En > card En+1 ;
ior even
i

card En » card En+j,
i

we use the term event projection instead
of event propagation. The most obvious
example is when complex event handlers
reside on the server side and don’t need
to inform the client side at all. On

event

i

;
!

higher-levelconvenience,
information can be sent to the client side.

5. General Architecture

PEM user view the toolkit as a collection
of Modula-2 modules for building user
interfaces. There is a common window
module and multiple gadget modules.

A gadget is an item which can be placed
inside a window. Gadget modules import
from the common window module.

I
!

- page 19 -

i

The window module and all gadget
modules
EventListener to have relevant event
information delivered to their own internal
handler.

EventListener talks to NeWS via another
module called DisplayServer. A gadget
module uses a direct stream connection
obtained from DisplayServer to download
its PostScript code at startup (provided it
isn’t already resident).

moves are read and written in a textual
manner. Given such a gadget, the
programmer can easily build a window
with a ChessBoard gadget, a
button, a “help” button, etc. Implementing
PEM’s graphics components as gadgets
instead of specialized windows thus
results in a higher degree of reusability as
well as increased flexibility.

themselves withregister

“quit”

*s WindowSocket■downloadeo^
PostScript
classes
(Window,

Button,
• Scrollbar...

Stream
i \ %Scrollbar

Button
RadioButton
TextView

DisplayServer
-

EventListener
NeWS event manager1

Fig. 3: architecture of the PEM user interface toolkit

7. Implementation IssuesNew tools and modules can use a direct
stream connection as an alternative to
using existing toolkit modules. This is

provided as an option to be used only
when reusability must be sacrificed for the
greatest flexibility.

6. Gadgets

Gadget modules usually have the same
name as the PostScript class they
interface to. The module body will verify
that the necessary PostScript class has
been downloaded

PEM includes a set of modules supporting
streams. A stream object supports device
independent 170 operations. There are
multiple driver modules for streams (e.g.
File, MemoryStream, Socket). The Socket
module is used to obtain a stream
connection to the NeWS server. This
driver supports asynchronous I/O, which
is closely coupled with PEM’s light
weight process library.

An EventListener object executes as a
separate light-weight process which is
activated when NeWS sends data. It is
possible to start several EventListeners,
by default a separate listener is started for
each display server used.

The toolkit allows the user to open
windows on several display servers. We
are also studying the possibility of moving
a window from one display server to
another. This would allow the user to
move from one workstation to another and
have running applications move with
him/her.

f

f
■;

i
Most gadget modules will allow their
clients to simply await an event as an
alternative to installing a handler
procedure for simple events.

Gadgets are easily added by subclassing
existing PostScript classes and writing
Modula-2 modules which interface to
them.

More and more high-level gadgets
being written. A ChessBoard gadget could
look like a new type of stream to PEM
programmers; a stream on which chess

- page 20 -

are

References

Adobe Systems, Inc., PostScript Language Reference Manual, Adobe
Systems, Inc., Addison-Wesley, 1985

Adobe Systems, Inc., PostScript Language Tutorial and Cookbook,
Adobe Systems, Inc., Addison-Wesley, 1985

Barstow, D. R., Shrobe, H. E., Sandewall, E., Interactive Programming
Environments, McGraw-Hill, 1984

Goldberg, A., Robson, D., Smalltalk-80: The Language and its
Implementation, Addison-Wesley, May 1983

Gosling, J., Rosenthal, D. S. H., Arden, M., The NeWS Book, Springer
Verlag, 1989

0deg&rd, F. L., PEM - A Programming Environment for Modula-2,
Modula-2 CASE Systems A.S, 1989

Scheifler, R. W., Gettys, J., The X Window System. ACM Transactions
on Graphics, 5(2), April 1986

Sun Microsystems, Inc., NeWS 1.1 Manual, Sun Microsystems, Inc.,
PN 800-2146-10,1987

Sun Microsystems, Inc.,
Microsystems, Inc., PN 800-1498-05, 1987

[Adobe85a]

[Adobe85b]

[Barstow84]

[Goldberg83]

[Gosling89]

[M2CS89]

[Scheifler86]

[Sun87a]

NeWS Technical Overview, Sun[Sun87b]

Wirth, N., Programming in Modula-2, 4th edition. Springer-Verlag, July[Wirth88]
1988

£

i

Sun Workstations, NeWS are registered trademarks of Sun Microsystems, Inc. PostScript is a registered
trademark of Adobe Systems, Inc. Smalltalk is a registered trademark of ParcPlace Systems, Inc. Interl-
isp-D is a registered trademark of Xerox Corporation. Our thanks to Don Hopkins, Stan Switzer, Bruce
V. Schwartz and many others for posting valuable NeWS utilities on USENET.

- page 21

Two Limitations of Modula-2

Rodney M. Bates
1513 Blue Spruce Road

Derby Kansas 67037
(316) 788-7566

find Modula-2 refreshingly clean and
there are two somewhat similar programming

little too

Compared to Ada, I
However,simple.

problems I have encountered where the language is a
It forces me to resort to some ugly hacking which I

take
simple.
consider worse than the added language complexity it would
to solve the problems more cleanly. These are real programming
situations I am now facing in Modula-2.

In the first problem, I want to define a module which
data structure and which exports an iterator to

named Visit
implements some
traverse the structure, calling a procedure formal
for every element. For example::

IDEFINITION MODULE TreeMod;

TYPE ElementTyp = ...;
TYPE TreeTyp = ...; (* probably opaque *)

(* various tree manipulation procedures... *)

TYPE VisitProc = PROCEDURE (ElementTyp);

PROCEDURE Traverse (Tree : TreeTyp ; Visit : VisitProc) ;

END TreeMod;

The internal data structure is sufficiently complex that the
only reasonable way to traverse it is with some kind of recursive
traversal, with calls on Visit located in several places in the
code and these executed at many levels of depth of recursion.
When I use Traverse, in almost all cases, I need to pass it a
Visit procedure whose body can somehow access various variables
and parameters accessible at the point where the call on Traverse

With the restriction that procedure actuals can only
be declared at the outermost level, the only way this can happen
is to use global variables. But I need to do this in code which
can be executed by multiple processes, so globals won't work.

A cheap approach is to package the necessary data in a state
record and pass the record around,
without change to the language by giving both
VisitProc an extra parameter of some relatively universal and
pointerish type such as SYSTEM.ADDRESS and using this to pass the
pointer to the state record around. Since different clients of
Traverse will in general have different state records, type
conversions are necessary. At least the use of the pointer
instead of the state record itself means it is the same size for
all clients.

A second approach would be

f fI
is found.

This can be done crudely
Traverse and

to weaken the rules about

- page 22 -

procedure parameters so they can have static environments as part
of their values. For example:

PROCEDURE PrintMatchingElements
(Tree : TreeMod.TreeTyp ; MatchValue : CARDINAL);

PROCEDURE Visit (Element : TreeMod.ElementTyp);

BEGIN
IF TreeMod.Value

= MatchValue (* a non-local reference *)
(Element)

THEN
PrintElement (Element)

END
END Visit;

BEGIN
TreeMod.Traverse

(Tree,
Visit (* an illegal actual parameter *)0

)
END PrintMatches;

■

Visit needs to be inside PrintMatchingElements in order to
refer to MatchValue. But, by existing rules, this makes Visit an
illegal parameter for the call on Traverse, since it is not
declared at the outermost level.

In Pascal, this is allowed,
procedure variables.
eliminated, it would be possible for procedures
non-local variables which didn't exist. For example:

It works because Pascal has no
If the rule in Modula-2 were simply

to refer to

MODULE M; !
IVAR ProcVar : PROC;

PROCEDURE P;

VAR PV1 , PV2 : INTEGER;

PROCEDURE Q;

BEGIN
PV1 := PV2

END Q;

BEGIN (* P *)
ProcVar := Q

END P;

BEGIN (* M *)
p;
ProcVar

END M;

- page 23 -

The call ProcVar is a call on Q, which uses PV1 and PV2.
But by now, P has returned, so these variables don't exist. What
happens cannot be explained without using machine level concepts,
and these will in general, be different for each machine/compiler
combination. The value of PV2 will be garbage, and something
unpredictable will get stepped on by the assignment to PV1.

* It is a well known consequence of the usual scope rules that
this kind of problem is impossible when there are only procedure
parameters but no procedure variables. It is possible to come up
with one or more systems of rules, each of which allows procedure
variables, doesn't restrict their values to outermost procedures,
prevents the kind of problem shown in the example, and is
statically enforceable. Unfortunately, these get pretty complex.
The appendix gives one system which I believe does all this.

However, this is obviously far too complicated. A system
as this would be more consistent with the philosophy of Ada

A much simpler alternative which
still solves the problem I have combines but does not intermix
the system of Modula-2 and that of Pascal.

There are two kinds of procedure types,
set of procedure types
rules.

such
than with that of Modula-2.

tOne is exactly the
currently in Modula-2, with the same

In particular, values must be procedures declared at the
outermost level.

Procedure types of the second kind are strictly incompatible
with those of the first kind. No procedure variables of these
types are allowed, only parameters. However, actual parameters
can be declared at any level.

Syntactically, this distinction can be made conveniently.
The former kind of procedure type is usable as a parameter only
if it has a type name, which is used in the formal declaration:

TYPE BoolProc = PROCEDURE (BOOLEAN);

PROCEDURE P (PFormal : BoolProc);
(* BoolProc is a type name *)

Here, PFormal is compatible with other variables
BoolProc, but all such values must be outermost procedures.

The new kind of procedure type is allowed only as
of a formal, so it
definition (not just
declaration:

of type I
■ the type

is denoted by putting the entire type
a type name) right into the formal

PROCEDURE Q (QFormal : PROCEDURE (BOOLEAN));
(* PROCEDURE (BOOLEAN) is a type definition *)

Here, QFormal is incompatible with any procedure variable.
a caller of Q can supply an actual parameter which does

not have to be outermost.
My second programming problem is similar,

the user of Traverse also

However,

except that now
must navigate (in my case, it must

- page 24 -

build) another complex structure which again can reasonably be
done only with a recursive traversal. The two structures are
different shapes and thus a single glorious recursive algorithm
to both traverse the tree and build the other structure can't be
constructed. Even if it could, that would mean abandoning the
abstraction of separate algorithms.

Thus the obvious thing to do is to use coroutines,
every time a SYSTEM.TRANSFER is done from one to the other, some
values must be passed,
globals, and again, this pair of coroutines must be executable by
multiple processes (each with its own pair), thus globals won't
work.

But

Again these can only be passed in

The approach I am now using, which works with the language
as is, is to use a state record and pass its pointer in global
variables but protect the exchanges between a related pair of
coroutines with mutual exclusion synchronization. Fortunately,
it is possible to arrange to do this only once when the coroutine
pair is created, rather than every time a SYSTEM.TRANSFER is
done.0 be to give

an additional
record pointers. These

of the language itself, since they
Modula-2. Putting skin

A more reasonable solution would
SYSTEM.NEWPROCESS and SYSTEM.TRANSFER each
parameter for passing around state
procedures are really part
cannot reasonably be written in
procedures around SYSTEM.NEWPROCESS and SYSTEM.TRANSFER does not
help; it only provides a place to put whatever hack is used.
Thus a language change really is required.

The extra parameters would be a very simple language change,
and I am proposing it as a solution to my second problem. For
SYSTEM.TRANSFER, the extra parameter is VAR. Whatever value the
caller supplies, the coroutine transferred to receives. This
implies that when a return to the original caller of TRANSFER
finally occurs, a new value of this parameter is returned,
supplied by whatever other coroutine transferred to the first

■

;

1
:
i

i
I
i

one.
For SYSTEM.NEWPROCESS, the new parameter is a constant

parameter. The type of NEWPROCESS *s formal P is changed to a
procedure type which accepts one VAR parameter of type
SYSTEM.ADDRESS. When the new coroutine starts, this formal
parameter will be equal to the value of the new parameter to
NEWPROCESS.

DEFINITION MODULE SYSTEM ...

TYPE PROCESSPROC = PROCEDURE (VAR ADDRESS);

PROCEDURE NEWPROCESS
(P : PROCESSPROC;

A : ADDRESS;
n : CARDINAL;
STATE : ADDRESS
VAR pi : ADDRESS;

);

- page 25 -

I
;

■

PROCEDURE TRANSFER
(VAR pi , p2 : ADDRESS ; VAR STATE : ADDRESS) ;

Even with the suggested change to SYSTEM.NEWPROCESS and
SYSTEM.TRANSFER, I regard the state record approach to be fairly
unpleasant. Intuitively, I feel that packaging state into a
record and explicitly passing it around was one of those
techniques which was appropriate perhaps twenty years ago, but
which the concept of local, automatic variables was supposed to
obviate. More concretely, it requires the deliberate
circumvention of the type rules, with corresponding loss of
static safely, in a setting which has nothing to do with low
level programming, machine dependencies, etc.

My language change proposal for the second problem merely
use the hack analogous to the one I have

I don't know of
makes it possible to
objected to as a solution to the first problem,
anything cleaner, however.

I realize than many regard complicating the language as a
terrible sin.
possible.
the
and dangerous ways.
tradeoffs between language complexity and program complexity.

€>:
I too believe in keeping things simple as

What I don't believe in is simplifying the language at
cost of greatly complicating programs written in it, in ugly

I think these proposals represent good

Appendix

This system allows procedure variables, doesn't restrict
their values to outermost procedures, prevents references to
nonexistent local variables, and is statically enforceable.

1. For every procedure variable and every constant
procedure formal parameter, define its "innermost value
scope" as the scope where the variable/formal is
declared.

2.;; For every VAR procedure
value
is declared, i.e.
the formal itself is declared.

formal, define its innermost
scope as the scope where the containing procedure

one level out from the scope where
!

3. It is an invariant that the
variable/parameter
innermost value scope or in a scope outer to it.

All assignments of procedure values VL
compile-time check that the innermost value scope of VL
is equal to or inner to that of VR.

formal is a form of assignment, for
purposes of this rule.

When passing to a VAR formal, the actual and formal must
have exactly the same innermost value scope.

value of a procedure
a procedure declared in itsis

4. VR have a: =

Passing an actual
to a constant

5.

- page 26 -

6. When calling the value of a procedure variable or
formal, PV, actuals passed to constant procedure formals
of PV will have to be declared at the outermost level
(since PV could be outermost) and VAR parameters must be
disallowed altogether. A consequence of this is that a
procedure variable declared at other than the outermost
level, of a type with a VAR procedure parameter can
never be called, and thus might be made illegal to even
declare.

7. These rules must be extended from variables and
parameters of procedure type to those which contain
procedure types. The definition of innermost value
scope is extended to variables/formals of records and
arrays which contain procedure types. The assignment
and parameter passing restrictions are applied to these
additional types. The innermost value scope of a
component is the same as that of its containing
array/record.0

8. These rules must also be extended to cover heap objects
which are or contain procedure types. The definition of
innermost value scope is extended to variables/formals
of pointer types which point to objecs of such types.
The assignment and parameter passing restrictions are
applied both to these pointer types and to objects and
their components accessed by them. The innermost value
scope of a heap object is the same as that of the
pointer used to locate it. !

Aside from its complexity, another drawback in this is that
the representation of -procedure values now must have both a code
pointer and an environment. This would be incompatible with
pointers to procedures in, for example, C, in case one wanted to
pass these between languages. But this is type-unsafe anyway.
Moreover, C necessarily must have a parameter passing convention
which doesn't match the reasonable (and universally used)
convention for Modula-2, which usually means there must be
compilers which understand multiple conventions and directives to
tell them which to use. Surely this procedure value
representation problem can be solved with no more ugliness than
is required anyway. For example, a compiler directive might call
for certain procedure types to be represented without the
environment, reverting to the rule that their values must be
outermost procedures.

i

3 i
i
j

I
!

!

*::
I;
'!,

:
!

- page 27 -

;

i

The integrated method has been adopted in several
environments such as the Cornell Program Synthesizer*73,
InterLisp*8J , Gandalf**3, Smalltalk* 1 01 , etc.

This paper describes the design of a Modula-2
integrated environment and the implementation of its
kernel on IBM PC/AT.

2. Modula-2 Integrated Environment and its Kernel

We have been making researches on Modula-2
environment fcr several years. Modula-2 is a hopeful
system programming language presented by professor
N.Wirth. It provides module facilities which is very'
essential to large software*11J .

At present, the environment includes a Modula-2
a linker, a run time debugger, a syntax

a Modula-2 design tool based on
automatic transformers between

high level languages*14 * 1 33 . As is discussed
the environment is lack of integration. So we are

develop an integrated environment which
the integration of the tools in the current

compiler,
directed
PDL* 1 3 3
different
above,
determined to
will support

editor* 1 2 1 ,
and several0

envnonment.

2.1 Overview of the integrated environment

The four goals in our mind when we design the
integrated environment are

1). providing interactive multiple-window user interface
Interactive user interface allows the user to detect

early so as to prevent thethe wrong
unnecessary actions of the environement. By means of the
multiple windows the screen can be used very efficiently
and the user may get more information from a single
screen.

operations l

0 2). inheriting the tools in the original environment
The new environment should be compatible with the

original environment and can inherit the software in the
original environment easily.

i

3).using a software information data base to manage tools
and projects.

All the tools in the environment can share the date,
base and be integrated loosely by the data base.

?4). using a kernel environment to support the integration
of the coding phase and the debugging phase.

Since the coding phase and the debugging phase are
most often repeated during the software development
process, it is significant to make the two phases
integrated tightly in a kernel environment. \

The whole integrated environment can be described by
Fig.1.

- page 29 -

the tools in
original

environment
kernel

environment
new tools

transformer -J

1i •

environment
information
data base

i

JL-

Fig.l Modula-2 integrated environment

iThe tools in the environment can be either integrated
environment information data base or

representation of
defined in the kernel

loosely by the
integrated tightly by sharing the
Modula-2 program which is
environment.

2.2 The kernel environment

The kernel environment implements the integration of
the editor and the debugger. It can also support the
incremental compiling and separate debugging of Modula-2
modules.

The kernel environment can be described by Fig.2.

Program
Internal

Representation
Transformer

C

Auxialary incremental
compiling
subroutines

editing running and
debugging
subroutinessubroutines subroutines

Auxialary
tools

editing
tools

debugging
tools

user interface of
the kernel environment

Fig. 2 the kernel environment
- page 30 -

/ t

■:-
• %•«/ ••

j

'
■

■ . .
5

.

•j->■ ,-v

V■

>.:■*

v’K. ■

:v
r

0 i-. ..J
■

i- -

ki ' “t
-

: ■ "

r
<r*'

rT ‘

-V ‘

.7.

> -•
i

j* «.

-?

'0
£ . ••ia.

£X
“

lO •?
■V .t1

\i O'-r^■i:
J. ■ ’

i '. J • •: j

*
v

■ “• s'*

:
4 :

X,

-r.:r ■

is.

'i:‘?-A
<;■ .:

- -
■

>• *•

Windows: Text Data Buffer Command Call Erior

Coiuvanir
block name
try

module cry;
type Data

local data:
x=aa

enum=(aa
var x: enum

i
i

block try executed

Fig. 4 the screen of the kernel environment

The kernel environment supports six windows which are
data window, call window, buffer window,

and error window. These windows are used
to display program text, to display the data when
debugging,to display the call relations of the procedures,
to edit programs,to display command prompt and to display
error information respectively.

There are four classes of commands in the kernel
environment. Each class of commands is provided with a
single menu. These commands are:

text window,
command window,

i

1). Editing commands
This class of commands are used to edit the program in

full screen mode or in syntax directed mode. A program
can be loaded into buffer window and then edited. Some

can lead to the incremental code
the

editing commands
modification automatically, i.e., after editing
program can be immediately debugged without recompilation.
For example, you may delete a variable declaration clause,
which will lead to the deletion of all the statement
related to the variables declared in the declaration
clause.

2). Debugging commands
This class of commands €•are used to debug the program.

at any place of
until a.break

from a
also

The user may set or reset break points
the program and can execute
point appears or
break point to another. The debugging
supports single step execution. At any time when the
program pauses, the data of all the procedures or modules
can be checked. The data are displayed in data window and
may also be modified when it is necessary.

Separate debugging is supported,
is compiled into ‘the tree representation(see Fig.3). The
module can be debugged even though the other imported
modules haven't been programmed. However, in such a case,
ther user should define the execution environment of the

data value in data window to

the program
continue executing the program

interface

As soon as a module

module by setting the
simulate the real execution environment.

3). File Commmands
This class of commands are used

including listing directory,
file, renaming a file etc.

to operate the filt-s
showing a file, erasing a

- nacre 32

4). Other commands
This class of commands include calling a Modula-2

program or an execution file and window operations etc.

Above all, the interface of the kernel environment can
be programmed by the user. The user may define his/her
own interface in a configuration file. The color of each
window,the size of editor Duffer and the other attributes
of the interface can be redefined by the user.

4. The Incremental compilation facility

In the original environment when a part of a module is
modified the whole module must be recompiled. For a large
module the recompilatin is usually much time-consuming.
The kernel environment supports incremental compilation
of Modula-2 module, i.e. as soon as some part of the
module is changed the kernel environment will adapt the
program tree accordingly, so that the user can continue
executing or debugging of the module. The incremental
compilation facility obviously improves the efficiency c£
software development. In fact it is also the key to t;
integration of the editor and the debugger. Because cf
the incremental compilation the environment eliminates
the difference between editing status and debugging
status.

In the program tree the description of each syntax
unit is local to several nodes so that there will not be

0

inconsistent description when modifying the tree.
Incremental compilation is implemented by a group of

incremental compiling subroutines including the scanner,
the scope handler, semantic analyser etc. When some

modified by the editor the kernel
will first set the text buffer to the proper

the scanner could scan symbols at me
create suitable scope status. By

of the syntax unit the kernel

syntax unit is
environment
position so that
right position and then
analysing the semantics
environment can determine the related nodes of the syntax
unit in the program tree. Finally the kernel environment
calls the related incremental compiling subroutines.

0

5. Separate debugging of modules

Modula-2 language provides module facilities, but the
original environment could only support separate
compilation of modules and could not support separate
debugging of modules. As a result, any module cannot be
debugged unitl the related modules are all implemented.

The kernel environment
traditional debugging but also
modules.

Isupport not only
separate debugging of

can

*Modula-2 module is in the way of
The kernel environment uses

the execution status of a user
traditional procedure calling stack

environment stack.

The execution of
interpreting program tree,
two stacks to represent
program. One is the
and the other is the statement

;

- page 33 -

Modula-2 is a kind of block language and
the statements is complex. For the following
segment

the order among
program

I :=1 ;
T:=TRUE;
WHILE T DO

IF 1=3 THEM T:=FALSE
END;
I:=1+1

END;
J:=J+1;

if the user sets a break point at the statement 'I:=1+1'
then the succeed
statement 'J:=J+1'
contains the statement itself,
stack is used to record the kind of the statement being
executed and the succeed statement of it. By means of the
statement environment stack the kernel environment can
resume the break point correctly.

In the kernel environment the single procedure or the

statement of it may either be the
or be the while statement which

The statement environment
i

single module can be debugged separately.
the module to be debugged is M which imports

The user can either debug the
execution environment

Suppose
modules Mi #M...../Mu .
single module M by simulating the
of M or debug the modules M+lMi i #Mi 2 , . . . ,Hi v. 1 where
{Mi 1 / Mi 2/.../Mi k} is a subset of {Mi .M2 ,...Mu I .

In order to improve the efficiency of debugging the
kernel environment provides the interface with the codes
generated by the compiler in the original environment. So
the correct nodules of {Ml,M2,...,Mn} can be compiled by
the original compiler to generate efficient codes. With
the interface provided by the kernel environment the new
debugger can access the data and call the procedures in
those nodules correctly.

The separate debugging of procedures is implemented
by simulating the execution environment of the procedures. €

Conclusions6.

At present ve only implemented the kernel environment
of the whole Modula-2 integrated environment. The kernel
environment supports incremental compiling
debugging of Modula-2 program in an integrated way. It is
written in Modula-2 itself. There arc
ten thousand lines of Modula-2 programs.

The software information data base has not
implemented and this is
do. After the data base is implemented the whole software
life cycle

and separate

altogether above

been
the future work we are going to

can be supported in an integrated way. We are
also going to add a configuration management system and. a
version management system
project documents can be managed efficiently.

to the environment so that tic

- page 34

■ -

•* •; *>

.r " I--

•• ' /V • ... : ■ ", -■ --■

.

0 ■■r ■

& * v. • ::: . i. I

■

.

-
■ n-.:

5 ‘

V

■ ; V? •

• •:
.ft

i

■ t ■ . .

:i. ■. .

0
-. ■ ;!

. :* -
■= : -

•; ■

* •. >• i
3f* •

;• £ ■ ' -

. ■

■ 5, .

v- - V;t5 K/i • ■

■■ . *■

; -W. -
*«v -

i&cj

;V:. . >:.-T

•. ?i:-y- : .-

iv: :?-:A

■ •(

s: ‘ ‘-* T/V*<

'

... ... f
■ • • - -. V: .

The Formal U.S. Response to ISO on the Draft Proposal for Modula-2

The IEEE working group charged with representing the interests of the United States to WG13 of
SC22 of JTC1 of the ISO/IEC requests that the United States register its vote against the
publication of DP10514 (SC22/N738, referred to here as D106) as a Draft International Standard
for the following reasons:

0. We believe that the US community would not accept the current Draft Proposal (DP) because it
neither codifies established practice, nor gives adequate justification for its differences therefrom.
In 1987 the U.S. committee drafted this statement.

The general philosophy of the committee and what the committee felt to be the charter for
Modula-2 standardization:
1) Garify imprecisions and contradictions in the language as we know it
2) Avoid removing language features unless necessary
3) Avoid changing language features without good reason
4) Avoid semantic changes that are not associated with syntactic changes
5) Minimize language extensions
6) ‘Deprecate’ obsolete features rather than removing them (i.e., have compilers accept these '

features while issuing warning messages, and warn users that such features may not be
supported in the long term)

7) Rag dangerous programming practices, often by importing from SYSTEM.
We are disappointed that WG13 has been unable to state its goals or philosophy.

1. The document is incomplete, has many open ‘to-do’ items, small errors, etc. We are extremely
concerned that there has been no formal (e.g. automated) verification of the VDM.

2. Although the definition of Modula-2 should be fully and separately supported both by VDM
and by English text, we find that in the D106 neither method adequately defines the language.
D106 uses English text too sparingly and the text is often incomplete and inadequate. The dialect
of VDM used in D106 is still undefined, leaving the DP in the illogical position of providing an
undefined definition of Modula-2. We cannot support the definition given by the D106 since we
cannot know what the definition means. A reference to an out-of-print book [Jones80] is not a
legitimate substitute for a definition, especially as that book does not describe the dialect of the
VDM used in D106; neither is a reference to a moving target such as the new VDM-SL NWI. We
agree that having the VDM is a good idea, provided the formalism has a complete, stable, and
publicly available definition, either included in the DP or referenced by it. If not so defined, the
formalism must be removed.

i

€3. Alternative tokens §5.5. We still hold our position of August 1988 that the alternative symbols
for square brackets (“ ”) create unnecessary syntactic ambiguity to no positive gain. We
reiterate our proposal that “ (! ” and “ l) ” be used instead.

4. Requirements clauses §4.11. The various minima suggested in §4.11 are unnecessary,
technically problematical, and have the potential of delaying the standards process if adopted. We
propose that all suggested minima be eliminated except for the single requirement that SET be large
enough to cover CHAR.

5. Value constructors §6.7.5. There is general consensus against array and record non-constant
value constructors. They add no new functionality at significant cost both to the definition and to
compiler complexity. Many would be willing to undo Wirth’s dynamic set value constructors, if
that were necessary to get rid of array and record value constructors.

March 28,1990 Formal Comments of the U.S. TAG to WG13 Page 1 of 5

- page 36 -

6. Comment bodies §5.8.1. We believe the intent of the language comment facility is
a. Comments shall not change the meaning of the program, and
b. As far as possible, one should be able to convert any piece of legal program text into

comment by enclosing it in “ (* ... *) ” brackets, regardless of the presence in that text
of comments, compiler directives, strings, or other constructs.

It is important that the DP clearly state this intent, even if it cannot properly be captured in a syntax
specification, and that the implementor be encouraged to honor this intent.

7. Compiler Directives §5.8.2. We note several problems with compiler directives:
a. A “$” is a national currency symbol, and is not therefore appropriate as the default directive

symbol.
b. Arbitrary white space before the “$” unnecessarily complicates scanning the directive.
c. The nesting interaction between directives and normal comments is likely to cause

problems.
We reiterate our suggestion of 1988 that “<*” and “*>” be used as bracketing symbols. It should
also be stated that compiler directives can be commented out.

8. Machine Addresses in Variable Declarations §6.2.5. We request that MACHINE ADDRESS be a
record type in accordance with the proposal presented at Linz by Keith Hopper of New Zealand.
In D106, MACHINE AD DRESS is a function; since function calls cannot appear in constant
expressions, this precludes the intended use of MACHINEADDRESS as a way to specify the
address of a variable.

9. Constant Expressions §6.7.7. This section requires constant real expressions to yield the same
result whether computed at compile time or at run time. Although we note that a significant subset
of the potential users of Modula-2 insist on this property, it causes a severe problem on machines
where real arithmetic is dynamically changeable. For example, on a machine with IEEE-754
floating point, the declaration,

CONST HalfPi = PI/2.0;
will compute a value dependent on the current rounding mode of the floating-point operations.
Since this mode can be changed during program execution, the computed value cannot in general
be decided at compile time. While this example could in principle be dealt with by deferring
evaluation of the constant until execution time, the problem is insuperable in cases such as

TYPE A = ARRAY[1..TRUNC(expr)] OF INTEGER;
where the value is required at compile time but cannot then be computed. This problem should be
addressed and resolved.

p. 10. Exceptions §6.12, §7.3, §8.2, Annex G. D106 does not include a single complete model for
O adding an exception-handling capability to Modula-2. Since most of the proposed libraries

presuppose that such a capability is defined, the failure to reach closure on this issue has an impact
on both the definition and the standardization process. The evaluation criteria offered in N328 §3
appear sound to us, and in the light of these criteria we observe

a. Any proposal meeting these criteria is likely to involve a language change too great to be*
admissible at this stage in the standardization process, and

b. Any proposal not involving a language change is unlikely to offer sufficient benefit to
justify its inclusion.

Accordingly, we propose that all references to exception modules be removed from the DP. If
WG13 believes that one final attempt should be made to revise this facility, then we suggest that a
very simple and primitive set jmp/long jmp model, such as D70/N247 proposal 2, if not overly
embellished, may provide an approach that can yield an acceptable minimal proposal in the time
available.

i

March 28,1990 Page 2 of 5Formal Comments of the U.S. TAG to WG13

- page 37 -

11. CAST * bitsize §7.1.3.4. The definition of CAST should be changed so that
a. The effect of CAST on values of ambiguous sizes (i.e.the absract types Z, R) is

implementation-dependent,
b. The CAST of a typed value into a type of different size is implementation-dependent, and
c. A CAST of a value designator whose alignment is “incorrect” for the target type is

implementation-dependent.

12. Lexis of Identifiers §5.3. If low-line is to be permitted as a component of an identifier,
then it should be permitted wherever a letter is permitted. The lexis should not be made more
complicated merely to enforce one body’s view of good taste.

13. Termination §7.1.2. We reiterate the US position of 1989 as described in P155, dated 4
August 89. Termination as drafted is unnecessarily complex, provides little additional benefit over
PI55, and has undesirable interactions with exception handling and coroutines.

14. Forward reference pointer types. The problem exhibited by the following apparently legal
code fragment should be resolved:

TYPE T=Q;
PROCEDURE a;

VAR v: ~T;
PROCEDURE b;
BEGIN

v*:=x;
END b;
TYPE T=R;

END a;

15. SYSTEM module §7.1. In abstracting a storage model underlying SYSTEM, the D106 lets the
abstract model pervade the definition module. Thus what should have been simple access to
machine primitives has become complex operations on pieces of storage that are rarely directly
supported by the native hardware. The DP should not require module SYSTEM to export constant
and type identifiers other than the following:

CONST
LOCSPERWORD = (* implementation defined *) ;
BITSPERLOC = (* implementation defined *);
BITSPERWORD = BITSPERLOC*LOCSPERWORD;

c
(* what code generated by one-pass compiler? *)

TYPE
LOC; (* an opaque type equivalent to SET OF [0. . BITSPERLOC-1] *)
WORD; {* an opaque type equivalent to SET OF [0. . BITSPERWORD-1] *)
BITSET = SET OF [0..BITSPERWORD-1]?
ADDRESS = POINTER TO LOC;
MACHINEADDRESS = RECORD (* implementation defined *) END;

(* required by KH proposal *)

C

The identifier ADDRESS VALUE should be removed, as CAST is sufficient. Furthermore, the
system function procedures SHIFT and ROTATE should operate on and return values of type
WORD so defined:

PROCEDURE SHIFT
PROCEDURE ROTATE (value: WORD; amount: INTEGER): WORD;

As decided by WG13, we request that MACHINE ADDRESS be a record type to be used in fixing a
hardware address value in the manner proposed by Keith Hopper (see #8 above) as follows:

VAR v [MACHINEADDRESS{MediumModel,OFEH,0D00DH}]: INTEGER;

(value: WORD? amount: INTEGER): WORD;

Formal Comments of the U.S. TAG to WG13March 28,1990 Page 3 of 5

- page 38

16. String constant catenation §5.5.2.5. A different symbol is needed for string literal catenation,
as “ I I ” causes an ambiguity with case list separators; we suggest overloading the binary operator

There is also a problem with using the null string to denote the string termination character.
The expression 41' a ' + * 1 +1 b ’ ” should be the same as44 ’ ab' ” and not insert a string terminator
in the middle.

17. Type transfer Annex E, p.16 (see CAST §7.1.3.4). We were unable to find in D106 the type
transfer of PIM {Programming in Modula-2 by Wirth). WG13 agreed to retain this feature but
deprecate it. We suggest that, similar to NEW and DISPOSE, the old form of type transfer might
require that SYSTEM. CAST be visible.

18. INTEGER and CARDINAL §6.9.1. We were unable to find in D106 the relationship between
the ranges of INTEGER and CARDINAL and the bounding constants known as Kl, K2, and K3. *

19. WG13 agreed that all changes from PIM would be noted in the document, and we observe that
many are. We require that all changes from and clarifications to PIM be noted. We also request
that in each future draft, all additions, changes, and deletions from the previous draft be marked
with change bars or other appropriate mechanism, to facilitate proper and efficient evaluation of the

^ draft proposals.

20. Coroutines §7.2. While we can support moving coroutines to a separate module, we cannot
support the syntactic and semantic changes made from PIM as they add no functionality and break
existing code.

21. I/O Library §9.2. Noting the lack of goals or rationale, as well as the size, complexity, and
novelty of the proposed I/O library, we cannot support the proposal in D106. WG13 requested a
small and simple I/O library be produced. We reiterate that request. We note that D75 of August
1988, which tried to address that request, has not been allowed to mature.

22. Strings Module §9.4. The Strings module uses the look-ahead philosophy that WG13
purged from the I/O library after much debate. The current module is a radical departure from all
previous implementations, complicates code, and is of no clear benefit to the programmer.

23. Module protection §6.1.11; Procedure protection Annex G. Module protection, priority, and
associated syntax and semantics should be removed from the Draft Proposal because:

a. They are an extension to the language defined in PIM,
b. They assume a non-universal machine model,
c. They assume particular process and synchronization models, and
d. They will cause serious problems when multi-processor Modula-2 is designed.

24. LowReal and LowLong §8.3.1, §8.3.2. The modules LowReal and LowLong currently
specify a set of constants that define various parameters of the floating-point implementation.
These values become invalid if Set Mode () is ever called. A much more usable definition would

d

be:
TYPE

FPInfoValues = {FPIEEE, FPISO, FPRounds, FPGUnderflow, FPException);
FPInfo = SET OF FPInfoValues;

PROCEDURE GetFPInfo(): FPInfo;
(* returned value is valid until next call of SetModeO *)
(* Comment: may want to expand FPException *)

March 28,1990 Page 4 of 5Formal Comments of the U.S. TAG to WG13

- page 39 -

25. Concurrent Programming Modules §9.3. The D106 has significant flaws:
a. It mixes event handling with basic process operations.

Important operations on process queues are not in this module, namely, Lock, EnteiOueue
SuspendMe, and a way to release a lock.
In the Semaphores module the definition is for general semaphores, not counting
semaphores (the two are distinct), and the operator set is incomplete (e.g! no indivisible

b.

c.

€

f

March 28, 1990 Formal Comments of the U.S. TAG to WG13 Page 5 of 5
- page 40

Modula-2 Users’ Association

MEMBERSHIP APPLICATION

Name:

Affiliation :

Address :

Address :

City:

Country:Postal Code:State :

Electronic Addr :Phone : t)

0 Application as: New Member or Renewal

Implementation(s) used :

Option: ___ Do NOT print my phone number in any rosters
Print ONLY my name and country in any rosters
Do NOT release my name on mailing lists

or:
or:

* * Membership fee per year (25 US$ or 45 SFr)
(Primarily pays for MODUS Quarterly publication costs.)

Members of the USA group who reside outside of
North America, please add $15.00 for air mail postage.

* *

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

In North and South America, please
send check or money order (drawn
in US dollars) payable to Modula-2
Users’ Association at:0

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, CA 94303-0721
United States of America

Modula-2 Users’ Association
C/O Aline Sigrist
CH 1801 Le Mont-Pelerin
Switzerland

I
The Modula-2 Users* Association exists to provide a forum for communication between all parties
interested in the Modula-2 Language. The primary function of the association is to publish the
MODUS Quarterly. Also the association has occasionally sponsored conferences.
Modula-2 is still a new and developing language; this organization provides implementors and
serious users a means to keep informed about the standardization effort, while discussing
implementation ideas and peculiarities. For the recreational user, there is information on the status
of the language standard, along with examples and ideas for programming in Modula-2. For
everyone, there is information on current implementations and the other resources available for
obtaining information on the language.

I
i
i
i
■■

!

MODUS Quarterly # 6 November 1986
Editorial, Richard Kaipinski
Letter on opaque types. File type, and SET OF CHAR, P. Williams
Letter on exported identifiers, E. Videki
Why the Plain Vanilla Linkers, J. Gough
Letter re best article & MacModula-2, M. Corcn
Significant Changes to the Language Modula-2, Barry Cornelius
All About Strings, Barry Cornelius
Type Conversions in Modula-2, B. Wichmann
Improving the quality of Definition Modules, A. Sale
A Programming Environment for Modula-2, F. Odegard
Academic Modula-2 Survey, L. Mazlack
Compilers for Modula-2 (Zuerich list)
Membership List

MODUS Quarterly # 7 February 1987
Editorial, Richard Karpinski
New Products
Modula-2 Standardisation: A go be twee ns tale, Welsh & Bailes
Modula-2 VM/CMS, Thomas Habemoll
TCP Implementation in Modula-2, F. Ma & L. D. Wittie
Building an Operating System with Modula-2,

B. Justice, S. Osborne, & V. Wills
Note on Implementing SET OF CHAR, Source Code

for a SetOfChar MODULE, A. Brunnschweiler

Issue # 0 October 1984Modula-2 News
Purposes, practices and promises for Modula-2 News
Revisions and Amendments to Modula-2, Niklaus Wiith
Specification of Standard Modules, Jirica Hoppe
Modula-2 in the Public Eye (a bibliography), Win so r Brown
Modus Membership list, by name
Modus members’s addresses, by location
Modula-2 Implementation Questionnaire

Modula-2 News Issue # 1 January 1985
Review of Gleaves’ Modula-2 text by Tom DeMarco
MODUS Paris meeting 20/21 Sep 84, CA. Blunsdon
Report of M2 Working Group, 8 Nov 84, John Souter
Modula-2 Standard Library Rationale, Randy Bush
Modula-2 Standard Library Definition Modules
Modula-2 Standard Library Documentation, Jon Bondy
Validation of M2 Language Implementations, J. Siegel

MODUS Quarterly # 2 April 1985
Letters, Anderson & Emerson
Opaque Types in Modula-2, C. French & R. Mitchell
Dynamic Module Instantiation, Roger Sumner
The Linking Process in Modula-2, Jeanette Symons
Modula-2 Library Comments, Bob Peterson
Modula Compilers - Where to Get ’em, Larry Smith
Coding War Games Prospectus, Tom DeMarco
M2, An Alternative to C, M. Djavaheri, S. Osborne

MODUS Quarterly # 3 July 1985
Letters, Endicott & Hoffman
Some Thoughts on Modula-2 in "Real Time", Paul Barrow
RajalnOut: simple, safer, I/O for

Logitech/MS-DOS, R. Thiagarajan
Selection of Contentious Problems, Barry Cornelius
Expressions in Modula-2, Brian Wichmann
The Scope Problems Caused by Modules, Barry Cornelius

MODUS Quarterly # 4 November 1985
State of MODUS, George Symons
MODUS Meeting Report, Bob Peterson
A Writer’s View of a Programmer’s Conference, Sam’l Bassett
Concerns of A programmer, Dennis Cohen
Modifications to the Standard Library

Proposal, R. Nagler & J. Siegel
Proposal, standard library and M2 extension,

Odersky, Sollich, & Weiseit
Standard Library of the Unix OS, Morris Djavaheri
The Standard Library for PC’s, E. Verhulst
Editorial, Richard Karpinski
Modula-2 Compilation and Beyond, D.G. Foster
Modula-2 Processes - Problems and Suggestions, Roger Heneiy

MODUS Quarterly # 5 February 1986
Editorial, Richard Kaipinski
Exporting a Module Identifier, Barry Cornelius
Letter on multi dimensional open arrays, Niklaus Wiith
Letter on DIV, MOD, /, and REM, Niklaus Wirth
BSI Accepted Change: Multi-dim. open arrays, Willy Steiger
N73: NULL-terminated strings in Modula-2, Ole Poulsen
ISO Ballot Results re BSI Specifying Modula-2
Draft BSI Standard I/O Library for Modula-2, Susan Eisenbach
Portable Language Implementation Project: Design and

Development Rationale, K Hopper and W.J. Rogers
The ETH-Zuerich Modula-2 for die Macintosh, Chris Jewell
NewStudio: Engineering a Modula-2 Application for the Mac,

A Davidson, HB. Herrmann, EJL Hoffer

4
MODUS Quarterly # 8 May 1987
Editorial, Richard Kaipinski
Letter re unwarranted BSI changes, T. DeMarco
Response to DeMarco letter, R. Kaipinski
Letter re standards questions, A. R. Spitzer
Open Letter from a Practicing Programmer, W. Nicholls
Coroutines and Processes, R. Henery
Another look at the FOR statement, B. Cornelius
Automatic export of identifiers from the definition module,

A. H. J. Sale
BSI Modula-2 Working Group Standard Concurrent Programming

Facilities, D. Ward

MODUS Quarterly # 9 October 1987 (July 1988)
Editorial, K N. King
Letter re Linking and Overlays, A. Layman
Letter re BSI Language Changes, J. Savit
Letter re Thoughts on Modula-2, T. Pittman
Letter re Modula-2 and FORTRAN, C. Tanzer
MODUS Conference 1987, Program and Abstracts
Problems with the Definitions of ORD and VAL, B. Cornelius
Proposed BSI Standard Modula-2 I/O Library
WiU Modula-2 be Sucessful? NO!, J. Lancaster
Modula-2 Use in Urban Transportation Vital Control Systems,

R. Lardennois
A Dhiystone Benchmark for PClones, A Gurski

#

The above back issues are still in print MODUS Administrators supply single copies at $7 US or 12 Swiss Francs.

Modula-2 Users’ Association

DP10514 ORDER FORM

This is an order for the the latest copy of the Draft Proposed Standard for Modula-2. At this
time we expect the next draft (2nd) to be published in late 1990. If you make no indication on
this form, you will be sent the current version of the draft

COST: US $30.00 (Includes postage within North America.)

Add US $20.00 for Air Mail outside of North America.

!
Mail this form with payment to:

o MODUS
P.O. Box 51778
Palo Alto, CA 94303-0721
USA

I have enclosed $. for copies.

Name :

Affiliation :

Address:
^ Address:

City:

State : Postal Code: Country:

Phone : (Electronic Addr:X

i90.8.5 mq

COMPUTER SOCIETYFROM IEEE |TO ORDER DP10514

COST: $35.00

Mail or Fax this form to:

IEEE Computer Society
Standards Office
1730 Massachusetts Avenue NW

20036Washington, DC
Attn: Lisa Granoien
Fax (preferred): +1 (201) 562-1571

i

P1151 Modula-2Order ISO/JTC1/SC22/WG13 Draft of DP10514 ;
■

Name: i
Company:

i
Address:

City/State: I
iPhone:

I have enclosed $ for, . v-— __________ _ _________________ copies
(make checks payable to IEEE Computer Society P1151)

AmEx
OR

Please charge Visa M/C iNumber:

Expires: !

IBank No:

Signature:
i

89.12.17 rb

?
I

j

i Modula-2 Users’ Association

MEMBERSHIP APPLICATION

Name: —-------

Affiliation :-----

Address:

Address:

City:

Postal Code: Country:State:

Electronic Addr :Phone : (-----).

or RenewalNew MemberApplication as:

Implementation(s) used :

Option: ___ Do NOT print my phone number in any rosters
or: ___ Print ONLY my name and country in any rosters

___ Do NOT release my name on mailing listsor:

i
* * Membership fee per year (25 US$ or 45 SFr)

(Primarily pays for MODUS Quarterly publication costs.)

Members of the USA group who reside outside of
North America, please add $15.00 for air mail postage.

* *

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to
Association at:

In North and South America, please
send check or money order (drawn

^ in US dollars) payable to Modula-2
W Users’ Association at:

Modula-2 Users’

Modula-2 Users’ Association
C/O Aline Sigrist
CH 1801 Le Mont-Pelerin
Switzerland

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, CA 94303-0721
United States of America

i

interested in th §MS ^soc*at*on exists to provide a forum for communication between all parties
MODUS QuartC1 Language. The primary function of the association is to publish the

er y. Also the association has occasionally sponsored conferences.
tins organization provides implementors
the standardization effort, while discussing

is information on the status
in Modula-2. For

available for

’

and
a neW 311(1 develoPing language;

implement a means t0 keep informed about
°f the 1 3 10n ^eaS Pecu^iarittes. For the recreational user, there
^ervonp11^^6 • St^arC^’ with examples and ideas for programming
obtaining • rCre k information on current implementations and the other resources

formation on the language.

I

CD
rt
C
n
3

i

O
CO
rt
&>

tQ
CD

CD
C

3
rt
CD
CDa

i

!

