
r-co

>>
f-t The MODUS Quarterlya
Pu
& Issue # 7a;

February 1987

o
CD
P
V) Modula-2 News for MODUS, the Modula-2 Users Association.

CONTENT

Cover 2. MODUS officers and contacts directory

Page 1. Editorial
m 2. New Products

3. Modula-2 Standardisation: The go-betweens
by J. Welsh & P. Bailes

7. Modula-2 for VM/CMS, by T. Habernoll

11. TCP Implementation in Modula-2, by F. Ma & L. D. Wittie

27. Building an OS with Modula-2,
by B. Justice, S. Osborne, & V. Wills

54. Note on implementing SET OF CHAR, by A. Brunnschweiler

55. A SET OF CHAR Module, by A. Brunnschweiler

tale,
CD

Cti
a?

Cover 3. Membership form to photocopy

^Cover 4. Return address

Copyright 1987 by MODUS, the Modula-2 Users Association.
All rights reserved.

Non-commercial copying for private or classroom use is permitted.
For other copying, reprint or republication permission,

contact the author or the editor.

Directors of MODUS, the Modula-2 Users Association:

Svend Erik KnudsenRandy Bush Institut fuer InformatikOregon Software
ETH Zuerich6915 South West Macadam
CH-8092 ZuerichPortland, OR 97219
(01) 256 3487(503) 245-2202
Heinz WaldburgerTom DeMarco
ERDIS SAAtlantic Systems Guild CH 1800 Vevey 2353 West 12th Street (021) 52 61 71Mew York, MY 10014

(212) 620-4282

Jean-Louis Dewez
Laboratoire de Micro Informatique
Conserveratoire NAM
2, Rue Conte
F-75003 Paris

i (01) 42 71 24 14

Administration and membership:

I Aline SigristGeorge Symons Europe:USA:
MODUS MODUS Secretary/ PO Box 51778 ERDIS SA
Palo Alto, CA 94303 P. O. Box 35
(415) 322-0547 CH 1800 Vevey 2

Editor, Modula-2 News: >> Problems? Missing an issue? <<
Richard Karpinski Contact your membership

coordinator (see above).6521 Raymond Street
Oakland, CA 94609
Weekdays (415) 476-4529 (11-7 pm)

(415) 658-3797 (ans.
M2News or RKarpinski
dick@ucsfcca

Anytime mach.)TeleMail
BITNET

Internet dickiacca.ucsf.edu
USENETCompuServe 70215,1277 • ..!ucbvax!ucsfcgl!cca.ucsf!dick

Publisher:
Putative publication schedule:

George Symons (see above)
Deadline Issue

Submissions for publication: Feb15 Jan
15 Apr May

Send CAMERA READY 15 Jul Augcopy to the editor. Dot matrix copy is often
Machine readable

Nov15 Oct
unacceptable

copy is preferred: 60 lines, 70/84 characters.
TeleMail address: M2News

Please indicate that publication
Correspondence not for °f your submission is permitted,

should be PROMINENTLY so marked.publication

Modula-2 Users’ Association

MEMBERSHIP APPLICATION
!

Name :

9Affiliation : o
c

Address :
d

Address :
65

State : Postal Code: Country: 73
ft
sPhone : (__). Electronic Addr : ft

__ Do NOT print my phone number in any rosters
__ Print ONLY my name and country in any rosters
__ Do NOT release my name on mailing lists
Application as: New Member__ or Renewal___

Option:
or: C

&or:
65
• -—

Implementation(s) used :i

** Membership fee per year (20 USD or 45 SFr) **
Members of the US group who are outside of North America, add S10.00.

In North and South America,
please send check or money
order (drawn in US dollars)
payable to Modula-2 Users’
Association at:

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, California 94303
United States of America

Aline Sfg fist
H-ttXS SA
CH-1800 Vevey 2i #

The Modula-2 Users’ Association is a forum for all parties interested in the
Modula-2 Language to meet each other and exchange ideas. The primary means of
communication is through the Newsletter which is published four times a year.
Membership is for an academic year, and you will receive all newsletters for the full
year in which you join. Mid-year applications receive that year’s back issues.
Modula-2 is a new and developing language; this organization provides
implementors and serious users a means to discuss and keep informed about the
standardization effort, while discussing implementation ideas and peculiarities. For
the recreational user, there is information on the status of the language, along with
examples and ideas for programming in Modula-2. For everyone, there is
information on current implementations and the other resources available for
obtaining information on the language.

:

Issue # 0 October 1984Modula-2 News
Purposes, practices and promises for Modula-2 News
Revisions and Amendments to Modula-2, Niklaus Wirth
Specification of Standard Modules, Jirka Hoppe
Modula-2 in the Public Eye (a bibliography), Winsor Brown
Modus Membership list, by name
Modus members's addresses, by location
Modula-2 Implementation Questionnaire

MODUS Quarterly # 4

ksssssk-
A Writer s View of a Programmer’s Conference, Sam 1 Bassett
Concerns of A programmer, Dennis Cohen
Modifications to the Standard Library

Proposal. R. Nagler & J. Siegel
Proposal, standard library and M2 extension,

Odersky, Sollich, & Weisert
Standard Library of the Unix OS, Morris Djavaheri
The Standard Library for PCs, E. Verhulst
Editorial, Richard Karpinski
Modula-2 Compilation and Beyond. D.G. Foster
Modula-2 Processes - Problems and Suggestions, Roger Henery

MODUS Quarterly # 5 February 1986
Editorial
Exporting a Module Identifier, Bany Cornelius
Letter on multi dimensional open arrays, Niklaus Wirth
Letter on DIV, MOD, /, and REM, Niklaus Wirth
BS1 Accepted Change: Multi-dim. open arrays, Willy Steiger
N73: NULL-terminated strings in Modula-2, Ole Poulsen
ISO Ballot Results re BSI Specifying Modula-2
Draft BSI Standard I/O Library for Modula-2, Susan Eisenbach
Portable Language Implementation Project: Design and

Development Rationale. K. Hopper and W.J. Rogers
The ETH-Zuerich Modula-2 for the Macintosh, Chris Jewell
NewStudio: Engineering a Modula-2 Application for the Mac,

A. Davidson, H.B. Herrmann, E.R. Hoffer

MODUS Quarterly # 6 November 1986
Editorial, Richard Karpinski
Letter on opaque types. File type, and SET OF CHAR, P. Williams
Letter on exported identifiers, E. Videki
Why the Plain Vanilla Linkers, J. Gough
Letter re best article & MacModula-2, M. Coren
Significant Changes to the Language Modula-2, Barry Cornelius
All About Strings. Bany Cornelius
Type Conversions in Modula-2, B. Wichmann
Improving the quality of Definition Modules, A. Sale
A Programming Environment for Modula-2, F. Odegard
Academic Modula-2 Survey. L. Mazlack
Compilers for Modula-2 (Zuerich list)
Membership List

November 1985

Modula-2 News Issue # 1 January 1985
Editorial
Letter to Editor, Andrew Layman
Letter to Editor, Randy Bush
Review of Gleaves' Modula-2 text by Tom DeMarco
MODUS Paris meeting 20/21 Sep 84, C. A. Blunsdon
Report of M2 Working Group, 8 Nov 84, John Souter
Modula-2 Standard Library Rationale. Randy Bush
Modula-2 Standard Library Definition Modules
Modula-2 Standard Library Documentation, Jon Bondy
Validation of M2 Language Implementations, J. Siegel

MODUS Quarterly # 2 April 1985
Editorial
Letter on the draft Modula-2 Library, T. Anderson
Letter to the Editor. Mark Emerson
Opaque Types in Modula-2, C. French & R. Mitchell
Dynamic Module Instantiation. Roger Sumner
The Linking Process in Modula-2, Jeanette Symons
Modula-2 Library Comments. Bob Peterson
Modula Compilers - Where to Get 'em, Larry Smith
Coding War Games Prospectus, Tom DeMarco
M2. An Alternative to C. M. Djavaheri. S. Osborne

MODUS Quarterly #3 July 1985
Editorial & potpourri of mail
Letter re opaque types. Steve Endicott
Letter on language issues. Christian Hoffman

Some Thoughts on Modula-2 in "Real Time". Paul Barrow
Letter re "actual Modula-2 code". Raja Thiagarajan

RajalnOut: simple, safer. I/O for
Logitech/MS-DOS. R. Thiagarajan

Selection of Contentious Problems. Barry Cornelius
Expressions in Modula-2. Brian Wichmann
The Scope Problems Caused by Modules, Barry Cornelius
Corrections and additions to Modula-2 compiler list

O

f)
MODUS Administrators supply single copies at $5 US of 12 Swiss Francs.

Hints for contributors:

Send CAMERA REA.DY copy to the editor (dot matrix copy is usually unacceptable). Machine readable copy is
preferred. Present facilities permit printing from electronic mail and floppy disks (Sage. IBM PC, Macintosh) using
Postscript, Script, TeX, and troff formatting systems. Working papers and notes about work in progress are
encouraged. MODUS Quarterly is not perfect, it is current.

Please indicate that publication of submission is permitted.
Correspondence not for publication should be PROMINENTLY so marked.

Send your submissions to:

Richard Karpinski, Editor
6521 Raymond Street
Oakland, CA 94609
(415) 476-4529 (12-7 pm)
(415) 658-3797 (ans. mach.)

TeleMail
BITNET

CompuServe 70215.1277
InterNet

UUCP

M2News or RKarpinski
dick@ucsfcca

dick@cca. ucsf.edu
...ucbvax!ucsfcg!cca.ucsf!dick

Editorial

Without Delay Renew Today!

Was that loud enough? Not only is it time to renew, but we will
have a dynamite issue # 8. The main reason that the hot stuff in
number 8 is not in this issue is that I'm avoiding any possible
delay in getting this one out. It really helps to have an assistant
editor providing hours of help every week! There were a few weeks
across the holidays when nothing at all got done about this issue
but then I never promised to give up my whole life for MODUS.

Stan Osborne is helping me to achieve something approaching a regular
schedule. I offer him my thanks. Does anyone care to offer an
opinion as to what we should do more of or less of? How can I serve
you if I can't tell what you want or even how I'm doing? Be specific.,

Stan is also in the early stages of planning for a MODUS meeting in
the San Francisco area in the first half of June, 1987. This is, of
course, quite tentative. Unless great obstacles overcome us, issue
8 will follow this one within a few weeks. By that time, we should
have rather better information about the June meeting.

This issue (# 7) has some actual Modula-2 code in it. The ability to
add modules was specifically intended to provide a vehicle for all
those things which might have been put into the language but were not.
I invite you to observe what limitations are imposed by this style of
adding a feature to Modula-2. Is this SET OF CHAR module enough that
we need not press the standards group to require SET OF CHAR within
the language proper? I would like to hear your answer and reasoning.

Speaking of standards, there is just a taste of what goes on in this
issue, but issue # 8 will have some substantive issues presented.
Another sense of standard is also in evidence in the current issue;
Modula-2 is obviously in use for standard projects like implementing
a version of TCP (Transmission Control Protocol) and class projects
to build an operating system. The language is also showing up on
standard computers (read IBM mainframes).

If you look closely, you will see that we have a new MODUS Secretary
in Europe. Furthermore, several board members have new addresses or
phone numbers. We really do try to keep things up to date and accurate.

Several people have asked for an address for Frode Odegard. He can
be reached at Modula-2 CASE Systems A/S, Sands Veien 4B, N-2050
Jesheim, Norway or on BIX as Frode or via Fido 502/25 (private node).

Morris Djavaheri gave me a translation of the floating-point testing
program PARANOIA into Modula-2. It is the fifth language for the
program, as far as I know. Contact me if you want a copy in any
language. For now, it is available also in BASIC, FORTRAN, Pascal,
and C. There was an article about it in the Feb 85 Byte Magazine.

Dick Karpinski
Editor

9

#

i
;

- page 1 -

New Products
Modula-2
For IBM 370 VM/CMS. Developed by the
Computer Systems Group at the University

Contact Sandra Ward,
WATCOM Products Inc., 415 Phillip Street,
Waterloo, Ontario, Canada, N2L 3X2, (519)
886-370, Telex: 06-955458.

Modula-2/RTS
Modula-2 for RT11 and SHAREplus.
Contact: Guenter Dotzel, ModulaWare
GmbH,
Erlangen, West Germany, Tel: 09131 208395.

of Waterloo. 17A, D-8520WilhelmstTasse

Modula-2 for OS/MVS
A fast single pass compiler for IBM
Mainframes. Generates native 370 code for
OS linker and loader. Contact: G. Blaschek,
University of Linz, Institut fuer Informatik,
Altenbergerstrasse 69, A-4040 Linz, Austria,
Tel: (0732)-232381-447

EXE2LNK
For users of the Logitech compiler on IBM
PC machines. Converts .EXE files to .LNK
files used by the Logitech Modula-2 Linker.
Used to bind assembly language routines
with Modula-2 programs. Contact Leif Ibsen,
Blommevangen
Denmark.

O15, DK-2760 Maalov,
Modula-2/68
Modula-2/68-CD
A Modula-2 language system for use with the
MC68000 family of computers.
Modula-2 development on many of the
popular 68000 based systems. Many host
systems are supported. CD is Modula-2/68
cross development on VAX computers. CD
runs on VAX/VMS, Ultrix and BSD 4.2/4.3
operating systems. Contact: Stan Osborne,
Djavaheri Bros., P.O. Box 4759, Foster City,
California 94404-0759, Tel: (415) 341-1768,
Telex: 4949940.

M23
Third Edition Modula-2 for RT11SJ, RT11XM,
and TSX+., plus other performance
improvements. Contact: Dr. K. John Gough,
School of Computing Studies, Queensland
Institute of Technology, G.P.O. Box 2434,
Brisbane, Queensland, Australia, 4001, Telex:
44699.

Native

Modula-2PC
Modula-2 for IBM PC/PCjr/PCXT/PCAT or
compatible. Contact: Peter Collier, PCollier
Systems Inc., Suite 390, 7925-A North Oracle
Road, Tucson, Arizona 85704, (800) 522-2060.

Modula-2 VM/CMS (IBM 370)
Developed at TU Berlin. Contact: Thomas
Habemoll, TU Berlin, Informatik
Rechnerbetrieb, Sekr. FR 5-3, Franklinstr.
28/29, 1000 Berlin 10, West Germany.

MacMeth
Modula-2 for 512K Macintosh or Macintosh
Plus. Contact: Modula Corporation, 950
North University Avenue, Provo, Utah
84604, (800) 545-4842.

Modula-2
Modula-2 and Advanced Systems Editor from
Pecan Software Systems, Inc. Contact: Y. A.
Lifschutz, 1410 39th Street, Brooklyn, NY
11218, Tel: (718) 851-3100.

GEFI Modula-2
An adaptation of the ETH-Zuerich SMILERX,
68000 Modula-2 compiler to the Macintosh
environment. Contact: Chantal Fauconnet,
GEFI Service, 71 rue de la Victoire, 75999
Paris France, Tel: (1) 39 85 44 43.

- page 2 -

M odula-2 Standardisation: The go-betw eens* tale

Jim Welsh and Paul Bailes

Department of Computer Science
University of Queensland

St Lucia
Queensland 4067

Background
This brief report arises from a visit by the authors to the UK and Switzerland
in June 1986. This visit was undertaken as part of an evaluation of the current
state of Modula-2 for teaching purposes, the evaluation being carried out on
behalf of. and with funding from, the Australian Commonwealth Scientific and
Industrial Research Organisation.
During our visit to the UK we attended a day-long meeting of the BSI working
group on standardisation of Modula-2, having previously had discussions with
two members of that group, namely Brian Wichmann at NPL. and Derek
Andrews at the University of Leicester. In Switzerland we spent three days at
ETH which included discussions with Niklaus Wirth on standardisation issues.
The purpose of this report is to compare the positions taken by the BSI group on
the one hand, and Niklaus Wirth on the other, on language problems currently
identified by BSI.
In subsequent sections we try to summarise the outcome of our discussion of
particular issues with NW. In general each section consists of a statement of
the problem as we expressed it to NW. a summary of NW’s reaction, and in
some cases a summary of our own view in the light of these reactions.
In providing this report we must emphasise its limitations through our own
inadequacies, either in expressing the problem as perceived by the BSI group or
in capturing NW's reaction. For this reason we strongly recommend more
direct communication on critical issues. In our discussions NW made it clear
that he welcomes the development of a Modula-2 standard. He is not
interested in direct participation in the time-consuming process required to
develop such a standard, but is willing to respond to specific issues put to him
'by BSI. In the light of the lack of communication to date, and the inadequacy of
such transient intermediaries as ourselves, we strongly recommend that BSI
pursues this option in some appropriate manner.

Philosophies of language standardisation
Before describing NW’s reaction to particular issues it is worthwhile to sum­
marise his view of what a programming language standard should be. since that
view diverges somewhat from that supported by BSI.
The BSI group aims to produce a Modula-2 standard which is similar to the
Pascal standard in that it resolves program behaviour across the complete spec­
trum of possible usage of the language features, whether or not these are in the
spirit of the language design, or represent good programming practice. For
Modula-2 this semantic completeness of the standard will be further reinforced

- page 3 -

by the development of i formal VDM semantic model in which only those
language aspects that are clearly implementation-dependent will be left
undefined.
NW is not in favour of a VDM model of semantics, precisely because of the
semantic completeness which it tends to enforce. He believes instead that a
language standard should only guarantee program 'behaviour where the
language features are used in a way that is consistent with the overall design
intent and good programming practice, leaving other usage in some undefined or
unstandardised state.
This attitude is based on the view that good software is only achieved by pro­
gramming practice which consciously avoids the use of language features in
obscure, unusual or marginal ways. He therefore feels that a standard which
labels such usage as unreliable or unsafe is more effective in promoting good
software than one which forces implementors to conform to particular (and
sometimes arbitrary) semantic interpretations of such usage, and thereby
encourages such use.
In applying this general view to the development of a standard for Modula-2.
NW’s attitude on many issues might be characterised by the maxim When in
doubt, leave it out/ (the WIDLIO principle). On those issues which seem con­
tentious. either through variation between documents or implementations, or
through lack of consensus on the value of a given feature, his first reaction is to
question whether the language features concerned should be part of the stan­
dard at all.
While we have sympathy with NW's view that a language standard should
promote good programming practice, a standard of the sort proposed seems an
even more difficult goal to achieve by means of a standardisation committee,
and to defend or police thereafter, since it depends on more subjective judge­
ments of what is good! It seems inevitable to us, therefore, that the BSI group
must pursue semantic completeness on those features included in the standard.
They might, however, give serious thought to the option of leaving certain
features out completely, as this strategy may not pose additional problems to
the same extent.

0

Export clauses in Definition Modules
One change between the Modula-2 language as defined by the last two editions
of Programming in Modula-2 is the elimination of the need for an EXPORT
clause in a definition module - by adopting the convention that all objects men­
tioned defined in the definition module are automatically exported. The BSI
group see this as a retrograde step, in that it reduces the control over what can
be accessed by client modules of the module so defined. NW on the other hand
sees the change as a rationalisation consistent with the basic purpose of
definition modules.
This divergence of views seems to reflect a difference in emphasis on the two
perceived functions of definition modules, which are
(1) to enable separate compilation:
(2) to capture the abstraction intended by a module design.
As developments in languages such as Ada demonstrate, abstraction makes it
desirable to preclude external use of some attributes of a server module to
which a compiler must have access in compiling its clients. However, as the
features provided for this purpose in Ada also show, achieving the precise
interface control required by abstraction is a non-trivial language design prob­
lem. and Modula-2‘s limitations in this area are generally recognised.

C

- page 4 -

A* we understand it. the BSI group have rightly taken the decision not to
attempt to "improve" Modula-2’* abstraction control by introduction of new
features. In this sense their attitude on export from definition modules seems
somewhat inconsistent. Having recognised Modula-2’* limitations with respect
to precise abstraction control, the dropping of explicit export from definition
modules seems a logical choice.

Export Semantics
Derek Andrews raised a number of issues within the BSI group with respect to
the details of export semantics.
One such issue is whether all attributes of an object are exported with its
identifier. Suppose, for example, a module exports a variable of a local type
which either is anonymous or is named but not itself exported. Has the import­
ing module knowledge of the structure of. and operations applicable to. the
variable?
NW believes that such attributes must be automatically exported. This view
again seems consistent with the choice between meeting the needs of a compiler
and those of abstraction control discussed in the previous section.
The alternative within an identifier-based export system seems to involve the
naming and exporting of all intermediate types involved in the description of
any object whose attributes are to be made available. This implies considerable
clumsiness in many simple situations.
Furthermore, the language already has a specific mechanism for attribute hid­
ing (opaque types), albeit with unpleasant restrictions imposed by separate
com pilation.
For these two reasons automatic export of attributes seems to us the logical
choice.
Other export issues raised by Derek Andrews were not discussed with any posi­
tive result.

9

The type CARDINAL
During our visit the BSI group reviewed the issue of the types INTEGER and
CARDINAL. The group had previously decided to maintain Modula-2*s original
conventions (that INTEGER and CARDINAL are distinct types with distinct
arithmetics, but with special assignment compatibility rules between them).
They were therefore dismayed to find from documentation of a recently
developed ETH compiler that CARDINAL had been redefined as a subrange of
integer by that implementation. In the light of this apparent change the group
reviewed its previous decision, but in the end decided to adopt an even stricter
definition - of INTEGER and CARDINAL as distinct types but without special
assignment compatibility rules!
NW was concerned to hear that the group’s decision was triggered by an ETH
document that was not meant for external distribution, and certainly not
meant to be taken as a general redefinition of Modula-2.
In discussing the issue itself NW made clear that
(1) the original definition of CARDINAL as a distinct type with distinct arith­

metic was dictated by address calculation requirements on 16-bit
machines;

(2) he no longer considers such requirements relevant to future definitions of
the language.

0

- page 5 -

In keeping with the WIDLIO principle, his first choice would be to exclude
CARDINAL from the language standard, with corresponding redefinition of
standard functions, etc. If. however, the need to preserve the standard
identifier CARDINAL is seen to preclude this choice, he would favour its
definition as a subrange of INTEGER, such that most existing programs would
continue to work, albeit with some redundant type coercions within them.

Concurrency
The BSI group has identified the issue of concurrent programming as a
significant troublespot in Modula-2. The subgroup delegated to consider options
in this area has not yet reported, but the intention seems to be that some expli­
cit features for concurrency must be defined.
In contrast NW strongly adheres to the WIDLIO principle on this issue. He
recognises that the features originally defined in Modula-2 were influenced by
needs of a single-processor machine with a particular style of device control.
Furthermore he believes that no consensus on a general machine-independent
model for concurrency yet exists, or indeed can be expected to at this stage. He
therefore feels that the language standard should not prescribe any such model,
but should leave implementations to provide appropriate facilities via suitable
library modules.

€
:

;

s

€>

- page 6 -

Modula-2 for VM/CMS (IBM/370)

Here is some information about
- the history, present and future of our project
- the actual implementation
- and how to get it.

The History of Modula-2/CMS

It should be superfluous to enumerate reasons why we are interested in
a Modula-2 implementation for /370 machines. But how to get it? For
a while we tried the strategy "wait until someone has done the work
and use Pascal/VS in the meantime". We tried this very hard but it
did not work.

Phase -1 (once upon a time)

One of our students (Thomas Kilian) came to me and was willing to do
a lot of work for no money (a rare species). Fortunately we found
what he was searching for. He was impressed enough by Modula-2 to
ignore all difficulties. At this time we had only a listing and some
documentation of the Smiler-2 system (written in CD-Pascal). Our idea
was to adapt it to Pascal/VS and add a code generator for /370 code.
Thomas Kilian started - first with the work and then with curses: the
CD-Smiler uses some CD-Pascal specific features. I don't know whether
it is a good tool to work with, but it is not a good base for porting.
So after some frustration we came to

(§

Phase 0 (zero)

This is the right name for what occurred. Thomas Kilian stopped
working for nothing and started a job (likewise frustrating but he was
well paid). Because more and more implementations of Modula-2 were
coming up, we thought it should be the right time to apply our first
strategy (wait until ...). There were some rumours about ongoing
implementations for /370 machines. However rumours are not executable
- even on a virtual machine. And so we came to

Phase 1 (something is going on)

In the early summer of 1985 Thomas Kilian came back,
we had Modula-2 running on some Unix machines (Arnfried Ossen
(OSSEN@DBOTUI11.BITNET), who posted the first message on Modula/CMS on
the net, had invested some effort to adapt the Cambridge Motorola 68K
implementation on System V, BSD 4.?, and Unos machines),
considered this Modula written system to be a better base for our work
than the CD Pascal Smiler.

In the meantime

We

There were two options:

1) Development of a code generator for /370 code in Modula-2 on a
Unix machine, cross-compilation of the entire system.

2) Rewriting of the compiler front end and implementation of the code
generator in Pascal/VS under VM.

- page 7 -

We chose the secondThe first way seems to be shorter,
overhead seems to be the rewriting of the compiler front end.

way. The
Th i 5

task consists of two parts: translation from Modula towards Pascal/vs
(which is a mechanical procedure) and adaption of the operating and
file system dependent parts (had to be done even if we had chosen the
first way). The problem of the first way would be the test phase
(compile under Unix -> file transfer to VM -> test -> crash -> back to
Unix - and so on ...).

The front end (which generates M-code) and an
We now enter

Here we are.
interpreter are running under VM/CMS.

Phase 2 (the future has just begun)

Actually we are able to compile (sufficiently fast) Modula-2 programs
and execute them (insufficiently slow). The interpreter is good
enough to allow playing around with Modula and gaining experiences.

Last Christmas I sent a message to Santa Claus that I wish for a fast
tool to do system programming including i/o and interrupt handling.
Apparently his mailer was down, so we started with the code generator.
Maybe we shall have sufficient results in the middle of this year.

What does ’sufficient' mean within this context?

■

i The first release should not be very much slower
There are some optimizations planned (and not yet

- Execution speed,
than Pascal/VS.
implemented). Nevertheless it is more important to have a working
code generator than a fast collection of bugs.

- Even though conflicts may arise with execution speed, we have
decided to make the code relocatable. This is necessary for fast
loading of CMS nucleus extensions and should be useful for some
other applications.

- Because I don't trust HNDINT, HNDEXT, and STAX macro processing (it
is my historical prejudice), the run time environment should allow
Modula programs full control of interrupts. Even if you trust
HNDINT it is not efficient to let CMS look at thousands of
interrupts, which are to be handled by your own code. Maybe there
should be two variants of the run time environment, one for normal
applications and one - quick and dirty - for hackers who hate
assembler.

€>

i

Phase 3 (in the year 2525)

Your Modula program has solved some great problem and writes the
result (the value 42) formatted and/or binary to a file and reads the
next question from another file. You don't trust in your program and
call the debugger, which uses the full screen 3270 i/o package. You
find the bug and correct it using the wonderfull full screen syntax
directed editor. Wouldn't it be nice?

- page 8 -

The Modula-2/CMS Compiler

To avoid reinventing all the wheels of our vehicle we concluded to
base our work on an existing compiler (a version running under Unix).
The translation from Modula to Pascal/VS is mostly a mechanical act.
Because it is frustrating to do this by hand, Thomas Kilian wrote a
'small' program. It accepts as input a subset of Modula (as used by
the compiler) and generates an anotated Pascal/VS program. Only a
small part was to be translated by hand (supported by the generated
anotations), e.g. the string handling.

A little bit more work was to be done for file i/o and other operating
system dependent stuff. This was mainly due to a mistake. I
transferred the source files of the compiler from a Unix system to VM
but I forgot the sources of the library. Thomas Kilian didn't know
that there were sources of the library and had to guess the meaning of
the calls. He did it very well and implemented a library system for
code and symbol table informations. So the number of files on your
disk will be reduced. Another problem solved by the libraries are the
mapping of file names to module names. So module names are not
restricted to 8 significant characters as CMS file names are.

If you don't like the error diagnostics and recovery of the Unix
Modula-2 compiler you will be disappointed by Modula/CMS. It is the
same mess.

9

The first test set of the compiler consists of the original Modula
sources of the Unix version. The compiler came through without crash.
This is nice but not a sufficient indication for the correctness of
the generated M-code. But how to test it? Without further processing
it is not possible to test the code under Unix (mainly because it's a
mixture of EBCDIC strings and binary code values).

Even if the code is correct, what is its meaning? You should know it
when you have to write a code generator. And so we step to

m The M-Code Interpreter

All what we had was a sample interpreter, a sort of functional
description of the Lilith machine. Because sometimes things are
better understandable when you touch them, Thomas Kilian converted it
to Pascal/VS. He had no ambitions to make more than a tool to
understand and check out M-code sequences.

But better slow Modula than no Modula. While Thomas Kilian started
with the code generator, I tried to make the interpreter usable, i.e.
to add some i/o facilities and to improve speed. Although I hate
benchmark tests (tell me your result and I give you the benchmark test
that fits), I took a simple program (Ackermann, CPU bound, highly
recursive) to get a feeling how slow the interpreter was. Then I
started with tuning. The price: decreased readability of the
interpreter. Although 7 times faster than the first version the beast
was too slow.

- page 9 -

Better slow Modula than very slow Modula. Writing Assembler to get
Modula ~ terrific. Actually only a part of the M-code instructions
is realized in Assembler. The slow (Pascal) interpreter tries to
switch to the fast (assembler) interpreter when possible. The fast
interpreter is running until it fetches a non-implemented instruction.
Then it gives control back to the slow but complete interpreter. So
execution times of Modula are 6 - 100 times slower, compared with
corresponding Pascal/VS programs.

Only a few library modules are implemented: simple terminal i/o, time
of day, access to program parameters, a mapping of Pascal file i/o
(untested).

Distribution of Modula/CMS

Damned networks. Nobody would know anything about the compiler. We
had planned to howl around when the code generator is running. The
interpreter was considered as a working tool to crack the meaning of
the M-code instructions.

$
The first sentence isn't true. I like notworks, sorry, networks. But
you have been warned. The support is lousy, the documentation is
lousy, it's just like buying software from Microsoft. Please let me
know whether you wish to

- get the current product (slow and ugly) as soon as possible

- wait a month to get the current product (a little bit polished and a
little bit faster)

(

- wait for the first working version of the code generator (if I were
a software vendor I would say: Real Soon Now).

Actually we have no time to copy tapes and ship them,
are some key strokes to send the software via EARN/BITNET (and it is
faster too).

All we can do

t86/01/28 Thomas Habernoll <HABERNOL@DBOTUI11.BITNET>

P.S. Does anybody use Reals? (You know Reals are these funny things
that you use in Pascal/VS to force doubleword alignment for
records containing CCWs). Sorry, please use Pascal, Fortran, or
Basic. Reals are not yet implemented!

Thomas Habernoll
TU Berlin
Informatik Rechnerbetrieb
Sekr. FR 5-3
Franklinstr. 28/29
1000 Berlin 10
West Germany

- page 10 -

Transmission Control Protocol (TCP)
Implementation in Modula - 2

Fanyuan Ma and Larry D. Wiltie
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, N.Y. 11794

ABSTRACT

The Transmission Control Protocol (TCP) is intended for use
as a highly reliable host-to-host protocol between hosts in packet-
switched computer communication network and in interconnected
systems of such networks. This paper describes the functions to be
performed by TCP, the Tcp module that implements TCP in
Modula - 2, and user commands in the MICROS/SAM2S operating
system for transmitting packets.

01

- page 11 -

1. Overview of TCP
Beginning with ARPANET, the Defense Advanced Research Projects Agency (DARPA) has

sponsored the development of the Internet Protocol suite] lj. One of the prime uses for computer
communication networks is to reliably transmit and receive files and electronic mail. The charac­
teristics of these applications require passing a fairly large amount of data reliably and recon­
structing the data in sequence. To support such Internet services, the Transmission Control Pro­
tocol (TCP) was developed.

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered
hierarchy of protocols which support multi-network applications^]. TCP provides for reliable
inter-process communication between pairs of processes in host computers attached to distinct but
interconnected computer communication networks. TCP assumes it can obtain a simple, poten­
tially unreliable datagram service from the lower level protocols. In principle, TCP should be
able to operate above a wide spectrum of communication systems ranging from hard-wired con­
nections to packet-switched or circuit-switched networks.

1.1. Interface

| Telnet] | FTP TFTP |

l
| TCP | UDP |

I IP

| MARP |

C| Local Network Protocol |

Figure 1: Protocol Relationships

TCP interfaces on one side to user or application processes and on the other side to a lower
level protocol such as the Internet Protocol. Figure 1 illustrates the place of TCP in the protocol
hierarchy.

The interface between an application process and TCP consists of a set of calls much like
the calls an operating system provides to an application process for manipulating files. For
pie, there are calls to open and close connections and to send and receive data on established con-
nections. It is also expected that TCP
grams.

. exam-

asynchronously communicate with application pro-can

The interface between TCP and lower level protocol is essentially unspecified except that it
is assumed there is a mechanism whereby the two levels can asynchronously pass information to

- page 12 -

each other. TCP is designed to work in a very general environment of interconnected networks.
The lower level protocol which is assumed throughout this document is the Internet Protocol.

1.2. Operation
The primary purpose of TCP is to provide reliable logical circuit or connection service

between pairs of processes. It contains mechanisms to provide reliable transmission of data.
These mechanisms include basic data transfer, reliability, flow control multiplexing, connections,
precedence and security. The basic operation of TCP in each of these mechanisms is described in
the following paragraphs.

1.2.1. Basic Data Transfer
TCP is able to transfer a continuous stream of octets (bytes) in each direction between its
by packaging some number of octets into segments for transmission through the internetusers

system. In general, TCP modules block and forward data at their own convenience.

1.2.2. Reliability
TCP must recover from data that is damaged, lost, duplicated, or delivered out of order by

the internet communication system. This is achieved by assigning a sequence number to each
octet transmitted, and requiring a positive acknowledgment (ACK) from the receiving TCP. If
the ACK is not received within a timeout interval, the data is retransmitted.

At the receiver, sequence numbers are used to order segments correctly that may be received
out of order and to eliminate duplicates. Damage is handled by adding a checksum to each seg­
ment transmitted, checking it at the receiver, and discarding damaged segments.

0

1.2.3. Flow Control

TCP provides a means for the receiver to govern the amount of data sent by the sender.
This is achieved by returning a “window” with every ACK indicating a range of acceptable
sequence numbers beyond the last segment successfully received. The window indicates an
allowed number of octets that the sender may transmit before receiving further permission.

1.2.4. Multiplexing

To allow for many processes within a single host to use TCP communication facilities simul­
taneously, TCP provides a set of addresses or ports within each host. Concatenated with the net­
work and host addresses from the internet communication layer, this forms a socket. A pair of
sockets may simultaneously be used in multiple connections between process pairs.

m 1.2.5. Connections
When two processes wish to communicate, their TCP modules must first establish a connec­

tion by initializing status information on each side. When their communication is completed, the
connection is terminated or closed to free buffers, table entries and other resources for other uses.
Since connections must be established between unreliable hosts and over the unreliable internet
communication system, a handshake mechanism with clock-based sequence numbers is used to
avoid erroneous initialization of connections.

1.2.6. Precedence and Security

The users of TCP may indicate the security level and priority of their communication. Pro­
vision is made for default values to be used when these features are not needed. In our implemen­
tation, we do not define operations for these features.

- page 13 -

2. Functional Specification
This section specifies the formats for the TCP header and transm.ss.on control b odes. It

shows the sequence of control states for TCP and shows how a TCP connection for data >s

opened, used, and dosed.

2.1. TCP Header Format

321001234567890123456789012345678901
—H—f—h—+—f—h—+—+-+—+—h—+—f—+-+-+-+

Destination Port ISource Port
+—I—h—f-—h—l—H—+—1—+——f-—h-H—H—+-H—f—I—+—+—+—+—+—+—+—4—+—I—f-—H—V—+
j Sequence Number \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-4—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
j Acknowledgment Number |

U	A	P	R	S	F
R	C	S	S	Y	I
G	K	H	T	N	N

Urgent Pointer |

Padding

data I

I

| Data |
| Offset! Reserved■ Window

i C-■

Checksum

Options I
I

Figure 2: TCP Header Format

The Internet Protocol (IP) header carries several information fields, including the
and destination host addresses. As defined in Figure 2, a TCP header follows the internet header,
supplying information specific to the TCP protocol. Figure 3 shows the pseudo header. This
information actually is carried in the Internet Protocol and is transferred across the
TCP/Network interface in the arguments or results of calls by TCP on IP.

source

+ + + + +
Source Address I Q+ + + + +

Destination Address I+ + + + +
| Zero (Protocol| TCP Length
+ + + + +

Figure 3: Pseudo Header

2.2. Transmission Control Block
Maintenance of a TCP connection requires remembering several variables. A connection

record called a Transmission Control Block (TCB) is designed to store such variables as local and
remote socket numbers; the security and precedence of the connection; and pointers to the user's
send and receive buffers, the retransmit queue, and the current segment. In addition, several
ables relating to the send and receive sequence numbers are stored in the TCB.

van-

- page 14 -

Send Sequence Variables:

SND.UNA:
SND.NXT:
SND.WND:
SND.UP:
SND.WL1:
SND.VVL2:

send unacknowledged,
send next,
send window index,
send urgent pointer.

segment sequence number used for last window update,
segment acknowledgment number used for last window update,
initial send sequence number.ISS:

Receive Sequence Variables:

RCV.NXT: receive next index.

receive window index,
receive urgent pointer,
initial receive sequence number.

RCV.WND:

RCV.UP:
IRS:

2.3. Connection State
Figure 4 illustrates connection state changes, together with causal events and resulting

actions. A connection progresses through a series of states during its lifetime.

The states are as follow's:

LISTEN: represents waiting for a connection request from any remote TCP and port.
SYN-SENT: represents waiting for a matching connection request after having sent a con­

nection request.

SYN-RECEIVED: represents waiting for a confirming connection request acknowledgment
after having both received and sent a connection request.

ESTABLISHED: represents an open connection, on which data received can be delivered to
the user. This state is the normal state for the data transfer phase of the connection.

c*

FIN-WAIT-l: represents waiting for a connection termination request from the remote
TCP, or an acknowledgment of the connection termination request previously sent.

FIN-WAIT-2: represents waiting for a connection termination request from the remote
TCP.

CLOSE-WAIT: represents waiting for a connection termination request from the local user.
CLOSING: represents waiting for a connection termination request acknowledgment from

the remote TCP.

LAST-ACK: represents waiting for an acknowledgment of the connection termination
request previously sent "to the remote TCP.

TIME-WAIT: represents waiting for enough time to pass to be sure the remote TCP
received the acknowledgment of its connection termination request.

CLOSED: represents no connection state at all.
A TCP connection progresses from one state to another in response to events. The events

are the user calls, OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS; the incoming seg­
ments, particularly those containing the SYN, ACK, RST and FIN flags; and timeouts.

The following sections explain the causing events and resulting actions briefly.

m

- page 15 -

—+ — active OPEN+—
t CLOSED | \

\ \ create TCB
\ \ snd SYN

■+<—+■
A

passive OPEN | CLOSE \ \I \ \
| delete TCBcreate TCB \ \: V \ \: CLOSE+• ■+ \

■ LISTEN |
delete TCB I+• ■+

I SENDrev SYN
I V

snd SYN,ACK / \ snd SYN +---+--- --- + --- +
><

irev SYNSYN SYN
RCVD SENT<

snd ACK

rev ACK of SYN \ / rev SYN.ACK+----- —+ +• ■+-•
I snd ACKx
V V

CLOSE +• ■+
ESTAB

snd FIN +•
I ICLOSE rev FIN

V
snd FIN / \ snd ACK+■ ■+ +■ +

FIN | <------- >1 CLOSE |
WAIT !| WAIT-1

+----
I

rev FIN \
| rev ACK of FIN

+• •+
I CLOSEI snd ACK

V Vx snd FIN V
+----
|FINWAIT—2|

--- + +■ +■ •+
| CLOSING |
+—------

rev ACK of FIN |
| LAST-ACK|

C+■ •+ ■+ +■ ■+
rev ACK of FIN |

rev FIN Timeout=2MSL
Vx Vx

\ snd ACK ------^delete TCB+—
> | TIME TVAXT |'

---- + >1 CLOSED
—+

+• +■ •+

Figure 4: TO5 Connection State Diagram

:

- page 16 -

i
i

2.4. Sequence Numbers

A fundamental notion in the design is that every octet of data sent over a TCP connection
has a sequence number. Since every octet is sequenced, each of them can be acknowledged.

The acknowledgment mechanism employed is cumulative so that an acknowledgment of
sequence number x indicates that all octets up to but not including x have been received. This
mechanism allows for straight-forward duplicate detection in the presence of retransmission.
Numbering of octets within a segment is that the first data octet immediately following the
header is the lowest numbered, and the following octets are numbered consecutively.

Typical kinds of sequence number comparisons which TCP must perform include determin­
ing:

that an acknowledgment refers to some sequence number sent but not yet acknowledged,
that all sequence numbers occupied by a segment have been acknowledged,
that an incoming segment contains sequence numbers which are expected.

(i)

(2)

(3)

Establishing a Connection2.5.

TCP BTCP A0
LISTEN1. CLOSED

—> SYN—RECEIVED—> <SEQ=100><CTL=SYN>SYN-SENT2.

ESTABLISHED <— <SEQ=300><ACK=101><CTL=SYN.ACK> <— SYN-RECEIVED3.

—> ESTABLISHEDESTABLISHED —> <SEQ=101xACK=301xCTL=ACK>

ESTABLISHED —> <SEQ=101xACK=30lxCTL=ACKxDATA> —> ESTABLISHED
4 .

5 .

Figure 5: Basic Three-Way Handshake for Connection Synchronization

Figure 5 illustrates the basic “three-way handshake” procedure used to establish a connec­
tion. This procedure normally is initiated by one TCP module and responded to by another. The
procedure also works if two TCP modules simultaneously initiate the procedure. When simul­
taneous attempt occurs, each TCP module receives a “SYN” segment which carries no ack­
nowledgment after it has sent a “SYN”. The arrival of an old duplicate “SYN” segment can
potentially make it appear, to the recipient, that a simultaneous connection initiation is in pro­
gress. Proper use of “reset” segments can disambiguate these cases.m
2.6. Data Communication

Once the connection is established, data is communicated by the exchange of segments.
Because segments may be lost due to errors or network congestion, TCP uses retransmission (after
a timeout) to ensure delivery of every segment. Duplicate segments may arrive due to network or
TCP retransmission. As discussed in the section on sequence numbers, TCP performs certain
tests on the sequence and acknowledgment numbers in the segments to verify their acceptability.

The sender of data keeps track of the next sequence number to use in the variable
SND.NXT. The receiver of data keeps track of the next sequence number to expect in the vari­
able RCV.NXT. The sender of data keeps track of the oldest unacknowledged sequence number
in the variable SND.UNA. If the data flow is momentarily idle and all data sent has been ack­
nowledged, then the three variables will be equal.

When the sender creates a segment and transmits it, the sender advances SND.NXT. When
the receiver accepts a segment, it advances RCV.NXT and sends an acknowledgment. When the
data sender receives an acknowledgment, it advances SND.UNA. The extent to which the values

- page 17 -

of these variables differ is a measure of the delay in the communication. The amount by which
the variables are advanced is the length of the data in the segment. Once in the ESTABLISHED
state, all segments must carry current acknowledgment information.

2.7, Closing a Connection

The TCP specification treats CLOSE in a simplex fashion. The user who CLOSEsmay con­
tinue to RECEIVE until he is told that the other side has CLOSED also. Thus
initiate several SENDs followed by a CLOSE, and then continue to RECEIVE until signaled that
a RECEIVE failed because the other side has CLOSED. We assume that TCP will signal a user,
even if no RECEIVES are outstanding, that the other side has closed, so the user can terminate
his side gracefully. A TCP module will reliably deliver all buffers SENT before the connection
was CLOSED so a user who expects no data in return need only wait to hear the connection was
CLOSED successfully to know that all his data was received at the destination TCP. Users must
keep reading connections they close for sending until TCP says no more data will be received.
The normal close sequence is shown in Figure 6.

program could, a

TCP A TCP B

ESTABLISHEDESTABLISHED1. c(Close)
FIN—WAIT—1

2.
—> <SEQ=100><ACK=300><CTL=FIN,ACK> —> CLOSE-WAIT

<— <SEQ=300><ACK=101XCTL=ACK> <— CLOSE-WAITFIN-WAIT-23.

I (Close)
<— LAST-ACK

4.
<— <SEQ=300><ACK=101><CTL=FINf ACK>TIME-WAIT

—> <SEQ=101XACK=301XCTL=ACK> —> CLOSEDTIME-WAIT5.

(2 MSL)
CLOSED

6.

Figure 6: Normal Close Sequence

3. Implementation of TCP
MICROS is exploring ways to organize network computer to solve large problems. The

overall goal is to develop a modular distributed operating system that can easily be ported onto a
wide variety of network computers for development and execution of large and small distributed
application systems[3)[4j.

The hardware for MICROS now consists of two LSI-11/23 nodes and seven MC68000 nodes,
all linked by Ethernet channels. Figure 7 shows the configuration of MICROS.

A local operating system portion called SAM2S (Stand-Alone Modula-2) is resident in every
node of the network. Modula-2 offers more extensive and efficient programming support environ-
ment[5). SAM2S was developed initially to assess Modula-2 as a language for writing large sys­
tems and to provide portable software for Modula-2 programming support workstations.

SAM2S is a portable, highly modularized operating system. It offers extensive network com­
munication facilities. A communication subsystem of 11 modules provides packet cast services
and supports the DARPA Internet Protocol suit. SAM2S communication modules is shown in
Figure 8.

C
-
-4

- page 18 -

wn t

Kbtb MC68KMC68K K*\MC68K
483 lb Kb

2

F
Lsr-iiVRX-750

1UNIX

F
Legend:

T - Terminal
V - Winchester

F - Floppy
M - Monitor

MC68K
6

F
LSI-11m 2

tb
tb

MC68KMC68K tbMC68K
579

KD
4

31
Figure 7: The MICROS Network

- page 19 -

IP (Internet Protocol) unifies the available network services into a uniform internet
datagram service. The IP includes such functions as a global addressing structure, provision for
type of service requests, and provision for fragmentation of packets and reassembly at the destina­
tion host. IP packets are encapsulated and decapsulated by the IPheader module.

MARP (Multi-LAN Address Resolution Protocol) is used to convert a 32 bit IP address to a
48 bit Ethernet address. It works in an environment of multiple interconnected LANs.

UDP (User Datagram Protocol) provides basic datagram services and permits individual
datagrams to be sent between hosts.

Tcp module in SAM2S communication subsystem contains mechanisms to provide reliable
transmission of data. These mechanisms include sequence numbers, window management, ack­
nowledgments, checksums, multiplexing, and retransmission procedures.

i

I tftp |

TCP UDP t

I

| UdpTcpPort |

1

IPheader

Support Modules I

Transport MARP
Ports

I

€I
1 NetTypes

ME3C400

Ethernet Driver

I
======= = ==========s= = = = = = = =r =5 s=: : = === = : := = = : : === = = = = : :=== = = = = :

Ethernet cable

Figure 8: Communication Modules of SAM2S

All communication type definitions are present in the NetTypes module. ME3C400 is the
device driver for the Ethernet controller. Transport is the main clearing house for packets as far

- page 20 -

as user processes are concerned. Asynchronous exchange of packets is done by the Ports module.

The UdpTcpPort module implements the abstract entity through which all communication
in the network takes place. It is inherently a bidirectional structure which is able to send and
receive IP at the same UdpTcpPort. In some cases, server may listen to so-called well-known
addresses, which are widely known and rarely changed. The UdpTcpPort is created and des­
troyed dynamically. The structure of UdpTcpPort is illustrated in Figure 9.

UdpTcpPort = POINTER TO UdpTcpPortRecordfield;
UdpTcpPortRecordfield = RECORD

ReceiveSnd, ReceiveRcv: PORT;
PortNumber: SHORTCARD;
Tcpcb: ADDRESS;
Index: CARDINAL;

END;

Figure 9: Structure of UdpTcpPort

When a connection is established, the command “Connect” creates a UdpTcpPort and
Transmission Control Block (called Tcpcb in our implementation) that is linked to UdpTcpPort.
After that, when a send on a UdpTcpPort is done the UdpTcpPort manager transfer the IP to the
send port of Transport module. The Transport manager calls on the UdpTcpPort manager when
it receives a IP, and places the IP on the receive port of the UdpTcpPort thus found.

The Tcp module is described in detail in the following sections.

3.1. Data Structure
We define Tcp record structure to correspond to the specification of the header format (see

Figure 10). This structure includes the pseudo header.
TCP = POINTER TO TcpRecord;
TcpRecord = RECORD

next, prev: TCP
src, dst:
xl, pr:
len: SHORTCARD;
sport, dport: SHORTCARD;
seq, ack: CARDINAL;
OffsetFlags: SHORTCARD;
win, sum, urg: SHORTCARD;
TcpdataPtr: .ADDRESS;

InetAdr;
CHAR;

m
END;

Figure 10: Tcp Record Structure

Tcpcb is named TCB in the specification and is used to store the connection information.
Each connection between two ports creates a Tcpcb. Figure 11 shows the Tcpcb structure and its
meaning.

TCPCB = POINTER TO TcpcbRecord;
TcpcbRecord = RECORD

DestAdd: InetAdr;
SHORTCARD;

SHORTC.ARD;
SndUna, SndNxt, SndUp (* send sequence variables *)
SndWU, SndW12, Iss: CARDINAL;
SndWnd : SHORTCARD;
RcvNxt, Rev Up,

(* destination address *)
(* number of destination port *)

(* state of this connection *)
DestPort:
State:

(* receive sequence variables *)

- page 21 -

CARDINAL;
SHORTCARD;

SHORTCARD; (* advertised window ♦)
CARDINAL; (* highest sequence number **nt *)
SHORTCARD; (* maximum segment size *)

SHORTCARD; (* acknowledgment flag *)
SHORTCARD;

CARDINAL;
CARDINAL;

TCP;

Irs :
RcvWnd :
Rev Ad v :
SndMax :
Maxseq :
Flags :
Rtt:
Rtseq :
Srtt :
RcvTcpQ :
TcpQ :
RtranQ :
After :

(* round trip time *)
(* sequence number being timed *)

(* smoothed round—trip time *)
(* receive data buffer *)

(* send data queue *)
(* retransmission queue *)

(* sequencing queue *)

TCP;
RTQU;

TCPCB;
END;

Figure 11: Tcpcb Record Structure

TranQ record (see Figure 12) is a retransmission packet pointer, which indicates when and
how many times the retransmission packet retransmits. The item “tephead” points to the
packet. C

RTQU = POINTER TO TranQRecord;
TranQRecord = RECORD

timer: CARDINAL;
times: SHORTCARD;
tephead: TCP;

RTQU;

5

next:
END;

Figure 12: TranQ Record Structure

To speed up the process of searching the retransmission queue, there is a search index called
the Rlist queue. From Rlist, the position of retransmission packet can be found in the retransmis­
sion queue. Figure 13 shows the Rlist structure.

RLIS = POINTER TO RlistRecord;
RlistRecord = RECORD

DeAddress: InetAdr;
Soport, Deport: CARDINAL;
Time: CARDINAL;
next: RLIST; c

END;

Figure 13: Rlist Record Structure

3.2. Window Management
The window mechanism is a flow control tool. Whenever appropriate, the recipient of data

returns to the sender a number, which is (more or less) the size of the buffer which the
currently has available for additional data. This number of bytes, called the window, is the max­
imum which the sender is permitted to transmit until the receiver returns some additional win­
dow.

receiver

The send window is the portion of the sequence space labeled 3 in Figure 14. The
window is the portion of the sequence space labeled 2 in Figure 15.

receive

- page 22 -

We define the window size is 2048 bytes in this implementation of TCP.

3 421
snd!una SND.UNA

+SND.WND
SND.NXT

1. old sequence numbers which have been acknowledged
2. sequence numbers of unacknowledged data
3. sequence numbers allowed for new data transmission
4. future sequence numbers which are not yet allowed

Figure 14: Send Sequence Space

31 2

RCV.NXT RCV.NXT
+RCV.WND3

1. old sequence numbers which have been acknowledged
2. sequence numbers allowed for new reception
3. future sequence numbers which are not yet allowed

Figure 15: Receive Sequence Space

3.3. Arriving Segment Process

Two procedures: InputTcp and ProcessOther, which are called by Transport module, process
the arriving segment. If the state of connection is CLOSED, LISTEN, and SYN-SENT, the
InputTcp procedure is called. For other states of connection, the Transport module calls the Pro­
cessOther procedure.

InputTcp and ProcessOther provide such operations as connection synchronization, exami­
nation of sequence number, window management, receiving data, acknowledgment and processing
control flag. After data arrive, the ProcessOther procedure puts the data into the receive data
buffer and acknowledges the data packet.

3 3.4. Retransmission Process

Because TCP provides the ability to transmit and receive data reliably, retransmission is
one of most important functions of the Tcp module. After each data packet is sent, this data
packet is linked to the TranQ table and the TranQ record is inserted into the retransmission
queue. At the same time, a Rlist record is put into the Rlist queue. If the Tcp module gets a
positive acknowledgment from the receiving segment, the procedure RemoveRtqu deletes the ack­
nowledged packet and Rlist entry from the queue.

When the Tcp module is initiated, the Tcp module starts a process called RetransmitPro-
cess. RetransmitProcess checks the timer of TranQ table once every logical time unit. When the
timer gets the value which is defined by retransmission timeout, the RetransmitProcess finds the
place of the timeout packet from the Rlist queue and transmits the data packet again. The
Times module provides the logical time for RetransmitProcess.

- page 23 -

3.5. User Commands
The Tcp module provides five user

Close and Status. These commands have been tested by the SeTest and ReTest modules.
commands for user: Connect; SendTo; ReceiveFrom;

3.5.1. Connect
Format:

Connect (Sport, Dport: CARDINAL; Dadr: InetAdr; OpenType: ConnectType);
Sport: number of source port. If source port is not a well-known port, Sport is

zero.
number of destination port. If OpenType is Passive, Dport is zero,
destination internet address,
connection type, Active or Passive.

Dport:
Dadr:
OpenType:

The Connect command creates a UdpTcpPort record and Tcpcb block. If OpenType is set
to Passive, then this is a call to LISTEN for an incoming connection. A passive connection can
be made an active connection by the subsequent execution of a SendTo. On an active connect
command, the Tcp module will begin the procedure to synchronize (i.e. establish) the connection
at once. If the connection is not created within the timeout period, the Connect command will
return the signal “connect time out”. C-
3.5.2. SendTo

Format:
SendTo (Daddr: InetAdr; Sportnu, Dportnu, Length: CARDINAL; Daptr: WORD);

Daddr:
Sportnu:
Dportnu:
Length:
Daptr:

This call causes the data contained in the user data buffer to be sent on the connection. If
the connection has not been opened, the SendTo is considered an error.

destination internet address,
number of source port,
number of destination port,
data length.
pointer to the user data buffer.

3.5.3. ReceiveFrom
Format:

ReceiveFrom (Aaddr: InetAdr; Sportn, Dportn: CARDINAL);
destination internet address,
number of source port,
number of destination port.

The ReceiveFrom command gets data from a receive data buffer and sends it to the user. In
our implementation, this command displays the data on terminal.

C
Aaddr:
Sportn:
Dportn:

3.5.4. Close
Format:

Close (Add: InetAdr; Spo, Dpo: CARDINAL);
destination internet address.

Spo: number of source port.
Dpo: number of destination port.

Add:

- page 24 -

This command causes the connection specified to be closed. Because closing a connection
requires communication with the foreign TCP, connections may remain in the closing state for a
short time.

3.5.5. Status

Format:

Status (Ad: InetAdr; Ps, Pd: CARDINAL);
destination internet address,
number of source port,
number of destination port.

After the Status command is executed, state information is returned from the Tcpcb associ­
ated with the connection.

Ad:

Ps:

Pd:

3.6. Current Implementation of SAM2S with TCP

We have implemented most parts of TCP except dynamic timeout, precedence and security.
Because of the variability of the networks that compose an internetwork system and the wide
range of uses of TCP connections, the retransmission timeout must be dynamically determined.
The MICROS communication system is a local network, so the Tcp module does not have to sup­
port dynamic timeout values for retransmission of packets in a byte-stream. Security is also not
an important issue in a research environment.

J

3.7. Test Results

To test the Tcp module, SeTest and ReTest modules were used. Both of them can send and
receive packets in workstations, but they have different numbers of ports. A user can give sample
TCP commands on the workstation keyboard.

First, the command "Connect” is used, which establishes a connection. Then the SeTest
module uses "SendTo” to send packets. The station in which the packet is received runs
"ReceiveFrom” command to display the content of packets. After the communication is finished,
the "Close” command is used to close the connection. We sent 30 packets in different sizes for
the Tcp or IP module operation between two stations. Figure 16 shows a comparison of transmis­
sion speed for the Tcp and EP module.

| data length
j (Bytes/packet)

total time
(sec)

speed
(Bytes/sec)

3 36.1
52.22
75.05

106.37
294.14
409.33

128
512TCP |

1024

15.33
20.97
29.18

250.49
732.47

1052.77

I 128
512IP |

1024

TCP:
0.982 - 1.03 sec/packet
1.39 - 1.48 sec/KBytes

fixed cost/packet
extra variable cost/KBytes

IP:
fixed cost/packet
extra variable cost/KBytes

Figure 16: Test Results

0.43 - 0.48 sec/packet
0.48 - 0.53 sec/KBytes

- page 25

Considering these results, it appears the transmission speed of the Tcp module is slower
than that of the IP module because the Tcp module has additional processing related to its ack­
nowledgments and window updates which consume much time. Thus the system overhead of the
TCP module is higher.

Acknowledgments
The authors are grateful to Benoy de Souza for providing the IP implementation on which

TCP is based. We would like to thank Weimin Zheng who provided the UDP and UdpTcpPort
modules. We owe special thanks to Susan Choudhari for her excellent assistance in editing this
paper, plus her many other contributions.

This work has been supported in part by National Science Foundation research grant
MCS84-01624, CER grant DCS83-19966 and equipment grant MCS82-03955, National Aeronautics
and Space Administration grant NAG-1-249, Army Research Office contract DAAG-29-82-K-0103
and instrumentation grant DAAG-29-84-G-0011, and an external research grant from Digital
Equipment Corporation.

References

[1] B.M. Leiner, R. Cole, J. Postel. D. Mills, “The DARPA Internet Protocol Suite”, IEEE
Communications Magazine, Vol.23, No.3, March 1985.

(2] J. Postel, “Transmission Control Protocol”, RFC-793, USC/Information Sciences Insti­
tute, Sep. 1981.

|3] L. D. Wittie and A. J. Frank, “A Portable Modula-2 Operating System: SAM2S”,
Proc. AFIPS National Computer Conference, July 1984.

[4] Larry D. Wittie, “Distributed Operating System Methods for Large Network Computers”,
Proc. 1st Pacific Computer Communication Symposium, Oct. 1985.

(5] N. Wirth, Programming in Modula-2, Springcr-Verlag, 1st edition 1982, 2nd edition 1983,
3rd edition 1985.*

C

C

a .

i

- page 26 -

Building an Operating System with Modula-2

Brad Justice
Stan Osborne

Vivian Wilis
Computer Science Department
San Francisco State University

ABSTRACT

An operating system kernel for the IBM PC and an interactive application written In Modula-2 are
presented. The functionality provided by the operating system kernel supports multi-programming
with a preemptive scheduler, device interface, queue management, and a timeout request server.
The kernel is complete enough to develop interactive, real-time, and concurrent processing
applications. It allows a design method baseo on co-operating Processes and Monitors to be used
for building useful applications. The kernel and the application design technique are presented.

An application using the kernel is also discussed. The application allows multiple data files to be
copied simultaneously using multi-processing. A part of this application is a window subsystem. The
window subsystem allows the input and output from a menu process to appear at the top of the
display. A window in the lower part of the display is used for output data.

J

May 24, 1986

1

Copyright 1986. Justice. Osborne, & Wflis. All Rights Reserved.

No pert of this document may be copied or reproduced In any form or by any means without the prior written consent of the authors.

- page 27 -

CONTENTS

11. Introduction..
1.1 Terminology...
1.2 Project Goal...
1.3 The IBM PC..

2. Building Systems....................................... ...
2.1 The Functional Specification.............. ...
2.2 The Analysis.......................................
2.3 The Design.......................................
2.4 Other Tools.......................................
2.5 Component Grouping.........................
2.6 Design Refinement.............................
2.7 An Example System Design..............
2.8 Building the Design............................

3. The Operating System Kernel..................
3.1 The Kernel...
3.2 Clock Device Interface.....................
3.3 Semaphores.......................................
3.4 Limitations...

4. The Application System............................
4.1 The Application Design.....................
4.2 System Initialization
4.3 The Menu Process............................
4.4 Keyboard and Display Device Interface

5. Summary and Conclusions.....................

6. Obtaining the Software............................

7. Acknowledgements....................................

8. Glossary...

9. References ..

1
1
2

3
3
3
3
6
6
6;
7
7

C9
10
14
16
17

-
18
18
20
20
21

22

22

22

23

25

i

- page 28 -

Building an Operating System with Modula-2

Brad Justice
Stan Osborne

Vivian Wills

Computer Science Department
San Francisco State University

1. Introduction
Operating Systems have long been considered one of the most difficult areas of computer
programming. In the last few years new analytical methods and software development tools
have been developed that make building operating systems much easier. Some of these
new tools and methods were used by one section of the "Operating System Principles’*
classes taught at San Francisco State University in the Spring Semester of 1985. The main
goal of this class was to provide the students with an understanding of the components of
operating systems. This article is a description of the the design method taught to the
students, the operating system kernel used in the class project, and an application system
developed using the kernel.

Limited hardware was available for the class to use for hands-on system development. The
students have access to IBM PC's in the Computer Science Department’s Laboratory, other
public computing labs on campus, personal systems at home, or systems at work. This
provided enough access for all class members to use standard IBM PC hardware with two
floppy disk drives for a class project.

The Modula-2 programming language was chosen for its features that allow concurrent
programming, interface to device interrupts, and management of software modules
developed by a group of programmers.

The students were provided with a design method for the development of interactive
application systems. The method allows programming applications to be divided into their
logical components so they can be analyzed for correctness and efficiency before they are
built. When a design for an interactive system is complete the components of the system to
be built are clearly defined and each can be easily built.

1.1 Terminology

One confusing aspect of communication among system programmers and designers today,
is a lack of a common way for them to describe the work they do and the tools they use.
Many of the words used in this paper have specific meaning when used to describe
computer based operating systems and their applications. To help understand the words we
have used, a glossary is provided at the end of the article. Many of the definitions found in
this glossary are based on definitions adopted by the International Standards Organization
(ISO) to standardize computer terminology.

1.2 Project Goal

The goal of the class project was to provide the students with practical experience in the
design of an efficient and maintainable system programming application. The goal was to
provide the students some experience with the problems of building operating systems and
concurrent applications. To achieve this, a project was devised that required the use of
interaction with people, the interface of software to existing hardware devices in a non­
standard way, and the use of a pre-emptive, multi-processing, operating system kernel. In
addition to this the students were required to work in groups of two or three, each group
building their own version of the class project. To make this project easier to achieve the
project components were defined in a way that allowed them to be divided into three parts.
Each member of the group worked on their part of the total effort.

J

9

- page 29 -

The application assigned was a file transfer utility. This utility had to allow multiple files to
be copied simultaneously to different devices while being controlled from a single menu.
This required the interaction with people to occur concurrently with the transfer of files.

The specifications for the application also required that a menu of options be displayed in
one part of the screen while data from a file was displayed in another part of the screen.
This requirement meant two or more processes had to do I/O to the screen at the same time
with each process having its own display window.

The students were taught how to analyze the project requirements and to divide these
requirements into separate components. The types of components needed were
generalized to "Processes" and "Monitors". Each project group was provided with an O/S
kernel written in Modula-2 to use as a part of the assignment.

1.3 The IBM PC
The system kernel and file transfer application were developed and run on the IBM PC.
Program development and testing was done using readily available software tools and a
standard hardware configuration.

1.3.1 Hardware Standard IBM PC hardware was used to develop the operating system
and application. The minimum hardware configuration was an Intel 8088 Microprocessor
with at least 256 KB RAM, two 360 KB floppy disk drives, a monochrome controller and
monitor.

1.3.2 Software Standard IBM PC software was used to develop the operating system.
IBM PC ROM BIOS, IBM PC-DOS V2.0. with the statement DEVICE=ANSI.SYS included
in CONFIG.SYS, The Modula-2 compiler from Logitech for the IBM PC was used for all
software development. The early Modula-2 development was done with Release 1.10 from
Logitech. Recently all modules have been compiled and tested using Release 2.00.

IBM PC-DOS and ROM BIOS routines are used both directly and indirectly by the
application. All file operations (open/close, read/write, etc.) and the reading of the current
time of day were done using Modula-2 library routines supplied with the Logitech compiler.
Whenever possible the application has used Modula-2 procedures rather than direct calls to
DOS or ROM BIOS. In a few cases specific features or better performance were needed.
For these cases the application used the inline assembly language features of the Modula-2
compiler to call DOS or ROM BIOS directly. Routines that needed to use assembly
language to call ROM BIOS were the printer output routines and the windowed video output.

1.3.3 Alternate Configurations - Hardware/Software The system kernel, the
application, and the Modula-2 development tools have also been tested on the following
systems: AT&T PC 6300, IBM PC-AT, ITT XTRA XP, Kangaroo AT. Logitech Modula-2/86
release 2.00 for the IBM PC runs without trouble on these systems.

To put this software on a different hardware system would require changing those parts that
are dependent on the BIOS, DOS, or written in assembly language. The operating system
kernel has no instructions that are hardware or operating system dependent. The device
driver and the application modules are the modules that contain hardware and system
dependent routines.

i

t

e

i

- page 30

2. Building Systems
A good system can only be built from a good design.

A good design Is developed by repeating design development steps. These steps consist
of: analysis of the requirements, a survey and analysis of the available tools, a top down
design, review, and analysis. With each repetition, the design becomes more refined. The
refinement continues until the design is complete enought for construction to begin. The
decision to begin construction is done only after the important system components are
clearly described by the design. After construction has started, the design may be further
improved and refined. The continued improvement must be done within clearly identified
constraints.

The repeated analysis, redesign, decomposition, and refinement of the design allows
systems to be divided into components based on a few simple programming structures.
When the design is completed and a description for each component exists, the
programming structure used in building the component is also known.

Once the final system has been described as simple, understandable, and easy to build
components, the programming and testing of the system begins.

The design components described here are based on those proposed by C.A.R. Hoare in
1973. Systems are decomposed into three basic components: "Process", "Class" and
"Monitor". Each of the three basic component types has its own definition and a specific
way to be programmed. By dividing a system into these components many benefits are
achieved. The most important benefit is that analysis can be done on the individual
components and each component can be built and tested independently of the final system.

2.1 The Functional Specification

When a new system is to be built a description of the work to be done by the system is
needed. A "Functional Specification" is a written description of what the system is to do
when completed. The functional specification is used for testing and evaluating the
development. It is the only record of what the developers are trying to build.

A good functional specification will say little about how the system is to be developed.
Instead the specification describes what a user of the system will expect as output from the
new system. A functional specification is often a short document since the output needed
by a user is often limited.

The specification must be clearly written so the person testing the new system can decide if
all the required functionality has been completely developed and works correctly.

2.2 The Analysis

This is the process of dividing the desired system into components that can be clearly
described and built. The needed features of the new system are used to determine the
components of the system.

First an initial design is conceived. Two types of analysis are used; the flow of data and the
flow of processing control. From successive iterations of analysis and design, a final design
is derived. If an error is detected during testing of the design, further analysis will provide a
way to change the design to correct for the error.

2.3 The Design

The highest level of description for the system design structure is a drawing. This drawing
describes the flow of processing control and is drawn with circles and arrows. A circle
describes a programming step. An arrow describes the transfer of program control from one
step to another. (A program step is a group of instructions that do useful work by controlling
a machine.)

K#

- page 31 -

If data is transferred between steps, the transfer of data occurs at the time control is
transferred. The actual transfer of control between one programming step and another can
be used to convey information to the second programming step. A designer can use this
implied information to prevent the unnecessary transfer of data between processing steps.
Usually the transfer of control is programmed as a call to a procedure and the data transfer
is done with parameters to the procedure. (With this method of design for program structure
the the flow of data is not explicitly shown.)
The drawings are used to show how the various pieces of the system connect with each
other. Analysis can be done with the information contained in the picture without
programming the application. The main result of this method is an easy to build design. This
method of describing a design allows a system to be designed that runs with reasonable and
predictable performance characteristics.

Design Diagram Elements

C

Circles are used to represent the program components of the system. Arrows are used to
represent the transfer of processing control from one program component to another. Each
component has its own local data and an initialization routine.

The Modula-2 programming language is well suited for programming these components.
The language facility for creating a "DEFINITION" module for a system component that is
separate from the implementation allows the interface between components to be specified
before they are programmed. Also the existence of a "DEFINITION" module for each of the
shared components guarantees the interface will be the same for all references to the
shared component.

Note: Other properties of this design technique are esoteric in nature and of interest to
Computer Scientists. The design method allows the components to be put into a
hierarchical order. This ordering results in a system that can be studied as a sequence of
abstract machines simulated by programs. Mathematical induction can be used to prove
general properties of the system (such as the absence of deadlocks). The efficient use of
each resource is possible by ordering components according to the speed of the physical
resources they control. Stochastic models can be developed to model the systems dynamic
behavior. ([DIJ71],[BRI73])

2.3.1 Process A sequential set of programmed instructions for a machine that achieve a
well defined result. A process may transfer control to other components, but the other
components may not directly transfer control to a process.

A process is drawn as a circle with zero or more arrows pointing out of the circle.

A Process Diagram.

‘I

- page 32 -

!

2.3.2 Class A class is a program component that is used repeatedly and perhaps
duplicated each time it is needed. Control is transferred to a class from other program
components. A class may pass control to other program components. The most common
form of a class is as a subroutine library. Each time a component needs the functions of a
class, the data that define the class are duplicated.
With the Modula-2 language it is possible to build classes that are reentrant. This allows a
single copy of the class instructions to be shared among all the components that need the
class.
A class is drawn as a single arrow leading to a circle with zero or more arrows pointeding
out of the circle.

A Class Diagram.

#

2.3.3 Monitor A monitor is a program component that is shared by other program
components in a system. A monitor shares a resource between competing program
components. Control is transferred to a monitor by a program component when it needs to
use the resources controlled by the monitor. A common use for a monitor is to share a
memory buffer between an interrupt process and an application process.
A monitor is drawn as two or more arrows leading to a circle with zero or more arrows
pointing out of the circle.

A Monitor Diagram.

A monitor is shared between two or more program components and it must prevent access
to data by one component from interfering with access to the same data by another
component. This requirement is called "mutual exclusion". When this requirement is met
only one component may have access to a shared resource at a time. If a second
component wants to access the shared resource while the first has access, the second
component must wait for the first to finish using the resource. When a monitor controls
program mutual exclusion, the enforcing of mutual exclusion is contained in a single set of
instructions. A monitor allows mutual exclusion to be localized to single component instead
of being distributed among all the components sharing the resource.

- page 33 -

2.4 Other Tools
Certain system building tools are needed in almost every application. These are often
defined or built in a general way and become tools for use in building applications.

System builders often have available to them procedures that provide frequently used
services. Often a general queue management service that allows for the use of queues, a
system kernel for the sharing of a single CPU among many processes (programming steps),
and for the synchronization of co-operating processes are provided to the builder of software
controlled systems.

2.5 Component Grouping

The different types of system components are often grouped together to organize their
analysis and description. One way of grouping components is called layering". At the
lowest level are the hardware devices, followed by the device interface software, the system
services software, the system interface classes, and finally the application processes.

Another way of grouping components is by dividing the components into sub-systems. This
method of grouping uses a close relationship between the components to group the
components. The name given to the sub-system usually describes the relationship between
the components. Sub-systems grouped this way often have names like: ’The File System",
’The Network Interface", "The User Interface".

2.6 Design Refinement

This is an activity that goes on during the entire time a system is being built. The designers
of the system are constantly looking for ways to improve their design. A system designer
uses analysis, design methods, knowledge about the requirements for the new system, and
any other available information to develop an initial design. Once an initial design exists in
any form, the refinement of the design begins.

Through a cycle of analysis, refinement, and re-analysis the design is steadily improved.
From the first design more analysis can be done. This leads to a better understanding by
the designer of the system being built. The improved understanding of the design and the
system to be built give the designer more insight about how to improve the design. Each
time the design is improved the design that results is a refinement of previous designs.

Design Refinement occurs in four phases during the building of the system described by the
design. In each phase different types of refinement are done. The refinement process
starts with coarse changes in the design and ends with fine improvement. Throughout the
building of the new system, the design is improved. These phases of refinement are:
before any construction, during the construction of the structure, during filling in the
structure, and during the final testing of the system.

During the first phase of refinement the major processing functions of the system are
identified and the main data inputs and outputs are described. This includes describing the
main processes, classes, and monitors needed to buid the system. These components are
the general structure of the new system. Also some limitations in the hardware functionality
can be compensated for by the addition of monitors that supply the missing functionality.
This is the best phase for making major changes in the structure of the design.

The second phase is the interface between the components of the design and the internal
structure of the system are defined and built. From this point on when a design problem is
identified the analysis of the problem must include the difficulty (cost) of redoing all or some
of the work completed so far. If the design created in the first phase is a good design, any
problems discovered during the second phase can be corrected by improving the existing
design.

C
i
\

U

- page 34 -

••

The third phase is the detailed programming effort takes place. All functions of the
system are programmed. During this phase its difficult to justify making a major change in
the design. Any changes made to the structure of the design at this time should be minor.
The fourth phase is the new system is heavily tested. Only if serious defects in the design
are detected, will any change be made to the design. The ideal for this phase would be that
no defects in the design are uncovered by the testing process. Only defects in how the
system was built should be discovered at this time.
2.7 An Example System Design

new

Procedure
Allocate
Class

Application
Process PI

Buffer
MonitorI

BM

Procedure
WrtteLn
Class

Application
Process P2Interrupt

Process AInterrupt A

Request
Monitor

RM1

Interrupt
Process BInterrupt B

P
Request
Monitor

RM2
;

r■
ApplicationHardware

2.8 Building the Design
This is the activity of converting the design (one or more diagrams and descriptions of the
processing steps) to a running program. Each type of processing step is built in a specific
way using Modula-2.
First the "DEFINITION" modules need to be developed for all the class and monitor
components of the target system. These components are easy to identify as they are the

Basic I/O Interface Application Services

- page 35 -

I

ones with arrows leading into them. Once these DEFINITION modules are completed
these components should be typed in and tested.
Then the system initialization sequence is programmed. This is the part of the system that
makes sure all the processes are started in the right sequence. Once the instructions for
initialization of the system are completed only the programming of the individual processes
remains.
With the Modula-2 programming language there is a slight difference between the
programming of a process and an interrupt process. A normal process loops according to
the way it was programmed. An interrupt process executes one iteration of a processing
loop for each interrupt from the hardware device.

C

- page 36 -

3. The Operating System Kernel
The operating system kernel is a software tool consisting of Modula-2 procedures, types,
variables and processes that schedule the execution of concurrent processes. Concurrent
processes are programs designed to be executed simultaneously. They may be executed
simultaneously on two or more processors. This is true concurrency. Or more commonly
they are executed on a single processor that switches between the different processes. This
is called quasi-concurrency.

The IBM PC has a single processor so true concurrency does not happen. The processes
execute quasi-concurrently. One process is given the processor and some of the
instructions of the process are executed. The process may become blocked. This means
it encounters some condition that makes it impossible for it to continue doing useful work. If
so, the current process relinquishes the processor to another process. If the process is
never blocked, it will continue to execute until its time limit expires. When this occurs, a
hardware clock is used to interrupt the process and and start an interrupt process in the
kernel. The interrupt process then gives the processor to a second process. This pattern
repeats, the second process then executes until it too relinquishes the processor or is timed
out. Eventually the first process is again given the processor and it resumes from where it
was interrupted.

The alternative to this approach is sequential programming. In sequential programming
there is a single process. The instructions of the single process are executed in a
continuous sequence. The processing of the program can not easily divide Its I/O
operations into separate processes that overlap with each other or with computational tasks.

A Kernel allows the IBM PC to do what is done on larger time-sharing systems. On such a
system there are multiple users or processes at a single time. The processor is switched
back and forth between each process so rapidly that it appears as though there is a
processor dedicated to each process.

There are many advantages to concurrent programming instead of sequential programming.
Multiple tasks can run simultaneously when concurrent programming is used. For example,
the application presented in this article can interact with the user while it is transferring
files.

Another advantage is that the system is made more efficient by avoiding 'busy
waiting" programming techniques. Sometimes a process must wait for a particular event,
often this is for information to be entered by the user. In a sequential program this would
usually be programmed with a software loop. The program repeatedly tests to see if the
event has occurred. In a concurrent program the waiting process relinquishes the
processor, allowing another process to execute and do useful work. When the awaited
event occurs the waiting process resumes execution. With concurrent programs when one
process is waiting the others can continue their execution.

In addition to sharing the processor among many processes the kernel provides the
mechanism for controlling access to other shared resources. These resources may be
hardware resources, such as a printer, or software resources, such as service routines or
shared data.
The scheduling of concurrent processes can be conceptualized as the allocation of shared
resources. The most important of these resources is the processor that executes the
processes. The kernel provides the mechanism that allocates the processor to a process so
the instructions of the process are executed. The IBM PC has one processor and there may
be many concurrent processes ready to begin execution. The processor resource must
therefore be shared by the processes.

§

■

:

*

- page 37 -

3.1 The Kernel
Our operating system kernel is written in Modula-2. The Modula-2 language provides many
higher level features useful in writing a system kernel. Several of these deserve
mention at this point.

PROC

PROCESS

A data type. A PROC is a parameterless procedure.

A standard type for a process. In Modula-2 a PROCESS is a coroutine
for use with a kernel that supports many processes sharing one or more
processors.

Note: This definition corresponds to the official definition for a PROCESS
at the time the Kernel was built. This definition has been altered in the
most recent edition (third) of Programming in Modula-2.

NEWPROCESS NEWPROCESS(P:PROC;A:ADDRESS;n:CARDINAL;VAR new:PROCESS) ;

A standard procedure to create a process. NEWPROCESS is
passed P, the address of the instructions to be executed; A, the
location for the PROCESS workspace; and, n, the size of the workspace
for the PROCESS. NEWPROCESS returns new, the process created.

ALLOCATE(VAR a:ADDRESS; size:CARDINAL)?
A standard process that allocates memory space. ALLOCATE sets
aside memory. For example, a workspace is needed when
NEWPROCESS is called. ALLOCATE is passed the size of the area to
be allocated and returns a, the location of the area allocated.

DEALLOCATE DEALLOCATE(VAR a:ADDRESS ? size:CARDINAL)?

The opposite of allocate, DEALLOCATE is passed the address and
size of an area in memory to be made available for reuse.

TRANSFER(VAR pi,p2:PROCESS)?

A standard procedure, TRANSFER passes control of the processor to a
PROCESS. There are two parameters: a source and a destination
process. When source PROCESS pi calls TRANSFER its execution
is suspended and the execution of destination PROCESS p2 is
resumed at the point where it was last interrupted. This procedure is
used pass control of the CPU from one process to another.

IOTRANSFER(VAR pi,p2:PROCESS ? va:CARDINAL)?
Similar to TRANSFER with one important difference, this routine
receives control of the CPU from a hardware interrupt. To do this there
is a third parameter, va, the interrupt vector value. On execution
IOTRANSFER passes control between a source and a destination
PROCESS; in addition the source PROCESS pi is installed as an
interrupt handler at the vector va. The occurrence of the interrupt will
cause the resumption of the source PROCESS (the interrupted process)
at the instruction immediately following IOTRANSFER.

The kernel uses these Modula-2 facilities along with standard pointer operations for the
creation, scheduling and destruction of concurrent processes.

For the kernel a new concept of a process is required, different from the Modula-2
PROCESS. This process consists of a PROCESS plus a process descriptor. The process
descriptor is a RECORD that stores information for the scheduling and eventual
destruction of the process.

C

ALLOCATE

TRANSFER

e
IOTRANSFER

- page 38 -

The definition of the process descriptor is as follows:
TYPE Processdescriptor =

RECORD
Next: Pdpointer?
Cor: PROCESS;
Corsize: CARDINAL;
Sleepcount: CARDINAL

END;

where Pdpointer is a POINTER to a Processdescriptor.
"Cor" can be thought of as a pointer to the PROCESS to which the Processdescriptor
applies. "Next” can be used to build linked lists of Processdescriptors.
The Cp is a Pdpointer. It marks a special process, the current process. This Is the
process that has been allocated the processor and is executing the instructions of its
program.
The Kernel and its relationship to the other components of a system can be drawn as
follows:§

ProcessProcess
BA

Clock
Interrupt
Process

Monitor
ABC

Processor
Monitor

(The Kernel)
Process

C1

ProcessProcess
DF

- page 39 -

3.1.1 Queue Management An Eventqueue is a linked list of Processdescriptors that
are waiting for some event. Its definition is:

TYPE Eventqueue = ARRAY [Top..Bottom] OF Pdpointer;

Two Pdpointers are used; one points to the top of the queue, the point from where
processes are generally removed from the queue, and one points to the bottom of the
queue, the point where processes are usually added.

There are two Eventqueues used by the kernel. These are the Ready queue and the
Sleepqueue. The Ready queue consists of processes waiting for the processor. The
Sleepqueue consists of processes that have elected to remain inactive for a certain
period of time. They are waiting to be awakened by the kernel.

In addition to these two Eventqueues there can be many others. Eventqueues can be
created as required by an application program; there are many such Eventqueues in the
application described in this paper.

There are four operations that can be done on TYPE Eventqueue.

Awaited
C

Awaited(S:Eventqueue):BOOLEAN;
Awaited is a function used by a process to test an Eventqueue for a Waiting
process. If Eventqueue S contains a process Awaited returns TRUE. If the
Eventqueue is empty it returns FALSE.

Init(VAR S:Eventqueue) ;
Initialization of the Eventqueue. This must be done to an Eventqueue before
any other operation.

Signal(VAR S:Eventqueue);
When a process calls Signal it starts the top process in the Eventqueue S. If
Eventqueue S contains no processes, Signal is a null operation. Otherwise
the top process is removed from the Eventqueue and placed in at the bottom
of the Ready queue. The next process in the Eventqueue, if any, becomes
the top process.

Wait(VAR S:Eventqueue);
The process calling Wait relinquishes the processor and enters Eventqueue
S. If there are processes already waiting it is added to the bottom of the
queue. It does not become an active process until it rises to the top of
the Eventqueue and is Signalled by some other process.

3.1.2 Processes A process is created through a call to Startprocess. There are two
parameters: Size, a CARDINAL, and Routine, a PROC. Size is the amount of memory that
must be allocated for the execution of the new process and Routine is the address of the
instructions that will be executed. Through calls to ALLOCATE memory locations for the
Processdescriptor and the PROCESS are allocated; the PROCESS is created through a
call to NEWPROCESS; finally the new process is placed at the bottom Ready queue for
eventual execution.

Inlt

Signal

Walt

G !

The need to specify the workspace size is one difficulty of using Modula-2 for co-processing.
It can be difficult to assess in advance the space requirement of a process. Specifying a
space too large wastes memory while specifying a space too small can cause the system
to crash.

The new process waits in the Ready queue while those processes ahead of it are removed
from the queue and executed. Eventually it rises to the top of the queue. It is removed
from the queue and becomes the Cp, the current process. It is allocated the

- page 40

processor and the instructions of Routine are executed. It continues to execute until It is
timed out or it calls one of the four PROCEDURES that result in It relinquishing the
processor to the next Ready process. These four PROCEDURES are:

Flnlshprocess Finishprocess ?

The calling process is destroyed, its memory space made available for
reuse through calls to DEALLOCATE , and the process at the top of the
Ready queue becomes the current process. "Corsize" is stored in the
Processdescriptor so Finishprocess can pass It as a parameter to
DEALLOCATE. After the calls to DEALLOCATE, TRANSFER Is called
to allocate the processor to the new current process.

Pause;
The calling process is placed at the bottom of the Ready queue and the
process at the top of the Ready queue becomes the the Cp. A call to
TRANSFER allocates the processor to the new current process.

Sleep(Count:CARDINAL)?
The calling process is placed in the Sleepqueue where it remains for
Count clock pulses. Again, the process at the head of the Ready
becomes the Cp and the processor is allocated to this new current
process by calling TRANSFER. After Count clock pulses the calling
process is removed from the Sleepqueue and placed at the bottom of
the the Ready queue by the kernel.

Wait(VAR S:Eventqueue);
This calling process is placed at the bottom of Eventqueue S. The
process at the top of the Ready queue becomes the Cp. A call to
TRANSFER allocates the processor to the new current process.

If a process does not call any of these four PROCEDURES it will continue to execute until
its allotted time expires. The kernel places the process at the bottom of the Ready queue.
The process at the top of the Ready queue becomes the Cp and the process is allocated
the processor through a call to IOTRANSFER. The ability to interrupt the current process
and to allocate the processor to a new current process is called preemption. The preemptive
mechanism of this kernel is discussed under "Device Interrupts" below.

If a process is timed out and there are no processes in the Ready queue the process is
given another time period and continues to execute. This is also what occurs if Pause
is called. If Wait, Finishprocess or Sleep are called when there are no processes in the
Ready queue the system will idle until some process enters the queue. That process then
is made the Cp and is executed.

A new process enters the Ready queue when Startprocess is called. From this point until its
destruction the Processdescriptor will be in one of three locations. Each location
corresponds to a process state. First, the process could be the Cp, the current process. If
so, its state is "running"; its instructions are being executed. Second, a process could be in
the Ready queue. When its status is "ready" it could execute if it were allocated the
processor. Finally, a process could be in some other Eventqueue where its state is
’blocked". This prevents it from continuing until an event occurs.

3.1.3 Device Interrupts There is another class of processes that a kernel must contend
with: unscheduled processes. These processes are not executed because they go to the
head of the Ready queue. Instead they are executed in response to an external unscheduled
event caused by hardware. These processes are usually called interrupt handlers. When
an interrupt occurs, execution of the current process is suspended and the interrupt handler

Pause

Sleep

Walt

- page 41 -

process is executed.
Interrupt handlers are not processes like those previously discussed. They have no
process descriptor. They wait in no Eventqueue for processing. They can not be timed out.
On completion of their task they do not pass control through a call to TRANSFER, they
use IOTRANSFER instead.
Note: Following the recommendations of Logitech an effort was made to keep to a
minimum the instructions executed by the interrupt processes. This makes particular
sense with the clock handler, which is executed 18 times per second. Sometimes the
interrupt handler does tasks that could be done through a call to kernel procedures.
Instead the instructions are included in-line. This is done to avoid the overhead inherent in a
procedure call.

3.2 Clock Device Interface
One interrupt handler is required for the execution of the operating system kernel: the
clock interrupt handler. Other interrupt handlers can be created as required for
the application, for example a keyboard interrupt handler to interpret keyboard input.

The clock interrupt handler provides the time slicing for the kernel. It knows when a
process has used up its allotted time period. In this case the current process is preempted
if any other processes are in the Ready queue. This interrupt handler also provides the
mechanism for managing the Sleepqueue.

3.2.1 Clock Interrupt The clock interrupt handler is a PROCESS. On the IBM PC the
clock interrupt occurs eighteen times each second. Each time the interrupt occurs the
instructions of the interrupt handler are executed. The clock handler counts the number
of clock pulses (clock interrupts) that have occurred since the current process began
execution. When the count reaches the limit, the process is timed out. The clock handler
places the current process at the end of the Ready queue. It removes the top process of
the Ready queue and makes it the Cp. Finally the clock handler executes
IOTRANSFER(clkhandlerP,Cp\Cor,Clkintvec), transferring control to the new current
process.

3.2.2 General Timer Service The clock handler also manages the Sleepqueue. Every
time the clock interrupt occurs the clock handler decrements the Sleepcount of the
top process in the Sleepqueue. When the Sleepcount reaches zero the sleeping
process is started by removing it from the Sleepqueue and placing it in the Ready
queue.

Insertions in the Sleepqueue are handled so only the Sleepcount of the top process need
be decremented. Processes enter most Eventqueues by calling Wait; the process is
inserted at the end of the queue. Sleepcount uses a different insertion algorithm.

To show how a process is inserted in the Sleepqueue we will follow the insertion of
three processes in an initially empty queue, the first for six clock pulses, the second
for fifteen and the third for ten.

When the first process calls Sleep(6) it is placed at the top of the Sleepqueue with a
Sleepcount of 6.

ft

»

a

- page 42

Process A
Steepcount = 8

Sleepqueue

Time In Queue = 6

The second process calls Sleep(15). The parameter, 15, is compared with the Sleepcount
of the first process. Since the second process is to sleep for a longer period, it is placed
in the queue after the first process. The Sleepcount of the first process, 6, is subtracted
from the parameter, leaving 9. Since there are no other processes, it is placed immediately
after the first process with a Sleepcount of 9.

i
Process A

Sleepcount = 6
Process B

Sleepcount = 9
Sleepqueue

Time In Queue
= 6+9 = 15Time in Queue = 6

The third process calls Sleep(IO). The parameter is compared to the Sleepcount of the first
process in the queue. Since 10 is greater than 6, the third process will be placed behind
the first. The Sleepcount of the first is subtracted from the parameter, leaving 4. This
is compared to the Sleepcount of the next process of the queue, 9. Since 9 is greater than
4 the new process will be placed in the queue before this process. It is entered in the
queue with a Sleepcount of 4 and the Sleepcount of the process immediately following
is decremented by the Sleepcount of the new process, making it 5.

Process C
Sleepcount - 4

Process B
Sleepcount - 5

Process A
Sleepcount = 6

NILSleepqueue

Time In Queue
= 6+4+5 =* 15

Time In Queue
= 6+4 = 10Time In Queue = 6

At this point there are three processes in the queue. The first process is the first in the
queue, with a Sleepcount of 6. The third process is the second in the queue, with a
Sleepcount of 4. The second process is the third in the queue, with a Sleepcount of 5.
Each time a clock pulse occurs the Sleepcount of the top process in the queue is
decremented. After 6 pulses the Sleepcount of the first process reached 0 and it is
removed from the Sleepqueue and placed in the Ready queue. The third process is now
the top in the queue, so each clock pulse its Sleepcount is decremented. After four clock
pulses its Sleepcount is 0 and it is started. This leaves the second process. For five
clock pulses its Sleepcount is decremented, it reaches 0 and the last process is started.

- page 43 -

The first process slept for 6 clock pulses, the third for 6 + 4, or 10 clock pulses and the
second for 6 + 4 + 5, or 15 clock pulses. All processes were inactive for the desired
period of time and the updating required for each clock interrupt by the clock handler is
reduced to updating and testing a single variable.

3.2.3 Countlock There is one other utility provided by the clock handler, the
Countlock. By setting Countlock := TRUE a process can stop preemption; the clock
handler is locked from timing the process out. The process has the processor until it
executes Countlock := FALSE. This turns off the Countlock, allowing preemption.

There are tasks that can not be interrupted without the possibility of erroneous
results. Countlock provides a simple mechanism to insure this does not happen. An
example might be pointer operations on a linked list. Countlock is one way to insure the
process is not timed out before the links have been properly rebuilt.

Kernel operations occur with the Countlock on. The Countlock can be invoked by the
application as required. One such use of Countlock is the creation of primitive (i.e. may not
be interrupted) instructions for semaphores.

3.3 Semaphores

A semaphore is a method used by two or more concurrent processes to synchronize access
to a shared resource. A semaphore insures only one process has access to the resource at
a time. It also insures that a process requesting the resource will eventually be allocated the
resource.
There are two primitive instructions required for a semaphore. They are called P(s) and
V(s) after the terminology used by E. W. Dijkstra. The operations required for P and V
must be done without interruption if the results are to be guaranteed. Countlock
enforces this restriction with clock interrupts by preventing time out pre-emption of the
current process during the critical sections of P and V.

In the application presented here it was necessary to insure that only one process at a time
used DOS. P and V were incorporated in the monitor that controlled access to DOS. Two
variables, DOSinuse, a BOOLEAN and DOSqueue, an Eventqueue, are used. A process
calls P before using DOS. The instructions used to implement P are:

€
i

Countlock := TRUE;
IF DOSinuse THEN

Wait(DOSqueue) e
ELSE

DOSinuse := TRUE;
Countlock := FALSE

END;

Flag DOSinuse is checked to see if another process has been allocated DOS. If not, flag
DOSinuse is set to TRUE to show DOS is now allocated to the calling process and the
process proceeds to use DOS. If DOSinuse is already TRUE when P is called, the calling
program must wait until the process that allocated DOS, relinquishes it. It waits in
Eventqueue DOSqueue until signalled.

- page 44

When a process is no longer using DOS it calls V. The instructions used to implement V
are:

Countlock := TRUE;
IF Awaited(DOSqueue) THEN

Signal(DOSqueue)
ELSE

DOSinuse := FALSE;
Countlock ;= FALSE

END;

The process first checks to see if any process is waiting to use DOS. If so, that process is
signalled; it can now resume execution and use DOS. DOSinuse is not reset to FALSE
because DOS is now allocated to the signalled process. If no process is waiting for DOS,
DOSinuse is set to FALSE and DOS is now free to be allocated to the next process calling
P.

Without the Countlock, P and V may generate incorrect results. For example, Process A
wishes to use DOS and calls P. It tests DOSinuse and finds it is FALSE. It is then timed
out. Process B wishes to use DOS. It too calls P and it too finds DOSinuse to be FALSE as
Process A was timed out before it could reset the flag. Process B sets DOSinuse to TRUE
and proceeds to use DOS. While doing so it too is timed out. Process A resumes execution.
It has already tested DOSinuse and still thinks DOSinuse is FALSE. It too sets DOSinuse to
be TRUE and proceeds to use DOS. Because Process A was interrupted between testing
and setting flag DOSinuse the semaphore has failed and two processes have been allocated
DOS at the same time.

With the Countlock on, pre-emption by the kernel is impossible and the semaphore can not
fail. In this case Countlock is combined with kernel procedures to create a higher level
tool.

3.4 b'mitations

The kernel has some limitations. The limitations do not prevent the kernel from being used
for other applications. Any plans to use the kernel for other applications must take these
limitations into consideration.

• There is no way to have priority access to resources. This means there is only a simple
type of mutual exclusion. A process blocks another process from access to a critical
section by blocking all other access to the CPU. This can cause performance problems
when the time spent in a critical section is long.

• There is no way for a lengthy interrupt process to lower its priority so other interrupts
may occur. This means interrupt processes must be designed carefully. They may not
require much CPU time to execute nor may they cause the current application process to
be pre-empted by another application process.

• Processes are scheduled using a simple round robin algorithm.

• The hardware clock interrupt is 17 Hertz. For many applications this does not provide a
small enough interval for time outs or shared access to the system with time slicing.

• The amount of CPU time needed to switch from one process to another is higher than is
necessary (the time to do a TRANSFER). The overhead of this procedure is from the
need for the IOTRANSFER procedure to be inside a loop. This extra overhead will
become less important as processors become faster. Interactive applications do not
switch from interrupt processes to other processes with enough frequency for this
overhead to be a problem. Other applications that do process frequent interrupts must
consider the amount of CPU time needed to switch from one process to another.

9

- page 45 -

4. The Application System
The Interactive Data Transfer System (IDTS) is an application system using the kernel
routines to program simultaneous file transfers between various devices on the IBM PC.
Files may be copied from disk to printer, disk to screen, and disk to disk. A split screen
holds the menu and keyboard I/O on the top half of the screen.
Keyboard I/O and file transfers are all concurrent operations. While one file is writing to the
printer, another may be writing to a disk, and a third file may be writing to the screen. The
menu remains active during all file transfers so the user may type further requests at any
time. File transfer requests for active output devices are held in queues and processed as
devices become free.
Concurrency in the IDTS is handled by coroutines, called processes in Modula-2. True
concurrency occurs when two or more processes are being executed by two or more
processors at the same time. The processes in the IDTS are executed by the single
processor of the IBM PC in quasi-concurrency. All active processes are given their share of
running time by the Kernel’s Scheduler routines.
4.1 The Application Design
The application system can be drawn as follows:

<L

€

i

- page 46 -

Main MENUFROC
Process

Walt
Process

KBhandler
Interrupt
Process

Signal

Inlthandlers
Process

#

DOSmon
Monitor

DEVmon
Monitor

Wlndowmon
Monitor

VWeoHndlr
Monitor

1

CEHandler
Interrupt
Process

These components describe a
menu option and are repeated

for additional menu options.

- page 47 -

4.2 System Initialization
When a user starts the IDTS several things happen before the menu is active.

During Modula-2's module body initialization phase three interrupt handlers are installed by
the process Inithandlers in the module Intrupts. The Scheduler uses Startprocesses to place
Inithandlers in the Ready queue. The job of Inithandlers is to install the Clock interrupt
handler (Timeout) used by the Scheduler, and the Keyboard interrupt handler (KBhandler)
used by the Menu. Inithandlers also installs a simple Critical Error interrupt hander
(CEHandler) that causes the IDTS to break and return to DOS on a fatal error. The screen
is cleared and the menu itself appears on the top half of the screen. When the module body
initialization is complete the main program module, Main, calls Startprocess for the Menu
process and for all the file transfer processes (ReaddskP, Toprint, ReaddskS, Toscreen,
ReaddskD, Todisk). Finally Main calls Startsystem.
Now Inithandlers installs the three interrupt handlers and calls Finishprocess. Inithandlers
then disappears. Storage space is freed for other processes. Menu and the file transfer
processes all Wait in Eventqueues until they are called into action by the appropriate Signal.

The Keyboard interrupt handler responds to a hardware interrupt on the IBM PC. It is
enclosed within a high priority module so the keyboard input handling will be protected from
interference from other processes. The handler routine responds to every key pressed by
putting the key scan code into a simple buffer. Then it Signals to the Menu that there is a
scan code available in the buffer. When this is finished the keyboard handler
lOTRANSFERs back to the process it interrupted.

The module KBHandler contains and exports procedures for reading the buffer and
interpreting the key scan codes. There are also procedures for a clean start and end of the
interrupt handler in this module.

4.3 The Menu Process

The Menu process manages the application system.

MENUPROC (Menu Process) reads and processes key scan codes from the keyboard
buffer using procedures from KBhandler. It echoes keyboard input on the menu (top) half
of the screen. Menu manages cursor control and printing effects (e.g. reverse video) in the
menu window with procedures from the module VideoHndlr (Video Handler).

The Menu process is also responsible for interpreting keyboard/menu input to handle file
transfer requests. When a request is acceptable MENUPROC starts file transfers using the
module DEVmon (Device monitor) for device request queue management. MENUPROC
puts the requested file name in the correct device queue and Signals to start the Read
process for the device. The Read process itself Signals to start the Write process for the
device. For example, if the user has selected to print a file on the printer, MENUPROC
Signals PrinterFreeln, an Eventqueue for the Read-for-printer process, ReaddskP. The
process is put in the Ready queue. ReaddskP in turn Signals PrinterFreeOut, an
Eventqueue for the Write-to-printer process, Toprint. Now both processes are in the Ready
queue where their execution time is managed by the Kernel.

File transfers are handled by three separate modules per device:

1. A module with a process that reads from the disk and writes to a buffer
(e.g. READDSKP).

2. The buffer and its read and write procedures, Put and Get, are safe in a monitor
(e.g. SMonitor) module that is only accessed by the two processes that need it.

3. A module with a process that reads from the buffer and writes to the output device
(e.g. TOPRINT).

1

€

- page 48 -

Eac Read/Write pair of processes run concurrently by calling Signal and Wait in the Kernel.
These pairs of processes are made more loosely coupled by using Dijkstra’s "Sleeping
Barber" algorithm.

When a file transfer is complete (EOF) both processes check to see if any more requests
are left in their device queue. If the queue is not empty both processes Wait, then Signal
each other back into action. A user may request that the IDTS stop when all jobs are
complete. When a process finds its queue empty and ail other jobs complete, it stops the
IDTS and exits to DOS. Otherwise, each process Waits in its Eventqueue for a Signal.

4.4 Keyboard and Display Device interface

4.4.1 HO Management The IDTS has several other monitors besides the file transfer
monitors PMonitor (Printer monitor), SMonitor (Screen monitor), and DMonitor (Disk
monitor).

IBM PC DOS is not reentrant. A process using DOS must be protected from other
processes that also need DOS. Any process that uses DOS, either directly, (using the
DOSCALL statement in Logitech Modula-2), or indirectly, (e.g. using file commands, disk
access, or writing to the screen), uses DOSmon (DOS monitor). DOSmon protects DOS by
only allowing one process at a time to access DOS. Whenever a process calls DOSmon it
sets a BOOLEAN, DOSinuse, to TRUE. All other processes that request DOS are put in an
Eventqueue by DOSmon, using Signal and Wait from the Scheduler.

DEVmon manages device requests. It insures only one file at a time is being written to a
given device. DEVmon contains and manages the device request queues. A user may
request file transfers on already busy devices. These will be started when the current
transfers are completed. File requests are kept in first come first served queues.

4.4.2 Split Screen Functionality Windowmon (Window monitor) is a similar monitor
that protects the lower screen windows. Any process writing to these windows, using the
procedure WRITELine from VideoHndlr, must call Windowmon to insure only one process at
a time has access to the window procedure.

The module VideoHndlr manages split screen output. File writes to the screen appear on
the lower half of the screen and do not interfere with the menu nor with keyboard output on
the top half of the screen. There are procedures in VideoHndlr that handle cursor
positioning, writing to a window, and scrolling within a window. VideoHndlr also has
procedures for the operations of ClearScreen, ReverseVideo, as well as Get/Set the Video
mode.

VideoHndlr uses DOS and ROM BIOS routines for these operations. This module makes
extensive use of low level facilities in Logitech Modula-2 such as DOSCALL, GETREG,
SETREG, CODE, and SWI.

#

;

I

1

- page 49 -

5. Summary and Conclusions
An Interactive Data Transfer System was built using a design structure composed of three
programming components. It manages concurrent file transfers between three separate
devices on an IBM PC system. Files may be transferred from a disk to a printer, a disk to
the screen, and a disk to the same or another disk. The menu and keyboard I/O operations
execute concurrent with file transfer requests. Users may make file transfer requests at any
time. Transfer requests for an already active device are queued and processed when the
device becomes free. The menu, messages, and output from disk files appear
simultaneously on the screen in separate windows.
The application was designed by organizing the required system functions into processes,
classes, and monitors. Processes were programmed as coroutines that run quasi-
concurrently to handle file transfers and menu operations. Monitors were used to protect
data, such as file buffers, and to provide mutual exclusion for operations that were not to be
interrupted, such as calls to DOS routines that are not reentrant. The Kernel routines were
used to manage (synchronize) all quasi-concurrent operations started by hardware
interrupts.
Most components of the kernel and application were written using standard Modula-2. It
was necessary to use tools provided with Logitech’s Modula-2 to interface with low-level
facilities such as DOS and ROM BIOS routines. Calls to DOS, ROM BIOS interrupts, and
the inclusion of machine instructions are handled without writing separate assembly
language routines. Those operations that were specific to the IBM PC, DOS, and the ROM
BIOS exist in a few places and could be changed to work with Modula-2 compilers for other
computer systems.

Modula-2 has proven itself to be an excellent language for building interactive applications
that require system programming. Separate Definition modules from Implementation
modules guarantees a clearly defined interface exists between software components. The
separate compilation of modules prevents unnecessary recompiling of procedures that have
not changed. When Modula-2 was used in a class project, students familiar with Pascal
were able to learn the language. They were then able use it to complete a complex project
in less than ten weeks of part time effort.

6. Obtaining the Software

A copy of the source files for the Modula-2 software described in this article may be
obtained on a 48/TPI IBM PC floppy disk. To obtain the "Modula-2 Kernel & Application"
software send a check or money order for $15.- (US Dollars) payable to:

The Association for Computing Machinery, Student Chapter
C/O Computer Science Department
San Francisco State University
1600 Holloway Avenue, Room TH 906
San Francisco, California 94132 USA

7. Acknowledgements

We want to thank those people who assisted with building the software and with the
preparation of this paper: John Barr and Phil Rosine of Montana State University, in
Missoula, Montana, for the first version a kernel; Jeff Clymer for his help during the
programming of the class project; Christopher R. Cale, Maurizio Gianola, Alfred Moertlseder,
of Logitech, Inc., in Redwood City, California, for donating Modula-2/86 software and
technical help; John Copeland, Howard Ensler, and Brian Hart, of Image Network, in
Mountain View, California, for providing technical help and access to the laser printers and
typesetting software used to prepare this paper.

€

£

- page 50 -

8. Glossary

analysis The method of determining the essential components of a system,
their features, and their relation to the other components of the
system. Analysis is used to find the right combination of
components to use when building a new system.

A program or program component that is a repeated operation.

When two or more programs execute at the same time. These
programs are possibly working together on a common activity.

Two procedures or programs that are designed to work together.
Each transfers control to the other as an intermediate processing
step is completed. The software kernel of a computer system is a
coroutine with all programs executing in the computer.

The plan or structure of an object. This is often a drawing or sketch
that includes a written description of how to build the object and a
list of the parts needed to build the object.

A written message that furnishes useful information about a system,
or a component of a system to people.

Something important that occurs.

A data structure that contains a queue of processes waiting for an
event to occur.

A programmable part of a system that is not easy to modify. A
firmware program is frequently stored in memory that is read only.
(Read/only memories are not easy to modify or to replace.) The
machine running the program is often designed to run only one
program. Firmware programs are hardware to a system designer
who is unable to change the memory contents.

The physical part of a system. Hardware is used to build the
machine components of a system. The hardware part of a
computer system is not as easy to change as the programs that are
stored using the hardware.

A break in the execution of the currently running process of a
machine. An interrupt is caused by a hardware device. The current
process is stopped and a special process for the hardware causing
the interrupt is started.

A set of programs and data structures that synchronize processes
competing for use of machines. This allows one or more machines
to be shared by the processes wanting to use the machine. The
kernel is a monitor that controls the sharing of a machine. It is the
part of a system that shares one or more machines between many
processes.

A part of a system that behaves in a predictable way and can not
be changed during the lifetime of the system. A machine is
frequently controlled by a list of instructions called a program.

The instructions to people that allow machines to be used for useful
tasks. These instructions are communicated to people in many
forms. Usually this is done with documentation, and (or) through the
supervision and control of an experienced manager.

class
concurrent

coroutine

design

0
documentation

event
event queue

firmware
;

hardware

Interrupt

kernel

machine

methods

- page 51 -

A component of a system that supervises and manages the sharing
of a resource between two or more processes.

operating system A system that is working correctly. See "system".

Humans are one component of a system. To do useful work people
follow methods for using machines.

When one process gains access to a resource before the process
controlling the resource has finished using the resource. A system
kernel uses this to allow the processes competing for a machine to
share the machine.

A program that can be executed by other programs. A procedure
can not execute concurrent with its calling program.

A list of programmed instructions for a machine that achieve a well
defined result. A machine may execute only one process at a time.
A program is built from one or more processes.

A machine that executes a list of instructions.

A list of instructions for use by a machine. A program is built from
one or more processes. When a program is stored in read/write
memories it is called "software". When a program is stored in
read/only memories it is called "firmware".

quasi-concurrent When many processes appear to run concurrently with each other.
This exists when there is only one machine to execute all the
processes of a system. An interrupt preempts the current process
to start the execution of another process.

The ability of a process to be started and executed completely
during a specific time period.

A procedure that can be executed by one program while the
procedure is being executed by other program. The instructions of
the procedure are shared. Each program calling a reentrant
procedure has a copy of the data used by the procedure.

A way to signal between two concurrent (or quasi-concurrent)
processes. A semaphore can be built from a data structure and two
functions that use the data structure. The functions define "Signal"
and ’Wait" operations that allow one process to wait for the the
signal from a second process.

A programmable part of a system that is easy to modify. A software
program is frequently stored in memory that is read/write.
(Read/write memories are easy to modify.) The machine running
the program is often designed to run many different programs.
Programs stored in a read/write memory are hardware to a system
designer who is unable to change the memory contents.

People, Machines, and Methods working together for a useful
purpose. A version of a system exists for a specific time period
before it is modified, stopped or replaced.

monitor

people

preempt

procedure

process

&
processor
program

1,

real time

reentrant

semaphore €

software

system

- page 52 -

9. References

[BAR78] Barr, J., A Methodology for the Design of Interactive Graphics Operating
Systems, Computer Science Ph.D. Dissertation, University of California, Los
Angeles, 1978.

Ben-Ari, M.f Principles of Concurrent Programming, Prentice/Hail
International, 1982.

Brinch Hansen, P., The purpose of Concurrent Pascal, Information Science,
California Institute of Technology, November 1974.

Brinch Hansen, P., Concurrent Pascal Report, Information Science,
California Institute of Technology, June 1975.

Brinch Hansen, P., Using Personal Computers in Operating System
Courses, Computer Science Department, University of Southern California,
June 1983.

Deitel, H. M.f An Introduction to Operating Systems, Addison-Wesley
Publishing Company, Reading, Revised First Edition, 1984.

DeMarco, T., Structured Analysis and System Specification, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1979.

Dijkstra, E. W.f "Cooperating Sequential Processes", in F. Genuys (ed.)
Programming Languages, Academic Press, New York 1968, pp 43-112.

Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes", Acta
Informatics, 1:115-138, 1971.

Dijkstra, E. W., Operating Systems Principles, Prentice-Hall, New York,
1973.

Hoare, C. A. R., "Monitors: an operating system structuring concept",
Communications of the ACM, 17 (10), 1974, pp 549-557 .

Hoare, C. A. R., Communicating Sequential Processes, Prentice/Hall
International, London, 1985.

IBM PC DOS User’s Manual, Revised Editions, International Business
Machines, Boca Raton, Florida, 1984.

IBM PC Technical Reference Manual, Revised Edition, International
Business Machines, Boca Raton, Florida, April 1984.

King, R. A., The IBM PC-DOS Handbook, Sybex, Berkeley, California,
1983.

Modula-2/86 User’s Manual, Release 2.00, Logitech, Inc., Redwood City,
California, December 1985.

Norton, P., The Peter Norton Programmers Guide to the IBM PC,
Microsoft Press, Belleveu, Washington, 1985.

Wiener, R. S., and Sincovec, R. F., "Modular Software Construction and
Object-Oriented Design Using Modula-2", Journal of Pascal, Ada, and
Modula-2, Vol. 3, No. 3, May/June 1984.
Wirth, N., "Modular a Language for Modular Multiprogramming", Software-
Practice and Experience, Vol. 7, pp 3-35, 1977.
Wirth, N., Programming in Modula-2, Third, Corrected Edition, Springer-
Verlag, Heidelberg, 1985.

[BEN82]

[BRI74]

[BRI75]

[BRI83]

[DEI84]#

[DEM79]

[DIJ68]

[DIJ71]

[DIJ73]

[HOA74]

[HOA85]

[IBM85]

t
[IBM85]

[KIN83]

[LOG85]

[NOR85]

[WIE84]

[WIR77]

[WIR85]

- page 53 -

i

Hr. R. Karpinski
6521 Raymond Street
Oakland, CA 94609
U.S.A.

Dr. A. Brunnschveiler
Kehlhofstrasse 29
9322 Egnach
Switzerland

Egnach, November the 6th 1985

Dear Sir,

I greatly appreciate MODUS as a source of information on Modula-2. Since I
am as interested in seeing some actual Modula-2 code, as some other readers
seem to be, I should like to make a small contribution in this direction.
Please feel free to throw it away or to print it, as you think best.

€>
Having done some Pascal programming with the UCSD System, I was annoyed by
the fact that Logitech Modula-2 does not support the Type SET OF CHAR. Of
course this is not requested by Prof. Wirth, who states that the maximum
number of elements of a set can be small and is machine dependent. But I
have made extensive use of it in Pascal for bullet proof input and did not
want to miss it. For this reason I have written a Module implementing sets
of up to 256 characters. It is very simple to represent large sets as arrays
of small sets, and to do all set operations, once the sets are defined. It
is a bit more difficult to define such large sets in an elegant way. To be
precise the problem is to do the equivalent of a Pascal statement like
"S: = [1 a1.. ’e’ ,1 A1 .. 'E1,1.1];”. My approach was to pass the information
needed to define a set, as a string to a procedure DefineCharSet, which
returns the set. Inside this procedure does the sort of things, which are
usually done by a compiler. Thus the analogon to the above Pascal statement
becomes: "DefineCharSet(1(a). .(e),(A)..(E),(.)1,S,ErrorNumber);".

©With kindest regards

r
M .

P.S.

The actual code is on the included MSDOS 2.11 disk, written on an IBM
compatible NCR PC-4i. Modus.def is the definition module and Modus.mod the
implementation module.

-_

3

- page 54 -
3

DEFINITION MODULE ModusCharSet?

ModusCharSet implements the Type SET OF CHAR, which usually
is not available in Modula-2.(*

A. Brunnschweiler Kehlhofstrasse 29 9322 EGNACH Switzerland.
December the 6th. 1985

*)

EXPORT QUALIFIED CharSet, InCharSet, CharSetUnion, CharSetDifference,
CharSetlntersection, CharSetSymmetricDifference, DefineCharSet;

TYPE CharSet = ARRAY[0..15] OF BITSET;

A set of 256 characters is implemented. *)(* A 16 bit machine is assumed.

PROCEDURE InCharSet(CH: CHAR; S: CharSet): BOOLEAN;
(* InCharSet is true if and only if CH belongs to S. *)

PROCEDURE CharSetUnion(A, B: CharSet; VAR C: CharSet);
(* C becomes the union of A and B. *)0

PROCEDURE CharSetDifference(A, B: CharSet; VAR C: CharSet);
(* C becomes the set difference of A and B (C = A'B). *)

PROCEDURE CharSetIntersection(A, B: CharSet; VAR C: CharSet);
(* C becomes the intersection of A and B. *)

PROCEDURE CharSetSymmetricDifference(A, B: CharSet; VAR C: CharSet);
(* C becomes the symmetric difference of A and B. *)

PROCEDURE DefineCharSet(Constructor: ARRAY OF CHAR; VAR S: CharSet;
VAR ErrorNumber: CARDINAL);

Defines the set of characters S by means of Constructor.

The syntax of Constructor in EBNF notation is:

= ElementarySet ElementarySet}
ElementarySet = [PointSet ['. . ' PointSet]]

= '(’ CHAR ')' | '[' Number '] '
= [Digit] [Digit] Digit

The meanings of PointSet and ElementarySet are:

PointSet

(*

Set

PointSet
Number

a set with one element. As an instance both (0) and [48] denote
the character 'O', if the ordinals follow the ASCII convention.

ElementarySet

a simply connected set of characters. As an instance [49]..[55] or
(1)..(7) or [49]..(7) or (1)..[55] all denote the set of all characters
between '11 and '71.

Remark: blanks, which are not enclosed in parentheses are ignored.

- page 55 -

Examples:

DefineCharSet(*(a), (f), (r)
the set containing the characters 'a'r
between 'r1 and ' z' .

(z)1 , S, ErrorNumber) defines S as
• f' and all characters

• •

(Z), (.)', S, ErrorNumber) defines[57], ()r (A)DefineCharSet('[48]
S as the set of all numerals, blank, all upper case characters and

• •• •

the point.

ErrorNumber reports errors which occur when Constructor does not
follow the syntax, given above.

Extra garbage in Constructor.
Two points are required to separate PointSets when building
an ElementarySet.
Unexpected end of Constructor.
) Expected.
] Expected.
Digii expected.
Number too large.

1)
2)

3)
4)
5)
6)

C7)
*)

END ModusCharSet.

[Reformatted for ease of reading by the editor.]

IMPLEMENTATION MODULE ModusCharSet;

PROCEDURE InCharSet(CH: CHAR? S: CharSet): BOOLEAN;

VAR ActPosition,
ActGroup:
Membership: BOOLEAN;

[0..15];

BEGIN (* InCharSet *)
ActGroup
ActPosition
Membership
RETURN Membership;

END InCharSet;

C= ORD(CH) DIV 16;
= ORD(CH) MOD 16?
= (ActPosition IN S[ActGroup]);

PROCEDURE CharSetUnion(A, B: CharSet? VAR C: CharSet);

VAR I: CARDINAL?

BEGIN (* CharSetUnion *)
FOR I := 0 TO 15 DO

C[I]:=A[I] +B[I];
END?

END CharSetUnion?

- page 56 -

PROCEDURE CharSetDifference(A, B: CharSet; VAR C: CharSet);

VAR I• CARDINAL;

BEGIN (* CharSetDifference *)
FOR I := 0 TO 15 DO

Cl I] := A[I] - B[I];
END;

END CharSetDifference;

PROCEDURE CharSetIntersection(A, B: CharSet; VAR C: CharSet);
VAR I: CARDINAL; i

BEGIN (* CharSetlntersection *)
FOR I := 0 TO 15 DO

C[I] := A[I] * B[I];
END;

END CharSetlntersection;

atROCEDURE CharSetSymmetricDifference(A, B: CharSet; VAR C: CharSet);
VAR I: CARDINAL;

BEGIN (* CharSetSymetricDifference *)
FOR I := 0 TO 15 DO

C[I] := A[I] / B[I];
END;

END CharSetSymmetricDifference;

PROCEDURE DefineCharSet(Constructor: ARRAY OF CHAR; VAR S2 CharSet;
VAR ErrorNumber 2 CARDINAL);

(* Presently examined character of Construct
(* Pointer to CH

VAR CH: CHAR;
CharPointer,

CARDINAL;
EndOfConstructor2 BOOLEAN;
I2

(^ROCEDURE GetNextChar;

(* GetNextChar loads CH with the next valid character of Constructor or
with OC. EndOfConstructor is true if and only if CH = OC.

*)

BEGIN (* GetNextChar *)
REPEAT

IF CharPointer > HIGH(Constructor) THEN
CH 2= OC;
EndOfConstructor 2= TRUE;

ELSE
CH := Constructor[CharPointer];
IF CH = OC THEN

EndOfConstructor 2= TRUE;
ELSE

INC(CharPointer);
END;

END;
UNTIL (CH <>

END GetNextChar;
) OR EndOfConstructor;

- page 57 -

PROCEDURE ElementarySet(VAR ErrorNumber: CARDINAL);

VAR Number,
ESetStart,
ESetEnd: CARDINAL;

PROCEDURE PointSet(VAR ErrorNumber: CARDINAL);

PROCEDURE GetNumber(VAR ErrorNumber: CARDINAL);

BEGIN (* GetNumber *)
IF (ORD(CH) >= ORD('O')) AND (ORD(CH) <= 0RD('9')) THEN

Number := ORD(CH)-ORD('0');
ELSE

ErrorNumber := 6;
RETURN;

END?
GetNextChar;
WHILE (ORD(CH) >= ORD('O')) AND (ORD(CH) <= ORD('9')) DO

Number := 10 * Number + ORD(CH) - ORD('O')?
GetNextChar; 4END;

IF Number > 255 THEN
ErrorNumber := 7;
RETURN ?

END?
END GetNumber;

BEGIN (* PointSet *)
' (' THEN

IF CharPointer > HIGH(Constructor) THEN
CH := 0C;
EndOfConstructor := TRUE;

IF CH

ELSE
CH := Constructor[CharPointer]?
IF CH = 0C THEN

EndOfConstructor := TRUE?
ELSE

INC(CharPointer); eEND?
END?
IF EndOfConstructor THEN

ErrorNumber := 3?
RETURN?

END?
Number := ORD(CH);
GetNextChar;
IF CH <> *)' THEN

ErrorNumber := 4;
RETURN;

END?
GetNextChar ?

- page 58 -

elsif CH = •t' then
GetNextChar;
GetNuraber(ErrorNumber);
IF ErrorNumber <> 0 THEN

RETURN?
END?
IF CH <> ']' THEN

ErrorNumber := 5;
RETURN?

END?
GetNextChar;

ELSE
ErrorNumber := 1?
RETURN?

END;
END PointSet?

PROCEDURE AddToCharSet ?
VAR TempCardinal: CARDINAL;

ActPosition,
ActGroup: [0 ..15];

BEGIN (* AddToCharSet *)
IF ESetStart > ESetEnd THEN

TempCardinal := ESetEnd?
= ESetStart?
= TempCardinal;

ESetEnd
ESetStart

END?
ActGroup
ActPosition := ESetStart MOD 16;
INCL(S[ActGroup], ActPosition);
WHILE ESetStart < ESetEnd DO

:= ESetStart DIV 16;

:

INC(ESetStart)?
IF ActPosition = 15 THEN

ActPosition := 0;
INC(ActGroup);

ELSE
INC(ActPosition);

END;
INCL(S[ActGroup], ActPosition);<»

END?
END AddToCharSet;

:

r
.

- page 59 -

BEGIN (* ElementarySet *)
IF NOT ((CH = OR EndOfConstructor) THEN

PointSet(ErrorNumber);
IF ErrorNumber <> 0 THEN

RETURN;
END;
ESetStart := Number;
ESetEnd
IF CH = ' . ' THEN

GetNextChar;
IF CH <> '.' THEN

ErrorNumber := 2;
RETURN;

:= Number;

END;
GetNextChar;
PointSet{ErrorNumber);
IF ErrorNumber <> 0 THEN

RETURN;
END;
ESetEnd := Number; 4END;

AddToCharSet;
END;

END ElementarySet;

BEGIN (* DefineCharSet *)
(* Initialisation. *)
FOR I := 0 TO 15 DO

s[l] := {};
END;
ErrorNumber
CharPointer
EndOfConstruetor
GetNextChar;

= 0;
= 0;
= FALSE;

ElementarySet(ErrorNumber);
IF ErrorNumber <> 0 THEN

RETURN; (TEND;
WHILE CH = ',1 DO

GetNextChar;
ElementarySet(ErrorNumber);
IF ErrorNumber <> 0 THEN

RETURN
END;

END;
IF NOT EndOfConstructor THEN

ErrorNumber :=- 1;
RETURN;

1
-

END;
END DefineCharSet;=i

END ModusCharSet.
=

[Reformatted for ease of reading by the editor.]

- page 60 -

-

Issue # 0 October 1984 MODUS Quarterly # 4 November 1985
State of MODUS, George Symons
MODUS Meeting Report, Bob Peterson
A Writer’s View of a Programmer’s Conference, Sam’I Bassett
Concerns of A programmer, Dennis Cohen
Modifications to the Standard Library

Proposal, R. Nagler & J. Siegel
Proposal, standard library and M2 extension,

Odersky, Sollich, & Weisert
Standard Library of tbe Unix OS, Morris Djavaheri
The Standard Library for PCs, E. Verhuist
Editorial, Richard Karpinski
Modula-2 Compilation and Beyond, D.G. Foster
Modula-2 Processes - Problems and Suggestions, Roger Henery

MODUS Quarterly # 5 February 1986
Editorial
Exporting a Module Identifier, Barry Cornelius
Letter on multi dimensional open arrays. Niklaus Wirth
Letter on D1~V. MOD, /, and REM, Niklaus Wirth
BSI Accepted Change: Multi-dim. open arrays, Willy Steiger
N73: NULL-terminated strings in Modula-2, Ole Poulsen
ISO Ballot Results re BSI Specifying Modula-2
Draft BSI Standard I/O Library for Modula-2, Susan Eisenbach
Portable Language Implementation Project: Design and

Development Rationale. K. Hopper and W.J. Rogers
The ETH-Zuerich Modula-2 for the Macintosh, Chris Jewell
NewStudio: Engineering a Modula-2 Application for the Mac,

A. Davidson, H.B. Herrmann, E.R. Hoffer

Modula-2 News
purposes, practices and promises for Modula-2 News
Revisions and Amendments to Modula-2, Niklaus Wirth
Specification of Standard Modules, Jirka Hoppe
Modula-2 in the Public Eye (a bibliography), Winsor Brown
Modus Membership list, by name
Modus members's addresses, by location
Modula-2 Implementation Questionnaire

Issue # 1 January 1985Modula-2 News
Editorial
Letter to Editor, Andrew Layman
Letter to Editor, Randy Bush
Review of Gleaves’ Modula-2 text by Tom DeMarco
MODUS Paris meeting 20/21 Sep 84, C.A. Blunsdon
Report of M2 Working Group, 8 Nov 84. John Souter
Modula-2 Standard Library Rationale, Randy Bush
Modula-2 Standard Library Definition Modules
Modula-2 Standard Library' Documentation,-Jon Bondy
Validation of M2 Language Implementations, J. Siegel

MODUS Quarterly # 2 April 1985
Editorial
Letter on the draft Modula-2 Library, T. Anderson
Letter to the Editor, Mark Emerson
Opaque Types in Modula-2, C. French & R. Mitchell
Dynamic Module Instantiation. Roger Sumner
The Linking Process in Modula-2, Jeanette Symons
Modula-2 Library Comments, Bob Peterson
Modula Compilers - Where to Get ’em. Larry Smith
Coding War Games Prospectus. Tom DeMarco
M2, An Alternative to C, M. Djavaheri. S. Osborne

C#

]
MODUS Quarterly # 6 November 1986
Editorial. Richard Karpinski
Letter on opaque types. File type, and SET OF CHAR, P. Williams
Letter on exported identifiers, E. Videki
Why the Plain Vanilla Linkers, J. Gough
Letter re best article & MacModula-2, M. Coren
Significant Changes to the Language Modula-2, Barry' Cornelius
All About Strings. Barry Cornelius
Type Conversions in Modula-2, B. Wichmann
Improving the quality of Definition Modules, A. Sale
A Programming Environment for Modula-2, F. Odegard
Academic Modula-2 Survey, L. Mazlack
Compilers for Modula-2 (Zuerich list)
Membership List

:
MODUS Quarterly # 3 July 1985
Editorial & potpourri of mail
Letter re opaque types, .Steve Endicott
Letter on language issues, Christian Hoffman
Some Thoughts on Modula-2 in "Real Time". Paul Barrow
Letter re "actual Modula-2 code". Raja Thiagarajan
RajalnOut: simple, safer, I/O for

Logitech/MS-DOS. R. Thiagarajan
Selection of Contentious Problems, Barry’ Cornelius
Expressions in Modula-2. Brian Wichmann
The Scope Problems Caused by Modules. Barry Cornelius
Corrections and additions to Modula-2 compiler list

MODUS Administrators supply single copies at $5 US of 12 Swiss Francs.

I
:

Hints for contributors:

Send CAMERA READY copy to the editor (dot matrix copy is usually unacceptable). Machine readable copy is
preferred. Present facilities permit printing from electronic mail and floppy disks (Sage, IBM PC, Macintosh) using
Postscript, Script, TeX, and troff formatting systems. Working papers and notes about work in progress are
encouraged. MODUS Quarterly is not perfect, it is current.

Please indicate that publication of submission is permitted.
Correspondence not for publication should be PROMINENTLY so marked.

Send your submissions to:

Richard Karpinski, Editor
6521 Raymond Street
Oakland, CA 94609
(415) 476-4529 (12-7 pm)
(415) 658-3797 (ans. mach.)

TeleMail M2 News or RKarpinski
BITNET dick@ucsfcca

CompuServe 70215,1277
InterNet dick@cca.ucsf.edu

UUCP ... ucbvax!ucsfcg!cca. ucsf !dick

mailto:dick@cca.ucsf.edu

f.Association
applicationModula-2 Users’

MEMBERSHIP

Name :

Affiliation : :

Address :

Address :
Country:_ Postal Code: —

Electronic Addr :

State :

Phone : (__).
Do NOT print my phone number in any rosters
Print ONLY my name and country in any rosters
Do NOT release my name on mailing lists

or Renewal —

Option:
'or:

or:
Application as: New Member —

!Implementation(s) used :

** Membership fee per year (20 USD or 45 SFr) **
Members of the US group who are outside of North America, add $10.00.

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

*

In North and South America,
please send check or money
order (drawn in US dollars)
payable to Modula-2 Users’
Association at:

i

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, California 94303
United States of America

Aline Sigrist
Ejects SA
CH-1800 Vevey 2

i?>■■■ \
t

:

The Modula-2 Users Association is a forum for all parties interested in the
Modula-2 Language to meet each other and exchange ideas. The primary means of
communication ,s through the Newsletter which is published four times a year.

:

==?: & rsiixrs astts* vs
year in which you join. Mid-year applications
Modula-2 is a new and developing language*
implementors and serious users a means to dfsrmc’*^ 1 ,
standardization effort, while discussing implementation 'A keep 'nformed about J.he
the recreational user, there is information ’°n ,deas ^ Fnr

1
receive that year’s back issues.

organization providesthis

£££“£“ S ‘ior;^arma"r r XESs’%
information on current implementations and the v, t0r every°ne’ there IS
obtaining information on the language. ottler resources available for

Modula-2 Users’ Association
MEMBERSHIP application

Name :

Affiliation :

Address :

Address :

Postal Code: Country:State :

Electronic Addr :Phone : (—)
l

__ Do NOT print my phone number in any rosters
__ Print ONLY my name and country in any rosters
__ Do NOT release my name on mailing lists
Application as: New Member__or Renewal___

Option:
or:
or:

Implementation(s) used :

** Membership fee per year (20 USD or 45 SFr) **
Members of the US group who are outside of North America, add $10.00.

Otherwise, please send check or
bank transfer (in Swiss Francs)
payable to Modula-2 Users’
Association at:

In North and South America,
please send check or money
order (drawn in US dollars)
payable to Modula-2 Users’
Association at:

Modula-2 Users’ Association
P.O. Box 51778
Palo Alto, California 94303
United States of America

Aline Slgrist
ERfife SA
CH-1800 Vevey2

The Modula-2 Users’ Association is a forum for all parties interested in the
Modula-2 Language to meet each other and exchange ideas. The primary means of
communication is through the Newsletter which is published four times a year.
Membership is for an academic year, and you will receive all newsletters for the full
year in which you join. Mid-year applications receive that year’s back issues.
Modula-2 is a new and developing language; this organization provides
implementors and serious users a means to discuss and keep informed about the
standardization effort, while discussing implementation ideas and peculiarities. For
the recreational user, there is information on the status of the language, along wit
examples and ideas for programming in Modula-2. For everyone, there is
information on current implementations and the other resources available or
obtaining information on the language.

i y o
o O p
o * 2
>2^
O -sj GO
- Sy
O w> o
CD 3

«s03
O
03

OOO
2P \

□ w

W

