
The MODUS QuarterlyCO
05
H

Issue # 8
s

May 1987

CO
o
CD
Pm Modula-2 News for MODUS, the Modula-2 Users Association,

CONTENT

Cover 2. MODUS officers and contacts directory

Page 1. Editorial

2, Letter re unwarranted BSI changes, T. DeMarco

3. Response to DeMarco letter, R. Karpinski

4. Letter re standards questions, A. R. Spitzer

7. Open Letter from a Practicing Programmer, W. Nicholls

10. Coroutines and Processes, R. Henry

!
‘ ^ 0)

u
Co

I O*

27. Another look at the FOR statement, B. Cornelius

31. Automatic export of identifiers from the definition module,
A H J Sale

35. BSI Modula-2 Working Group Standard Concurrent Programming
Facilities, D. Ward

-^Cover 3. Membership form to photocopy

Cover 4. Return address

Copyright 1987 by MODUS, the Modula-2 Users Association.
All rights reserved.

Non-commercial copying for private or classroom use is permitted.
For other copying, reprint or republication permission,

contact the author or the editor.

Directors of MODUS, the Modula-2 Users Association:

Svend Erik Knudsen
Institut fuer Informatik
ETH Zuerich
CH-8092 Zuerich
(01) 256 3487

Randy Bush
Oregon Software
6915 South West Macadam
Portland, OR 97219
(503) 245-2202

i

j

;

Heinz Waldburger
ERDIS SA
CH 1800 Vevey 2
(021) 52 61 71

Tom DeMarco
Atlantic Systems Guild
353 West 12th Street
New York, NY 10014
(212) 620-4282

Jean-Louis Dewez
Laboratoire de Micro Informatique
Conserveratoire NAM
2, Rue Conte
F-75003 Paris
(01) 42 71 24 14

(
Administration and membership: ;

!Aline Sigrist
MODUS Secretary
ERDIS SA
P. O. Box 35
CH 1800 Vevey 2

Europe:George Symons
MODUS
PO Box 51778
Palo Alto, CA 94303
(415) 322-0547

USA:

» Problems? Missing an issue? <<Editor, Modula-2 News:

Contact your membership
coordinator (see above).

Richard Karpinski
6521 Raymond Street
Oakland, CA 94609
Weekdays
Anytime
TeleMail
BITNET
CompuServe 70215,1277

(415) 476-4529 (11-7 pm)
(415) 658-3797 (ans. mach.)
M2News or RKarpinski
dick@ucsfcca

i
IInternet dick@cca.ucsf.edu

USENET <..,SucbvaxlucsfcglIcca.ucsf ldick

Publisher: Putative publication schedule:
George Symons (see above) Deadline Issue

15 Jan
15 Apr
15 Jul
15 Oct

FebSubmissions for publication:

Send CAMERA READY copy to the editor.
Dot matrix copy is often unacceptable.
Machine readable copy is preferred:

TeleMail address: M2News

Please indicate that publication of your submission is permitted.
Correspondence not for publication should be PROMINENTLY sS marked.

May
Aug
Nov

60 lines, 70/84 characters.

mailto:dick@cca.ucsf.edu

Modus Meeting Announcement & Call for Participation
!

June 15 & 16, 1987 / San Francisco, California

The Modula-2 Users' Association will host a semi-formal technical meeting at the Seven Hills Center in San
Francisco, California. The Seven Hills Center is a conference facility located on the campus of San Francisco State
University (SFSU) in southwestern San Francisco.

To qualify for the "Registration by Mail" fee your
check must be received before the 8th of June, 1987.
Send your registration request along with a check to:

MODUS Meeting Registration
P.O. Box 51778
Palo Alto, California USA - 94303

The Seven Hills Center is located at 800 Font
Boulevard on the western part of the 100 acre SFSU
Campus, near Lake Merced in the southwestern
corner of San Francisco. It is one mile from the
Pacific Ocean; 25 minutes by freeway or public
transportation from downtown San Francisco or the
San Francisco International Airport. If you need
help in finding the SFSU Campus or the Seven Hills
Center, you may phone (415) 469-1067 for assistance.

Call for Participation:

Technical papers and presentations are solicited from
the Modula-2 community; you need not be a
member of Modus. Suggested topics include:
language and library issues, educational uses,
industrial uses, new implementations, real world
^jpps, and the progress of standardization.
By the 22nd of May 1987, please send an abstract of
your presentation or paper to:

Program Coordinator
MODUS Meeting
P.O. Box 51778
Palo Alto, California USA - 94303

If you will need audio-visual equipment, let us know
your requirements. If you wish your paper to be
published in MODUS Quarterly, the Editor must
receive a copy of the completed paper. If you wish
to discuss your presentation or paper ideas, contact
Stan Osborne
...!ucbvax!dual!dbi!stan).
If you want to make technical demonstrations,
additional meeting rooms can be rented from the
Seven Hills Center. Please contact us with the

^4|tails of your space and power requirements, if you
^Sre interested in making a commercial or non­

commercial technical demonstration.

1
Places to Stay in San Francisco

In addition to the many first class Hotels and Motels
located in downtown San Francisco, Fisherman's
Warf, and Lombard Street (Highway 101) there are a
number of Motels closer to the University. A partial
list of good nearby Motels follows:
Great Highway Motor Inn, 2180 Great Highway (at
the southwestern comer of Golden Gate Park).
Discount for SFSU patrons. Prices range from $40.-
and up. Telephone: (415) 731-6644.
Mission Bell Motel, 6843 Mission Street in Daly City
(a quaint antique, kept clean and low priced). Prices
range from $25.- and up. Telephone: (415) 755-6161.
Ocean Park Motel, 2690 - 46th Avenue (one block
from the zoo). Prices range from $50.- and up.
Telephone: (415) 566-7020.
Roberts Motel, 2828 Sloat Boulevard (across from
the zoo). Prices range from $41.- and up.
Telephone: (415) 564-2610.
Seal Rock Inn, 48th Avenue at Point Lobos (above
the Cliff House). Prices range from $56.- and up.
Telephone: (415) 752-8000.
Sunset Motel, 821 Taraval Street (closest to campus).
Prices range from $41.- and up. Telephone: (415)
564-3635.

at (415) 341-1768, (UUCP:

Registration Information
In addition to the technical sessions a light breakfast,
lunch, and afternoon refreshments will be provided
on each day. An informal reception is scheduled for
Monday evening. The registration fee for one or two
days includes the technical sessions and food. All
people registering will be admitted to the Monday
evening reception.

Registration by Mail:
Both days: $55.00; One day: $35.00

On Site Registration:
Both days: $70.00; One day: $50.00

Modus Meeting

Announcement and Call

for Participation
June 15 & 16,1987

San Francisco, California
The Modula-2 Users' Association will host a semi-formal technical meeting at
the Seven Hills Center in San Francisco, California. The Seven Hills Center is
located at 800 Font Boulevard on the western part of the 100 acre San Francisco
State University Campus, near Lake Merced in the southwestern corner of Sanw
Francisco.
Technical papers and presentations are solicited from the Modula-2 community;
you need not be a member of Modus. Suggested topics include: language and
library issues, educational uses, industrial uses, new implementations, real
world uses, and the progress of standardization. Some members of the ISO
Working Group standardizing Modula-2 will report on their efforts and
particular interests.
Before the 22nd of May 1987, please send an abstract of your presentation or
paper to:

Program Coordinator, MODUS Meeting
P.O. Box 51778, Palo Alto, California USA - 94303

Or contact Stan Osborne at (415) 341-1768, (UUCP: ...!ucbvax!dual!dbi!stan).

*
If you wish to attend this event, complete the registration application below
and mail it with a check for the right amount to:

MODUS Meeting Registration
P.O. Box 51778, Palo Alto, California USA - 94303

You will be sent a confirmation receipt, a San Francisco map and information
about motels close to the Seven Hills Center.

MODUS Meeting Registration Form, June 15 & 16, 1987
Name :___
Affiliation:
Address :_
Address:_
State :____ Zip: Country:
Phone : (___). Electronic Addr :____________________________—

— Both days, $55.00 by mail, $70.00 at the door
— First day, $35.00 by mail, $50.00 at the door
— Second day, $35.00 by mail, $50.00 at the door

Option:
on
on

Editorial

The MODUS Quarterly # 8, May 1987

Meeting

As you see from the front flyer in this issue there will be a MODUS
meeting in San Francisco on June 15 and 16, Monday and Tuesday. The
schedule of presentations is still openf so send in an abstract for your
talk today to the MODUS address below. If you have questions about your
presentation, then contact Stan Osborne at (415) 341-1768. The best
papers presented will be printed in subsequent issues of MODUS Quarterly
if the author permits.

Register via the MODUS address, P.0. Box 51778, Palo Alto, CA 94303.
By mail, the registration fee is $55 or $35 per day. Registration at the
door will be higher. Arrangements are being made to handle about 75
people at the meeting, so it might be important to get your registration
in early lest the facilities overflow.

Prizes and Products

There are no new prizes awarded for either best suggestion or best
article.
commendations.

I This is due to a complete absence of either suggestions or
Only you can improve this dreadful situation.

You may recall that issue # 7 had a page of new product announcements.
We would like to devote a page or two of each issue to this sort of
information.
updated product which deals with (or is written in) Modula-2,
print your advertisement itself so camera ready copy is superfluous.

Please send us the relevant information about any new or
We do not

Standards

You can see from this issue, some of the topics still being resolved by
the British Standards Institution Working Group on Modula-2. They seem to
be taking the job quite seriously and trying to learn from the problems
perviously encountered in standardizing (they would say standardising) the
Pascal language. Obviously, Pascal is rather similar to Modula-2.

^owever, even with careful and extended effort, the result was imperfect.

This time, they get to try again with the benefit of the hindsight from
the Pascal Standard. My understanding is that there will be three forms
that the standard will take: A carefully phrased English definition of
the semantics is intended to instruct people in the proper understanding
of Modula-2. A second definition in the Vienna Definition Language is
expected to permit proof of correct assertions about the language.
Finally, a model implementation of Modula-2 is expected to make it easy
for programmers to test out any peculiar constructs with a working (not
necessarily efficient) system.

The general idea is that none of these three definitions overrides the
others, but rather, if they ever disagree, then there is a bug in the
standard which requires correction by the Working Group. Now, it may be
that I misunderstand this intention, so read next issue's editorial to see
what corrections have been made to my understanding. Meanwhile, I must
say that if this in fact holds true, it may be the finest technical
language standard ever developed.

f

rhk - page 1 -

i

]The!Atlantic Systems Guild
line.I

March 17, 1987

Dick Karpinski, Editor
MODUS Quarterly
6521 Raymond Street
Oakland, CA 94609

Dear Dick,

There is an old legal maxim that says, "silence gives
consent." Publication in MODUS #6 of the papers of the British
Standards Institution Working Group on Modula-2 is likely to be
greeted with silence — I am particularly concerned that any such
silence not be taken as an indication of consent. I for one do not *
consent to what the group is trying to do. f>

He gives
the language gratis to those who wish to utilize it in its present

He gives it, as well, to those who wish to incorporate its
source) into some new

language of their own. The only thing he does not give is the right
to make changes to the language and then publish the result as
Modula-2. This is exactly what the BSI group seems to be up to.

Modula-2 is Niklaus Wirthfs intellectual property.

form.
features (hopefully acknowledging their

No properly construed standardization effort could consider
such changes as adding underscores to identifiers or deleting the
casting functions and reutilizing their syntax for conversions.
Wirth has spoken clearly and eloquently on these matters,
was a standard before the BSI got involved,
group can hope to accomplish now is to destandardize the language
by introducing a pseudo-standard in direct competition with Wirth's
existing standard.

There
The only thing the

D.It is important that the changes advocated by Cornelius et al
in the November 1986 MODUS not be debated on their merits,
so would be to give explicit consent to the effort to
Wirth's work. The group has no charter to undertake this
BSI can do real damage to Modula-2 by publishing a pseudo-standard.
That's the practical consequence of the direction they've
But the larger question is one of ethics. Wirth and Wirth alone can
change the language; it's his. No body of law exists to defend
Wirth's intellectual property. We, the members
have to defend it by rejecting BSI's attempt to tinker.

To do
"improve"

effort.

chosen.

of his community

Sincerely,

Tom DeMarco

353 W. 12th Street, New York, N.Y. 10014 (212) 620-4282IIW i' II TlllVDrn I /m/irm UM ici T

Response to DeMarco by R. Karpinski

I have been involved in standards works for over a decade so I can
claim some understanding of what really happens in the process as
practiced these years. The ANSI and IEEE language standard efforts
always involve non-proprietary languages, so licensing questions do
not arise. The buss field, on the other hand, does involve the use
of patented devices and other licensed material. The IEEE project
authorization process requires, in effect, that the vendor agrees
to "reasonable" licensing fees as well as assurances that any changes
the working group feels necessary will not be undermined by the vendor

Standards committees work without pay (except for individual members
being paid by their own companies). In return for their work, the
committees have wide latitude to do the best job that they can do,
without regard to financial and marketing issues. To tie their hands
in any way would question the basis on which standards are developed.
The parent organizations, in practice, concern themselves only with
issues of representation of all relevant interests among the voters,
who are one level above the working group, and with fairness issues.
Implicitly, they grant the working group complete autonomy in all

^questions of technical merit.

Most standards efforts are reactive. One outstanding exception is
the pair of floating-point arithmetic IEEE standards, 754 & 854.
These proactive standards establish a new (and far superior) floor
for the operation of floating-point engines in computing systems.
Efforts to eviscerate 854 were firmly rejected at the highest levels
in the standards organization. The issues were for the working
group to decide, not others.

In this light, reactive standards are expected to give high weight
to existing practice. In particular, the base document from which
the BSI draft of the Modula-2 standard is being developed is Wirth's
then latest draft of the Modula-2 report. Indeed, the whole working
group effort centers around the "Problems with the Modula-2 Report"
which Barry Cornelius maintains (without necessarily agreeing with
all the statements therein). These things suggest that the group
does take seriously the origins and the spirit of Modula-2.

#3ut why do we need a Modula-2 standard? I suggest that we need an
official ISO Modula-2 Standard in order to assure potential users
that there is a firm basis for their use of implementations of the
language. In this case especially, with the bare, skeletal, nature
of Modula-2, a usable standard library is a minimum requirement.
Nobody, except possibly Wirth himself, considers the library given
in "Programming in Modula-2" to be adequate. Several alternative
libraries are in use, preventing the wide portability of Modula-2
applications.

Since there is disagreement in practice about the fine points of
the language and the entire library, these things require resolution
by a standards working group. Invoking the authority of the author
will not be sufficient for the ISO. DeMarco (and Randy Bush) not­
withstanding, current practice differs from PIM in too many serious
ways not to be resolved by consideration of the merits of each case.
For example, not even one vendor provides the dynamic linking
capability which PIM-2 seems to require. Merits must be considered.

Dick Karpinski - page 3 -

6 Nov 86

Dear Dr. Karpinsky,

I am addressing this letter to you, as it may be that MODUS is the proper vehicle for
addressing some standards questions I would like to raise, in regard to Modula II. My
programming involves significant amounts of real time data acquisition and real time
graphics. Over the past several years, I have given much consideration to the appropriate
language in which to begin a major redevelopment project To date, I have written
applications and portions of programs in various combinations of Pascal, FORTRAN, and
assembly language. In my specific case, the applications are in the field of
neurophysiology, but I am sure that my questions have a broad applicability. Based on my
experience, I feel that Modula II represents the correct language to use for my proposed
redevelopment project, which will involve rewriting (in a coherent manner) much of the
software used in clinical and research neurophysiology.

Certain concepts seem to underly Modula n. One of them is the attempt to make it
possible to write low level code that is relatively machine independent. Another is an
attempt to make the language as small as possible, to allow its reasonable implementation in
many environments. Certain other features appear to be designed specifically to allow the
writing of interrupt handlers and device drivers directly without assembly code, and there
seems to be an implied assertion that real time programming should be possible directly in
Modula. As an important design concept, certain machine specific features, such as 10,
have intentionally remained unspecified, and are to be provided by an implementor in the
form of a library. The intention is to provide the tools to develop such facilities in whatever
format is most appropriate for the given environment

While most of the facilities for accomplishing these tasks are to be found within
Modula, there are some that are lacking. In general, environment specific details, such as
file 10, have been left for the libraries, as I mention. However, certain environment issues
must be addressed, to provide a truly useful programming language. An example of such is
the definition of the library procedures ALLOCATE and DEALLOCATE. While the
implementation details remain the prerogative of the vendor, it would be very hard to
imagine the utility of the language without some implementation of these procedures.
Similarly, real time applications, particularly those (such as mine) that mark time in
microseconds, do need a minimal core of interaction with the environment. Just as the
availability of a standard definition of ALLOCATE and DEALLOCATE is crucial to the
development of many applications, I believe the standardization of the approach to the
needs of real time applications would be an important step.

I have identified three needs in such applications that I see as problematic, particularly in
regard to the implementation of Modula compilers under the increasingly popular UNIX
and related or derivative operating systems. Additionally, if there are other aspects of this
problem that you feel nust be addressed, I am interested to hear about them. I have
attempted, in the spirit of Modula n, to identify the least possible set of needs that could be
implemented to support real time applications.

D'

- page 4 -

1) Handling of interrupts in real time: immediate access to data buffers.

In order to insure minimum latency between an interrupt and access to the data buffer
where data is to be stored, such a buffer must be protected, or fixed in real hardware (not
virtual) memory. I believe this is a real requirement, since there are at least two
circumstances where virtual mapping would be disastrous: 1) If the OS decided to swap
the array in and out of memory during a data acquisition period, at the very least valuable
data would be lost, and 2) if a device (AD board) is capable of DMA, and is in the process
of dumping data to a real physical location while a swap occurs, significant mayhem would
result It is necessary to know the true physical address of such a buffer, since the AD
board often requires this information for DMA.

2) Interrupt handlers and interrupt service latency.

In order to program high speed interrupt handlers, I believe these must also be fixed in
memory. In general, the virtual address must be known/determined at run time, in order
that the appropriate trap vector be loaded with this address. However, since the task
switching latency of an arbitrary harware configuration (read MMU and OS task handler)
can never be guaranteed to be less than the requirements of a given application, it would be
more generic and satisfactory (read necessary?) to provide a means of locking a handler
into real physical memory. This problem was in fact alluded to, when it was decided not to
provide any particular model of multitasking into Modula, but rather to provide the means
to write multitasking systems in Modula.

Memory management considerations for implementing 1 and 2:

The critical portion of a handler is usually quite small, and would not degrade over-all
system memory management, paricularly in today's hardware, where megabytes have
become the rule. Likewise, data buffers would probably not cause problems, but since
these can be large, provision can be made to protect these only briefly (i.e. require their
residence in physical memory only at specified times), as almost by definition, the cases
where this is necessary are those where sampling rates are very high, and therfore usually
the buffer need only be locked for periods less than several seconds.

m

One "bare minimum" approach to this problem would be to provide a standard system
call in the SYSTEM library. In its simplest form, this could consist of a procedure call:

Lock (Object, size_of_Object, pointer to Object);
UnLock (Object, pointer to Object);

where Object would be either an array or a handler, Lock would return the true location
in the pointer, and UnLock could return a possibly different virtual location. It should be
possible to create these objects dynamically, i.e. not require that they be known at compile
time, as the data arrays may be very large, and only needed temporarily.

m

- page 5

3) Transient processor locking (beyond priorities).

The other need that may also prove absolutely necessary, is control of the processor
priority. While Modula does provide the capability to control the priority of a process I
think there is a subtly different need, namely the ability to completely lock the CPU
temporarily, even at times to the extent of preventing any hardware interrupts, and certainly
to the extent of preventing operating system interference or task switching. In other words,
I forsee the situation where a process is declared "locally" (within a program) to be of the
"highest" priority, yet is interrupted by the OS itself, running at a higher absolute priority
or in a protected or "supervisor" mode.

Again, possibly this need can be met by a pair of SYSTEM procedure calls,
"LockCPU" and "ReleaseCPU":

LockCPU;
...time critical code here...
ReleaseCPU;

i
Thank you for your time in addressing this matter. I think that defining approaches to

this problem would help provide a standard that vendors could adhere to, and thereby
would make Modula a premier language for real time programming. I have noted several
proposed "extensions" to Modula for various needs, including red time programming. I
think my proposed solutions may meet the following desirable criteria: 1) They do not
change the language. 2) Existing code probably need not be modified (the aforementioned
procedures are only necessary in an environement where these facilities would have
already been developed in a machine specific manner already, out of need). 3) No specific
means of implementaion is specified. 4) I think these are the minimal set of operations
needed: all other "extensions" could be developed using these.

The comments and proposals of the Modula community are greatly appreciated.

Sincerely,

4>-'

A. Robert Spitzer

- page 6 -

Date: 2 February 1987
To: R. Karpinski
From: Bill Nioholls
Subject Open Letter Irom a Practicing Programmer

It was nice to receive my semiannual Modus Quarterly. Once again there
was much ot interest as well as some things which were difficult to make use ot.
But this issue contained a number of things which triggered some thoughts of my
own. What I want to offer are some thoughts from the trenches about M2 and its
possible use by others like myself.

A little background may help you understand my opinions. My training
was in physics, my experience in computers almost totally OJT. I began
programming 25 years ago in Fortran on an IBM 1620. Much of my early
experience was assembler, and never a structured word was spoken. In the
early 70’s, I was introduced to structured programming indirectly by working with
an Algol derivative called Totetran. My conversion to a structured approach was
lengthy, difficult and clumsy since as usual, no formal education was provided.

But over a period of years I overcame many of the bad habits developed
from writing Fortran, assembler and Basic. As a result, I understand better than
most the issues around structured programming, having worked both sides of
the fence so to speak. Today, structured programming is a given. Having
achieved that with Pascal and C, we are now in the refinement stage with M2. So
to me, the path to M2 and the justification is clear.

What I see both pleases me and worries me. The attention to standards
and the effort to build a very workable standard is to be complimented. The
language itself is very satisfactory with some minor quibbles. But what worries
me is the broader issue of applying M2, even though some of these concerns are
not restricted to M2 alone.

m

&

Software complexity has continued to increase over the years. Yet the
support in the languages for dealing with increasing complexity has lagged
badly, and the tools to deal with complexity even more. Most programmers
simply laugh when you ask about code reuse. The difficulty of even reusing your
own code never mind someone else's is enough to make most programmers
avoid that chore.

M2 has taken a step in the direction of easing the reuse problem by
separating the definition from the implementation. But it has in fact complicated
the handling of source code by doubling the number of pieces needed, and

- page 7 *

added considerable effort in the export/import requirements. Yet what results is
still better than Pascal even it it is more difficult to handle in some cases.

Some of the extra steps can be handled with an appropriate programming
environment, yet even that is less than sufficient. M2 is an excellent building
block language yet there seems to be no simple automated ways to deal with the
building blocks at a higher level. By this I mean that given a suitable library of M2
functions, I should be able to define the solution to a problem in some higher
level terms and have an automated system builder put the blocks together,
prompting me tor decisions and new modules as needed.

By virtue of its clean definition and specification, M2 is probably the only
language that this could be done in without requiring language extension. Such
a system build lacility would address my concerns about productivity by
automatically taking care of most of the bookkeeping now required of the
programmer. What I would hope to see would be a 'language' where the task
could be defined in some set of terms similar to a 4GL and the system builder
provide the detailed code as required, adding from the library as needed.

Such a system is not a 4GL since by definition it is extendable by the
programmer by building new blocks and defining these to the system builder.
This kind of capability would do much to reduce the overhead imposed by the
extra M2 language requirements and provide a significant incentive for
programmers to convert to M2

I think the incentive issue is a crucial one. Regardless of the M2
advantages over Pascal, C or (name your favorite language), the decision to use
M2 as a primary tool is made very difficult by the barriers that must be overcome.
First, there is the learning curve. You must learn the syntax and semantics, then
the libraries and finally the issues of structure and efficiency. Then there is the
lack of external library support, which is slowly being addressed. And finally
there is the decision to translate, convert or rewrite all your own favorite routines.

Having looked at the barriers, you then evaluate the cost vs payoff. As it
stands today, the cost exceeds the payoff significantly even though M2 is a better
language from a number of points of view. The primary reason I draw this
conclusion is the time spent in going up that learning curve is not repaid with an
obvious productivity enhancement. I can see the benefits of the M2 approach,
but they do not give me a clear bottom line advantage once I have made the
investment.

t

I

Thus except for people choosing M2 when they begin programming and
those with enough faith in the language to overcome the barrier, current

- page 8 -

programmers will mostly just continue using their current language. This is
unfortunate for those ot us who would like to see better tools for and better
products from programming. As good as M2 is, it fails to provide that
productivity leap that will push most of us over the startup barrier.

I hope this has provided some food for thought lor those people involved
in language specification and compiler development

Sincerely,

Bill Nicholls

#

m

- page 9 -

BSI Modula-2 Working Group

Second Open Meeting
BSI Conference Centre

July 24th 1986

Coroutines and Processes

Roger Henry

Department of Computer Science
University of Nottingham
Nottingham NG7 2RD UK

i

Nottingham (0602 or +44 602) 506101 ext 2855 i
JANET: rbh@cs.noitac.uk

ABSTRACT

There are several problems with the definition of the coroutine mechanism in
Modula-2. The semantics seem to be poorly understood and there is even doubt as to the
status of coroutines within the language. Discussion of these issues by the BSI Working
Group has recently started and a specialist subgroup has been set up. It has been agreed
that a coroutine mechanism is to form part of the standard for tfte language and that a
higher-level model for processes is to be included in the library. A distinction is made
between the explicit scheduling of coroutines and the implicit scheduling of processes.
This paper reviews the original definition of coroutines and then describes an alternative
mechanism as proposed by the subgroup. The old mechanism may be implemented in
terms of the new (and the new in terms of the old) but is arguably simpler to comprehend
and to use. Consideration is also given to the problems of processor priorities and moni­
tors. The paper includes the results of discussions to date on the requirements for a
library module based on the implicit scheduling of processes. >0'

1. Introduction
Does Modula-2 provide facilities for multiprogramming?
If so, what are these facilities?

It is hard to give a straight answer to these questions given the current definitions and descriptions of the
language. It is easier instead to answer a different pair of questions:

Do implementations of Modula-2 provide facilities for multiprogramming?
If so, what are these facilities?

The reason for this state of affairs is that there are no syntactic aspects of the language related specifically
to multiprogrammingt. Neither are there any standard procedures providing for concurrency. Instead, an
implementation may provide access to low-level mechanisms via the pseudo-module SYSTEM and/or may

t Wiih the possible exception of the optional priority specification in module headings.

w

- page 10

I

mailto:rbh@cs.noitac.uk

provide higher-level facilities through a library module. This is consistent with the view of Modula-2 as a
systems implementation language consequently offering different features on different systems. After all,
it was designed to allow the actual construction of process schedulers such as the one built in to the prede­
cessor language Modula.
However, the original reports and compilers emanating from. Zurich, and the text Programing in
Modula-2 [1] all provide a model for a basic coroutine mechanism in SYSTEM. This can be used to
implement a higher-level process abstraction on single processor systems. While this model has been criti­
cised on the grounds of obscurity and lack of efficiency, it has been closely followed in many other imple­
mentations. However, successive versions of the report have progressively weakened its status. For exam­
ple, the type SYSTEMJPROCESS was dropped and SYSTEM.ADDRESS used in its place. Originally,
NEWPROCESS and TRANSFER were described as part of SYSTEM, then it was said that they were nor­
mally to be provided, and with the advent of the Lilith single-pass compiler it is stated as a change that they
are not required [2].
The view of the BSI Working Group is that a substantial and important range of applications of Modula-2
depend upon the availability of a coroutine mechanism. The standard will therefore deal with the provision
of coroutines in the language. Precisely the way in which this shall be done is yet to be decided but a spe­
cialist subgroup has been set up to make recommendations. I am the convener of this subgroup and other
members are currently Don Ward (GEC Electrical Projects), Derek Andrews (Leicester University) and
Willy Steiger (Logitech).
The essential nature of coroutines is that, within a set of such cooperating routines, only one routine is exe­
cuting at a time and that transfer of control occurs explicitly to a nominated coroutine. An extension in
Modula-2 is that external events such as interrupts may be preprogrammed to cause an asynchronous
transfer. The term coroutine is to be used for this level, references to process being reserved for a model in
which scheduling is implicit. Processes must be regarded as executing in parallel since in general there
may be arbitrary interleavings of execution. While it is assumed that one important use of coroutines will
be to implement processes on a single processor, it must not be forgotten that coroutines are an important
tool in their own right and that a set of coroutines may be used by the program of a process in order to
implement some algorithm. In the spirit of Modula-2, a minimalist approach is to be taken, defining only a
neccessary and sufficient set of primitive types and operations within the language and leaving higher level
facilities for library modules.

2. The original coroutine model

2.1. Synchronous transfers
In the beginning, the following type and procedures could be imported from SYSTEM!:
TYPE

PROCESS; l* coroutine state *)
&

PROCEDURE NEWPROCESS
(P: PROC;
A: ADDRESS;
n: CARDINAL

VAR p: PROCESS

(* dynamically create a coroutine *)
(* code of coroutine *)
(* base workspace address *)
(* workspace size in storage units *)
(* initial state of new coroutine *)

);

PROCEDURE TRANSFER (* synchronous coroutine transfer *)
(* saved state of calling coroutine *)
(* state of destination coroutine *)

(VAR pi.
p2: PROCESS
);

t the type PROCESS is used here is wis done originally by Prof. WLrth. Recognizing that this was misleading, later ver­
sions of the report replace PROCESS with ADDRESS. The Working Group have resolved to use COROUTINE in the
standard.

- page 11 -

Il is assumed that the code making the first call of NEWPROCESS is being executed by a main coroutine.
The initialization parts of all modules declared at level 0 form the program of this process and its
workspace is set up by the implementation.
The state of a dynamically created coroutine is such that, on the initial transfer, execution will begin from
the start of the parameterless level 0 procedure P forming the code of the coroutine. The entire program
terminates if an attempt is made to return (implicitly or explicitly) from such an activation of P. On
transfer back to a coroutine, the effect is for thereto be a return from the call of TRANSFER in the destina­
tion routine. If it is known that there will never be an attempt to transfer back to a dynamically created
coroutine, then the workspace may be reused and the coroutine has effectively terminated.
The workspace is used to hold coroutine description information needed by the implementation and for the
coroutine stack. Hence local variables and procedure value parameters will be allocated in the workspace
and become per-coroutine variables. There is only one instance of global (level 0) variables. Distinct
workspace must be provided for active coroutines, but they may share the same code.
Note that much of this description is not given in the report and this has been supplemented by inferences
drawn from examples in [1] and from experience with actual implementations. The Working Group takes
the view that it shall be an exception for a dynamically created coroutine to attempt to return from the outer
procedure forming its code. In this respect, the main coroutine differs in that it has been decided that
returning from the main module body results in normal termination of the program.

2.2. A coroutine solution to the 8 Queen’s problem
To illustrate the use of coroutines within a single process, here is a solution to the 8 Queen’s problem.
MODULE Queens;

t

FROM Board IMPORT
Safe,
Occupy,
Vacate,
Display;

(* tests if proposed placement is safe *)
(* occupies a given place on the board *)
(* vacates a given place on the board *)
(* displays board *)

FROM SYSTEM IMPORT
PROCESS,
NEWPROCESS,
TRANSFER,
ADR,
SIZE;

TYPE
$Arow = [1. .8);

Acol = [1.. 8] ;

CONST
wkspsize » 200; (* informed guess *)

VAR
colData: ARRAY Acol OF

RECORD
cr: PROCESS;
Wksp: ARRAY [1..wkspsize] OF WORD;

END;
initCol: Acol;
main: PROCESS;
done: BOOLEAN;

- page 12 -

(* coroutine code *)PROCEDURE Placer;
VAR

myCol: Acol;
myRow: Arow;

BEGIN
myCol := initCol; TRANSFER (colData [myCol] .cr, main);
LOOP

FOR myRow := 1 TO 8 DO
IF Safe (myCol, myRow) THEN

Occupy(myCol, myRow);
IF myCol < 8 THEN

TRANSFER(colData[myColJ.cr, colData[myCol+1].cr) ;
ELSE

done := TRUE;
TRANSFER (colData [myCol] . cr, main)

END;
Vacate (myCol, myRow) ;

END
END;
(* none of the rows are safe in this column *)
IF myCol > 1 THEN

TRANSFER (colData [myCol] . cr, colData [myCol-1] . cr)
9

ELSE
done := FALSE;
TRANSFER (colData [myCol] . cr, main)

END
END

END Placer;

PROCEDURE In it;
BEGIN

FOR initCol ;= 1 TO 8 DO
WITH colData[initCol] DO

NEWPROCESS (Placer, ADR(wksp), SIZE(wksp), cr);
TRANSFER (main, cr)

END
END

END Init;m BEGIN
Init;
TRANSFER (main, colData[1].cr) ;
WHILE done DO

Display;
TRANSFER (main, colData[8].cr) ;

END;
END Queens.

23. Comments
This example illustrates the sharing of global variables such as initCol and done, the use of per-coroutine
variables such as myCol and myRow, and the sharing of the coroutine code Placer.
Notice how correct use of TRANSFER depends upon the assumption that the PROCESS values will
change during coroutine execution and must therefore be kept up to date via the hist parameter. This usage
is also relied on to obtain the state of the main process. Using an out of date PROCESS variable as the

- page 13 -

second parameter to TRANSFER is equally dangerous and incorrect as dereferencing a dangling pointer.

Consider ihe following sequence of TRANSFERS between two coroutines.
Coroutine 2Coroutine 1

TRANSFER(A, B);
C := A;
TRANSFER(B, A);

TRANSFER (A, B) ;
TRANSFER(B, C) ;

What is the effect of the second TRANSFER in coroutine 2?
Does it return from the first TRANSFER in coroutine 1? The second? Or is it undefined? Interpreting
PROCESS values as coroutine states, one might expect the first of these but that state cannot be recovered
and so the likelihood is that the program will crash. However some implementors have chosen a fixed
ADDRESS representation of coroutines and then the effect would be for a safe return from the second
TRANSFER in coroutine 1.

What is the effect of TRANSFER(x, x) ?
This is not a null operation. The report explicitly states that the assignment to the first parameter occurs
after identification of the destination process given by the second parameter. Thus two coroutines can
arrange to swap execution by always giving the same PROCESS variable for both actual parameters. In
general there is no need for a PROCESS variable to be associated with a unique coroutine. At different
times it can correspond to the states of different coroutines. This change of reference is necessary for
implementing the implicit scheduling of processes, but coming on top of the change in coroutine states the
original coroutine model is far from being simple and safe to use.

V

2.4. Asynchronous transfers
Wirth has shown us how an interrupt handler can be viewed as a cyclic activity synchronizing with an
externally generated event In the model of interrupt handling provided ii^the original PDP11 implementa­
tion, synchronization is achieved by the interrupt handling coroutine making a call of
PROCEDURE IOTRANSFER (* synchronous transfer out, asynchronous back *)

(* saved state of calling coroutine *)
(* way out - state of destination coroutine

way back - saved state of interrupted routine *)
(* interrupt vector *)

(VAR pi.
p2: PROCESS;

va: CARDINAL
);

This is equivalent to an immediate TRANSFER(pl, p2) and a subsequent involuntary TRANSFER(p2, pi)
when the interrupt with vector address va is accepted. The old value of p2 does not have to correspond to a
previously interrupted coroutine since it may have been stored as a result of a TRANSFER. Similarly, an
interrupted coroutine may be returned to by a TRANSFER.
The coroutine active at the time of the interrupt will certainly be in a different state from that saved as the
old value of p2 and, in general, it may be a different coroutine altogether if one or more TRANSFERS have
intervened. It is therefore necessary in the implementation of process schedulers to use an auxiliary
able for p2 and copy values to and from the PROCESS variables associated with the appropriate coroutine.
Note also that, while it is in order to copy PROCESS variables by assignment for later use, tests of equality
on PROCESS values can not be used to determine the identity of coroutines because of the changing state.
Each and every interrupt must be preceded by a synchronizing call of IOTRANSFER.t Since, in general,
interrupts must be enabled before IOTRANSFER is called, a way must be found to fend off the interrupt

t Without my intervening TRANSFERS to pi. Such an explicit TRANSFER could be programmed and would have the
same effect as the occurrence of the interrupt, however it would only be safe to do this if the source of the interrupt had
been disabled first.

f

van-

- page 14 -

until the first part of the IOTRANSFER has taken place. This is done by executing the critical code at
high processor priority as specified by the heading of the enclosing module. To guard against the possibil­
ity of spurious interrupts occurring when no IOTRANSFER has been issued, the safest policy is to enable
interrupts before each IOTRANSFER and to disable them again immediately afterwards.

a

2.5. Buffered output to a serial terminal

This example is made relatively system independent by importing device specific constants and operations
from another module PrinterDevict. It is assumed that the constant devicePriority is known in the enclos­
ing module by import from PrinterDevict.

MODULE Printer [devicePriority] ;

FROM SYSTEM IMPORT
NEWPROCESS ,
TRANSFER,
IOTRANSFER,
LISTEN,
PROCESS,
WORD,
ADR;

(* momentarily lower processor priority *)

m FROM PrinterDevice IMPORT
Enable,
Disable,
Output,
vector;

(* enable interrupts *)
(* disable interrupts *)
(* output a given character directly *)
(* interrupt vector address *)

EXPORT
Print;

CONST
N = 32;

VAR
(* characters in buffer *)
(* input pointer *)
(* output pointer *)

N] OF CHAR;

n: CARDINAL;
in,
out: [1..N];
buff: ARRAY [1. .
user,
driver: PROCESS;

&

wksp: ARRAY [1..100] OF WORD;
waiting: BOOLEAN; (* driver is waiting for a character *)

PROCEDURE Print(ch: CHAR);
BEGIN

WHILE n - N DO LISTEN END;
buff [in] :=* ch;
in ;= in MOD N +1;
INC (n) ;
IF waiting THEN

waiting := FALSE;
TRANSFER (user, dri ver) ;

END;
END Print;

- page 15

(

PROCEDURE Handler;
BEGIN

LOOP
Enable;
Output (buff [out]) ;
out ;* out MOD N +1/
DEC (n) ;
IOTRANSFER (driver, user, vector);
IF n = 0 THEN

waiting ;=* TRUE;
Disable;
TRANSFER(driver, user)

END
END

I END Handler;

BEGIN
= 0; in ;» 1; out :» 1; waiting := TRUE;

NEWPROCESS (Handler, ADR(wksp), SIZE(wksp), driver);
END Printer;

n :

2.6. Comments
It turns out that explicit scheduling is quite appropriate for the relatively tight coupling between user and
device coroutines in this and similar examples. In general, however, there will be several user coroutines
and these will be relatively loosely coupled within a framework of implicitly scheduled processes. A pro­
cedure such as Print must then not employ busy waiting when it finds its progress is blocked - in this case
because of a full buffer. To solve this problem, both Print, executing the user coroutine, and Handler, exe­
cuting the driver coroutine, must call on implicit scheduling operations in addition to the explicit schedul­
ing operations already shown.
Modules which employ asynchronous coroutine transfers do introduce an issue which is also potentially
present for interactions between quasi-parallel user processes. This is the issue of mutual exclusion in
access to shared variables. Some of the possible interleavings of execution can lead to incorrect results if
one coroutine uses a variable value while another alters the value of that variable. The solution employed
in the Printer example is supported by the language and relies on raising the processor priority to exclude
interrupts from the printer device while Print is being executed. (This is why LISTEN is called to momen­
tarily lower the priority and admit any pending interrupts.) This action is implied by the priority
specification in the module heading. Prof. Wirth calls such a module a monitor since only one coroutine
can be in the state of executing a procedure of the module at a time except during calls of LISTEN,
TRANSFER, and IOTRANSFER. Essentially what this is doing is limiting asynchronous transfers during
execution of Print to the one point where LISTEN is called. Some of the implications of this will be taken
up again after the discussion of implicit scheduling. However there are several unresolved issues to do
with module priorities which are not specifically raised in this paper.

3. The proposed new coroutine model

3.1. Description
The Working Group have received many useful comments on the original coroutine model, especially from
Dave Budgen (University of Stirling), George Mohay (Queensland Institute of Technology) and Pat Terry
(Rhodes University). Much was also revealed by attempts to describe the model to some members of the
Group who had yet to come to grips with Modula-2 coroutines! Taking account of this input, the specialist
subgroup have devised a new model which is to be recommended for adoption in the standard. We feel
able to do this because of the uncertain status of the original model, because of its relative complexity, and
because the old model may be implemented in terms of the new thus imposing minimal changes on existing

i

- page 16 -

code.
The most fundamental change is to replace the changing state of PROCESS values with fixed COROU­
TINE values associated with particular coroutines throughout their existence. This essentially introduces
coroutine identifiers. A new function SELF is provided to allow the identity of the main process to be
stored and for the occasions when a procedure needs to discover the identity of the executing coroutine.
There is now no need for a parameter to TRANSFER and IOTRANSFER to save the state of the executing
coroutine.
As a separate change, the operation of associating an interrupt source with the executing coroutine is
separated from IOTRANSFER and is now performed by the new procedure ATTACH. Since in most if
not all applications a handler will always use the same interrupt vector, this change will allow the vector to
be set up once and for all and so will gain an important improvement in efficiency where speed is critically
important.
Finally, the old second parameter of TRANSFER is split into two parameters. The first gives the value of
the destination coroutine identity, the second is a VAR parameter which is set on return to the identity of
the interrupted coroutine. In some applications the same variable will be chosen for each parameter but
there are others in which the separation will save extra copying. In any case, the separation is claimed to
be conceptually easier.

(0 To overcome a potential problem with the original implementation of NEWPROCESS, NEWCOROU-
TINE is defined to set up the initial processor priority for execution of the new coroutine to be the same as
that of the caller. In cases where NEWCOROUTINE is called indirectly through a higher level initializa­
tion routine, the call of NEWCOROUTINE should not therefore be enclosed in a module of specific prior­
ity. An alternative to this might yet be adopted and that is to have an (optional) extra parameter to
NEWCOROUTINE to allow specification of the priority.

Here is the new model in the form of a definition module:
DEFINITION MODULE NewKernel;

FROM SYSTEM IMPORT
ADDRESS;

EXPORT QUALIFIED
COROUTINE,
NEWCOROUTINE,
TRANSFER,
IOTRANSFER,
ATTACH,
SELF;m

TYPE
COROUTINE; (* coroutine identity *)

(* dynamically create a coroutine *)
(* code of coroutine *)
(* base workspace address *)
(* workspace size in storage units *)
(* identity of new coroutine *)

PROCEDURE NEWCOROUTINE
(Body: PROC;
Workspace: ADDRESS;
WsSize: CARDINAL;

VAR cr: COROUTINE
);

PROCEDURE TRANSFER
(To: COROUTINE

(* synchronous coroutine transfer *)
(* identity of destination coroutine *)

);

PROCEDURE ATTACH (* associate interrupt source with
current coroutine *)

- page 17

(* interrupt vector *)(Vector: CARDINAL
);

(* Synchronous out/ asynchronous beck *)
(* identity of destination coroutine *)
(* identity of interrupted coroutine *)

PROCEDURE IOTRANSFER
(To: COROUTINE;

VAR From: COROUTINE
);

(* deliver identity of current coroutine *)PROCEDURE SELF
() : COROUTINE;

END NewKernel.
This model is thought to be safer since it is now not possible to attempt to transfer to a coroutine in an out
of date state.
The new model has been implemented in terms of the old (and the old in terms of the new) by Don Ward.
Synchronous transfers have been tested by him on the Logitech Modula-2 system for the DEC VAX run­
ning VMS. I have also tested these implementations using both synchronous and asynchronous transfers
on a DEC PDP-11. The code is included as an appendix to this paper so that others may use it for com­
parison. Direct implementation for the PDP-11 is to be undertaken shortly.
It has not been finally decided from where the new types and procedures should be exported. There are
four choices:
a) Keep them in SYSTEM. This is consistent with the low-level nature of the coroutine model but

issues to do with the potential standardization of SYSTEM have yet to be resolved.
b) Export them from a system module other than SYSTEM. The compiler would not look for a com­

piled definition module and could generate efficient in-line code.
c) Export them from a separate Oibrary) module.
d) Turn them into standard procedures and types which therefore do not need to be imported.
The working decision is to opt for b) and require a system module named COROUTINES. This should
probably not be included as a standard identifier since that would imply that inner modules could import
from COROUTINES without this being made apparent in enclosing modules. (However at least one
member of the Working Group thought that for this reason SYSTEM should be made a standard identifier!)

3.2. Examples
The effect on the code of the 8 Queen’s program is simply to do away with the first parameter in all calls of
TRANSFER, and for a call of SELF to initialize main in the Init procedure:
MODULE Queens;

i
i

r

FROM Board IMPORT
Safe,
Occupy,
Vacate,
Display;

(* tests if proposed placement is safe *)
(* occupies a given place on the board *)
(* vacates a given place on the board *)
(* displays board *)

FROM NewKernel IMPORT
COROUTINE,
NEWCOROUTINE,
TRANSFER,
SELF;

FROM SYSTEM IMPORT
ADR,
SIZE;

- page 18 -

TYPE
Arow = [1. .8] ;
Acol ~ [1..8];

CONST
(* informed guess *)wkspsize - 200;

VAR
colData: ARRAY1 Acol OF

RECORD
cr: COROUTINE;
wksp: ARRAY [1. .wkspsize] OF WORD;

END;
initCol: Acol;
main: COROUTINE;
done: BOOLEAN;

m (* coroutine code *)PROCEDURE Placer;
VAR

myCol: Acol;
my Row: Arow;

BEGIN
myCol := initCol; TRANSFER (main) ;
LOOP

FOR myRow := 1 TO 8 DO
IF Safe (myCol, myRow) THEN

Occupy (myCol, myRow);
IF myCol < 8 THEN

TRANSFER (colData [myCol-t-1] . cr) ;
ELSE

done := TRUE;
TRANSFER (main)

END;
Vacate (myCol, myRow) ;

END
END;
(* none of the rows are safe in this column *)
IF myCol > 1 THEN

TRANSFER(colData [myCol-1].cr)

m
ELSE

done := FALSE;
TRANSFER (main)

END
END

END Placer;

PROCEDURE Init;
BEGIN

main := SELF () ;
FOR initCol J TO 8 DO

WITH colData[initCol] DO
NEWCOROUTINE (Placer, ADR (wksp), SIZE(wksp), cr);

TRANSFER (cr)

- page 19 -

END
END

END Init;

BEGIN
Init;
TRANSFER (colData [1] . cr) ;
WHILE done DO

Display;
TRANSFER (colData[8].cr);
END;

END Queens.
For the Printer example, the same variable is used for both parameters to IOTRANSFER since the driver
always returns to the coroutine which it interrupted. The value of this variable will, in general, be changed
by the call since a different coroutine may be running when the interrupt occurs.

MODULE Printer(devicePriorityJ;

II

'VLFROM NewKernel IMPORT
COROUTINE,
NEWCOROUTINE,
TRANSFER,
ATTACH,
IOTRANSFER,
SELF;

FROM SYSTEM IMPORT
LISTEN,
WORD,
ADR;

(* momentarily lower processor priority *)

FROM PrinterDevice IMPORT
Enable,
Disable,
Output,
vector;

(* enable interrupts *)
(* disable interrupts *)
(* output a given character directly *)
(* interrupt vector address *)

A
EXPORT

Print;

CONST
N « 32;

VAR
n: CARDINAL;
in,
out; [1..NJ;
buff: ARRAY [1

(* characters in buffer *)
(* input pointer *)
(* output pointer *)

N] OF CHAR;
user.
driver: COROUTINE;
wksp: ARRAY [1..100) OF WORD;
waiting: BOOLEAN; (* driver is waiting for a character *)

PROCEDURE Print (ch: CHAR);
BEGIN

- page 20 -

WHILE n - N DO LISTEN END;
buff [in] ch.-
in ;= in MOD N +1;
INC (n) ;
IF waiting THEN

waiting :■* FALSE;
user : ■ SELF () ;
TRANSFER (dri ver) ;

END;
END Print;

PROCEDURE Handler;
BEGIN

ATTACH(vector);
LOOP

Enable;
Output (buff [out]) ;
out := out MOD N +1;
DEC (n) ;
IOTRANSFER (user, user);
IF n = 0 THEN

waiting ;= TRUE;
Disable;
TRANSFER(user)

END
END

END Handler;

BEGIN
n 0; in := 1; out := 1; waiting TRUE;
NEWCOROUTINE (Handler, ADR (wksp) , SIZE (wksp) , driver) ;

END Printer;
It is recognized that different systems may need to provide alternative versions of ATTACH to allow
appropriate identification of the source of the interrupt. The portability of the Printer module could be
enhanced even further by importing an Attach procedure from PrinterDevice instead of vector.

4. Implicit scheduling and processes
i\P It is thought to be desirable to specify a library module providing for implicitly scheduled coroutines or

processes. Discussion of the detailed interface and semantics has not yet proceeded very far but several
requirements have emerged. Some aspects of the following description have deliberately been left vague at
this stage.

There is to be a procedure StartProcess which creates a new process and makes it ready for execu­
tion. This means that it is a candidate for execution when scheduling takes place.
Return from the procedure forming the code of the process is to have the effect of terminating only
that process. This is achieved by having the nominated procedure called indirectly by hidden corou­
tine code.

a)

b)

c) The effect of a return from this procedure may also be obtained by a call to StopMe.
For workspace, StartProcess is only to be given the increment on size needed over and above the
minimum for the implementation. The actual space will be allocated by StartProcess and deallocated
on process termination.
The procedure given by the user as the program of the process is to be of a type with one value
parameter. The actual value to be used in the call of the procedure is to be given as a parameter to

d)

e)

- page 21 -

StartProcess. The type of the parameter has not yet been decided - suggestions are CARDINAL or
ADDRESS.

0 A procedure Reschedule will cause the current process to give up execution but remain ready.
g) A procedure SuspendMe will cause the current process to give up execution and become unready.
h) There shall be process identities discoverable from a call of Me. (I also suggest that there be a distin­

guishable nilProcess value for Process variables.)
i) A procedure MakeReady will be provided to make an identified unready process ready for schedul­

ing.
These requirements are thought to provide a reasonable level of functionality for implicit scheduling. For
example, they allow a solution to the busy waiting problem in the code of the Printer example. Here,
blocked is a Process variable initialized to nilProcess.
PROCEDURE Print (ch: CHAR);
BEGIN

IF n - N THEN
blocked := MeO;
SuspendMe;

END;
buff [in] :=* ch;
in ;» in MOD N +1;
INC(n) ;
IF waiting THEN

waiting FALSE;
user ;= SELF () ;
TRANSFER(driver);

V*

END;
END Print;

PROCEDURE Handler;
BEGIN

ATTACH (vector);
LOOP

Enable;
Output (buff [out]) ;
out :* out MOD N +1;
DEC (n);
IF blocked <> nilProcess THEN

MakeReady(blocked) 4>*
END;
IOTRANSFER (user, user) ;
IF n = 0 THEN

waiting ;= TRUE;
Disable;
TRANSFER(user)

END
END

END Handler;
Such a scheme is also potentially applicable when running processes under an operating system which does
not allow access to device interrupts but does offer routines to be called on the completion of asynchronous
transfers. Provided that the implementation allows Modula-2 procedures to be specified as completion rou-
tines, they may call MakeReady to allow a blocked process to continue.
Higher levels of functionality may be built on top of this model. Thus other modules can implement sema­
phore operations or allow the use of CoBegin, CoSlart, and CoEnd to start and wait for several subsidiary

- page 22 -

processes 10 finish. The aim of providing any or all of these library modules is not to restrict the user but to
offer him or her something useful to get started. The proposed COROUTINE mechanism is powerful
enough to allow other schemes including one in which interrupt routines are more fully integrated into the
process model [3].
No assumptions have been made about the actual scheduling algorithm to be used except that it must be
fair. There may or may not be preemptive timeouts. The topic of mutual exclusion must therefore be
raised again. The basic choice is between using a procedural mechanism such as claiming and releasing
semaphores, or to use module priorities to create simple monitors. A limitation of monitors based on pro­
cessor priorities is that monitor procedures risk releasing exclusive access by calling the procedures of
another such monitor. This would happen if the procedure of the second monitor caused a call to LISTEN
to be made, for example. A generalization to the language is under consideration which would allow user
provided code to be executed on entry and exit to monitor procedures instead of the usual in-line code to
raise and restore processor priority.
A further requirement of processes is that within each process a set of coroutines may be employed - for
example in the way they are for the 8 Queen’s example. There are two possible ways to provide for this.
First the user could conceivably access the low-level COROUTINE mechanism directly. If so, the process
module would need to be written on the assumption that COROUTINE identities were not fixed within a
process. This gets us back full circle since the COROUTINE variable in the process descriptor would have
to be updated on every implicit transfer.
The second approach would be to provide a higher-level coroutine library module the implementation of
which knows about processes and updates the COROUTINE identity stored for the current process on each
explicit transfer. An advantage here is that the implementation could guard against attempts to transfer
between coroutines belonging to different processes. A high-level coroutine module could also allow for
parameters and storage allocation.
Anyone out there asking for coroutines to start their own processes can either keep quiet or join the sub­
group!

W

5. References
N. Wirth, Programming in Modula-2, Springer-Verlag, 1st edition: 1982,2nd edition: 1983, 3rd edi­
tion: 1985.
N. Wirth, A Single-pass Modula-2 Compiler for Lilith, 1.5.84/rev. 15.11.85.
R. Henry, Modula-2 Processes - Problems and Suggestions, MODUS Quarterly, Issue 4, November
1985.

1.

2.
3.

6. Appendix - new and old style kernel implementations
IMPLEMENTATION MODULE NewKernel;m
IMPORT

SYSTEM,
Storage;

(* This Implementation uses dynamic storage
for clarity of code and therefore generates
ngarbagen. An alternative would be to take
the necessary storage from the given
workspace *)

TYPE
COROUTINE =» POINTER TO

RECORD
Worksp: SYSTEM. PROCESS/
IOVector: CARDINAL;

- page 23 -

END;

CONST
NILVector * 0; (* System Dependent *)

VAR
CurrentRoutine: COROUTINE;

PROCEDURE NEWCOROUTINE (
Body: PROC;
Workspace: SYSTEM.ADDRESS;
WsSize: CARDINAL;

VAR cr: COROUTINE
);

BEGIN
Storage.ALLOCATE (Me, SYSTEM.SIZE(cr"));
cr". IOVector :=* NILVector;
SYSTEM.NEWPROCESS(Body, Workspace, WsSize, cr". Worksp);

END NEWCOROUTINE;:
V

PROCEDURE SELF(
): COROUTINE;

BEGIN
RETURN CurrentRoutine

END SELF;

fa-************
MODULE Safe [7J;
IMPORT

SYSTEM, COROUTINE, CurrentRoutine;
EXPORT

TRANSFER, IOTRANSFER;

PROCEDURE TRANSFER (
To: COROUTINE
);

VAR
My Self: COROUTINE; 4r>BEGIN
MySelf ;= CurrentRouti/je;
CurrentRoutine := To;
SYSTEM. TRANSFER (MySelf ". Worksp, To ". Worksp) ;

END TRANSFER;

PROCEDURE IOTRANSFER(
To: COROUTINE;
VAR From: COROUTINE

);
VAR

MySelf: COROUTINE;
temp: SYSTEM.PROCESS;

BEGIN
MySelf CurrentRoutine;

temp To".Worksp;

- page 24 -

CurrentRoutine ;= To;
SYSTEM. IOTRANSFER (MySelf". Worksp, temp, MySelf". IOVector) ;
Current Routine".Worksp :m temp;

From := CurrentRoutine;
CurrentRoutine :* MySelf;

END IOTRANSFER;

END Safe;
fit******)

PROCEDURE ATTACH(
Vector: CARDINAL
);

BEGIN
CurrentRoutine". IOVector Vector;

END ATTACH;

BEGIN
Storage. ALLOCATE (CurrentRoutine, SYSTEM. SIZE (CurrentRoutine ")) ;
CurrentRoutine". IOVector ;= NILVector;$ END NewKernel.

DEFINITION MODULE OldKernel;

FROM SYSTEM IMPORT
ADDRESS;

EXPORT QUALIFIED
PROCESS,
NEWPROCESS,
TRANSFER,
IOTRANSFER;

TYPE
PROCESS;

PROCEDURE NE?H>ROCESS (
Body: PROC;
WorkSpace: ADDRESS;
WsSize: CARDINAL;

VAR pr: PROCESS
);

PROCEDURE TRANSFER (
VAR From,

To: PROCESS
);

PROCEDURE IOTRANSFER (
VAR From,

ToFrom: PROCESS;
Vector: CARDINAL
);

END OldKernel.

- page 25 -

IMPLEMENTATION MODULE OldKernel;

IMPORT
NewKernel;

FROM SYSTEM IMPORT
ADDRESS;

TYPE
PROCESS = NewKernel.COROUTINE;

PROCEDURE NEWPROCESS(
Body: PROC;
Workspace: ADDRESS;
WsSize: CARDINAL;

VAR pr: PROCESS
);

BEGIN
NewKernel.NEWCOROUTINE(Body, Workspace, WsSize, pr);

END NEWPROCESS;

ST(**************)
MODULE Safe [7];

IMPORT NewKernel;

EXPORT TRANSFER, IOTRANSFER;

PROCEDURE TRANSFER(
VAR From,

To: PROCESS
);

VAR
temp: PROCESS;

BEGIN
temp :« To;
From : = NewKernel. SELF () ;
NewKernel.TRANSFER (temp);

END TRANSFER;

PROCEDURE IOTRANSFER(
VAR From,

ToFrom: PROCESS;
Vector: CARDINAL);

BEGIN
NewKernel.ATTACH(Vector) ;
From : * NewKernel. SELF () ;

NewKernel. IOTRANSFER (ToFrom, ToFrom) ;
END IOTRANSFER;

I
END SAFE;

******)—I
END OldKernel.

- page 26 -

Members of the BSI Modula-2 Working Group

Barry Cornelius
Department of Computer Science
University of Durham
Durham DHl 3LE England

Durham (0385 or +44 385) 64971 extension 792

Barry_Cornelius@uk.ac.durham.mts
Barry_Cornelius%mts.durham.ac.uk@UCL-CS.ARPA
Barry Cornelius%DURHAM.MAILNET0MIT-MULTICS.ARPA
bjc@ulc.ac.nott.cs
bjc%cs.nott.ac.uk@UCL-CS.ARPA

M2WG-N110

To:

From:

Ref:

Another look at the FOR statementTitle:

Version: 1

21st August 1986# Date:

1. Introduction

We last discussed FOR-statements at the M2WG meeting held in
Leicester on 20th May 1986. In particular, we discussed the three
possible definitions of a FOR-statement given on pages 3 to 5 of
Derek Andrew's paper "Some Problems with Modula-2" (M2WG-N96).

The majority of those present agreed to the second definition,
namely:*

tempi:= el;
temp2:= e2;
i:= tempi;
WHILE i<=temp2 DO

body;
i:= next(i, e3)

END ;
i:= UNDEFINED;

(assuming that the value of e3 is greater than zero),
definition is different to that of ISO Pascal and at the meeting
I did not support the decision to adopt this definition.

This

In this document I give reasons for my opposition and produce a
definition for the Modula-2 FOR-statement that agrees with
ISO Pascal.

- page 27 -

mailto:Barry_Cornelius@uk.ac.durham.mts
mailto:bjc@ulc.ac.nott.cs

2. The Difference Between The Above Definition And ISO Pascal

The above definition doesn't allow a FOR-statement like:
VAR i: [1. .10]?
FOR i:« 42 TO 27 DO
• • •

Although this doesn't look very useful, the ISO Pascal Standard
regards this as legal. In fact, it goes out of its way to allow such
FOR-statements. It says:

The control-variable shall possess an ordinal-type, and the
initial-value and final-value shall be of a type compatible with
this type. The initial-value and final-value shall be
assignment-compatible with the type possessed by the control-
variable if the statement of the for-statement is executed.

Why does it do this? Well, there are occasions when you want a
FOR loop executed zero times and the initial value has a value which
does not belong to the type of the control-variable. The next
section gives some realistic examples.

V-

3. Some Realistic Examples

In this section I give two examples of code which is legal Pascal but
which would not be correct according to the definition proposed in
Section 1.

3.1 Transposing A Matrix

One algorithm for transposing a matrix is:
for each row of the matrix

perform interchanges on columns
which are to the right of the leading diagonal

Note that on the last row of the matrix there are no columns to the
right of the leading diagonal so we don't want any interchanges
performed. However, I don't regard this as anything strange and
would argue that it is reasonable to produce the code-

CONST size=10;

TYPE matrix=ARRAY [l..size, l..size] OF real;

PROCEDURE transpose(VAR a:matrix);
VAR row,

BEGIN
col:1..size; oldvalueofarowcol:real;

FOR row:= 1 TO size DO
FOR col:** row + 1 TO size DO
BEGIN

oldvalueofarowcol:= a[row, col];
a[row, col] :*= a[col, row];
a[col, row]:= oldvalueofarowcol

END
END { transpose }

- page 28 -

3.2 Reading A Line Of Characters

My colleague, Robin Stanaway, uses this example in his lectures:
CONST

maxlinelength « 80 {for example};

TYPE
linelengths =* 0 . .maxlinelength;
linepos - 1..maxlinelength;
lines * RECORD

contents: PACKED ARRAY [linepos] OF char;
length: linelengths;

END {lines};

PROCEDURE ReadLine (VAR line: lines);
{Reads a line of text and stores it, up to the maximum
permitted length. Any excess characters are skipped over}

VAR
pos: linepos;

BEGIN
WITH line DO

BEGIN
length := 0;
WHILE (length < maxlinelength) AND NOT eoln DO

BEGIN
length := length+1;
read (contents[length]);

#

END;
(* (length=maxlinelength) OR eoln *)
FOR pos := length+1 TO maxlinelength DO

contents[pos] := ' ';
END;

readln;
END {ReadLine};

4. A First Attempt At A New Definition

I do not see any reason why the FOR-statement of Modula-2 should be
any different from that of Pascal (other than the changes required by

^ the introduction of the BY-part). I would therefore like to propose
™ the following definition for the semantics of the FOR-statement:

tempi:= el;
temp2:= e2;
WHILE tempi<=temp2 DO

i:= tempi;
body;
tempi:= next(tempi, e3)

END ;
i:= UNDEFINED;

where tempi and temp2 are variables whose type is the same as the
base-type of the control-variable.

I believe that this is just as easy to understand as the definition
given in Section 1. The only difference is that the control-variable
only gets its new value if the body of the loop is to be executed.

- page 29

5. Other Problems

However, there are problems both with the definition in Section 1 and
with this new definition.

The definition given in Section 1 doesn't cope with:
VAR colNum: [1..80];
FOR colNum:* 1 TO 80 DO
• • •

since the definition's equivalent code will eventually attempt to
assign the out-of-range value, 81, to the control-variable, colNum.

And, neither the definition given in Section 1 nor the one given in
Section 4 will cope with:

VAR day: (sun, mon, tue, wed, thu, fri, sat);
FOR day: = sun TO sat BY 2
• • •

since the equivalent codes will attempt to evaluate "next(day, 2)"
when day has the value sat.

a
6. A Second Attempt At A New Definition

If we want to solve these problems then it seems that the definition
will necessarily become more complicated. The best I can come up
with is:

tempi:= el;
temp2:= e2;
LOOP

IF templ>temp2 THEN EXIT END;
i:*= tempi;
body;
FOR temp3:* 1 TO e3 DO

IF templ=MAX(t)
THEN EXIT
ELSE INC(tempi)

END (* IF *)
END (* FOR *)

END (* LOOP *) ;
i:* UNDEFINED; r.miwhere:

(i) t is the base-type of the control-variable i,
tempi and temp2 are both of the type t,
temp3 is of type CARDINAL.

(ii)
(iii)

I

- page 30 -

Automatic export of identifiers

from the definition module

AH] Sale
Professor of Information Science— University of Tasmania

GPOBox252C Hobart Tasmania Australia 7001

The BSI Modula-2 Working Group has suggested that Professor Wirth’s proposal to discard
the export list of a definition module be rejected (Cornelius, 1986). In their report to the
Modula-2 Users' Association the Working Group state

'[WG084] M2WG has agreed to retain the original syntax and semantics, Le., objects which are to be
exported from a definition module have to be listed in an export list'

This paper argues that this suggestion should not be adopted and that the 1984 revision to
automatically export all identifiers declared in a definition module should be retained.

1

ANALYSIS

#
Several correspondents to the MODUS Quarterly (November 86) have pointed out that few if
any definition modules export identifiers selectively. This provides a strong prima facie case
for assuming that the export clause in a definition module is redundant. There is also a strong
case on theoretical and consistency grounds for rejecting selective export. However a more
careful analysis of the situation is required to ensure that some unusual but important facility
is not being overlooked by deleting it. Accordingly this paper will systematically examine
the arguments for and against selective export In the ensuing discussion the word visible (and
its derivatives) will be meant to refer to an item being readable in the text of the definition
module, and the term accessible to refer to an ability to refer to the item by imported
identifier in a using module.

Firstly, we should ask when an identifier must appear in a definition module. Assume
that the valid reasons for an identifier appearing in a definition module are based on it it
serving a syntactic purpose in either a calling module or the definition module. The following
syntactic purposes can be identified:
• the identifier will be exported, or
• the identifier is required for a subsequent using occurrence in the definition module, or
• the identifier is required as a by-product of one of the other two requirements.

Secondly, would anyone wish to transfer the defining occurrence of an identifier from an
implementation module to the corresponding definition module? The only plausible reason for
such a practice would be that the writer of the module wishes to not publish the text of the
implementation module and publish the structure or definition of some object which is part of
the implementation. This practice should not be encouraged. The definition module should
constitute the module writer’s contract with the user, and extraneous material should not be
included in it

Selective export allows the module writer to include such defining occurrences in the
definition module and yet not export them; the deletion of the export clause would remove
this possibility. However this argument for its retention is weak and a similar purpose can be
achieved, if absolutely necessary, by either publishing the text of the implementation

§

- page 31
I

module or by including a suitable comment in the definition module. This point is crucial,
because it will be shown that there is no other plausible use for selective export.

VALID DEFINING OCCURRENCES

Procedures
A definition module may only contain a procedure heading, not its body. While the heading
may contain a parameter list, the parameter identifiers have no significance to the user of a
module and are never exported. Their only significance, if any, is for checking against the
(redundant) heading in the implementation module. The only components of a procedure
which are exported are its identifier and the structure of its parameter list

Since no bodies of procedures can occur in a definition module, and the definition module
has no initialization section of its own, there can be no using occurrences of the procedure
identifier (calls or activations). This means that a procedure can never be required as the
consequence of something else—it can only be a valid component of a definition module if it is
to be exported.

;
■

Variables
It has been argued in many places that modules should not export variables as they represent
severe security risks to the integrity of the module's correctness. For example see Sale (1986b).
However, if a variable does occur in a definition module, there can also be no using occurrences
(references) to it, for precisely the same reason as for procedures. Again a variable can never
be required as the consequence of something else—it can only be a valid component of a
definition module if it is to be exported.

Constants
Now consider the case of constants declared in a CONST part. These may be intended for
export only, or may be referenced in subrange type declarations in the definition module. The
first case is relatively rare in practice but can occur as defining the maximum size of some
resource, or in providing identifiers for common constant values such as the ISO character set.
Other examples are given in Sale (1986a). Not exporting an identifier intended for export is
senseless.

The second case is much more common, yet it still does not offer an argument for selective
export, for if the constant defines one of the limits of a user-accessible subrange type, then the
limit values are valid information for the user and may be useful in FOR statements (for
example). In any case it would be pointless to try to hide them because the accessibility of the
type enables their values to be retrieved by the MIN or MAX functions, or failing that by the
appropriate type transfer function (inverse to ORD). The only facility not available to a
module user who is given exported access to a subrange type but not its limits is the facility to
use (syntactic) constant expressions involving the limits, thus prohibiting the declaration of
derived constants or subrange types. Even this would be possible if the proposal to allow
standard function calls (eg MIN, MAX) in constant expressions is implemented.

■fN4

Types
Since no other kind of object requires selective export, any case for it must lie in the area of
type declarations. One possibility is for an exported type to be defined in the TYPE part of a
definition module, but for any named identifiers in its internal structure to be not exported.
This is a sort of opaque export the structure is visible but cannot be used. Let us examine the
possibilities:

- page 32 -

Type synonyms
Declarations of the kind

Identifier! = Identified

are relatively rare in definition modules, but introduce no new issue. Since the type is simply
given a synonymous name, the purpose of this is probably to export it, but in any case whether
selective export is important or not depends on whether the type Identified is accessible
anyway.

Subrange types
If the host type is accessible to the user, then not exporting a visible subrange type is almost
pointless. Type identity in variable parameter compatibility is the only case where
similarly declared subrange types are distinguished.

Enumeration types
A new issue is introduced with enumeration types. Does it make sense to export an
enumeration type identifier but none of the associated constant identifiers? Or to export only
some of the associated constant identifiers? The first question is almost equivalent to
exporting the identifier opaquely, and is discussed later. The second implies that there are
values which the user can see but not access by identifier. Since all values of a visible
enumeration type can be reconstructed anyway by type transfer (given that they are visible),
this seems pointless. The Modula-2 Report (Wirth, 1982) and most Modula-2 compilers with
explicit export resolve this issue by simply not allowing selective export of enumeration
types: if the type identifier is exported, so are all the constant identifiers which may not
themselves be explicitly exported.

Record types
Of all the structured types, only record types involve the defining occurrences of internal
identifiers: the field identifiers. These identifiers are not in the scope of the definition
module and correspondingly are not in the scope of an export clause. There is only one sensible
approach to the export of field names and this is stated in the Modula-2 Report: they are
exported associated with the type identifier.

Set types, array types and pointer types
These types involve no internal defining occurrences.#

Procedural types
Procedural types involve no internal defining occurrences. In any case, the visibility of a
procedural type declaration (regardless of export) allows a user to reconstruct compatible
types and procedures, since compatibility is determined by structural rules, not type identity.
There is no reason at all for not exporting a visible procedural type.

Opaque export
Many implementations of Modula-2 restrict opaque export to types which are subsequently
declared to be pointer types. This restriction is a compiler convenience, as it permits simple
implementations. However, even with it, implementation modules can be written which
provide any desired type—all that is necessary is for the pointer type to have the desired
type as its bound type. It should also be pointed out that there are compilation techniques for

- page 33 -
i
!

i

entirely removing this restriction. A quality Modula-2 implementation could permit an
opaquely exported type to be declared in the implementation module with any type.

SUMMARY

The valid inclusion of a variable or procedure in the definition module implies its export. (If
this is not the case then the definition module is overspecified and the non-exported object
should be transferred to the implementation module.) The selective export of constant
identifiers has been shown to have no useful purpose. The only possible case for selective
export arises with type declarations. This is focused on one issue: the export of a type
identifier whose defining occurrence occurs in the definition module but the non-export of any
internal identifiers in its structure. The user really wants an opaque export of a structured
type and attempts to achieve this by having the structure visible but not exported. This is a
bad response to a poor situation: the proper solution is to encourage Modula-2 processors to
implement opaque export so that the details of any type in the implementation module can be
opaquely exported. There are techniques for doing this. Alternatively the existing opaque
export of a pointer type can be used to provide the desired facility. The conclusions are
simple:

s

Deletion of the export clause and automatic export of all identifiers whose defining
occurrence occurs in the definition module is an improvement in and a simplification of the
language.

1J1

Why should local modules retain their own idiosyncratic structure? Should they not also
have interface and implementation components syntactically parallel to separate
modules?

2

REFERENCES

CORNELIUS, B. (1986). 'Significant changes to the Language Modula-2/ MODUS Quarterly,
6, pp8-14.

SALE, A H J. (1986a). Modula-2: Discipline & Design. Addison-Wesley.
SALE, A H J. (1986b). Improving the quality of definition modules.' MODUS Quarterly, 6,

pp27-29.
SALE, A H J. (1987). 'Optimization across module boundaries/ Aust. Comp. Jrd. (to be

published 1987).
WIRTH, N. (1982). Programming in Modula-2. Springer-Verlag.

t-

;

f

- page 34 -

BSI Modula-2 Working Group

Standard Concurrent Programming Facilities

N 116 Issue 3

Don Ward

Systems Design Division
GEC Electrical Projects Ltd

Boughton Road
Rugby

Warwickshire CV21 1BU UK

Rugby (0788 or +44 788) 2144

ABSTRACT

This paper outlines the proposals made by the processes subgroup of the BSI Working group on
Modula-2. It discusses some of the various options when considering what to standardise and what to
leave out and makes recommendations for adoption in the standard.

*

- page 35 -

CONTENTS

1Introduction1

12 Scope of Standardisation

23 Summary of the Proposal

24 Priority
4.1 The type PRIORITY..................
A2 The initial priority of a Coroutine

3
3

55 Explicit Scheduling - Coroutines.............
5.1 Why change PIM?
5.2 How much code is affected?
5.3 The definition module of COROUTINES
5.4 The VDM definition of COROUTINES .
5.5 Returning from the body of a coroutine .

5
5
6
7
8

6 Implicit Scheduling - Processes
6.1 The definition module of PROCESSES
62 The VDM definition of PROCESSES ..

9
9

11

7 Extra Facilities..
7.1 Semaphores...
7.1.1 The definition module of SEMAPHORES
7.1.2 The VDM definition of SEMAPHORES ..

15
15
15■

16

8 Appendix 1 - Sample specifications of PRIORITY 18
€

9 Appendix 2 - An example use of PROCESSES and SEMAPHORES
9.1 CoBEGIN .. CoEND..
9.1.1 The definition module of CoBEGIN .. CoEND
9.1.2 The VDM definition of CoBEGIN .. CoEND..................................
9.1.3 The implementation of CoBEGIN .. CoEND..................................

19
19
19
20
22

- page 36 -

1. Introduction

This paper reports on the work done by the processes subgroup to date. The group consists of the fol­
lowing members of 1ST 5/13

Derek Andrews (Leicester university)
Roger Henry (Nottingham University)
Willy Steiger (Logitech)
Don Ward (GEC Electrical Projects)

Paul Manning of Leicester University has also attended our meetings. This document has greatly
benefited from discusions within the group, and especially from suggestions made by Roger Henry.

Terminology
Programming in Modula-2 Edition n [1]
Hardware Priority
Software Priority
Monitor as defined by CAJL Hoare

Uninterruptable Module Monitor as defined by N. Wirth in PIM
PROCESS as defined in PIM1 & PIM2
Coroutine which is implicitly scheduled
BSI Modula-2 Working Group
Working document no. xxx of M2WG

PIMn
Priority
Importance
Monitor

Coroutine
Process
M2WG
(Nxxx)i

2. Scope of Standardisation

There are a number of viable alternatives open to the standardisation working group when considering
what concurrent programming facilities to standardise and what to leave ouL
Standardise nothing

"No consensus on a general machine independent model for concurrency yet exists, or indeed can
be expected to at this stage ... the language standard should not prescribe any such model, but
should leave implementations to provide appropriate facilities via suitable library modules" N.
Wirth as reported by Jim Welsh and Paul Bailes (The go-betweens’ tale N105).

Standardise Priority only
Recognise the truth of NW’s comments but include at least a method of providing non­
in terruptability in a structured way within the language.

Standardise Coroutines
Argue that coroutines are well understood, fairly portable (except workspace size) and should be
included within standard Modula-2. The position of IOTRANSFER is less solid, but a number of
implementations have managed to provide it. If IOTRANSFER is required, it is strongly recom­
mended that priority is required too.

Standardise Processes
Argue that ’raw coroutines’ are difficult to use and that modules which provide some kind of
implicit scheduling together with commonly used synchronisation facilities and process creation
facilities would be useful. ’Rolling your own’ should not be prohibited by making them part of
the language - but neither should reinventing the wheel be encouraged.

Standardise a toolbox
Take the wheel reinvention argument to it’s logical limit and provide a rich set of concurrent pro­
gramming facilities.

The position of the subgroup is to propose that coroutines and processes be standardised. We were
encouraged by the feedback from the open meeting in July 1986 which, broadly speaking, endorsed this
view.

*

-1-

- page 37 -

3. Summary of the Proposal

We propose a definition of a required system module called COROUTINES for the explicit transfer of
control between coroutines. This definition is implementable in terms of the old definition of coroutines
(aka. processes) in PIM and vice versa.
We propose that there be a type PRIORITY with at least two values (priorities) - Interruptable and
Unintemiptable. Implementations are free to add intermediate priority levels between these two manda­
tory ones. We propose PRIORITY should be defined in COROUTINES.
We propose two required separate modules to do implicit scheduling and to implement a general
phore operation.
We do not require a module which has an explicit priority specification to be a monitor (in the Hoare
sense) nor do we require anything else from the apparatus available to the concurrent programmer (who
is of course free to provide it himself and to reimplement our required separate modules to his or her
own taste).

sema-

4. Priority

k ■

We require two priority levels Interruptable and Unintemiptable. An implementation is free to augment
this by inserting a (partially ordered) set of priorities between the two required values.

Implementation defined
(partially ordered)

set of priorities
Interruptable < Unintemiptable<

If the poset is totally ordered we have the familiar priority levels known to fans of the PDP11. Note
that it is still possible to make rules about whether a procedure running at one priority may call one
which runs at a different priority even if the set of priorities is not totally ordered. One can define two
priorities to be incomparable (if one is not a subset of the other) and define the priority which is a strict
subset to be the lower of the two.
The effect of the two required priorities is as follows:
Unintemiptable

No coroutine which has performed an IOTRANSFER will return from it while the priority is
Unintemiptable.

Interruptable
No coroutine is prohibited from returning from an IOTRANSFER operation.

The priority of the processor may be changed by the current coroutine entering or leaving a module
with a priority explicitly specified in the heading (ie. calling or returning from a procedure defined
within such a module or obeying the initialisation code of the module itself). The priority may also be
changed by TRANSFERing to another coroutine. If a source of interrupts is excluded and a procedure
is called (or a module is initialised) which changes the priority, the source of interrupts must remain
excluded.

Note that if a procedure variable or a procedure parameter is used, the checking that the priority is
lowered must be deferred until run time.

#>

not

-2-

- page 38 -

If a module, which explicitly specifies a priority, is textually within another module, which also
specifies a priority, then the priority of the inner module cannot be lower than or incomparable with the
priority of the outer1
The priority does not have to be cpu priority wit physical devices: An implementation which never
turned interrupts off (as far as the devices were concerned) but which stored them up and delivered
them when they were no longer excluded by the current priority would be acceptable. This approach is
likely if the implementation is not running on a bare machine.
If more than one interrupt is delivered from a particular source before it is accepted (by lowering the
priority to allow a return from the IOTRANSFER), it is implementation dependant whether subsequent
interrupts are ignored or recorded.
If the priority allows an interrupt and one occurs from an attached device, there will be an exception
unless a coroutine, attached to the source of interrupts, has previously suspended itself using
IOTRANSFER. It is implementation dependent whether interrupts from devices to which no coroutine
is attached give rise to exceptions or not

4.1. The type PRIORITY

We define a type PRIORITY with (at least) two values. Two constant identifiers are also defined:
INTERRUPT ABLE and UNINTERRUPT ABLE. These constants should have appropriate values
defined by the implementation. If the implementation augments this definition by adding extra priori­
ties, extra constant identifiers should be placed in COROUTINES to denote each different priority.
A compilation unit may be given an explicit priority by a statement of the form

IMPLEMENTATION MODULE fred [COROUTINES.UNINTERRUPTABLE];
Note that the names of the constants denoting priority are defined by the standard but not the underly­
ing type (which is defined by each implementation). The reason for this change to priority
specifications is to allow implementations to provide whatever priority scheme is suitable - from
PDP 11-like levels (which can be implemented with numerical constants) to schemes where each device
is individually specified (which cannot).
Two sample definitions of PRIORITY are provided in Appendix 1.
Any constant expression which defines a constant of an acceptable form is allowable in a priority
specification, not only those constants defined by the system module COROUTINES. Local modules
can also have an explicit priority specification.
Suitable operators on the type PRIORITY will be defined by the implementation. For example, if it is
a numeric type, arithmetic operators will presumably be defined. It is open to the implementation to
define no operators on the type: In that case, the constant expression denoting priority degenerates into
one of the named constants provided in COROUTINES or another constant identifier which has been
equated to one of them. Programmers may declare variables of type PRIORITY. Why they should
want to is outside the scope of this document
If the main program module specifies a priority, it will be run at that priority, otherwise it will inherit
an implementation defined priority. The initialisation code of any module runs at the priority specified
in the header or (if none is specified) at the priority applicable at the time of initialisation.

d

0 f

42, The initial priority of a Coroutine

If the module enclosing the body of a coroutine specifies a priority, the coroutine is to start at that
priority. If no priority is specified, the coroutine will inherit the processor priority of the creating

1 This rule also deals with the case where there are interjacent modules which do not specify the priority.

-3-

- page 39 -

coroutine at the time of creation 2.

At first sight it seems reasonable to define a scheme without the notion of inheritance. ’Hie reason for
including it comes from a desire to avoid the replication of software differing only in the priority
specification: A high priority module is specified as such because the designer wishes to protect it from
preemption whilst any invariant that the module maintains is temporarily invalid. It would be advanta­
geous if it could use the services provided by other modules but, if a low priority coroutine is hidden
inside such a service, an interrupt is possible. The provision of two modules differing only in Module
name and priority (or N modules if there are N priorities) does circumvent this problem, albeit clumsily,
without inheritance of priority. Another solution would be to code all service modules as Uninterrupt-
able just in case they were called by an uninterruptable module. The subgroup preferred to extend the
rules so that provision of several modules is not required, nor need they be defined at the highest prior­
ity.
A good example of the need for such a facility would be found in an attempt to provide the function of
a CLU iterator [4] on a particular adt A more specific example on the same lines is a routine which
walks a tree, delivering one leaf node per call. If this were implemented by a low priority coroutine,
any high priority module would have to ensure that invariants were satisfied before using it.

e-

nwmally occur oo the fim TRANSFER to iL One possible way of achieving this is a one-time switch (on a per-corLune basis)
g °0de' A”°,hCr- SU88“ti0n U 10 diflin*uith of Stines from

. 4 -

- page 40

5. Explicit Scheduling - Coroutines

The proposed standard for COROUTINES is modelled on the definition in PIM2. It has been given
previously by Roger Henry in the paper N108 [2] presented to the open meeting in July 1986 in Lon­
don. The VDM notation used here is defined by C.B. Jones [5].

5.1. Why change PIM?

/

The following is a summary of the discussion in N108. The initial desire of the group was to standar­
dise the existing definition as it stood. We were dislodged from this position by a number of considera­
tions:
Efficiency

A number of comments have been received on the potential inefficiency of linking the interrupt
vector to the coroutine on each IOTRANSFER operation. We chose to separate the two for this
reason and also because such a separation allows many different linking operations via different
procedures without requiring many different versions of IOTRANSFER.

Clarity
It is argued that the original definition is hard to understand. Especially because a given Corou­
tine variable can refer to many different coroutines and because, although it can be assigned, it is
by no means clear what such an assignment means (therefore don’t do it?)

Machine specific
The definition is biased towards a PDP11.

0

The subgroup claim that the new definition is easier to understand, is closer to other definitions of
coroutines and is not ambiguous.

5.2. How much code is affected?

Most people known to the author (except Randy Bush) do not "build a custom tasking model for each
need" (N101) - they struggle to implement a module based on coroutines or use somebody else’s,
breathe a sigh of relief and use their chosen higher level procedures from then on. In many programs
there will be no change (because they are not concurrent) or the change will be confined to one module.
Even in programs which make a great use of explicit coroutine transfers, the conversion can be easily
achieved by implementing the old version of TRANSFER etc. in terms of the new. Both this and a
version of the new definition in terms of the old have been implemented by Don Ward and Roger
Henry and are given in RH’s paper N108.

-5-

- page 41 -

S3. The definition module of COROUTINES

Since COROUTINES is a system module and is not separately compiled, no definition module is
needed. COROUTINES behaves as if the following were it’s definition.
DEFINITION MODULE COROUTINES;

EXPORT QUALIFIED
COROUTINE, NEWCOROUTINE,
TRANSFER, IOTRANSFER,
ATTACH, DETACH,
SELF,
PRIORITY,
INTERRUPTABLE,
UNINTERRUPTABLE;

TYPE
(* coroutine identity *)
(* Implementation defined *)

COROUTINE,
PRIORITY«... ;

CONST
(* Implementation defined *)
(* Implementation defined *)

INTERRUPTABLE « ...;
UNINTERRUPTABLE « ...; &

PROCEDURE NEWCOROUTINE
(Body: PROC;

Workspace: ADDRESS;
WsSize: CARDINAL;

VAR cr: COROUTINE

(* code of coroutine *)
(* base workspace address *)
(* workspace size (in storage units) *)
(* identity of new coroutine *)

);

(* synchronous coroutine transfer *)
(* identity of destination coroutine *)

PROCEDURE TRANSFER
(To: COROUTINE
);

PROCEDURE ATTACH (* Associate interrupt source with
current coroutine *)

(* interrupt vector *)(Vector: CARDINAL
);

PROCEDURE DETACH (); (* Disassociate current coroutine from
sources of interrupts *) £

PROCEDURE IOTRANSFER
(To: COROUTINE;

VAR From: COROUTINE;

(* synchronous out, asynchronous back *)
(* identity of destination coroutine *)
(* identity of interrupted coroutine *)

);

PROCEDURE SELF
(): COROUTINE;

(* deliver identity of current coroutine *)

END COROUTINES.

-6-

- page 42

I■
i

5.4. The VDM definition of COROUTINES

The following is a sketch only. It falls to Derek Andrews to provide the full definition.

(* Infinite set of Coroutine Id *)
set of CID
set of CID
set of CID
map CID to device
(* Current Coroutine *)

CID =
CIDS =
Routines =
DoinglO =
Connected =
cc e Routines

TRANSFER(d: CID)
ext rd Routines, DoinglO

d g Routines a d € DoinglO
cc = swap(cc,d)

wr cc
pre
post

9
IOTRANSFER(d : CID)
ext rd wr cc,DoinglO

cc g dom Connected a de Routines
z_ z______ z_

cc = swap(cc,d) a DoinglO = DoinglO u { cc }

Connected, Routines
pre
post

ATTACH(d: device)
ext rd wr Connectedcc

ii?
true z.________

Connected = Connected t { cc d } a
-i(3c* (Connected(c) = d a c*cc))

pre
post

n
rDETACH

ext rd wr Connectedcc

9 ittrue
Connected = { cc } <3 Connected

pre /
post

|
j j

INTERRUPT!(c: CID, d: device)
ext rd itwr cc,DoinglOConnected

c g dom Connected a c g DoinglO a Connected(c) = d ✓ / T
swap(cc,c) a DoinglO = DoinglO - { c } !!!!

pre
post cc =

I •»

:

-7-

- page 43 -

!;
s!

NEWCOROUTINE() c : CID
CEDS wr Routinesext rd

pre true
let C€ CIDS - Routines/___.__
in Routines = Routines u { c }

post

swap(old, new: CID): CID = Space-for-Derek-to-draw-in

SELF() c: CID
ext rd cc

truepre
post c = cc

5.5. Returning from the body of a coroutine

The initialisation code of the main module is considered to have been called from the environment.
Termination of the program occurs when an explicit or implicit return is made to this environment by
the initialisation code of the main module.
On the other hand, a coroutine created within the program has no caller. An explicit or implicit return
will cause an exception.

2

- 8 -

- page 44 -

PROCEDURE Me():PROCESS;
PROCEDURE StopMc;
PROCEDURE NilProcess():PROCESS;

PROCEDURE StartProcess(
t

Body:
ExtraSpace:
Param:
Urgency:

PROCESSBODY;
CARDINAL;
PARAMETER;
IMPORTANCE

);
END PROCESSES.

0

-10-

- page 45 -

6. Implicit Scheduling - Processes

The required separate module PROCESSES is specified by a definition module together with a descrip­
tion of each operation in VDM. When considering which functions to include in this module, the sub­
group was motivated by economy: Our intent was to include only the minimum. Other more powerful,
and perhaps more convenient, operations may be built on top of the ones we propose.
The essential difference between the facilities made available by this module and those provided by
COROUTINES is the (assumed) indifference of the caller to which process is chosen next to run.
Rather than explicitly choosing a successor by giving the destination as a parameter, the choice is made
inside the module itself and may not be direcdy controlled by the user. It is of course possible to sub­
vert the scheduling strategy and arrange that there is only one possible choice, but it is more honest and
much easier to use COROUTINES directly if that is what is desired.
A further difference is that an implicit or explicit return is allowed from the body of a process - it has
the same meaning as an explicit call to the termination routine StopMe.
The main process is composed of the initialisation code of all modules declared at level 0.
If the main process calls StopMe it will no longer be considered by the scheduler as a candidate to be
the next to run. Under these circumstances there is no way for the program to terminate normally (see
section 5.5): An exception may occur because of deadlock or other error conditions or the program will
run continuously.

6.1. The definition module of PROCESSES

DEFINITION MODULE PROCESSES;

EXPORT QUALIFIED
PROCESS, PARAMETER, PROCESSBODY, IMPORTANCE,
SuspendMe, MakeReady, Me, StopMe,
NilProcess, SuspendMeAndMakeReady, StartProcess,
Associate, DisAssociate, SuspendUntilEvent;

TYPE
PROCESS;
PARAMETER
PROCESSBODY = PROCEDURE(PARAMETER) ;
IMPORTANCE = CARDINAL;

(* Is Opaque *)
= ADDRESS;

£PROCEDURE SuspendMe;
PROCEDURE MakeReady(p: PROCESS);
PROCEDURE SuspendMeAndMakeReady(p: PROCESS);

PROCEDURE Associate(device: CARDINAL);
PROCEDURE DisAssociate;
PROCEDURE SuspendUntilEvent;

-9-

- page 46 -

62. The VDM definition of PROCESSES
I

A process can be in one of three states: active, passive or waiting (for I/O completion). In addition
there is usually one distinguished active process - the one that is currently running. All active processes
are eligible to become the current process. Changing the current process is a scheduling operation
which may be voluntary or involuntary. If there is no current process, either there is at least one wait­
ing process or deadlock has occurred. Processes have an importance (or software priority) which
influences the choice of process when scheduling takes place.

(* Infinite set of Process Id ♦)
set of PID
set of device
(♦ The set of processes which are eligible to be current
i.e. the set of ready processes ♦)
(♦The set of unready processes ♦)
(♦The set of processes waiting for I/O to complete ♦)
map PID to device
map PID to N
(♦ The current process ♦)

PID =
PIDS =
DEVICES =
Active c PIDS

Passive c PIDS
Waiting c PIDS
Attached =
Rank =
Current =0

Invariant
Is-Pairwise-disjoint({ Active, Passive, Waiting) } a
Is-one-one(Attached) a
(Current = nil v Current e Active) a
dom Rank = Active u Passive u Waiting a
-. (Bp e Active • Rank (p) > Rank (Current))

deadlock = Active u Waiting = {}

Is-one-one(m) = card rng m = card dom m

Is-pairwise-disjoint(S) = Vx.yeS-x^y => xny = {}

0

-11-

- page 47 -

STARTPROCESS(Importance: N)
Active, Current, Rank

true
let p € PIDS - (Active u Passive u Waiting)

Active = Active vj { p } a
(Rank(Current) ^Rank(p) v
(Rank^Current) <Rank(p)

Rank = Rank t {p^ Importance)

ext wr
pre
post

in

a Current = p))

STARTPROCESS defines a new process and makes it active. It’s process identity is not shared with
any other process that is active, passive or waiting.

CME () m: PID
ext rd Current

true
m = Current

pre
post

ME returns the process identity of the current process.

SUSPENDME
ext wr Active, Passive, Current

true /____ /______
Active = Active - { Current} a
Passive = Passive u { Current} a

Current = select(Active)

pre
post

SUSPENDME makes the current process unready, ie. temporarily ineligible to be current It is made
eligible again (ready) by MAKEREADY $

MAKEREADY (p: PID)
ext wr Active, Passive, Current

p € Passive/
Passive = Passive - { p } a
Active = Activeu {p} a

(Rank (Current) ^ Rank (p) v (Rank (Current) < Rank (p) a Current = p))

pre
post

It is an exception if the process to be made ready is not passive.

-12-

- page 48

SUSPENDMEANDMAKEREADY (p: PID)
Active, Passive, Current
pe Passive v p = Current/ ____
Active = (Active - { Current}) u { p } a
Passive = (Passive u { Current}) - { p } a
Current = select(Active)

r
ext wr
pre
post

SuspendMeAndMakeReady combines the two previous operations into a single indivisible operation.
SuspendMeAndMakeReady(Me()) is a rescheduling operation which will cause a choice of which pro­
cess to run from the most important active processes.

select(A : set of PID) cp: PID
ext rd Rank

true0 pre
(cp= nil aA={}) v —i (3p € A • Rank(p) > Rank(cp))post

(* Possible implementation
if A= {}

cp = nil
let p g { pr g A • Vx g A (Rank(x) < Rank(pr)) }
in cp = p

then
else

•>

Select chooses a process from a given set. The selected process will be at least as important as any
process in the set. Amongst sets of processes of equal rank the choice will be fair. The select opera­
tion is not direcdy callable.

ASSOCIATE! d: device)
ext rd Current wr Attached&

true z_____
Attached = Attached t { Currents d } a
-i (3p • (Attached! p) = d a p * Current))

pre
post

ASSOCIATE attaches the current process to a device. Any other process that was attached to the dev­
ice is no longer attached.

-13-

- page 49

SUSPENDUNTILEVENT
ext wr Active, Waiting, Current

Current € dom Attached
Active = Active - { Current} a
Waiting = Waiting u { Current} a
Current = select Active)

pre
post

SUSPENDUNTILEVENT suspends the process until the device, to which it is attached, signals comple­
tion of I/O by EVENT! .

EVENT! (p:PID,d:device)
Active, Waiting, Current
pe Waiting a Attached(p) = d
Active = Active u { p } a
Waiting = Waiting - { p } a
(Rank(Current) ^Rank(p) v (Rank(Current) <Rank(p) a Current

ext wr
pre
post

-p$

Device d uses EVENT! to interrupt processing to signal that the I/O operation started by p requires
attention. Note that only if Rank(p) > Rank(Current), will preemption occur. It is thus advisable for
processes doing I/O to have a high importance if a quick response to the interrupt is wanted.

DISASSOCIATE
ext rd Current, wr Attached

Current e dom Attached ^______
Attached = { Current} < Attached

pre
post

DISASSOCIATE detaches the current process from the device to which it was attached.

QSTOPME
ext wr Active, Current

true
Active = Active - { Current} a
Current = select(Active) a
Rank = {Current} < Rank

y

Attached = { Current} <3 Attached

pre
post

1 STOPME makes the process permanently ineligible for running. A new current process is chosen (if
possible). The process will be detached from any device. If the body of a process returns, the effect
will be as if a STOPME had been invoked.

-14-

- page 50

7. Extra Facilities

It is worthwhile to outline the reasons why we have chosen to include semaphores and have chosen not
to include monitors. }

Why Semaphores?
Semaphores are weH understood. They are an inherently procedural mechanism (cf. Monitors)
and can be used to implement other synchronisation mechanisms. They are likely to be imple­
mented by most people if not part of the standard environment

Why not Monitors?
There are several subtly different definitions which deal differently with nested monitors. The
mechanism is not inherently procedural; support is required from the compiler. Furthermore, the
compiler also needs some knowledge of the facilities provided to arrange suspension of entrants
whilst the monitor is occupied and reactivation when it is left Thus PROCESSES, or a module
like it becomes almost part of the language. It is possible to implement a monitor procedurally,
without compiler support [6] but it is then no more reliable than a semaphore - it is just as easy
to miss out a call to ExitMonitor as it is to forget to release a semaphore.0

7.1. Semaphores

7.1.1. The definition module of SEMAPHORES

DEFINITION MODULE Semaphores;
EXPORT QUALIFIED

SEMAPHORE,
Create, Destroy, Claim, Release;

TYPE
SEMAPHORE;

PROCEDURE Create!
VAR S: SEMAPHORE;
InitialCount: CARDINAL
);to PROCEDURE Destroy(
VAR S: SEMAPHORE

);
PROCEDURE Claim(

VAR S: SEMAPHORE
);

PROCEDURE Release(
VAR S: SEMAPHORE
);

END Semaphores.

-15-

- page 51 -

7.1.2. The VDM definition of SEMAPHORES

Each semaphore has a count associated with it and a set of processes waiting for it to become free.
The semaphore is free if the count is non zero

(* Infinite set of Semaphore Id ♦)
set of SID
map SID to N
map SID to set of PID

SID =
SIDS =
Count =
Waiters =

Invariant
Vs € dom Count • Waiters (s) * {} Count (s) =0 a
dom Count = dom Waiters

$

CREATE (i: N) s : SID
ext rd SIDS wr Count, Waiters

true
let s g SIDS - dom Count/

Count = Count t { s i—> i } a
Waiters = Waiters t { st—> {} }

pre
post

in

CREATE defines a new semaphore. The count is initialised to the parameter given. No process is
waiting for it to be free.

DESTROY (s : SID)
ext wr Count, Waiters

s g dom Count a Waiters (s) = {}
Count = { s } Count a
Waiters = { s } Waiters

pre

Qpost

An attempt to destroy a semaphore on which there are processes waiting will cause an exception.

-16-

- page 52 -

CLAIM (s : SID)
ext wr Count, Waiters

s e dom Count z_____
(Counts) = Count(s) - 1 a Counts) > 0) v
(Waiters(s) = Waiters(s) uME a post-SUSPENDME)

pre
post

If the count associated with the semaphore is non zero it is decremented, otherwise the current process
is suspended and added to the set waiting for it to become free.

RELEASE (s: SID)
ext wr Count, Waiters

s e dom Count
(Counts) = Count(s) + 1 a Waiters(s) = {}) v
(Waiters(s)* {}^ a

let p = select Waiters(s))
in post-MAKEREADY(p) a Waiters(s) = Waiters(s) - { p }

pre
post

o
)

/_____ /___ /_____
The Notation "Count(s) = Counts) + y" is an abbreviation for "Count = Count t { s h-» Count(s) -

If no process is waiting for the semaphore, the count associated with it is incremented, otherwise one
process is selected from those waiting for it, removed from the waiting set and made eligible to run.
Preemption will occur if the newly eligible process is more important than the current process.

References

1 N. Wirth "Programming in Modula-2"
Springer-Verlag 1982, 1983, 1985
R. Henry "Coroutines and Processes" (N108)
J. Welsh, P. Bailes "The Go-betweens’ tale" (N105)
B Liskov, J Guttag "Abstraction and specification in program development"
MIT Press 1986
C3. Jones, "Systematic software development using VDM".
Prentice-Hall 1986
P.D. Terry, "A Modula-2 Kernel for Supporting Monitors"
Software: Practice and Experience 16(5) pp 457-472 (May 1986)

0
2
3
4

5

6

-17.

- page 53 -

8. Appendix 1 - Sample specifications of PRIORITY

DEFINITION MODULE COROUTINES;

EXPORT QUALIFIED
........ (+ NEWCOROUTINE etc. *)
PRIORITY,
UNINTERRUPTABLE,
HIGH-PRIORITY,
MED PRIORITY,
LOWPRIORITY,
INTERRUPTABLE;

TYPE
-10..71;PRIORITY

CONST
* 7UNINTERRUPTABLE

HIGH_PRIORITY
MED-PRIORITY
LOW_PRIORITY
INTERRUPTABLE

= 5 4= 3
- I
= 0

END COROUTINES.

DEFINITION MODULE COROUTINES;

EXPORT QUALIFIED
........ (* NEWCOROUTINE etc. *)
UNINTERRUPTABLE,
F, P, K, S, FP, FK, FS, PK, PS, KS, FPK, FPS, FKS, PKS,
INTERRUPTABLE;

TYPE
Device « (FloppyfrinlerJCeyboard,Screen);

CONST
INTERRUPTABLE = Device {};

= Device { Floppy };
= Device { Printer };
= Device { Keyboard };
= Device { Screen };
- F + P;
= F + K;
= F + S;
= P + K;
= P + S;
= K + S;
= F + P + K;
= F + P + S;
= F + K + S;
= P + K + S;
= F + P + K + S;

i F
P QK
S
FP
FK
FS
PK
PS
KS
FPK
FPS
FKS
PKS
UNINTERRUPTABLE

END COROUTINES.

• 18 •

- page 54 -

9. Appendix 2 • An example use of PROCESSES and SEMAPHORES

The following module is a simple example which demonstrates the use of semaphores and processes.
The module provides a facility similar to the COBEGIN...COEND construct of concurrent Pascal.

9.1. CoBEGIN .. CoEND

;
After a CoBEGIN call, the parent process may create children by calling the CoStart procedure. All the
children wait until the parent executes the CoEND procedure. The parent then waits until all the chil­
dren are finished: They finish by returning from the procedure given as a parameter to CoStart
Inside the module, two semaphores are used: One to provide mutual exclusion between parents whilst
procreating and one between children when terminating. The use of these two semaphores avoids
interesting program behaviour caused by race conditions. All the starting and finishing protocol is in a
hidden procedure which provides a pre and postlude to the user’s code.
A further pair of semaphores (one pair per CoOperating family) is used to exclude children whilst the
parent is creating the rest of the family and to exclude the parent whilst the children are running. The
module could be written with only one semaphore for both purposes, since the critical sections follow
one another sequentially, but using two leads to clearer code.
Having one or more children call Processes.StopMe (rather than returning from the procedure which is
specified as the body of the child) is an excellent way to deadlock the program The parent will remain
suspended for ever because the exit protocol, which activates the parent when all the children have
finished, will not be obeyed. Modifying the module to remove this (mis)feature is left as an exercise
for the reader.

:
j

Q

9.1.1. The definition module of CoBEGIN .. CoEND

DEFINITION MODULE CoOp;

PROCESS. PROCESSBODY, PARAMETER, IMPORTANCE;FROM Processes
EXPORT QUALIFIED

IMPORT

CB.
CoBEGIN. CoStart, CoEND;

TYPE
CB;

PROCEDURE CoBEGIN(
VAR Block: CB0
);

PROCEDURE CoStartf
CB;c:
PROCESSBODY;
CARDINAL;
PARAMETER;
IMPORTANCE

UserProc:
Space:
UserParam:
Urgency:
);

-19-

- page 55 -

PROCEDURE CoEND(
VAR Block: CB
);

END CoOp.

9.1.2. The VDM definition of CoBEGIN .. CoEND

CoBEGIN .. CoEND is modelled by two maps. Children(p) are the processes created by process p
using the COSTART operation. Finished(p) are the children of p who have finished execution.
No process is its own child. No process is the child of more than one parent. No more children can
finish than have been created.

map PID to set of PID
map PID to set of PID

Children =
Finished =

$Invariant
Vp g dom Children (p 6 Children (p) a Finished (p) G Children (p) a

Vy g dom Children (p = y v Children (p) n Children (y) = {})
)

COBEGIN
ext wr Children, Finished

ME g dom Children
Children = Children t {MEI—> {} } a
Finished = Finished t { ME {} }

pre
post

COBEGIN indicates that the current process is about to create children. None have yet been created
and none have finished execution.

eCOSTART (Importance: N)
ext rd Active, Waiting, PIDS

ME g dom Children
let p g PIDS - (Active u Passive u Waiting)

Passive = Passive u { p } a
Rank = Rank t { p I—> Importance } a
Children (ME) = Children(ME) u { p }

wr Passive, Rank, Children
pre
post

in

-20 -

- page 56 -

I
COSTART defines a new process which is not eligible for running. The new process is a child of the
current process

COEND
ext rd Waiting wr Active, Passive, Children, Finished

ME e dom Childrenpre
/

*
t—i (3p e Children(ME) • p € Active u Passive u Waiting) a

Children = ME <3 Children a
Finished = ME *3 Finished

post
:'

(* Possible implementation
if Children (ME) = {}

Ithen
Active = Active u Children (ME) a
Passive = Passive - Children (ME) a
post-SUSPENDME

else

*)

O COEND makes the children of the current process active and suspends the current process until all of
the children have finished execution. On completion, all children will not exist Each child will, at the
end of it’s execution obey a wrap-up operation. No more children may be created until another COBE­
GIN operation.

wrap-up
ext rd Children wr Finished

ME e rng Children
let Children (parent) = ME
in Finished (parent) = Finished(parent) u { ME } a post-STOPME a

(Finished (parent) = Children (parent) a post-MAKEREADY(parent)
(Finished (parent) c Children (parent) a parent € Passive)

pre
post

If all the children have finished (ie. this is the last child to wrap-up) the parent process will become
active and will complete the COEND operation. In any case the child is permanently ineligible for run­
ning. The wrap-up operation is invoked implicidy when the child comes to the end of or returns from
it’s procedure body.

O
.

:
i

■

|-21-
■

- page 57 -
■

!

V

9.13. The implementation of CoBEGIN « CoEND

IMPLEMENTATION MODULE CoOp;

SEMAPHORE,
Create, Destroy, Claim, Release;
PROCESS, PROCESSBODY, PARAMETER, IMPORTANCE,
StartProcess;
ALLOCATE, DEALLOCATE;

FROM Semaphores IMPORT

IMPORTFROM Processes

IMPORTFROM Storage

RECORDTYPE CoBlock -
SEMAPHORE;
SEMAPHORE;
CARDINAL;

ChildPen:
ChildMinder:
Children:

END;
POINTER TO CoBlock;CB

VAR
SEMAPHORE;
SEMAPHORE;

Parenthood:
Childhood:

PROCESSBODY;(* Used to smuggle extra params *)
(* between parent and child

Proc:
CurrentCb: *)CB;

CONST
CoOpTariff = 200; (* Extra space for CoOperating processes *)

(* IMPLEMENTATION DEPENDENT *)

PROCEDURE CoBEGIN(VAR c: CB);
BEGIN

ALLOCATE(c, SIZE(CoBlock)); (* come back NEW, all is forgiven *)

Createfc*.ChildPen, 0);
Created .ChildMinder, 0);
c .Children := 0;

(* both semaphores are created *)
(* initially claimed V

END CoBEGIN;

€

-22-
- page 58 -

PROCEDURE CoENDfVAR c: CB);
VAR i: CARDINAL;
BEGIN

IF c .Children > 0
THEN

FOR i :*• 1 TO c*. Children
DO

Release(c*.ChildPen);
END;
(* Wait for children to finish *)
Claim(c'.ChildMinder);

!

END;
(* All children now finished *)
Destroy(c*.ChildPen);
Destroy(c.ChildM inder);
DEALLO CATE(c JSIZE(CoB lock)) ;

END CoEND ;

PROCEDURE Wrapping(p: PARAMETER);
PROCESSBODY;VAR UserProc:
CB;c:

BEGIN
O Copy params to local space while there is no

interference from other parents (because of claimed
Parenthood semaphore)

(* V
(* V
(* V
UserProc := Proc;
c := CurrentCb;
Release(Parenthood);
Claim(c .ChildPen);

(* Allow other progeny
Wait until parent CoENDs
and then
Call the punter's code

V
(* V
(* V

UserProc(p); (* *)

Claim(Childhood);
DEC(c .Children);
IF c.Children = 0
THEN

These two operations must be
indivisible

V(*
Vr

Last Child ... wake parent*)
Release(c\ChildMinder);
(*

END;
Release(Childhood);

END Wrapping;O

;

-23-

- page 59 -

PROCEDURE CoStartf
CB;c:

VPROCESSBODY;(* Extra params are
CARDINAL; (* as for Startprocess
PARAMETER; (* and have the same
IMPORTANCE (* meaning

UserProc:
Space:
UserParam:
Urgency:

*)
V
V

):
BEGIN

ClaimfParenthood);
Proc := UserProc;
CurrentCb := c;
INC(c‘. Children);
StartProcess(Wrapping, Space + CoOpTariff, UserParam, Urgency);

END CoStart;

BEGIN
Create(Parenthood, 1); (* Allow one parent
Create(Childhood, 1); (* and one child

(* through critical sections

V
*)
V

END CoOp.

€

-24-

- page 60 -

MODUS Quarterly # 5 February 1986
Editorial, Richard Karpinski
Exporting a Module Identifier, Barry Cornelius
Letter on multi dimensional open arrays, Niklaus Wirth
Letter on D1V, MOD, /, and REM, Niklaus Wirth
BSI Accepted Change: Multi-dim. open arrays, Willy Steiger
N73: NULL-terminated strings in Modula-2, Ole Poulsen
ISO Ballot Results re BSI Specifying Modula-2
Draft BSI Standard I/O Library for Modula-2, Susan Eisenbach
Portable Language Implementation Project: Design and

Development Rationale, K. Hopper and W.J. Rogers
The ETH-Zuerich Modula-2 for the Macintosh, Chris Jewell
NewStudio: Engineering a Modula-2 Application for the Mac,

A. Davidson, H.B. Herrmann, E.R. Hoffer

Issue # 0 October 1984Modula-2 News

Modula-2 News
Review of Gleaves’ Modula-2 text by Tom DeMarco
MODUS Paris meeting 20/21 Sep 84, C. A. Blunsdon
Report of M2 Working Group, 8 Nov 84, John Souter
Modula-2 Standard Library Rationale, Randy Bush
Modula-2 Standard Library Definition Modules
Modula-2 Standard Library Documentation, Jon Bondy
Validation of M2 Language Implementations, J. Siegel

Issue # 1 January 1985

MODUS Quarterly # 2 April 1985
Letters, Anderson & Emerson
Opaque Types in Modula-2, C. French & R. Mitchell
Dynamic Module Instantiation, Roger Sumner
The Linking Process in Modula-2, Jeanette Symons
Modula-2 Library Comments, Bob Peterson
Modula Compilers - Where to Get ’em, Larry Smith
Coding War Games Prospectus, Tom DeMarco
M2, An Alternative to C, M. Djavaheri, S. Osborne

MODUS Quarterly # 3 July 1985
Letters, Endicott & Hoffman
Some Thoughts on Modula-2 in "Real Time", Paul Barrow
RajalnOut: simple, safer, I/O for

Logitech/MS-DOS, R. Thiagarajan
Selection of Contentious Problems, Barry Cornelius
Expressions in Modula-2, Brian Wichmann
The Scope Problems Caused by Modules, Barry Cornelius

MODUS Quarterly #4 November 1985
State of MODUS, George Symons
MODUS Meeting Report, Bob Peterson
A Writer’s View of a Programmer’s Conference, Sam’l Bassett
Concerns of A programmer, Dennis Cohen
Modifications to the Standard Library

Proposal, R. Nagler & J. Siegel
Proposal, standard library and M2 extension,

Odersky, Sollich, & Weisert
Standard Library of the Unix OS, Morris Djavaheri
The Standard Library for PCs, E. Verhulst
Editorial, Richard Karpinski
Modula-2 Compilation and Beyond, D.G. Foster
Modula-2 Processes - Problems and Suggestions, Roger Henery

MODUS Quarterly # 6 November 1986
Editorial, Richard Karpinski
Letter on opaque types. File type, and SET OF CHAR, P. Williams
Letter on exported identifiers, E. Videki
Why the Plain Vanilla Linkers, J. Gough
Letter re best article & MacModula-2, M. Coren
Significant Changes to the Language Modula-2, Barry Cornelius
All About Strings, Barry Cornelius
Type Conversions in Modula-2, B. Wichmann
Improving the quality of Definition Modules, A. Sale
A Programming Environment for Modula-2, F. Odegard
Academic Modula-2 Survey, L. Mazlack
Compilers for Modula-2 (Zuerich list)
Membership List

MODUS Quarterly # 7 February 1987
Editorial, Richard Karpinski
New Products
Modula-2 Standardisation: A go be tweens tale, Welsh & Bailes
Modula-2 VM/CMS, Thomas Habernoll
TCP Implementation in Modula-2, F. Ma & L. D. Wittie
Building an Operating System with Modula-2,

B. Justice, S. Osborne, & V. Wills
Note on Implementing SET OF CHAR, Source Code

for a SetOfChar MODULE, A. Brunnschweiler

MODUS Administrators supply single copies at $5 US of 12 Swiss Francs.

Hints for contributors:

Send CAMERA READY copy to the editor (dot matrix copy is usually unacceptable). Machine readable copy is
preferred. Present facilities permit printing from electronic mail and floppy disks (Sage, IBM PC, Macintosh) using
Postscript, Script, TeX, and troff formatting systems. Working papers and notes about work in progress are
encouraged. MODUS Quarterly is not perfect, though it tries to be current.

Please indicate that publication of submission is permitted.
Correspondence not for publication should be PROMINENTLY so marked.

Send your submissions to:

Richard Karpinski, Editor
6521 Raymond Street
Oakland, CA 94609
(415) 476-4529 (12-7 pm)
(415) 658-3797 (ans. mach.)

I

» ?

M2News or RKarpinski
dick(2\Jcsfcca
70215,1277
dick@cca. uesf. edu
... ueb vax! ucsfcg! cca. ucsfl dick

TeleMail
BITNET

CompuServe
InterNet

UUCP

Association
membershTIpplication

i

Name :

Affiliation :

Address :

Address :

City :
Country:Postal Code:State :

Electronic Addr :Phone : (___).

or RenewalApplication as: New Member

Implementation(s) used :
Option: Do NOT print my phone number in any rosters

Print ONLY my name and country in any rosters
Do NOT release my name on mailing lists

or:
or:

** Membership fee per year (20 USD or 45 SFr) **
Members of the US group who are outside of North America, add $10.00.

In North and South America,
please send check or money
order (drawn in US dollars)
payable to Modula-2 Users’
Association at:

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, California 94303
United States of America

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

j

Aline Sigrist
MODUS Secretary
ERDIS SA
Postfach 35, CH-1800 Vevey 2
Switzerland

t

Laneuaee^to^ mSf oSS a“ Frti« int”Kted the Modula-2
communkation °is through £^ ef S ?P*""? “S «*

Membership is for an acSdemic year, and you wlil LP““'n 'T t,mf a, yTu
year in which you join. Mid-year applications rpooi a]} news etters for t^ie
Modula-2 is a new and developing language- this orwni^t- tbat ^ear s back issues,
and serious users a means to discuss and keep informoHt'LPr°VuldeS *mPlernentors
effort, while discussing implementation ideas and ect. about the standardization
user, there is information on the statusof tthe For the creational
for programming in Modula-2. For everyone th ’ 3 - ^ •Wlt^1 examples and ideas
implementations and the other resources avaiinkL onere,ls information on current
language. V3,lable for obtaining information on the

!

I

Modula-2 Users’ Association
membership application

Name: —

Affiliation :

Address :

Address :

City :

Postal Code: Country:State :

Electronic Addr :Phone : (----)

New Member or Renewal^Application as:

Implementation(s) used :
Option: — Do NOT print my phone number in any rosters

Print ONLY my name and country in any rosters
Do NOT release my name on mailing lists

or:
or:

** Membership fee per year (20 USD or 45 SFr) **
Members of the US group who are outside of North America, add $10.00.

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

!

In North and South America,
please send check or money
order (drawn in US dollars)
payable to Modula-2 Users’
Association at:

^ Modula-2 Users’ Association

P.O. Box 51778
Palo Alto, California 94303
United States of America

ij

Aline Sigrist
MODUS Secretary
ERDIS SA
Postfach 35, CH-1800 Vevey 2
Switzerland

d in the Modula-2The Modula-2 Users’ Association is a idSs. The P^^eTTyear.
Language to meet each other tter which is pubhshed ^ for the full
communication is through the Ne will receive all n back issues.
Membership is for an academic year, anai y receive that ye mpletnentors
year in which you join. Mid-year apptojjon organization p o^ndardization
Modula-2 is a new and developing lan& J? keep informed abou ^ recreational
and serious users a means to discuss anCj peculiarities. xamples and ideas
effort, while discussing implementatio language, along .w!. pon on curren
user, there is information on the status of tteW is m|rma^ on the
for programming in Modula-2. For ^Sable for obtaining mform
implementations and the other resourc
language.

!
I.

.

;

!

noo
2D \
I w o

§?!
om ~
carCD<
ra od'C S
ft)

I

