
The MODUS Quarterly

Issue # 5
> February 1986
<D
O'
CQ
LU Modula-2 News for MODUS, the Modula-2 Users Association.u.

OZ
LU CONTENTZDm
m Cover 2. MODUS officers and contacts directory 

Page 1. Editorial

2. Exporting a Module Identifier, Barry Cornelius

5. Letter on multi-dimensional open arrays, Niklaus Wirth

6. Letter on DIV, MOD, /, and REM, Niklaus Wirth

8. BSI Accepted Change: Multi-dimensional open arrays,
Willy Steiger

10. N73: NULL-terminated strings in Modula-2, Ole Poulsen

14. ISO Ballot Results re BSI Specifying Modula-2

15. Draft BSI Standard I/O Library for Modula-2, Susan Eisenbach

24. Portable Language Implementation Project:
Design and Development Rationale, K. Hopper and W. J. Rogers

42. The ETH-Zuerich Modula-2 compiler for the Macintosh,
Chris Jewell

>-
-j

po'
<
ZDa
m
ZDao

*
50. NewStudio: Engineering a Modula-2 Application for the 

Macintosh, A. Davidson, H. B. Herrmann, E. R. Hoffer

Cover 3. Membership form to photocopy

Cover 4. Return address

Copyright 1986 by MODUS, the Modula-2 Users Association.
All rights reserved.

. Non-commercial copying for private or classroom use is permitted. 
For other copying, reprint or republication permission, 

contact the author or the editor.

■ :__________________________ ••



Directors of MODUS, the Modula-2 Users Association:

Svend Erik Knudsen 
Institut fuer

Randy Bush
Pacific Systems Group Informatik601 South 12th Court ETH Zuerich
Coos Bay, OR 97420 CH-8092 Zuerich 

(01) 256 3487(503) 267-6970

Heinz Waldburger 
CH-1699 Maracon

«Tom DeMarco
Atlantic Systems Guild
353 West 12th Street Switzerland
New York, NY 10014 (021) 93 88 24
(212) 620-4282

Jean-Louis Dewez
Laboratoire de Micro Informatique 
Conserveratoire ANM
2, Rue Conte
F-75003 Paris
(01) 271-2414

Administration and membership:

USA: George Symons Europe: Heinz WaldburgerMODUS Postfach 289PO Box 51778 CH-8025 ZuerichPalo Alto, CA 94303 Switzerland(415) 322-0547 (021) 93 88 24

Editor, MODUS Quarterly: >> Problems? Missing an issue? <<
Richard Karpinski 
6521 Raymond Street Contact your membership 

coordinator (see above).Oakland, CA 94609
Weekdays (415) 666-4529 (12-7 pm) 

(415) 658-3797 (ans. 
M2News or RKarpinski 
dick@ucsfcca 

CompuServe 70215,1277 
USENET

Anytime mach.)TeleMail
BITNET

1 ucbvaxlucsfcglicca.ucsf!dick• • •

Publisher:
Publication schedule:

George Symons (see above)
Deadline Igsue

Submissions for publication: 15 Jan Feb
15 Apr May

Send CAMERA READY 15 Jul Augcopy to the editor. Dot matrix copy is often
Machine readable

15 Oct Novunacceptable, copy is preferred: 60 lines, 70/84 characters.
TeleMail address: M2News

Please indicate that publication of
Correspondence not for publication shoalrtSK^mi^ion is Permitted.



Modula-2 Users' Association 

MEMBERSHIP APPLICATION

Nam*:

Affiliation:

Address:

Address:

Country.Postal Code:State:

Electronic Addr:Phone: (____ )

Option :___Do NOT print my phone number in any rosters
or :___ Print ONLY my name and country in any rosters

___ Do NOT release my name on mailing listsor:

Application as. New Member— or Renewal-----

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of US group who are outside of North America, add $ 10.00

Otherwise, please send check or bankIn North and South America, please send 
check or money order (drawn in US dollars) transfer (in 5wiss Francs) payable to 
payable to Modula-2 Users' Association at: Modula-2 Users' Association at:

C* Postfach 289 
CH-8025 Zurich 
Switzerland

P.O. Box 51778
Palo Alto, California 94303
United States

The Modula-2 Users' Association is a forum for all parties interested in the Modula-2 
Language to meet and exchange ideas. The primary means of communication is through 
the Newsletter which is published four times a year. Membership is for an academic 
year, and you will receive all newsletters for the full year in which you join. Mid-year 
applications receive that year's back issues. Modula-2 is a new and developing language; 
this organization provides implementors and serious users a means to discuss and keep 
informed about the standardization effort, while discussing implementation ideas and 
peculiarities. For the recreational user, there will be information on the status of the 
language, along with examples and ideas for programming in Modula-2. For everyone, 
there is information on current known implementations and other resources available for 
information on the language.



Modula-2 New®.
Letter re opaque types, Endicott 
Letter on language issues, Hoffmann 
Modula-2 in "Real Time", Barrow

U i
Revisions ... to Modula-2, Wirth 
Spec, of Standard Modules, Hoppe 
Modula-2 bibliography. Brown 
Modus Membership list 
Modula-2 Implementation Questionaire

January 1985

jaiinOuti safer I/O, Thiagarajan 
Contentious Problems, Cornelius 
Expressions in Modula-2, Hichmann 
Scope Problems: Modules, Cornelius 
Corrections to compiler listModula-2 News # 1

Letter to Editor, Layman 
Letter to Editor, Bush 
Gleaves* Modula-2 text, DeMarco 
MODUS Paris meeting, Blunsdon 
Report of M2 Working Group, Souter 
Library Rationale by Randy Bush 
Library Definition Modules 
Library Documentation by Jon Bondy 
Validation of Modula-2 Impl, Siegel

MODUS Quarterly # 2 April 1985

Letter on Library, Anderson 
Letter to Editor, Emerson 
Comments on Modula-2, Emerson 
Opaque Types, French & Mitchell 
Dynamic Instantiation, Sumner 
Linking Modula-2. Symons 
Library Comments, Peterson 
Modula Compilers, Smith 
Coding War Games, DeMarco 
M2, Alt. to C, Djavaheri/Osborne

MODUS Quarterly # 4 November 1985

MODUS Meeting Report by Bob Peterson 
A Writer's View of Conf, Sam'l Bassett 
Concerns of a Programmer, Dennis Cohen 
Mods to Standard Lib,. Nagler 6 Siegel ' 
Std Lib and Ext'n to Modula-2, Odersky 
Std Lib for Unix by Morris Djavaheri 
Impl of Std Lib for PC's. Verhulst • 
M-2 Compilation and Beyond, Foster 
Modula-2 Processes, Roger Henry

MODUS Quarterly # 5 February 1986

Export Module Identifier, Cornelius 
multi-dimensional open arrays, Wirth 
DIV, MOD, /, and REM, Niklaus Wirth 
Multi-dimensional open arrays, Steiger 
NULL-terminated strings, Poulsen 
ISO Ballot Results re BSI Modula-2 
Draft BSI I/O Library, Eisenbach 
Portable Language Rationale, Hopper + 
ETH-Z Modula-2 for Macintosh, Jewell 
NewStudio: for Macintosh, Davidson +

MODUS Administrators supply single copies at $5 US or 12 Swiss Francs. 

Hints for contributers:

Send CAMERA READY copy to the editor (dot matrix copy is usually 
unacceptable). Machine readable copy is preferred. Present facilities 
permit printing from electronic mail and floppy disks (Sage, IBM PC. 
Macintosh) using troff, Script and PostScript formatting systems. 
Working papers and notes about work in progress are encouraged.
MODUS Quarterly is not perfect, it is current.

Please indicate that publication of your submission is permitted. 
Correspondence not for publication should be PROMINENTLY so marked.

Richard Karpinski, Editor 
6521 Raymond Street 
Oakland, CA 94609 
(415) 666-4529 (12-7 pm)
(415) 658-3797 (ans. mach.)

TeleMail 
BITNET 
CompuServe 70215,1277 
UUCP

M2News or RKarpinski 
Dick@ucsfcca

1ucbvax1ucsfcgl1cca.ucsf1 dick• • •

^___________



EDITORIAL

The MODUS Quarterly #5, February 1986

I think we have a great issue here. And more printable submissions 
than we have room for. Consider the next issue to be partly filled. 
You can help to fill the rest with worthwhile articles: send me one, 
preferably by electronic mail or on Stride, IBM PC or Macintosh floppy 
disk. See the inside front cover for addresses, dates and hints.

You may recall that we have a quarterly prize now for the best article 
and for the best suggestion. Roger Henry's article on processes wins 
him a year of MODUS Quarterly. You may have thought that your vote 
would not count, but this time it would have. I got about one vote 
for best article. Send in your vote on the best article in this issue 
now. You can include your suggestion and get good odds on the cost* of 
your stamp. We only got one of those last time, too.

Bill Nicholls suggested that we upgrade the appearance of MODUS 
Quarterly by typesetting the full text in a consistent font. Since 
many of our articles arrive in camera ready copy, that may take some 
time. Even so, I noticed that it would not be too hard to strip in 
some typeset page number3 to replace the crude hand written ones used 
to date. Let me know how you like the change. What is your 
suggestion? It counts too. Bill gets his next year of MQ for free.

Last week I went to Stanford to hear Chuck Clanton talk about his 
experiences in studying user interface issues for new microcomputer 
software products. He videotapes novice users as they try to 
accomplish assigned tasks. Sometimes, he asks his subjects to keep 
him posted on their thinking as they go along. In every case, he 
finds serious problems with the user interface. Even experts make 
profound mistakes in anticipating the problems, at least two thirds 
of the time, per decision. Only actual experiment with the intended 
audience can tell what works and what does not.

I followed Chuck to his car and bent his ear about my approach to the 
problem. I would encourage application designers to develop their 
programs as interpreters, with the commands (or elements to compose 

"into commands) as separate procedures. There will be a central core 
1 pertaining to the purpose of the product, but the user interaction 

should be separated. In the end, the details of both the commands and 
views offered to the user can be configured at time of use. While any 
language can be used to develop programs in this way, Modula-2 shines.

t

For example, there may be several screens/windows with different sets 
of commands or of information available. Leaving the layout and 
content of those panels flexible is not hard; they will need change! 
The costs of this flexibility will be recovered by the time the second 
revision is required, following the second round of end-user testing.
A simple text file may be sufficient to describe the whole range of 
possible configurations. The choice between showing a specific value 
numerically or in a bar-graph, gauge, elevator-bar or some other way 
is easy to specify here too. Furthermore, since the elements of user 
interface are separated from the application, they can be reused later 
in other contexts. Has anybody tried it? What problems came up?
rhk

- page 1 -



Exporting a Module Identifier

Barry Cornelius

Department of Computer Science 
University of Durham 

Durham DH1 3LE United Kingdom

The Modula-2 Working Group of the British Standards 
Institution has been trying to come to terms with the scope 
rules of Modula-2. This paper discusses one particular 
problem on which the Working Group is seeking feedback from 
the Modula-2 community.

The version of the Modula-2 Report in the 1st and 2nd 
editions of Wirth's book "Programming in Modula-2" states:

If a module identifier is exported, then all 
identifiers occurring in that module’s export list 
are also exported.

However, this sentence has been removed from the version of 
the Report that appears in the 3rd edition of Wirth's book.
Consider the following example:

:

i : a

• •.
PROCEDURE p; 

MODULE n?
EXPORT ml, m2;
MODULE ml?

EXPORT a?
VAR a : INTEGER?

END ml?
MODULE m2?

EXPORT QUALIFIED b? 
VAR b : INTEGER?

END m2?

o

END n?
BEGIN

(* body of p *) 
END p?
• • •

Is it legal to refer to a. b, ml.a and m2.b within the body

- page 2 -



2

of procedure p? Pour proposals have been considered:

b ml. a m2.ba
Proposal 1 
Proposal 2 
Proposal 3 
Proposal 4

illegal illegal 
OK

illegal 
illegal illegal illegal

OK OK
OKOK OK
OKOK OK

OK

Wirth's original definition of the language agrees with 
either Proposal 2 or Proposal 3 - I'm not sure which. 
However, I believe that many implementations of the language

Modula-2 agree with Proposal T. The definition that Wirth 
gives in the 3rd edition of his book leaves out the sentence 
quoted earlier. In a letter to Jeremy Siegel dated 
20th February 1985, Wirth states:

If a module identifier m is exported, then the 
identifiers which m exports become visible, if 
qualified by m.

So, proposal 1 agrees with this new definition of the 
language. Finally, proposal 4 is taken from a development 
version of a Modula-2 implementation.

The BSI Modula-2 Working Group is aware that changes to the 
language may result in failure of existing programs. It is 
reasonably satisfactory when a language change results in an 
existing program failing to compile. However, it is far 
from satisfactory if a language change causes a new meaning 
for an existing program.

Here is an example of a program whose meaning changes:

...
VAR a : INTEGER;
PROCEDURE p;

MODULE n;
EXPORT ml;
MODULE ml;

EXPORT a;
VAR a : INTEGER; 

END ml;
END n;

BEGIN
a := 27

END p;

- page 3 -



3 -

Suppose this program D8UrSies1asCde£ined by Proposals.
« thi"S^eth?sSSE!n, use of the fact that the

tKirrex^tted1^™ ml? ^“supposa a standards body 

decides that Proposal 1 should be adopted in the definition 
o? a Modula-2 standard. If the programmer decides to switch 
to a compiler that complies with the standard, the 
assignment to a will now be interpreted as an assignment to 
the variable a that belongs to the block that surrounds

not be obvious to the programmer that

is a reference to the

procedure p.
he needs to alter his program, 
extreme example and it may be that there are very few 
programs like this in existencel

It may
I agree that this is an

Howeverf a decision has to be made in order to produce a
I guess it is possible to put forwardModula-2 Standard.

arguments to support each of these proposals. For example:

o Proposal 1 should be adopted because this is how Wirth 
currently thinks the language should be defined.

o Proposal 3 should be supported because this is the 
definition adopted by a large number of 
implementations that interpreted the original 
definition of the language.

o Proposal 1 should be supported because it is 
definition than the others. a better

The BSI Modula-2 Working Group is interested 
the Modula-2 community. in the views ofIn particular:
(i) Do you have any strong opinions 

should be adopted? on which proposal

(ii) Which proposal is adopted by the Modula-2 
implementations that you use?

(iii) Do you know of any programs that you use which have a 
different meaning depending on which 
adopted, i.e., the alteration will proposal is

not be detected atcompile-time?

Please send your comments to me as soon as possiblemay find this electronic mail address useful:
Barry_Cornelius%DURHAM.MAILNET0MIT-MULTICS.ARPA

You

- page 4 -



Computer Sciences Laboratory 
Xerox Corporation 
Palo Alto Research Center 
Palo Alto, California 94304 
415 494-4415

XEROX 31. July 85

Mr. John D. O’Meara 
8900 42nd Ave. NE 
Seattle WA 98115

# Dear Mr. O’Meara,

This is in reply to you observation that Modula-2 lacks oven array parameters with 
more than a single index.
I thank you for your suggestion and agree with you that? this is a serious handicap 
when dealing with matrices. Fortunately the extension of the open array concept to 
more than one dimension is straightforward and lies entirely within the framework 
of Modula’s concept In fact, the only change required in the Report afFects the 
syntax, namely (1) the last line on page 160 (3rd Ed, page 156 in 2nd Ed) in 
Programming in Modula-2 and (2) rule 78 on page 172 (3rd Ed, rule 82, page 168, 
2nd Ed) changes from

FormalType = [ARRAY OF] qualident
to

{ARRAY OF} qualidentFormalType
The associated interpretation (semantics) is quite obvious. One might add a sentence 
in section 10.1 on formal parameters after the syntax, explaining that the number of 
”ARRAY OF’s in the formal parameter specification must be identical to the 
number of index expressions in the actual parameter; but I think it is actually quite
superfluous.
Note that this does not include the changes in the text of my book preceding the 
Report; but there are similarly few, and it is not the ultimate language specification 
anyway.
If this is felt to be essential, I should be happy to include this generalization in the 
next edition of the book. But you should be aw'arc that individual implementors 
will still be free to update their compilers or to leave them with a new "restriction".

9

Sincerely yours.

- page 5 -



NISCHEHOCHSCHULE
EI.DGENOSSISCHE TECH 
ZURICHETH

X

Fn£Kl?PP%^Pu,er'SySteme
DurcJJwSMnumner 01 256 22 20 
Sekretariat 01 256 22 27

Postadresse:
Instltut tlir tnformatlk 
ETH-Zentrum 
CH-0062 ZUrich

icio
Dr. Richard Karpinski 
Editor, MODUS Quarterly 
MODUS, Modula-2 User's Assoc. 
6521 Raymond St

Oakland, CA 94609 /USA

;
;

i

January 17,1986
U

!

Dear Dr. Karpinski,

Thank your for your letter! No, I don’t cover the topics on array parameters and integer 
arithmetic elsewhere, and you are free to reprint it. Perhaps the memo on arithmetic 
could be expanded into the following note:

Integer Arithmetic

The definition of the DIV and MOD operators in Modula-2 (and most other languages) is 
a persisting problem, and I believe that the standardization group and implementors 
should consider it seriously. In the report, x MOD v is undefined for negative y, and for 
negative x the definition is in contradiction with mathematics. This should not be!

The trouble is that most computers implement arithmetic on integers in the sense of 
Euler, whereas modulo arithmetic is the one that is relevant in mathematics and - I believe 
- in computing too. Unfortunately they differ. Since it hardly made much sense to define 
a programming language with basic operations differing from those of practically all 
available hardware, the definition of the MOD operator in Modula is valid for positive 
operands only, where the two arithmetics are the same.

Fortunately, there is now at least one computer available whose designers recognized the 
issue: the NS32000. It offers instructions for both arithmetics. Our new compiler reflects 
this situation, and I suggest to adopt this solution generally.

In Euler's arithmetic, let the quotient be denoted by Q = x/y and the remainder by R 
REM y. If y * 0, Q and R always satisfy the equation

Q*y + R = x

and either 0<R<yor0>R>y. Operations are symmetric with respect to zero, i.e. 
(-x)/y = x/(-y) = -(x/y).

■

= x

- page 6



Modulo arithmetic is based on the idea of equivalence classes of integers. Each class can 
be identified by a specific member, for example its least non-negative member. For a 
given modulus y > 0, we create y classes, each class containing all integers q*y+r for 
arbitrary q, and its least, non-negative, identifying member being r, where 0 ^ r < y. Hence 
we define q 3 x DIV y, and r= x MOD y, satisfying the equations

q*y + r * x and 0 £ r < y

Examples:

31/10 = 3 
-31/10 = -3 

31 DIVIO = 3 
-31 DIVIO = -4

31 REM 10*1 
-31 REM 10 * -1 

31 MOD 10*3 
-31 MOD 10*9

An example of the use of modulo arithmetic is the cyclic buffer of size n with indices in for 
the location of the next input and out for the next output The number of filled slots is 
always (in-out) MOD n (and not (in-out) REM n).

If negative integers are represented by their two's complement a right shift of x by k 
positions represents the operation x DIV 2^ (and not x/2^).

(end of note)

Concerning multi-dimensional open arrays, I do not have anything further to say.

#

With best regards,

< ■' r

Prof. Niklaus Wirth

end.

#

- page 7 -



SStSS si'. Hilly Steiger, member of BSI M2 Working GroupDate
From ► #1

The following is a paper describing a chang® to the_definition °f 
ag accented bv the BSI meeting of December 6 1985. I

:r^S^t?e;.SMMSeP SS
received from one or the other member of the BSI M2 Working Group.

This modification introduces MULTI-DIMENSIONAL OPEN ARRAYS in Modula-2 

1. Current Situation

Multi-dimensional open ARRAYS are currently not defined (cf. Report, 
CH.10.1). This limitation is felt to be a handicap for a number of 
applications, as numerics and statistics. The one-dimensional open 
ARRAY does exist, and the extension to more than one dimension is a 
natural one.

:

Note: Niklaus Wirth stated in a letter which was shown at the MODUS 
meeting in Palo Alto that multi-dimensional open ARRAYS would 
be an acceptable extension.

2. Accepted Change

Allow multidimensional open ARRAYS as parameters with the following 
syntax:

i
FormalType : { ARRAY OF } qualident.

This replaces the definition of 'FormalType' in chapter 10.1 of the 
report.

(The characters around the text 
curly brackets.) ARRAY OF' in the above definition 

[ Curly brackets indicate possible repetition.
are

rhk 0
3. Access to Multi-Dimensional Open ARRAYS Inside Procedures

In order to perform operations on the elements of open arrays, one
must be able to know the number of elements in each dimension of the 
actual argument. For one-dimensional arrays the standard function 
HIGH(array.), gives that value and an extension for more dimensions must 
be found. The obvious solution to introduce an optional second 
parameter, indicating the dimension, is rejected because (1) optional 
parameters are annoying for compiler writers and (2) the programmer 
would probably have to check in a manual to know if the first 
dimension is zero or one.i
The solution that already applies for multi-dimensional fix 
usable for open arrays as well. Although this is not the 
solution, it has the merit not to alter the definition 
function HIGH. The principle is that the n-th element of 
dimensional array (more than n dimensions) is itself 
the function HIGH can be applied.

arrays is 
most elegant 

of the standard 
-J a multifgj 

an array on which

- page 8 -



V

As with one-dimensional open ARRAYS? the array bounds of the formal 
parameters are mapped onto a CARDINAL-subranqe starting from zero for 
all dimensions. The upper boundary of all dimensions can be obtained 
by using the: existing standard function HIGH, as described in the 
following example:

MODULE OpenArray;

arrayl, array2 : ARRAY [10..12],[0..3],[-1 11] OF CHAR;VAR • •

PROCEDURE MatrixOp ( VAR ml, m2 s ARRAY OF ARRAY OF ARRAY OF INTEGER ) 

i,j,k : CARDINAL;

BEGIN
(* the high boundary of an open array can be obtained like this: *)

); (* first dimension *)
] ); (* second dimension *)

(* third dimension *)

(* or alternatively, loops can be directly controlled like this: *) 

FOR i := 0 TO HIGH ( ml ) DO

FOR j := 0 TO HIGH ( ml [ 0 ] ) DO 

FOR k := 0 TO HIGH ( ml [ 0, 0 ] ) DO 

ml [ i, j, k ] := m2 [ i, j, k ] + 3;

END (* third dimension *) ;

END (* second dimension *) ;

END (* first dimension *) ;

END MatrixOP;

VAR

i := HIGH ( ml 
j := HIGH ( ml [ 0 
k := HIGH ( ml [ 0, O' ] );

BEGIN
MatrixOP (arrayl, array2);

END OpenArray.

[ Reformatted and slightly revised by rhk. ]

Thank you for publishing this small piece of information about the 
work of the BSI Working Group for standardisation of Modula-2. This 
paper is submitted to you on behalf of that group.

Best regards,
Logitech SA, December 23 1985

- page 9 -



N73:NULL-terminated atringa in Modula-2.

strings are to bo regarded as 
generalisations / extensions to Wirth's definition in Programming

nul1-terminatedIf

In Modula-2 are necessary.

following operations oust be regarded as necessary partsThe
the Modula-2 languages

and comparison of string variables of different1) Assignment
sizes.

2) Concatenation.

3) Use as parameters (actual as well as formal parameters)* 
including the use of open array parameters.

1) Assignment: si := s2

Two cases must be considered:

a) SIZE(si) <» SIZE(s2)

In this case» as much of s2 as will fit in Si is copied.

b) SIZE(si) > SIZE (s2)
V,

this case* 
appended. See Figure 1.
In s2 is copied to si with a null character

IF SIZE(si) <* SIZE(s2)
THEN FOR I :* 0 to SIZE(si) DO

si [I ] :«* s2[ I] ;
END

ELSE I := 0;
WHILE I < Length(s2) DO 

si[I) :e s2[I];
INC(I)i

END
si[II := NULL;

END

FIGURE 1.

- page 10 -



Comparison: si Relop s2

where Relop belongs to {<,<>,>**>*=>

other than possibleshould cause no problems*Comparisons
difficulties of implementing the operators. See Figure 2.

PROCEDURE LessThat\(SI: stringl; S2 : string2) ^ BOOLEAN;
VAR Index : CARDINAL;
BEGIN

Index : = 0;
.LOOP

IF (Index > SIZE(sfl)) OR (S'lCIndex] = CHR(O)).
THEN RETURN NOT ((Index > SIZE(s2)) OR

(S2(Index] = CHR(O))) END;
ELSIF Index > SIZE(s2) THEN RETURN FALSE;
ELSIF SI[Index] < S2[Index] THEN RETURN TRUE;
ELSIF SI[Index] > S2[Index] THEN RETURN FALSE;

END;
INC(Index);

END;
END LessThan;

FIGURE 2.

2) Concatenation: s3 := si + s2

This process is most easily described by looking at Figure
3.

In cases where the result of a concatenation is used as an 
actual parameter, the following applies: SIZE(sl+s2) = 
SIZE(si) + SIZE(s2).

m - page 11

1



m
! ; V

■

i ••

';

I :» 0} 
J := 0j

. SIZE(sl)) ANDSIZE(Ns)) AND (I < 
NULL )" DO*-

WHILE (J <=
(si[I] <> 
s3[ J] :■ slCU 8 
I !«* 1+18 
j := J+l;

END;

I := 0;

LOOP
IF (J > SIZE(S3)) THEN EXIT; END;
IF (I > SIZE (s2) ) THEN a3[J] : = CHR(O); EXIT; END; 
s3[J] := s2[I];
IF s2[I] = CHR(O) THEN EXIT; END;
I := I+li 
J ;= J+l;

END;

FIGURE 3.

3) The use of a string variable as an actual parameter: P(s)

As shown in Figure 4, SIZE(s) must 
where x is the formal parameter

be equal to SIZE(x) 
corresponding to s.

TYPE T1 = ARRAY [0..9] OF CHAR; 
VAR SI = ARRAY [0..2] OF CHAR;

PROCEDURE P(VAR S : T1); 
BEGIN

S := '0123456709’;
END P;

BEGIN 
P(S1);

END .

FIGURE 4.

- page 12 -



Open array parameters.

open array parameters 
CO..n]

In connection with string operations*
of the type ARRAY OF CHAR are compatible with ARRAY 
OP CHAR where n is equal to the length of the actual 
meter with the limitation that the use of a 
array parameter as an actual parameter is permitted only if 

corresponding formal parameter

para- 
formal open

is an open arraythe 
parameter.

Characters relation to Strings.

variables of type CHAR are
This means* for example*

com-With respect to strings* 
patible with ARRAY CO..03 OF CHAR, 
that the following is allowed:3

VAR C : CHAR
PROCEDURE P(v : ARRAY OF CHAR);
BEGIN
END P;

BEGIN 
P(C) ;

END.
>FIGURE 5.

I
O

i

Ole Poulsen
Borland International (U.K) LTD 
Wicham House* 10 Cleveland Way* 
London* El 4TR :

-page 13 -

*

■



n-7%,1

SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE MODULA 2

A Letter Ballot (Attachment to 97/22 N076) was circulated to SC22 with a return date 
of 1915-10-13.

The following responses have been received:

'P' Members supporting proposal: 9 (Austria, Canada, China, France, 
Germany F.R., Italy, Sweden, UK, and 
USA)

2 (Japan and Netherlands)’P* Members not supporting proposal:

4 (France, Japan, Netherlands, and USA)•P* Members submitting comments:

•P* Members having abstained: 0

'P* Members not voting: 4 (Belgium, Finland, Norway, and USSR)

Comments:

France Attachment A

Japan Attachment B

Netherlands Will follow

USA Attachment C

Secretariat Action:

This proposal, having obtained sufficient support, will he k ...
Secretariat to the TC97 Secretariat for confirmf°rwarded by the SC22 P-,Members of TC97. l0f confirmat*°n and circulation to the

°tsJs: E6/6051 2- page 14



b*aft BSI Standard I/O Library for Modula-2

The following is an interim report on the progress of the standard I/O
library.

Design Goals

We wanted to create an I/O library which would be sufficiently general 
purpose for widespread use. We identified three properties:

(i) It should be layered, to ease implementation and to allow 
different types of user access to features and facilities of 
varying levels of power and sophistication.

(ii) It should be extensible so that facilities for user-defined data 
types and device-specific drivers can be added at will.

(iii) It should be robust so that ordinary high-level language 
programmers can have error-free and crash-free access to the I/O 
devices without having to resort to doing their own parsing.

I-aygriny

The current state of the design sees three layers. The bottom le^Lel 
contains the device-specific driver modules. There must be a module for 
each device to be accessed through a Modula program.

The middle level implements a buffering system between the lower level 
device drivers and the higher level type I/O modules. This level provides 
a character/word stream to any module at the top level.

The top level contains the type-specific modules. The definition 
modules below are those for this level only. There is one module for each 
of the standard Modula simple types. The same operations are available for 
each type. Details can be found in the commentary and definition modules
below.

#

ExtrfP-^bilitv

When data of a specific type is to be input or output, the relevant 
I/O module must be imported. When new types are defined, the programmer 
can create a similar module to handle that type. Thus i/o operations are 
orthogonal across the range of types.

The library is perceived as being suitable for four classes of user.

(i) Applications programmers using standard types (using the top 
level).

(ii) Programmers creating new types for which they want efficient 
implementations of the I/O operations (using the middle level to 
extend the top level).

(iii) Programmers directly controlling devices (using the bottom level).

- page 15 -1



(iv) Programmers interfacing new deviqea to the system (extending the 

bottom level. :

$
Robustness

Using this system, it is straightforward to write

corrective action.

The Semantics Of the Top Level Interface

* *Introduction

This description of the semantics of the top level interface to the 
ModulaI/0 Library should be read in conjunction with the definition 

The top level interface deals with the input and output of the 
five Modula standard base types, CHAR, CARDINAL, INTEGER, BOOLEAN and REAL* 
All input and output is performed via explicitly referenced channels, 
supported by the middle level interface that are connected to any device. 
Thus this top level IMPORTS from the middle level the opaque’ type Channel. 
Each of the five types have their own I/O module, all of which export 7 
procedures. These procedures are identical in semantics but as they deal 
with different objects have slightly different syntax. The only exception 
to this is the Print procedure of the ReallO module which has an extra 
parameter. It is possible then to describe the semantics of all the 
modules by describing the Semantics of any one of them, for this reason 
types are not explicitly referred to (except for examples) but are referred

v
modules*

to as objects.

Channels

Although channels are not described here, it is important to note one 
or two of their attributes which directly effect the semantics of the 
procedures to be described shortly. Firstly ,all channels use blocking 
reads, that is, if no data is currently available from the device attached 
to the channel, a blocking read is caused and the procedure hangs until 
data is available. Secondly, some channels may be opened as binary 
channels, in this case the Implementation of the object I/O modules will 
ensure that the object is written in a binary form. The various
procedures are now described.

CanSkip

This predicate function returns TRUE if an object is available fran 
the channel specified. The state of the channel is not altered. An object
is deemed to be available if the channel is a character channel and the 
syntactic rules for that object can be followed. An object is also deemed 
to be available if the channel is a binary channel and sufficient data is 
available from the channel to form the object, the amount of data that will 
be required for an object will be system dependent (depending on the value 
of TSIZE(object)). If the channel has reached the end of stream condition



Ir
$

(not available from this level of the I/O system) then CanSklp will return 
FALSE.

CanRead

This predicate fmotion returns TRUE if an object is available frcm 
the channel specified and it can be represented internally. The state of 
the channel is not altered. An object is deemed to be available if a call 
to CanSkip returns TRUE and the object, when interpreted, can be 
represented by the system. The result of this function, therefore, will be 
system dependent for the same stream of data frcm a character stream. A 
return of TRUE from this function implies that the value of the object 
represented by the character stream associated with the channel can be 
represented within the computers hardware. In the case of a binary 
channel, sufficient data must be available frcm the channel to form a valid 
object, as with CanSkip this will be system dependent. If the channel has 
reached its end cf stream condition then CanRead returns FALSE.

Skip

This procedure will skip over the current object on the channel, thus
As a precondition to the successful

If it is
changing the state of the channel, 
operation of the procedure the predicate CanSkip must be TRUE, 
not then a fatal I/O error occurs.

Value

Will return as a result of the procedure the value of the next object 
available from the specified channel. The state of the channel is not 
altered and so subsequent calls to Value will return the same result. As a 
precondition to the successful evaluation of the object, the predicate 
CanRead (See above) must be TRUE. If it is not then a fatal I/O error 
occurs.

Read
#

Will place in its second parameter the current object on the channel. 
The predicate CanRead must be true else a fatal I/O error is caused. The 
object is then skipped, thus altering the state of the channel.

Write

Will write its parameter to the channel. In the case of character 
channels the minimum space possible is used. Positive INTEGERS are 
unsigned, and REALS are output in standard form. In the case of binary 
channels, the object is written in binary coded form. The state of the 
channel is changed. If, for some reason, the channel cannot be written to, 
or the write fails, then a fatal I/O error is caused.

Print
\

Will write its parameter to the channel in a formatted way. 
of print to a binary channel is illegal and will result in a fatal 
The number of character positions to be used is defined by the Length

The use 
error.

- page 17 -3



parameter and the justification can be left or For Real 10 a fourth
parameter specifies the nunber of decimal places to be printed.

Errors

In the event of an I/O error described above occurring, a fatal I/o 
Error is caused. If such an error occurs a message stating the type of 
error is displayed and the program is terminated. It is suggested that if 
a fail and recover I/O system is desired then control should be transferred 
to some explicit error handling procedure so that a user may attempt to 
recover from the error under program control.

flnuVl iwHoi

This is the top level of the proposed BSI Modula-2 I/O library. We 
hope to have the rest of the definition modules and their implementations 
by the next issue of the Modus newsletter. We are releasing these because 
we would like to get some feedback on the direction we are going. I

Susan Ei sen bach 
Department of Computing 
Imperial College 
180 Queens Gate 
London SW7 2BZ 
se@icdoc.ac.uk

DEFINITION MDDULE 10 ;

EXPORT QUALIFIED 
Channel ;

i:.

TYPE
Channel ;

END 10.

- page 18 -

4

i-------

mailto:se@icdoc.ac.uk


DEFINITION MDDULE Bool ID;

FROM 10 IMPORT 
Channel £

EXPORT QUALIFIED
CanRead, CanSkip, Value, Skip, Read, Write, Print;

3oolean objects ignore all leading white space 
(Space, Tab, LF, CR etc) and are terminated by 
the first character that would be illegal in 
the object. This illegal character is left on 
the channel.A If no data is currently available then the predicates wait for sane.

CanRead returns TRUE if the current object can be represented.
CanRead implies CanSkip.

CanSkip returns TRUE if there is an object available.
CanSkip does not imply CanRead as an object could be well-formed 
but out of range.

Value returns the current'Object.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Value will fail.

Skip skips over the current object.
CanSkip MUST be TRUE.
If a call to CanSkip currently returns FALSE then Skip will fail.

Read places the current object into its second paraneter and then 
skips over it.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Read will fail. 

Write the object to the channel with no padding.

Print the object to the channel (with padding). Length is the minimum 
number of characters that must be output. It is an error to Print 
to a binary channel.

NOTE: The object is written in binary or character form 
depending on hew the channel was opened.

)
PROCEDURE CanRead (C: Channel): BOCLEAN;

PROCEDURE CanSkip (C: Channel): BOOLEAN;

PROCEDURE Value (C: Channel): CARDINAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel; VAR Bool: BOCLEAN);

PROCEDURE Write (VAR C: Channel; Bool: BOOLEAN);

PROCEDURE Print (VAR C: Channel; Bool: BOCLEAN; Length: CARDINAL; 
RightJustified: BOOLEAN);

*

!

i

i

END Bool 10. - page 19 -



4
DEFINITION MDDULE QiarlD;

FROM 10 IMPORT 
Channel;

EXPORT QUALIFIED
CanRead, CanSkip, Value, Skip, Read, Write, Print;

( currently available then the predicates wait for sane.

returns TRUE if the current object can be represented.
CanRead implies CanSkip.

CanSkip returns TRUE if there is an object available,
CanSkip does not imply CanRead as an object could be well-formed
but out of range.

Value returns the current object.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Value will fail.

Skip skips over the current object.
CanSkip MUST be TRUE.
If a call to CanSkip currently returns FALSE then Skip will fail.

Read places the current object into its second paraneter and then 
skips over it.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Read will fail. 

Write the object to the channel with no padding.

Print the object to the channel (with padding). Length is the minimum 
nunber of characters that must be output. It is an error to Print 
to a binary channel.

* NOTE: The object is written in binary or character form
* depending on how the channel was opened.

PROCEDURE CanRead (C: Channel): BOOLEAN;

PROCEDURE CanSkip (C: Channel): BOCLEAN;

PROCEDURE Value (C: Channel): CHAR;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel; VAR Ch: CHAR);

PROCEDURE Write (VAR C: Channel; Ch: CHAR);

PROCEDURE Print (VAR C: Channel; Ch: CHAR; Lencth*
RightJustified: BOCLEAN);

If no data is

CanRead

*) 'U

CARDINAL;

END Char 10.

- page 20 —



DEFINITION KDDULE CardIO;

FROM 10 IMPORT 
Channel;

EXPORT QUALIFIED
CanRead, CanSldp, Value, Skip, Read, Write, Print;

(
Nuneric objects ignore all leading white space 
(Space, Tab, LF, CR etc) and are terminated ty 
the first character that would be illegal in 
the object. This illegal character is left on 
the channel.

If no data is currently available then the predicates wait for seme.

CanRead returns TRUE if the current object can be represented.
CanRead implies CanSkLp.

CanSkLp returns TRUE if there is an object available.
CanSkLp does not imply CanRead as an object could be well-formed 
but out of range.

Value returns the current object.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Value will fail.

Skip skips over the current object.
CanSkLp MUST be TRUE.
If a call to CanSkLp currently returns FALSE then SkLp will fail.

Read places the current object into its second paraneter and then 
skips over it.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Read will fail. 

Write the object to the channel with no padding.

Print the object to the channel (with padding). Length is the minimum 
nunber of characters that must be output. It is an error to Print 
to a binary channel.

NOTE: The object is written in binary or character form 
depending on hew the channel was opened.

)
PROCEDURE CanRead (C: Channel): BOCLEAN;

PROCEDURE CanSkip (C: Channel): BOOLEAN;

PROCEDURE Value (C: Channel): CARDINAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel; VAR Card: CARDINAL);

PROCEDURE Write (VAR C: Channel; Card: CARDINAL);

PROCEDURE Print (VAR C: Channel; Card: CARDINAL; Length: CARDINAL; 
RightJustified: BOOLEAN);

;

j

3

O

END CardIO. - page 21 -



DEFINITION MDDULE IntID;

FROM 10 IMPORT
Channel;

EXPORT QUALIFIED Print*CanRead, CanSkip, Value, Skip, Readt Write, Prin ,

(*
* Nuneric objects ignore all leading white sfBce
* (Space, Tab, LF, CR etc) and are terminated by
* the first character that would be illegal in
* the object. This illegal character is left on
* the channel.
*
* If no data is currently available then the predicates wait for seme.
*
* CanRead returns TRUE if the current object can be represented.

CanRead implies CanSkip.
«
* CanSkip returns TRUE if there is an object available.

CanSkip does not imply CanRead as an object could be well-formed
but out of range.

ft

* Value returns the current object.
CanRead MUST be TRUE.

ft If a call to CanRead currently returns FALSE then Value will fail.
«
* Skip skips over the current object.
ft CanSkip MUST be TRUE.
ft If a call to CanSkip currently returns FALSE then Skip will fail.
«
* Read places the current object into its second parameter and then
* skips over it.
ft CanRead MUST be TRUE.
ft If a call to CanRead currently returns FALSE then Read will fail.
ft

* Write the object to the channel with no padding.
ft

* Print the object to the channel (with padding). Length is the rainimun
* number of characters that must be output. It is an error to Print 

to a binary channel.

* NOTE: The object is written in binary or character form
* depending on hew the channel was opened.
*)

PROCEDURE CanRead (C: Channel): BOCLEAN;

PROCEDURE CanSkip (C: Channel): BOCLEAN;

PROCEDURE Value (C: Channel): INTEGER;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel; VAR Int: INTEGER);

PROCEDURE Write (VAR C: Channel; Int: INTEGER);

PROCEDURE Print (VAR C: Channel; Int: INTEGER; Lencth* 
RightJustified: BOOLEAN); CARDINAL;

END Int 10.
- page 22 -



v I

DEFINITION MODULE Real ID;

FROM ID IMPORT 
Channel;

EXPORT QUALIFIED
CanRead, CanSkip, Value, Skip, Read, Write, Print;

Nixneric objects ignore all leading white space 
(Space, Tab, LF, CR etc) and are terminated by 
the first character that would be illegal in 
the object* This illegal character is left on 
the channel.

If no data is currently available then the predicates wait for sane.

CanRead returns TRUE if the current object can be represented.
CanRead implies CanSkip*

CanSkip returns TRUE if there is an object available.
CanSkip does not imply CanRead as an object could be well-formed 
but out of range.

Value returns the current object.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Value will fail.

Skip skips over the current object.
CanSkip MUST be TRUE.
If a call to CanSkip currently returns FALSE then Skip will fail.

Read places the current object into its second paraneter and then 
skips over it.
CanRead MUST be TRUE.
If a call to CanRead currently returns FALSE then Read will fail.

Write the object in fixed format to the channel with no padding.

Print the object to the channel in floating point format (with padding). 
Length is the minimum number of characters that must be output.
It is an error to Print to a binary channel.

NOTE: The object is written in binary or character form 
depending on how the channel was opened.

)
PROCEDURE CanRead (C: Channel): BOOLEAN;

PROCEDURE CanSkip (C: Channel): BOOLEAN;

PROCEDURE Value (C: Channel): REAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel; VAR R: REAL);

PROCEDURE Write (VAR C: Channel; R: REAL);

PROCEDURE Print (VAR C: Channel; R: REAL; Length: CARDINAL;
RightJustified: BOOLEAN);

a

a
\

i

END Real 10. - page 23 -



Univenity of Waikato 
Department of Computer Scene*

PORTABLE LANGUAGE IMPLEMENTATION PROJECT:

design and development rationale
by

K Hopper &WJ Rogers

V

Atao*. it. roM t* ■«*» 1 JwSSjwSir &

on understanding of its principles to those coming to this technique for the first tune.

as an aid to portability has

Introduction
It was realised late in 1983 that the teaching/leaming of computer hardware courses could be considerably ^ 

simplified by the use of a high-level language which would offer direct access to hardware facilities. This was 
to be used to allow students to program hardware laboratory experiments without the need to be experienced in 
a variety of assembler languages. Modula-2 was the high-level language chosen since it is closely related to the 
Pascal language learnt by students during their first year of study.

Two different Modula-2 implementations were obtained - for the PDP-11 and VAX-11 machines. After some 
initial problem installing them and getting them to work, it was soon discovered that there were significant 
differences - not only in the execution of programs accepted by both compilers, but also in the programs which 
would not be accepted by one and would be accepted by the other!

After a little more experience it was discovered that the ostensibly identical run-time systems accompanying 
the two compilers behaved rather differently under quite a wide variety of circumstances. All these experiences 
led to the realisation that while Modula-2 may be a good system programming language, the difference between 
different implementations made it of very questionable use in a teaching environment. Students would be using 
different compilers for different hardware and trying to differentiate their own errors from implementation varia
tions - most undesirable.

At about the same time that consideration was being given to using Modula-2, planning for enhancement of 
hardware laboratory facilities was centring around the Zilog series of 16-bit microprocessors - for which no 
Modula-2 compiler yet existed! Since a new compiler would be needed for the microprocessors, it was decided 
to produce a Modula-2 system which would work identically on the university VAX machires and the Zilog 
Z8000 series microprocessors.

Original Goals

Although every language implementer inevitably thinks of some new ’feature* or gimmick which would be 
useful for his own use, it was decided to be very conscientious in implementing exactly the language defined by 
Niklaus Wirth. The opportunity almost offered by the pseudo-module SYSTEM for fancy extras was to be 
avoided at all costs. It was derided that the only features other than those predefined by the language 
be those needed within the compiler system in order to implement the language in a machine-independent way!

The problems of inconsistent run-time support also had to be solved so that programs written without specific 
machine dependencies would compile and function identically on any machine available to students. This not 
only meant machine independence but, much more important, operating system independence too!

Project Expansion

The inadequacies of Modula-2 as a system programming language are primarily in the areas of type-safeness 
and data abstraction. Relaxation of type-checking in Modula-2 is sudden and total. This is very frequently 
undesirable since in almost all practical cases only some minor relaxation is needed - not dispensation with the 
entire programmer protection system! The private data types offered by Modula-2 are restricted to being

w

were to

1- page 24 -



4

pointer-sized type* - rather than providing a perfectly general private type facility as offered, for example, by 
Ada. Unfortunately, while Ada is a very powerful language with strong type checking, it is not possible to pro
vide a reasonably small implementation of the full language. For this reason it was decided that another new 
systems language would be most useful, particularly for smaller machines.

In view of the shortcomings already noted, it was decided that this language should be designed with the fol
lowing philosophy

a. Full type checking should be provided on all objects as a default.

b. Relaxation of type-checking should be provided in a controlled way, it being possible to ignore indivi
dual aspects of type-checking on an object quite independently of other type-checking needs.

c. The language should be functional, with all routines being niladic and all functions/operators monadic or 
dyadic - using infix notation.
d. Operators may be overloaded in any way required by the programmer - short of ambiguity.

e. Generic types/functions/routines and modules would be provided with facilities for instantiation in 
several stages as required.
f. Modules may be either entire, a face or a body. Entire modules may be generic and may be declared at 
any point in a program.
g. Every object must be first-class - it may appear at any point in an expression of appropriate type!
h. The intermediate code may be written in-line if it is necessary to override automatic compiler allocation 
of resources or to ensure the use of some particular instruction or sequence which may (not) have 
desirable/undesirable side effects, etc. The language thus becomes on these relatively rare occasions a two- 
level one.

3

The new language is called Peano since it is defined axiomatically and allows other languages to be readily 
defined in terms of its objects and operations. In designing this language a number of strategic design decisions 

made while attempting to satisfy the needs outlined above. These were principally aimed at providingwere
what was subjectively felt to be a practically usable language within the general philosophy

a. The language should compile rapidly. In practice this means a one pass compiler - only reading the 
source language once! This, in turn, requires the declaration of an identifier before it may be used and the 
provision of forward declarations (similar to those in Ada). The use of a forward-declared type in a type- 
safe language means that NO type-checking can be done until the full-declaration is encountered - a forward 
type must therefore be incompatible with every other type!
b. No run-time support should be necessary in any implementation. The concepts of such things as heap 
management, input/output and concurrency have therefore been deliberately omitted. After all, being a sys
tem programming language, these facilities are implementable in Peano and can therefore, if needed, be 
imported from an appropriate library - written in Peano!
c. Programs written in the language should be easily understandable when read - i.e. readable! It was 
decided to take this decision because most of the problems found when correcting or enhancing a program 
occur because it is difficult to understand. This does mean that writeability has been sacrificed if a conflict 
was seen although this has not always been to the disadvantage of the ’typist’.
d. The introduction of the sorely needed generic facilities must not lead to enormous complications within a 
compiler - or in runtime code! Three potential problems identified have therefore been deliberately 'leg
islated’ away - different generic types are never pointer-compatible - generic routines are never compatible 
with any other definable routine type - generic modules must always be entire (not separated into a face and 
corresponding body). This last ’law’ obviates the potential problem of iterative link/compilation or heavy 
runtime overhead code.

C#

e. Generally type compatibility should be structural except for such things as private types, where name 
compatibility would be used.

Once even a very preliminary design outline had been produced, it became obvious that this language could 
offer a great deal not previously readily available. It seemed to offer the possibility of defining everything from 
a complete operating system through to an advanced user environment with almost no need to use native 
machine code. It was decided therefore that Peano must be fully designed and implemented.

- page 25 -



It is worth noting that the eventual design of Peano seems to be even more usable than originally
since there is no need at all for the programmer ever to use machine code* All programming can done in the
very high-level Peano language • in what promises to be a very efficient way.

The decision to implement this second language meant that the original goals of this work had to be cons*, 
erably revised. The team was faced with producing two compilers for two language (Modula-2 and Peano), to 
run on two machines (VAX-11 and Z8000), under two operating systems (VMS (VAX only) and UNIX (both 
machines)). Because of this it was decided to look into a portable system design - hence the current project
title.

Source Language Portability
In order for the project as now conceived to be successful, portability has to be acbeivable at a number of 

levels, bat particularly from the programmer’s viewpoint, at the source language level. With languages which 
are aimed unashamedly at the system programmer, this means that even low-level constructs and ideas must be 
portable except, of course, where specific machine values are required in a program. This problem was tackled 
by looking at the differences and similarities between a wide range of machines which could be used. Apart 
from machine addressing problems, the most obvious one from the program writer's viewpoint is that of the 
exact definitions of predefined types! Nearly every make of microprocessor has different hardware arithmetic 
capabilities and consequently there are likely to be portability problems for quite ordinary programs.’

Whatever the preferred sizes for arithmetic manipulation on processors of all kinds, there is frequently 
hardware support for a range of sizes or, in the worst case, software emulation facilities for multiple length 
arithmetic. In order to provide true portability where precision and/or numeric ranges are* of significance to 
some program variables, it seems essential to introduce the idea of numeric type generators into the compiler 
system. A compiler is then at liberty to check that the requested size is available on the target installation and 
flag an error if it is not provided. This solution avoids the problem where a program appears to compile - but 
then produces the wrong answers!

Since there are three kinds of arithmetic in most languages, the system should provide for three numeric type 
generating functions

a. INTTYPE - which generates a type on the objects of which exart signed arithmetic may be performed.
b. CARDTYPE - which generates a type on the objects of which exact unsigned arithmetic may be per
formed.

c. REALTYPE - which generates a type on the objects of which approximate signed arithmetic may be per
formed. The type generated is guaranteed to have at least one eighth of the bits as a binary exponent and 
at least three-quarters as mantissa.

K
U,:

Modula-2 Language Extensions

The three type generating functions described above are provided directly in the Modula-2 language defined 
for this project. They may appear in a program at any point where a type definition may appear.

With these three functions and the formal notion of enumerated value types, it is now possible to define port
able versions of all of the predefined language object types, definitions which apply to every machine implemen 
tation, only being affected by the constant Bits_ per_ Word found in the MACHINE library jnodule. The 
definitions are w ’

a. CHAR = CARDTYPE(7) - where the character value encoding is in accordance with ITA No 5.
b. BOOLEAN = (FALSE,TRUE) - note that this can be expressed as a single bit.
c. INTEGER = INTTYPE(Max(Bits_ per_ Word,16)).
d. CARDINAL = CARDTYPE(Max(Bits_ per_ Word,16)).

e. REAL = REALTYPE(Max(Bits_ per_ Word,32)) such that Max Real is of the order of le38 and that at 
least six decimal digits of precision are available.

The implementation experts that all machine systems will provide real arithmetic to conform to the proposed 
IEEE standard (32, 64 and 80 (temporary) bits). If necessary, of course, the compiler can generate calls to 
appropriate emulation software routines to achieve this.

As already noted, the problem of expressing machine addresses must also be considered in attempting to

- page 26 -



provide complete porubiliQf. Fortunately most of this problem is syntactic rather than semantic. The definition 
of Modula-2 produced by its designer considers machine addresses as being indices in some completely homo
geneous address space. Unfortunately many machines have several different address spaces and also several 
different, non-homogeneous, ways of viewing them.

The inhomogeneity of an address space is usually expressed as some page or segment number together with 
an offset into that page or segment. In order to express this form of addressing, it has become necessary to 
introduce the following modified syntax for addresses

address [ segment-or-page-number ] offset
For all machines the absence of a segmera-or-page-number implies segment or page zero. In the case of a 
machine with a homogeneous address space then any segment-or-page-number is ignored by the compiler sys
tem.

All the machines which provide different address spaces seem to differentiate between memory space (which 
may, say, be segmented) and input/output address spaces of different kinds - often requiring different instruc
tions to access them. This separation of input/output from memory seems to be such a general idea that it has 
been decided to introduce an additional type generator. If this were not done then it would not be possible for 
the compiler system to detect the difference between the declarations

Interrupt, Vector [01 2]: WORD
d and

Wide^ Channel [0 | 2]: IOWORD
both of which could be valid in the same program! The inclusion of the type constructor PORT, however, 
enables the programmer to define

IOWORD = PORT FOR WORD
which easily provides the necessary differentiation in a neat and unambiguous manner. Both of the declarations 
are then valid and the compiler can generate appropriate code for input and output - using the PUT and GET 
routines introduced into the SYSTEM pseudo-module (see below).

The only additional extension considered for Modula-2 concerns the need in many machines for bit group 
manipulation, particularly in “special registers" or memory locations. These locations are often 8, 16 or 32-bit 
wide, consisting of a number of fields, some Boolean and some numeric. It seemed that the ability to separately 
manipulate each field would make programs considerably more readable and also enable the compiling system 
to take advantage of any special bit extraction/insertion instructions which are now available on many machines 
- for efficiency! The only way to do this consistently is to introduce the idea of a field offset in a record. By 
adding in brackets after the field identifier a bit offset from the beginning of a record it is possible to build up a 
packed record. Since there are occasionally gaps in such records, it has been decided that overlapping is NOT 
permissible except by using the variant record facility, but that gaps are permitted.

!

m
The SYSTEM Pseudo-Module

As in the original design of Modula-2, the majority of hardware dependencies are confined to the pseudo
module ^SY^TEM^which is provided for the programmer, but known to the compiler since special code is gen
erated to access these very low-level machine features. The facilities required in this pseudo-module can be con
sidered in three separate groups

a. Those facilities defined as part of the original Modula-2 language specification - which are mandatory.
b. Those facilities required to access low-level machine features in a syntactically and functionally portable
manner.
c. Those facilities required to port the compiler system between different machines.

■ i

i

It is important to note that the requirements for low-level access and system portability apply generally for 
any language or machine covered by this project. To this end, for example, it is necessary to provide primitives 
to support multi-processing in addition to the simple Modula-2 coroutine mechanism. Facilities to handle inter
rupts (whether hardware or software) are also needed. Together these two requirements mean that the imple
mentation of the standard procedure TRANSFER must be made visible to the SYSTEM user if he wishes to 
make direct use of them. This "opening-up" of TRANSFER has the added advantage that it allows the provision 
of a machine-independent hardware and software interrupt mechanism - providing that a TEST AND SET

- page 27 -



b <p
facility is added. This results in the need for three uninterruptible operations altogether - OONTl^
LOAD CONTEXT and TEST AND SET. Coroutines, interrupts, multi-processing and multi-p^^^

II be implemented with the assistance of these three primitives.
The second important problem which can be solved by the redefinition of SYSTEM facilities is that of ob** 

sizing. Although the numeric type generators work for numeric objects, the idea of a memory unit is embodied 
entirely within SYSTEM. It is necessary therefore to include a universal definition of word and address’. 
This is, unfortunately, not possible directly. Many computers, for instance, have a variety of sizes of object 
which can be addressed directly and there is often a difference between any of these and a machine address size! 
In order to specify these ideas portably it was decided to categorise machine objects into two groups

a. Storage objects which may be of two sizes, the preferred machine addressing unit, called WORD, and the 
smallest normally addressable memory element, called jSYTE. These may also be referred to as major and 
minor addressing units respectively. Where machines embody several sizes of addressing unit all known 
machines provide multiples of £ minor addressing unit - which may therefore be expressed as an array of 
bytes.
b. Addresses of machine locations, either as an ADDRESS in normal memory or as the address of some 
port in input/output space or, finally as a register. Since registers are always intimately connected with the 
instruction set of any machine which has them, it was decided to access them solely through special routines. 
The problem of machine address arithmetic raises a further minor portability problem for machines with 
paged or segmented addresses. There must be a way of carrying out such arithmetic portably. After some 
indecision, because of possible sizing problems, it was finally agreed that the offset of an ADDRESS object 
would always be compatible with the standard type CARDINAL - irrespective of sizing differences which 
would be hidden by the compiler if necessary. Out-of-segment results for such arithmetic are the 
programmer’s responsibility.

can a

•j

v*

K
The removal of machine registers from the type domain to the functional one has a further advantage for the 

l compiler. The retrieval or setting of register values, at least for general registers, inevitably upsets the compiler 
, register allocation mechanism - which could avoid such troubles by clever optimisation in many cases.

The problem of program portability does not arise in the case of register usage, since this is inevitably very 
machine dependent! Rather, the problem is one of programmer portability! A large number of machine 
designers have adopted as wide a range of mnemonics for registers at Assembly Language level as there are 
machines. In order to provide some measure of standardisation, registers are identified in the runtime library 
module MACHINE as values cff an enumerated type Reg Kind. The values RO. Rl. R2. etc are designed to 
correspond directly to 0^.1, 2, etc to ensure portability of existing programs. These names also correspond, for 
example, to the letters AJL C> etc used to identify general registers on some microcomputers. Where appropri
ate the names SP (Stack Pointer), PC (Program Counter). Status Reg and Flags Reg also have standard 
mgs. All other values unfortunately have to be machine-dependent.

The pseudo-module SYSTEM therefore contains a group of type definitions and some procedures and func
tions. The list which follows serves merely to identify those facilities offered

a. Pre-defined types

(1) BYTE - minor addressing unit.
(2) WORD - major addressing unit.
(3) ADDRESS - in main memory.

b. Pre-defined procedures

X
\

/ mean-

(1) SET_ REGISTER - alter a specific register value.
(2) SAVE, CONTEXT - the processing context of the calling environment.save

(3) LO/^D, CONTEXT - restore the processor context to be that of the indicated process.
(4) TRANSFER - a combination of saving and loading contexts.
(5) PUT - data to an output port.
(6j GET - data from an'input port, 

c. Pre-defined functions wtifch return the values

- page 28 -



6
(1) ADR - address of an object.

(2) SIZE - size of an object in bytes.

(3) TSIZB-* size of a type of object in bytes.

(4) REGISTER - contents of indicated machine register.

(5) NEWPROGLSS - a new process (as the address of a Process Control Block).

(6) TEST_ AND_ SET - the boolean flag value.

The detailed specification of all these facilities will be found in the Modula-2 Language Reference ManuaL The 
facilities are also directly available in Peano if desired.

Runtime Environment

Before any code could be written, it was realised that the eventual portable runtime system had to be 
designed - and implemented - before almost anything else in the project could be coded! This essential need for 
portability of runtime environment meant that all actions must be abstracted from the operating system. In fact, 
it was thought desirable to implement most of the facilities as abstract data types, although such things as 
number-to-string conversion, heap storage allocation, etc are not appropriate to this type of treatment The 
essential point in the design is that there must be a layer of at least one module thick between the native operat
ing system and the user program - even if this layer is merely a definition of the operating system facility where 
this proves to be identical to the required semantics.

The abstract data types offered are fairly conventional in most respects - FILEs, STREAMs,_ 
RANDOM FILES, TERMINALS. EVENTS (for synchronisation) and PROCESSes. There are, however, three 
which merit more detailed discussion in relation to design for portability

a. NAME. This abstract data type represents the notion of the operating system manner of representing 
the identity of an external (e.g. file) object The way in which this identity is coded is, of course, quite 
different from the way in which a user may be required to express it as a string to his command language. 
These discrepancies have led to the notion that there are five logical components which may form a means of 
identifying an external object. These are Node (in a network, say), Directory (the actual lookup list for the 
object location), User-chosen string - the conventional idea of a name string. Kind - the kind of information 
represented in or by the object - which may have some significance for a local operating system and, finally, 
the idea of a Version or Generation of the object. Not all file systems support all of these, but no file system 
supports more than these so far as is known - even with multiple levels of directory. Using these strings (or 
a cardinal number for Generation) operating system specific implementation routines can hide the command 
language syntactic detail and the OS internal form from the programmer - UNLESS literal strings are built-in 
to the program! Even then these could be secluded in a little installation-dependent module - as, in fact, has 
had to be done with a few facilities in the compiler system itself.

b. Arguments - almost an abstract data type! This facility is designed to allow a user calling a program to 
pass it arguments of almost any reasonable kind which can be expressed as strings - as part of a ’command 
line’. While the arguments themselves consist of a separating preceding character and a string of characters, 
the method of implementing this facility varies widely from system to system and may, in some systems 
NOT be available. It is for this reason that the argument facility is not considered to be an abstract data 
type proper - it cannot ALWAYS be implemented. However, it was decided that an interactive ’read argu
ments’ facility should also be provided in order that programs could rely upon being able to obtain argu
ments from the invoker.

c. EXCEPTION. Modem thinking about programming seems to have concluded that the idea of an excep
tional occurrence, which could not have been foreseen in the design of a program, which prevents some pro
cedure from completing its actions correctly, but which may be recoverable at some other point in the pro
gram, is a sound component of a good programming language. The data abstraction facility offered by 
Modula-2 suggested that it should be possible to offer exceptions in the style of Ada exceptions without a 
great deal of difficulty. The preliminary version of this idea did not encompass propagating exceptions from 
child to parent process, and therefore seemed straightforward to implement, needing only a knowledge of 
how the compiler built its run-time stack. Unfortunately, a little deeper thought revealed that all was not 
quite so simple! This point is discussed in detail below.

The design of the runtime facilities relies upon a number of machine-independent and OS-independent 
definition modules, which, together with a very few OS-dependent definition modules can be implemented in

1 >

- page 29 -



*7

Iki OS-dependent definitions occurs only it the lo*** library implementation modules, but nowhere els? 

offered by in operating system may differ in their the calls required by the higher libr^

The need for 
needed in other 1

different ways for different Operating Systems 
level of the library, where data structures 
are peculiar to one system. Similarly, although the routines

„ U k,. m«nt that the fundamental lowest level either describe*

J&1SZZEZX2: ^ «--ss £ MSis a service layer which produces standard portable sonxntic,
direct use by the pmgrarLer or. more likely, for use in implementn* *
grammers expea. For example. Read in Opsys becomes Byte_R in yte ctbpax4
Block_ Read in Block_ Channel. These are in turn used differently m the TERMINAL, STREAM and

. RANDOM_ FILE abstraa data types - although they may
In addition to the ’almost-abstract’ Arguments facility, any clock or tuning facility offered in the standard 

library Pock Timers module can only be used in an installation where there is a hardware clock from which

values may be derived.
' Since this runtime library is being designed not only for Modula-2, but also for Peano, Pascal or any other 

language which is implemented, it has to be designed to run in a very wide range of environments. One of 
these possible environments is the multi-processor environment - whether these are in the same boot or many 
kilometres apart! The realisation that this was necessary led to a complete reappraisal of the PROCESS, 
EVENT, EXCEPTION section of the library. No longer could it be assumed that interprocess communication 
was all -in one machine, let alone all in one memory area - the original starting point for the design. Further
more, it was soon realised that, within one process an exception was completely synchronous (even if not 
expected). When propagated to a parent in an attempt to find a handler such an exception becomes asynchro
nous. The need for a facility to generate and react to asynchronous software interrupts was recognised. While 
this is not necessarily connected with hardware interrupt mechanisms, it does rely upon there being at least one 
uninterruptible instruction within the processor or at least a facility to bar all interrupts and re-enable them. 
Since Modula-2 has the SYSTEM pseudo-module, this is a convenient place to introduce the programmers’ 
requirement for unintemiptibility in a machine-independent manner. The function TEST AND SET was there
fore added to SYSTEM as described earlier.

<levels.

of course, be used directly.

k

The library therefore consists of some twenty-six modules which provide the kinds of facilities normally 
associated with a modem high-level language programming environment. These facilities are fully described in 
the User’s Guide and the Reference Manual for the Runtime Library.

System Dependencies

The general feeling that the original project plan was becoming more and more involved as design pro
gressed was never far from our thoughts, but the needs still clearly existed and the problems still needed solu 
lion. Now that a first design was beginning to take form, it was pertinent to look at the implementation prob
lems which could arise and try to ensure that neither one (design or implementation) made the other more com 
plicated!

1

In any attempt at producing portable software there are a number of relatively straightforward aspects to be 
considered. In a portable compilation system these problems are compounded by the need to consider

a. The source language being compiled.
b. The host machine on which the compiler is running.
c. The host operating system under which the compiler is running.
d. The target machine for which code is to be generated.
e. The target operating system under which the generated code will be
f. Any interactive device i

run.
involved in generating/debugging/testing programs.

While no detailed study has been conducted, a preliminary investiga- 
guages - with the possible exceptions of PL I and Ada - are expressible in a

at least in

may be needed on a variety of machines 
tion shows that most well-known lan
- page 30 —



8

SS3&*L - :particular no coopikr house-keeping or dau structure manipulation should need revision!

Host MachlM Where host and target machine are the same, as in many practical cases, then no specific 
problems arise. Unfortunately, with an ostensibly portable system the overall design must prevent 

reporcussioos of a change of target machine from spreading throughout the entire compiler. The main problem 
is the one of literal conversion, where source character stream is converted into a host-related bit pattern only to 
need later conversion from this into a different target-related pattern in output code. Loss of accuracy or round
ing errors could ocoir unavoidably in any numeric conversion involved. The compiler must therefore only make 
a conversion from source literal when it is known whether or not a value is needed at compile-time, run-time or, 
very occasionally, both!

Host Operating System Although the host operating system will have no effect at all on the resulting com
piled code in a well-written compiler, it does have a very considerable effect on whether, when ported to 
another machine and operating system the compiler will even work at all! There must, therefore, be a com
pletely portable run-time environment.

Target Machine One of the main purposes of a portable compilation system is that it should be readily 
adaptable to different target machines. To do this sensibly, however, implies that target machine dependencies 
should be restricted to as small a portion of the compiler as possible.

Target Operating System The operating system under which the generated code is to run, if indeed there is 
one at all, has a profound influence on a portable compiler system. Firstly, it has to enable programs to both 
use target operating system facilities and also to themselves become new operating system facilities. This 
requires that the compiler be able to generate code both for its own portable calling convention and also for the 
target operating system calling convention - as may be required - in the same program. Secondly, the portable 
system must be able to interface with the target operating system linker or loader (again, if any!). This essen
tially requires a separate portable linker which will put together modules from many compilations into a correct 
single program form for operating system native linking/loading.

Device Dependence In most compilation systems there is relatively little need to pay attention to the termi
nal devices which programmers may be using to develop their programs. In a portable system of the kind being 
now envisaged, however, it seems fairly important to provide, at least optionally, a debugging facility - which, 
naturally, must also be portable! While it was agreed that debugging was to be a secondary design considera
tion, it was perceived that debugging is only a particular form of editing. This in turn led to general editing 
considerations and, consequently, to the need to consider device independent editing. This topic will be dis
cussed in more detail in a later section.

With six quite different dependencies to consider, it was immediately apparent that implementation would be 
far easier - and safer - if a potentially restrictive design rule were to be adopted

The implementation of a module shall never depend upon more than one of source language, host 
machine, host operating system, target machine, target operating system or interactive device.

The adoption of this rule has certainly ensured that some import/export lists are a little longer. It has meant 
even that extra code has had to be written in some modules. Above all, however, it has made all modules 
easier to write and understand - a very important point where several hundred modules are involved!

i

D

Intermediate Code Selection

The key to a successful design of this nature was soon seen to be the choice of the main machine- 
independent intermediate code. In view of the need to express the semantics of two widely differing languages 
which were ostensibly both suitable for writing system software, it was decided to produce a set of requirements 
and attempt to select an optimum from existing widely used intermediate codes. This would inevitably have 
the advantage that machine code generators would already be available, saving considerably on the total effort 
required.

The requirements which had to be satisfied by the intermediate code were originally specified as having the 
ability to

a. Express all conventional high-level language constructs Ooops, alternation, routines, functions, etc).

b. Express references to objects of other modules which were to form part of the same program.

c. Express references to foreign objects in a machine independent manner. These were generally thought to

i

i
■%

- page 31 -



be operating system vanabies/routmes.
and debugging purposes. Since both

d. Contain the mam of the crigirul program ^dered that the compiler system
Peano and Modula-2 are suitable for writing system

provide the highest possible degree of optimisation.must
independently of the target machinesemantic actions of a high-levd ^ j and source language (within a

code, target machine architecture, target machine operating system t
e. Contain the

wide class).

Since Modula-2 is a Pascal related language, the natural sorting point «. the 
«xie and its variants, including Q^ode - a Pj^ attribute ^g Xmation nSed by system software
do not contain mter-module refe«nce faahu« ,nar*t£« J g b yl unsigned arithmetic. 11-bit signed arith-
which has to carry out multiple length and kina operauons tc.g. & . ' __,__, . ..metic or even Tbit modulo arithmetic), mis structure of the original source program has been reduced to Irnear 
form in any of these code variants, making the availability of certain permissible optimisations much more 

A look at other well-known intermediate codes - including Z-code, O-code, etc - showed that 
suitable to the required task without considerable modification.

kdifficult to detect, 
none were

The need for potentially radical alteration suggested that it would be far better in the long term to design a 
completely new intermediate code. Using the well-known stack model as certainly being machine independent a 
preliminary version of such a code was designed to satisfy the given initial requirements. After a great deal of 
hard design work, however, it became apparent that, for Peano at least, the symbol table information required 
by an importing module needed to be able to contain intermediate code!

v...

The form in which symbol information was to be passed between face/definition and body/implementation 
had, at that time, not been considered further other than to make the preliminary decision that it should not need 
to be parsed again when read from file - any work only involving simple conversion from file-linear to struc
tured form using some structure coding in the symbol file. In common with most modern compilation systems 
the unexpressed intention had been to make the symbol table fundamentally tree-form. The expression of this 
structure in a symbol file and the potential need for this tree-form to contain intermediate code now led to the 
realisation that this intermediate code itself should also be tree-form.

After considerable further development of these ideas in discussion, together with a study of Diana - the Ada 
intermediate language - it was decided that Diana was too specifically Ada-oriented and at a rather higher level 
than needed by the class of languages being considered in this project. Those other languages which had been 
thought of included Algol-68 at the more complex end of the spectrum and C at the opposite end. The ideas 
bom during the design of the stack-based preliminary code were therefore reviewed to see what would be useful 
to carry over into the design of a tree-based code. Apart from a number of code kinds which would need struo* 
tiiral modification the most important feature to be carried over, which effectively sets the limit of the intermedi- 
ate code, is the need to parameterise the code for storage sizes. This is needed so that offsets and addresses 

be handled correctly without enormous complication. This is one of the major differences from Diana - the 
mterm iate was to contain target machine object sizing. This had to be a parameter of the code rather
r/ia/t? vf-??1 >.Cat.Ufe t^ial 00(16 00111(1 generated for objects being held on everything from a conventional 
8/16/32-bit kind of hardware to a less conventional 23-bit word

^ eiSht fundamental classes of code in this intermediate code (which is fully 
code on a Referena Manual) offer the ability to use it as a symbol file code, as an interpass
wanted - or avaiLblelThei'cfcses'^e “ 3 ^ int£rpre,able oode ’ when a machine 00(16 generator is not

can

or 11-bit byte, say!

p 0 Pseudo-operations - indicating Rcode manipulation rather than source language representation.

b. Group 1 - Declarations - of areas and objects - in terms of size only.

c. Group 2 - Values - ways of expressing values of all kinds.

d. Group 3 - Basic Operand Manipulation - moving objects of all sizes.

e. Group 4 - Control - calls, loops, alternation.

f. Group 5 - Arithmetic - of many kinds on objects of many sizes.

g. Group 6 - Machine/System dependent extensions 
but including I/O, register handling as a standard.

sequencing, setting, jumps, etc.

- primarily permitting access to ’special’ operations -

- page 32 -



V

\
10*

h. Group 7 - Type - definition of source language type information for symbol table, debugging, etc.

Compiler Architecture

The choice of Rcode as the intermediate code has had two major impacts on the overall design of the compi
lation system. The first effect noticed was that the from and back ends fin the traditional sense) of the compiler 
may be completely independent of each other. In turn, this independence means that implementation for a 
hardware machine or the implementation of a new high-level language only involve one end or the other of the 
compiler.

■- ..

The second major impact of Rcode was on the choice of compiler phases and on the solution of the associ
ated small-machine problem. The original Modula-2 compiler for the PDP-11 had solved the small machine 
problem by not only having a number of passes and storing interpass data on temporary files, but also by treat
ing compilation as a sequence of virtually independent processes which could be explicitly loaded and run one 
after another. Other Modula-2 implementations seen, retain data files of interphase information but allow 
operating system memory management handling to look after code space. These models suggested that a truly 
portable system must , allow for at least two and preferably three potential architectures into which all the code 
can be fitted :-

a. A simple one pass sequential-phase compiler in which all code would be available at once and the total 
non-symbol-table data space would be kept within reasonable bounds. The symbol table size is, of course, 
programmer module dependent and could therefore need to be limited in some machines, at least in princi
ple .
b. A minimum space multi-pass sequential phase overlaid compiler for small machines - similar in princi
ple to the original PDP-11 Modula-2 compiler.
c. A constraint free one pass concurrent-phase compiler .for either large machines or multiple-processor sys
tems. All phases can execute concurrently, limited only by the availability of input data for transformation 
by each phase.

Irrespective of the choice of architecture for a particular system, the phases had to be chosen to minimise 
interphase overheads. Essentially this means that phases must be chosen to be self-contained in a way such that 
the only difference between the three architectures described is the way in which the next data-item needed is 
provided (and the last one disposed of) - from memory, from file or from memory with waiting. As far as pos
sible this should mean that the smallest possible amount of data should need to be retained by the compiler 
between phases.

The main items needed in more than one phase are identifier, literal and symbol tables. It is necessary 
therefore that these can be simply filed and reconstructed if needed. Identifier and literal tables are merely char
acter arrays and cause no problem. The symbol table is, unfortunately, much more complicated. Fortunately 
Rcode comes to the rescue in the way already indicated. The only complication is in the conversion from file- 
linear form to the highly structured form in memory. Although such a conversion may be a time overhead in a 
small machine compiler, it is not a space overhead since the relevant code is needed functionally when reading 
symbol tables from the files of imported modules!

The phases of the compilation process could now be clearly identified, at least in the compiler front end, as
a. Lexical analysis producing an identifier table, a literal table and a symbol stream.
b. Syntax analysis producing a syntax tree of symbols and a symbol table as well as retaining identifier and 
literal information.
c. Semantic analysis, producing an Rcode tree and retaining literal or identifier information only as needed 
in this tree. Symbol table information is retained only insofar as is needed in Rcode form in the ’output*

. from this phase.

new

In addition to these functional phases which are common for both definition and implementation modules, the 
from end necessarily contains elements of listing, cross-reference production and, of course, error notification 
functions. - page 33 -



o
the back cod of the compiler, a number of

While there was obviously going to be at least one phase to 
problems had to be solved before this could be investigated more deeply.

v<Compiler Syntax Analysis
While the existing Modula-2 compilers available use ‘ ^^^^^depeodent, almost cn a^^

sk aits ;rat£r.5£—■> - “sidt™1' *■ »
building block fashion from selected off-the-shelf components.

Over a period of some two years up wjmpreUrmna^ ^p^j^g^^todependently, 
of Computer Science on budding a syntax^luected editorfor the naUWIPV Drov«Uhat editing is one of
review of the whoie subject of edijg >-one different, strongly 
the most emotive subjects on which any hundred users will na were indeed very
held opinions! This study soon showed, however, that editor syntax analysis problems were indeed very

closely related to compiler syntax analysis.
A decision was therefore made to use common code for analysis in both editing and compiling!

Since one of the features required by an editor during syntax analysis is the ability to independently parse 
almost any possible program segment, it would be essential to adopt a syntax analysis technique whidi would be 
very general. Any such "intelligent” editing facility needs to be able to cope with not only programming 
languages, but also everything from plain text to binary files, via graphic images and text formatting languages! 
This wide variety of data structures could mean that a truly generic editor was required - indeed a portable gen
eric editor. The details of the development of the editing facilities in the project are discussed in a later section. 
The syntax analyser, being common between editor and compiler still had to be designed.

Once the decision to incorporate intelligent portable editing into the project had been finally, agreed, the 
obvious answer to syntactic analysis was to provide a table-driven parser since tables can be readily loaded or 
changed dynamically during user interaction.

With the potential involvement of many languages (some formal, others less so), it was obviously going to 
be almost essential to make use of an automatic table generator. Since the UNIX* tool yacc was available it 
was decided to make use of this as the basis around which to develop an automatic table generation system for 
the compiler/editor syntax analyser. The disadvantages of yacc for the project were that

a. It produces the appropriate tables (and an analyser) in the C programming language.

b. The automatic error handling provided within the analyser is very crude and completely unacceptable
for a student production system.

u

c. The token system of yacc derives from the use of its companion tool lex. This is of little use where a 
more structured approach to tokens is required.

These three factors have meant the adoption of a special purpose approach to the use of yacc in generating a 
syntax analyser.

Micro-Syntax The subject of lexical analysis (or micro-syntax) could also have been treated by a general pur- 
pose production tool like lex, but it was considered that a hand-built lexical analyser would be far more 
emaent In addition to efficiency considerations, the tokens must be producible from a variety of sources - 
changeable dynamically at will

a. From a text form source file - like a conventional program source!

b. From some internal editor string buffer - again in text form.

c. From a linearised parse tree file - saved by the editor from last time.
d. From a parse tree being manipulated by the editor.

10thC imprac,icality of usi"8 anything but a handwritten token producer to cope with these dynamic 
nanges, the close integration of editor and compiler also brought 

conventional compiler lexical analyser reads and discards a complication not originally envisaged. The 
comments. The editor, when editing the text form of

■UNIX is a trademark of AT&T Bell Laboratories in the USA and other countries.

“ paqe 34



Pr
12

^ ssfija “ zss:
to coiblc the editor to direct compilation in its own way.

Error Handling Once tgtin the conflicting requirements of editing and "straight" compilation for the handling 
of syntax errors in different ways requires special purpose routines. If necessary, for example, an editor may 
wish to stop analysis on the fly to allow correction of errors before continuing if appropriate. Since incomplete 
or incorrect error recovery is a major weakness in many current compilers, making them unsuitable for student 
use, it was decided that an attempt would be made to produce high-quality error recovery code/tables automati
cally from a specification of syntactic recovery points and recovery sets. This very important aspect of the pro
ject is still the subject of further development although the fundamental algorithms required have been proven; 
all that remains is to investigate improved table compaction and the generation of faster recovery code.

C to Modula-2 Conversion The parser tables produced by yacc are in the form of initialised C arrays. The 
associated code generated is fixed independent of language, which means that a hand-coded replacement may be 
readily written in Modula-2. This rewritten version does, of course, take into account the complicating factors 
of different sources and the editor’s needs. These have meant that, in addition to simple recoding in the 
different language, the following new features have had to be incorporated

a. The conversion of the semantic actions on reduction into an array of procedures indexed on the relevant 
production rule. This mechanism enables different compiler architectures to be implemented by, say, replac
ing all* routines by one file-writing routine to produce an interpass file. This same procedure array may 
alternatively be loaded by the editor with its own action routines as and when required.
b. The normally fixed start symbol can be set dynamically so that a partial routine, statement 
expression can be analysed instead of an entire compilation unit - as the editor may require.
c. The same array of procedures technique can be used to provide different error recovery actions depen
dent upon the error recovery tables. The details of these routines are not yet final.

i

S4[

>

or even

Table Production The production of hand-written routines for syntax analysis is, of course, the minor part of 
producing a table driven analyser. The production of the tables themselves is at the present carried out in three
stages

a. A pre-processor takes as input a form of syntax description which includes an indication of recovery 
points and permissible follow sets by means of an angle-bracket notation added to the BNF-like 
specifications used for input to yacc. The output from this preprocessor is in two parts - one is a standard 
version of the syntax as expected by yacc, together with an error recovery data file.
b. yacc itself, taking the preprocessed syntax as input and producing its standard form of output file.
c. A post-processor which takes the yacc output and the error data file as input. This produces four 
Modula-2 modules, the definition and implementation modules of symbol definitions (lexical, error and non
terminal values as enumerated types) together with the corresponding modules of syntax tables including the 
initialisation code.

This table production mechanism could be refined by rewriting yacc to produce Modula-2 output directly to 
make the entire system, together with its production tools, portable. This will eventually become essential so 
that the system can become self-extending as required. This would then enable the editor to create new struc
tures for editing and then edit them by loading tables and routines dynamically.
Compiler Control Syntax The occasion afforded by the use of yacc to rewrite the syntax of Modula-2 in the 
correct form, led to the realisation that one of the needs of a compilation system which was suitable for produc
ing system software was the ability to provide special control over certain segments of a source module, for 
example to indicate special alignment of objects or to inhibit optimisation, etc. Since the kind of compiler con
trol being considered is closely related to language structures; it seemed sensible to build the compiler control 
pragmas into the language syntax - as options, naturally.

Compiler Directives
The control of compilation options may be effected by directives which may take the form of arguments to 

the compiler call or as pragmas buried in the body of the program source text (tree). Some options were

#

- page 35 ~



%•
<

originally conceived as possibly being provided in both forms. However, further the
options needed were either global - over an entire compilation - or related to some
For these reasons, the argument directives and pragma directives have been chosen to ..
former being in fact the class of directive commonly found in many more conventi s. The
majority of directives provided are independent of the source language.
Common Arguments In addition to the identity of the source file, which will k*®*P®^* 10 ** c*t*lcr trce ^ 
text form, the optional arguments which may be passed to a compiler have been agreed

TOs^ment the compiler

required for the current compilation (ih addition to those which may . . e
library), whether symbol or code files. THe directory file is expected U> Z
each line, first the module name and then the system^ependent name* of the files containing the symbol and
object forms of the module - on the same line.

b. Query . . • -
This argument forces the compiler to interactively request the user to enter the system-dependent names of 
the files containing the appropriate form of a module needed by the compiler. If no file can be found then 
compilation will be aborted.
c. Output = object-file-name
This may be used to override an installation dependent default object file name.

d. Symbol = symbol-file-name
This argument may be used to override an installation dependent default name for a symbol file.

e. List [ = list-file-name]
In addition to directing the compiler to produce a listing, the addition of the optional list file name overrides 
the default installation dependent name which is provided.
f. CrossRef [ =crossref-file-name]
This argument directs the compiler ro produce a cross-reference listing of the compilation unit on either the 
named file or, if no file is named, then on the listing file (whether or not a.listing is also being produced).
g. MachlneCode [ = code-file-name]
In addition to producing code for the linker (which will always be produced in the absence of errors), this 
argument requires the compiler to produce a human-readable form, either - by default - on the listing file or 
on the named file if the parameter is present.
h. Debug
This argument option directs the compiler to pass symbol table information through the machine code gen- 
fnr ITi USe • y ru^l*me debugging facilities. Although the directive was originally introduced as a ’hook’ 
esqentiaMf^K°JeCl ^ ^ ** WHS rea**se<* cluite l^lat portable debugging must also be provided! This is 
of debuppinoir^6? °f 11116 Portak»l»ty m t0 achieved. This meant, in turn, that the editing view

z £ s«zrrz 6“- “* d'si8”- ™* ■» *■»
Variant = variant-name

SsRSEZilog Z8000 series processors whL are eiZ™H ' (eVe" 280/8080 Processors) or
ing modes The variant n.m. u ^ ei. made or can operate in segmented or non-segmented address-
always be the default. S ° 0560 Wl1*’ natural,y be machine-dependent, but one of the options will

i.

j. AddressCheck and RangeCheck

For some languages 
will not normally be

machine codes'g^L^leTwhTo^affeaino ^ndard.for anV language are designed to affect the way in which 

following subparagraphs which describe the differe'nTcUs^s of prTgmT' ^ eXCepti°nS *° Ms “* n0ted in ^

- page 36 -



*■ 7*0f pra8ma raodifics ** UnP«8e syntax to enable a program to either import
The use of the External pngraa(vrith a strijig^ panm^ 

eter) adjacem to^the.denufierof a declared object inarocu the compiler that tWx objea (wlhSeriw
externa name stnng) will be linked into the program by the native operating system linker. This mfy of

. . ***?, * any ob-iect' T1* GloW pragma is the converse, specifying that the object in the
module will (eventually.) become part of some native operating system library. Whichever of these two 
pragmas is applied to an object it instructs the compiler to adopt that target operating system 
when generating code for handling these objects.

b. Type-Definition. The five pragmas in this class (Align, BltPos, BltSIze, ByteSIxe, MachloeType) are 
aimed at specifying, where necessary, the way in which storage for objects of the associated type is to be 
used or aligned. Thes can be used to ensure that particular machine-specific sizes, instructions, etc will be 
generated by the compiler.

c. Constant^ Definition. One of the awkward things about high-level programming languages is that con
stants are abstract notions which have to be given a representation in computer storage in a practical pro
gram. The reality of this can be used "illegally" (in most languages) by allowing the compiler to generate 
pointers to such run-time read-only storage where it is desired to minimise total code or data size. The 
Referrablc pragma may be included in any constant definition to permit this form of minimisation. Care * 
must be taken that read-only use is made of such pointers.

d. Code-Related. As the name implies, this group of pragmas is directly intended to influence the way in 
which code is generated for some particular structure. NoOptimlse suspends all code optimisation allowing 
code generation which may be required to produce a side-effect not valid in the language concerned. Unsafe 
when applied to a type suspends all type checking in relation to objects of that type. The other pragmas in 
this class are Nolmmediate (do not evaluate at compile time), NoCheck (suspend generation of checking 
code). Inline (allow compiler to incorporate inline if cheaper) and Macro (instrutf compiler to treat 
macro and use call by name argument semantics).

Language-Dependent Control No language dependent pragmas have been identified for Modula-2 or Pascal. 
Peano, primarily because of its two-level generic nature has four - NoPrIvate, NoUnconstralned, PlalnCode 
and Rcode - which are fully described in the Peano Language Reference Manual.

conventions

a

as a

The Editing Environment
As already indicated in earlier sections, portable editing, debugging and compiling facilities are all evidently 

needed if the original aim of moving students (almost) transparently from one machine to another was to be 
achieved. While it was not the original intention to provide such a completely portable facility, it was realised 
that the best way to move a user to a ’new’ machine is not to move him! In other words (s)he should not need 
to be aware that a different machine is being used. For the purposes of the project therefore it was decided that 
portable editing, compiling, debugging and program running facilities were the minimum necessary. These 
facilities should be invokable in a portable way!

Rather than ask a student to interact with a wide range of new tools, it became evident that the minimum 
disturbance from his previously learnt user environment was desirable. Having used either or both of 
VAX/VMS or UNIX operating systems and any one of a number of editors and debuggers the choice for the 
design team was not easy. As editor design progressed, however, it slowly became obvious that a generic editor 
would necessarily offer some quite different features to other editors used. This would therefore be one quite 
important change for students. It was decided to minimise further change by incorporating debugging (only a 
glorified editing function) symbol tables into the data structures known to the editor and to add, therefore, a run 
command, enabling the program being debugged to be run/stepped, etc.

The final major step taken was to realise that the editor was now a complete user environment - since it is 
entirely up to the user interactively to decide whether or not to use the debug option to the run command. The 
project had suddenly become the parent of On UNIX terms) a shell!

The original concept of a generic editor had arisen from an apprehension that the development of intelligent 
editors of all kinds would proliferate yet again the multiplicity of languages to be learnt by all but the very sim
ple computer user. Even before completion of the survey of the enormous variety of editors, both commercial 
and experimental, which are available, it was realised that if it were at all possible, then a generic system would 
be ideal for a portable system. It was not until some outline design work was undertaken, however, that the 
real impact of this facet of the project became apparent.

- page 37 -



Y
\b

the user’s input and the actions of the editor itself. in 
Without the availability of this mapping thena. The most important mapping of all is between 

essence this is. crudely expressed, a command interpreter, 

oothing else could be done!
b. Mapping in the converse direction to provide output for the intcracti«. « also
required to present the editor’s comments, queries and confirmation messages to the user.

will almost certainly require the ability to find out what various 
The editor must therefore be able to map its internal form ofc. In similar vein, the user of the editor 

portions of the object being edited contain, 
this for user output.
d. To make any modifications other than deletion to the object being edited, the editor must also be able to 

map user input into its internal representation of the object.
e. Yet another pair of mappings is required between the form of representation of the edited objects which 
the editor may use internally and the form in which the objects may be permanently storable - between edit-
ing sessions!
f. Finally, a portable editor must be independent of the underlying machine and hence be able to interact 
transparently with its operating system - mapping the semantics into a portable version. This particular 
mapping is naturally provided by the portable runtime library system already referred to.

Storage Mappings Of the three remaining' pairs of mappings, the way in which an editor reads and writes its 
permanent storage versions is almost entirely within the province of the editor designer so long as the methods 
adopted do not depend upon the object size or structure and so long as there is a mapping provided which will 
produce a version of the object which can be understood by other using programs! In essence this is merely a 
matter of careful design with data parameters which are changeable dynamically.

User Interface Mappings The editor must ideally be able to provide a uniform interface to the user, whether 
in respect of command and response mapping or object data mapping. Both of these pairs of mappings there
fore have one very important part in common - the device-dependent aspects. Considerations of portability in 
respect of interactive devices may be looked at in a variety of ways. The historically oldest approach was to use 
a Lowest Common Denominator of device functionality to ensure that identical usage of ’keyboard’ and ’printer’ 
or ’display’ resulted. This is most unsatisfactory for a generic intelligent editor.

Consider the need for two users of one system to use the same editor from different terminals - 
glorified teletype, the other a sophisticated graphic work station. Both users need the same functionality, but the 
teletype user must use different input representations for a command then those available to the workstation 
(say, menu and mouse facilities). The first major editor design decision had been made - logical commands 
required for intelligent editing would be chosen entirely independently of the interactive devices which could be 
used.

one a

user

■» >
V

A corollary to this decision was that interaction necessitated some form of non-printing output to the user, 
whether visual or audio seems irrelevant, just as the use of audio, keyed or pick-device seems irrelevant for 
input.

A further corollary of this decision was that, at least theoretically, it should be possible to make the editor 
human language/script independent by associating any further device-user translation with the device mapping 
software. This aspect of the project will not be implemented for some time although the early design decision is 
enabling appropriate hooks to be incorporated into the first production software.

Command/Response Mapping Once the device-dependent aspects of handling user commands and responses 
has been carefully abstracted into separate code, the rest is symbol manipulation and interpretation. While the 
major step of using the compiler lexical/syntax analysis code to carry out the syntax analysis of editor commands 
has not yet been attempted, there is little doubt that this will be done before project completion. This means 
that, once again, the editor is working with a common translator - using editor command syntax tables instead of 
object data syntax tables. Naturally the actions taken as a result of analysing syntactically valid commands for 
the editor are'editing semantic action routines' rather than those for, say, some programming language compila
tion. Once this principle of separation is applied to the editor, then it can effectively self-modify itself according 
to context by, say, detecting that it is being asked to debug a program and insert modified action routines for 
appropriate commands.

; -page 38 -
<1



V

16

I jesse syiiig «• - »««•«™ <» ~=h»s *.«* «*,. -n./ srviffs.rs.tsar?'= —strsi^ ** direaion ^^ "■“K ^"^b“ exw^Ltti

/*

/

/

°*U Mlp.pln* This pair of mappings is potentially the most difficult of all - at least for certain kinds 
o object. It is fairly well known how to cany out syntax analysis and symbol determination for programming, 
command, editing, etc languages. What is not so well understood is the unparsing needed to present human 
understandable representations of a very wide range of object structures to the user. The tree-like nature of 
parsing structures and intermediate languages in the compiler system, made it natural to think in tree terms for 
normal editing. Permanent object storage for objects eventually to be translated by the compilation system is 
therefore understood to be as a linearised tree embodying the syntactic structure (whatever that may be!) of the 
object.

One of the advantages of storing as a symbol tree is to avoid unnecessary use of storage space, to avoid 
unnecessary reparsing (and rereading) of source *text’ and to enable a common storage form to be adopted 
irrespective of the nature of the object - merely the shape will change. The tree form to be used is therefore a 
list { of lists * } of elements. The number of tree levels involved is dependent upon the object, but in practice is 
unlikely to be more than a dozen or so for most objects being stored.Ci

The need for unparsing means that it should be possible to view one object in more than one way (at once - 
in different editing windows, say) or, alternatively to move one or more elements of an object into another 
object with a possibly different structure. Naturally such moves or alternative views should be sensible (for 
example, converting a loadable program image file into a number of areas in some computer memory - other
wise known as linking). Research into the conversion of a memory binary image into a high-level language 

program text has not progressed very far, so such conversions will also be limited to the possible!source
The non-Edlting Command The editor is being designed to incorporate one non-editing command - run. This 
is the most important feature of the whole system, since it enables the editor to run translators (to compile 
parts/all of programs), interpreters, or really any other program at all - either under close control or ’free’ as the 

may specify. This of course introduces the testing facilities which are to be built into the project, in partic
ular debugging. As already mentioned briefly, this is only another kind of editing of a dynamically changing 
object. The editing commands map very naturally onto all debugging commands and the use of multiple win
dows enables code and data to be ’watched’ as execution takes place at whatever ’*nee-/eve/’ desired. The 
detailed specification of the necessary debugging actions is not expected to raise any prohibitive difficulties.

user

Interpreting

While Rcode was designed to enable an interpreter to ’run’ a program which had been translated thus far, it 
realised that interpretation of Rcode would be non-trivial. As the design of Peano progressed and the inten

tion to remove all redundant runtime code became uppermost in the concerns about machine code generation, it 
realised that interpetation of program elements (e.g. manifest expressions) at compile time was essential for 

the entire system. In addition to this intention becoming firmer, the addition of the portability criteria had inev
itably resulted in more and more code being added. While it was hoped that the machine code generator pro
duced would be considerably better than those seen for Modula-2, Pascal, etc on the VAX, it was seen that the 
ultimate requirement was to interpret as much at translation time as could be done statically.

A review of all this suggested that not only should it be possible to evaluate manifest expressions at transla
tion time, but also it should be possible to cany out static assignments (initialisation code!) to runtime variables.

In order to carry out all this interpretation, it must be possible for the interpeter to run appropriate library 
routines already existing in object code form, as well as other modules still in Rcode form. Such an interpreter 
for Rcode was designed and a considerable amount of code written before the question of size reared its ugly 
head. This interpreter - or at least nearly all of it which would be needed for translation time evaluation only - 
was going to be very large indeed - for what it did. Additionally it would have to be co-resident with the 
remainder of the compiler code during machine code generation.

The question of size suggested that a smaller ’interpreting machine’ would be desirable. Consideration had 
already been given in looking at the problems of portable machine code generation to a second intermediate 
language which contained information about the real operand facilities offered by the target machine class of 
architecture. It was soon realised that knowledge about these operand features was already being considered for

was

wasi

- page 39 -



\

after completing high-level optimisations, so that it could readily be interpreted m a ar p gram.
Since almost a complete interpreter is needed for translation time, it is a very small step in design and cod- 

ing effort to produce a stand-alone interpreter of this second intermediate code.

Generic Action Sets
The recent interest in minimal (RISC) instruction set computers led to the 0f theoriginal

exceptions, the most effective code would be something of this nature - P^vi .. . structure of
Reode tree was retained to assist in optimisation .t this .level. It was tWore

very simple linear code based around the notions of a Genenc Action Set would suffice.
which it is operating - such as ADD,

the tree was retained a
A generic action is one which is independent of the kind of object on 

MOVE, etc. In addition to this feature, a generic action does not depend upon where the operand(s) may be 
inside a machine. The code developed has come to be called a Generic Action Set code (GAS-code for short)

set of machine code instructions. The size of such a set varies with individualsince each instruction represents a 
machines, the GAS-code does not vary in this way. It will vary with different machine architectures to some
extent (the register-less machine, for example, will have different operand structures).

1The set of codes in GAS-code has turned out for the machine architectures being considered initially to have 
32 instructions. A careful survey of the instruction sets of both of the initial target machines shows that, for the 
VAX all but 9 out of some 253 instructions may be produced by the code generator (these are all kernel spe
cial), while for the Zilog machine only 7 instructions (relating to kernel multi-processors) may not be generated. 
This is considered to be satisfactory for a first production implementation, particularly since the interpreter will 
be quite small.

The original design of Reode included a facility for extending the code to have other operations - as two-byte 
codes. One of the extension bytes is Reserved. This is used as the first byte of GAS-code, which can therefore 
appear on the Reode tree, along with area declarations, literal values, etc. There is therefore no additional over
head in compiler code to manipulate a GAS-fitted tree!

Interpretation of a GAS-fitted tree within the compiler code generation mechanism is merely, therefore, one 
of interpreting some sub-tree and replacing it by a literal result or an initial variable value. Once this has been 
done then major redundant code elimination and tree swinging optimisation can be done while carrying out prel
iminary resource (register) allocation and setting up jump tables, etc before final code generation.

Compiler Output Code

In addition to binary code, constant and variable data areas, the compiler machine code generator must pro
duce directives for a linker such as external module object references, system object references, relocation infor 
mation, debugger information, etc.

Portable Linker While it would seem sensible to have only one linking process on any one computer, it has 
been found necessary to introduce a second - portable - linking program. This is to be used before the native 
system linking is carried out. The main reasons for doing this is to

a. Minimise the number of objects included from imported modules. Many linkers for well-known 
machines include entire modules if any object is referenced, rather than merely those objects needed - 
whether routine or variable!

b. Detect circularity and arrange the correct order of initialisation of module code. Considerable problems 
have been created by both of the Modula-2 implementations seen, in either not detecting circularity at all 
(and having tremendous sequences of initialisation calls) or not using a weakest precondition algorithm.
c. Provide a linker for many small microcomputers which do not have one!

Conclusion

The extension of the original rather limited project to satisfy immediate student needs has inevitably led to 
considerable delay. The benefits of attempting to design truly portable systems are evident. The remaining 
problems of implementation do not appear to be insurmountable and the design for portability principle should 
certainly be applied far more widely than is currently used.

- page 40-



is

w~u ESS: ‘sissr r— -
:?ssr£»o,“ —• •» i”'’to"'”i»*«*. <*»»ta... ... „J? "J“* “ "'*“ * boa*»l> mpicnnotaUoo. Eva trait the etlsthtj swot, mi,
have had to be made to the original compiler in order to comet], generate the portable software.

- »«*«- «<•»«. **«. «+
The use of compiler translation facilities - and ’output* activities for whatever may be the kind of object 

being edited is the ideal end result For the foreseeable short term future, however, it may not be possible to 
control all translations/outputs through the command environment It is likely that too much code would need 
alteration to be practical in the beginning. If this portable environment concept proves attractive to users, how
ever, it is hoped that more translator tables and semantic actions for output will be added to the initial set.

Acknowledgements
The project team has varied in size and effort over the years - and will most likely continue so to do. 

Thanks at the time of writing are due Cm alphabetical order) to RM Archer, M Byrne, CJ Francis, A Greer, B 
Hoult, U d’Oliveiro, SH Seo and A Sleeman. To them and many other friends and colleagues who have 
encouraged us when needed - our heartfelt appreciation.

i

17 Oct 1985
■

Dear Sir,

Ouite by chance recently I was made aware of the existence of your 
association. Because of our relatively bad introduction to the Modula-2 
lanouaqe - bad and inconsistent implementations that is - we have spent 
nearlv two years in designing and developing a completely portable version 
- independent of machine or operating system. Our current status is that 
the entire portable run-time library has been subjected to intensive testing 

and by February 1986 Version 1.2 - with all known bugs fixed will 
Our UNIX version is now being tested, while

!

for a year
be available for VAX/VMS.
preliminary work on an MS/DOS version is underway.

We have produced a bootstrap compiler on the VAX to enable us to produce 
the portable system. Design has just been completed of the final compiler 
details and two-thirds has been implemented. As you will appreciate, this 
is nothing like any existing computer - which are all severely bug-ridden

we can tell (or rather our students keep bringing up new compiler bugsso far as 
almost every week!).

I enclose a copy of our design rationale which you may wish to disseminate. 
Full Reference Manuals and User Guides are available for the Portable Library, 
Rcode and GAS-code (several hundred pages of A5!) should anyone be interested 
(we have to make a small copy and postage charge).

Yours faithful!;

K. HOPPER 
Senior Lecturer

- page 41 -



The ETH-Zurich Modula-2 compiler for the Macintosh
by Chris Jewell

The'authof glanfs^e^mission'to rep^ this work, provided drat this notes to included in each copy, 

and no consideration to charged (or the copies.

Peter Fink and Franz Krdnenseder of the Institut fur Informatik at ETH Zunch. 
adapted a 68000 Modula-2 compiler to the MacLotpstL- They also made a

of the compiler and libraries available on a
Matthias Aebi put the

prerelease version
noncommercial, no support, no guarantee basis, 
software onto USENET, the Unix System users' network. The following notes 
describe one user's experiences with, and observations about, the compiler 
and libraries.

Thanks

First, a "thank you" is due to Messrs Fink and Krdnenseder for building this 
software, and making it available. Further, anyone who is going to use the 
compiler, linker and library should read section 4.1.8C, entitled "History 
(Acknowledgements)'', of the User Guide to the Modula-2 System (file 
MODLIB:GUIDE.TEXT) so that he will know whom else to thank.

In my case, thanks are due to your newsletter editor, who downloaded the 
software from USENET, and made it available to those of us who do not have 
access to either USENET or typical academic software distribution channels. 
Thanks, also, to Computer Plus, of Sunnyvale CA. who graciously allowed me 

_ to run the benchmark on a Macintosh-Plus, as soon as they received one from 
Apple.

What it is

Mac give one the means to compile, link, and run Modula-2 code which is 
comparatively portable. Several interesting sample programs are supplied: 
they probably look very much the same running on a Mac as they would 
running on various 68000-based systems developed at ETH (including user 
dialog, variable names, and program comments in German), 
documentation with the copies circulating in the US is in English. Library 
modules give access to the parts of the Macintosh toolbox which the 
implementors needed in order to get their software working (notably 
QuickDraw. EventManager. and the standard file dialog package).

kl

The

What it is not

This is not a commercial system for developing stand-alone applications for 
the Macintosh. Most of the Macintosh Toolbox routines are not (yet) 
supported. A ready-to-run object program produced by the linker is not a 
Macintosh "application", but rather a "document" whose associated

- page 42 -

\ “n



\

apS*!SS\n Whlhn8 runt'me support package (probably named EXECsipk on 
your disk). When you double-click on an M2 program, the Finder will launch 
the runtime support, which will in turn run the program.

"Glue" for the. Macintosh ROM routines (This section assumes familiarity with 
Apple's Inside Macintosh* and the Macintosh Development System, or MDS.)

If you want to use Macintosh OS or Toolbox routines which are not already 
supported by the supplied library modules, you will have to write your own 
glue procedures, using the CODE feature of the compiler, to get to the A-line 
traps. Even the stack-oriented Toolbox traps will require non-trivial CODE 
procedures: you cannot just use an A-line trap word with the auto-pop bit 
turned on. When writing your CODE procedures, you will need to take 
account of the following facts.

1. The compiler generates code which makes it the responsibility of the 
calling routine to drop the parameters from the stack, while the Mac ROM 
routines consider it the responsibility of the called routine. Therefore, an 
interface to a ROM (or other Mac-type) routine must duplicate the parameters 
supplied by the caller (including space for the result if you are calling a 
function), before issuing the SAxxx trap, then copy the function result to where 
the caller expects it after the trap and before returning to the caller.

2. The M2 system uses register A5 to reference the current M2 PROCESS. 
This is incompatible with the use of A5 expected by some of the ROM routines, 
which expect to find a pointer to QuickDraw global variable thePort at the 
location referenced by A5. An interface routine must save A5, and load it from 
system global variable currentA5. which is at location 904H, before the trap, 
and restore M2’s value afterwards.

3. The QuickDraw definition module contains an incorrect declaration for 
TYPE Pattern. The Lisa Pascal declaration is

TYPE Pattern = PACKED ARRAY [0..7] OF 0..255;
while the supplied Modula-2 declaration is

TYPE Pattern = ARRAY [0..7] OF [0..255];
Since the compiler doesn't pack subrange types, each element of the array 
gets 2 bytes, and the whole array gets 16 bytes, rather than 8, as it should. Try

----> TYPE Pattern = ARRAY [0..7] OF SET OF [ 0 . . 7];

4. The definition module for QuickDraw has the global variables commented 
out, with the comment that those variables are available in the surrounding 
environment, but the comment doesn't tell you how to get at them. You need 
to declare a pointer to a record containing, as fields, all the QuickDraw global 
variables, in reverse order (because variables are allocated from the highest 
address down, while fields in a record are allocated from the bottom up). 
Then set the pointer to the contents of the address to which currentAS is 
pointing, less 7EH. For example:

- page 43 -



i!i
!

; POINTER TO ADDRESS; 
i POINTER TO RECORD 

ADDRESS; (* use as LONGINT *)
: QuickDraw.BitMap;
: QuickDraw.Cursor;
: Pattern;
: Pattern;
: Pattern;
: Pattern;

VAR currentA5 [904H] 
grafGlobals

randSeed : 
screenBits 
arrow 
dkGray 
ltGray 
gray 
black 
white 
thePort 

END (* grafGlobals* *);

VPattern;
QuickDraw.GrafPtr;

grafGlobals := currentA5A - 7EH;
5. Contrary to the implications of the User's Guide, the compiler option $P- 
seems to work only for the very next procedure encountered. If you want to 
have a whole bunch of code procedures, for example as interfaces to 
Macintosh ROM routines, you must repeat (*$P-*) before each procedure.

6. As far as I can figure out, the compiler seems to generate code to check for 
stack overflow at the start of some procedures, but not others, independent of 
the r$S-*) option. Perhaps stack checking occurs whenever there are value 
parameters of structured types, which must be copied by the procedure entry 
code. (?)

An example of the required "glue" is included at the end of this article (if the 
editor had room for it.)

Language supported, features, and implementation restrictions

The compiler is a descendant of the original five-pass compiler for the PDP- 
11. The output of the compiler must be processed by the supplied static linker, 
a very slow program.

1. CARDINAL, INTEGER, BITSET, and WORD are two bytes.

2. REAL is 4 bytes, and does jtqI use the Macintosh SANE routines.

3. Base types of sets are limited to at most 16 elements. (No SET OF CHAR).

4. LONGxxxx types are not supported. However, all operators which may be 
applied to two CARDINALS (including <, <=, >, and >=) may also be applied to 
two ADDRESSes, so that ADDRESS may be used as a substitute for 
LONGCARD. The supplied library modules support the ability to do formatted 
reading and writing of ADDRESSes, just as for CARDINALS.

5. Open array parameters are limited to VAR parameters only. However, the 
compiler permits you to pass a string literal actual parameter where the 
corresponding formal parameter is declared as VAR ARRAY OF CHAR. You 
may pass anything to a VAR ARRAY OF WORD formal parameter.

A ■>

i

- page 44



V Y

hart disr 8 nam8S' °r W have ,0 spond a l0* o' ^renaming my

7. Aside from the usual stuff, the pseudo-modula SYSTEM supports direct 
access to 68000 registers, as well as an arithmetic shift operation on word
sized types and addresses.

Error Detection

The code generated by this compiler is deficient in run time error detection, by 
the standards which Professor Wirth espouses in reference [1]. In particular, 
the compiled code failed to detect any the following programming errors:

1. Assignment of an out-of-range value to a variable of a subrange type, even 
for the easy case which is supported directly by the CHK instruction of the 
68000, that is:

TYPE SubType = [0..n]; (* 0 < n < 32768 *)

2. Assignment of a negative INTEGER value to a CARDINAL variable, or a 
CARDINAL value greater than CARDINAL(MAX(INTEGER)) to an INTEGER 
variable. Assuming the value to be first computed in a data register Dn, this 
test could be performed very efficiently by generating the instruction

CHK Dn.Dn

3 Overflow on INTEGER or CARDINAL arithmetic. (Note that for INTEGER 
arithmetic, the very inexpensive TRAPV instruction would do the job.)

4. CHR or VAL, where the cardinal argument is greater than ORD(MAX(t)), 
where t is the destination type.

5. The value used for NIL is OFFFFFFFFH. Therefore, the 68000 will detect a 
NIL pointer reference if the pointer is to a word-aligned type. However, a NIL 
value in a pointer to a CHAR, BOOLEAN, or small enumeration type, or a 
reference to a field of one of those types in a record, will nol cause a run-time 
error.

On the other hand, the compiled code will detect both indexing outside an 
array, and stack overflow at procedure entry time. The latter is much better 
than the usual Macintosh scheme of checking on each vertical retrace 
interrupt to see whether or not the stack and heap are now overlapped. What 
can the Apple engineers have been thinking of when they settled on such a 
probabilistic scheme for detecting stack overflow?

In short, while the compiler produces a correct object program from a correct 
source program, don't expect too much help in finding your mistakes. Errors 
which aia detected usually throw you into Macsbua (if you have it installed), or

- page 45 —



(:!

t

\
\
\

generate a bomb. There does not appear to be any provision for connecting 

the error traps to a coroutine.

Performance

The benchmark in Appendix 2_ of reference (1]

the number of iterations of a loop performed in one minute, so big9£LQyinb®rS- 

are better.

Note:
1. The effective clock rate of the 68000 MPU in the Lisa is about 5 MHz 
(slightly less due to occasional wait states to keep the MPU in step with the 
refresh circuitry). If a similar compiler were tested on another, faster 68000 
system, such as a 10 or 12 MHz Stride, the performance to be expected can 
be estimated as the ratio of the clock rates (that is, the effective rates, allowing 
for wait states, refresh time, etc). It appears that a 10 MHz 68000 system 
should match or beat a Lilith' for speed in most tests, and a 12 MHz 68000 
should beat a Lilith hands down for everthing except REALS (tests e and f).

2. The times for a Mac 512K are probably exactly the same as those for a Mac 
Plus. The performance enhancements of the Mac Plus over the earlier Mac 
are all in the area of either I/O or the ROM routines, neither of which are 
reflected in the Lilith benchmark used here.

3. The ratio between the Lisa and Mac+ numbers is not the same for all tests, 
which may indicate observation errors by the author. Caveat lector.

was run on a Lisa 2+5 with

Now let’s benchmark a 68020, an NCR ALP, an Inmos Transputer, and an 
Acorn RISC Machine! Seriously, of course, speed must be weighed against 
such other considerations as the superior error detection of the Lilith.

facility

!

Lilith/Lisa
Lisa Mac* Lilith ratio

a empty REPEAT loop 
b empty WHILE loop 
c empty FOR loop 
d CARDINAL arithmetic 
e REAL arithmetic 
f sin, exp, In, sqrt 
g array access 
h same with bounds test 
i matrix access 
j same with bounds test 
k call of empty procedure 
I with 4 parameters 
m copying arrays 
n access via pointer

245 269 321 1.31
246 269 334 1.36
283 313 422 1.49

81 104 187 2.31
23 27 130 5.65
12 14 87 7.25
62 68 109 1.76
49 55 89 1.82

101 120 197 1.95
83 98 164 1.98
71 74 144 2.03
52 55 94 1.81
49 53 63 1.29
62 66 125 2.02

:
~ page 46 -

i



V

Glue Samples

The following fragments show typical CODE constructs for accessing the 
Macintosh OS and Toolbox.

IMPLEMENTATION MODULE MemoryMgr; (* 20 Aug 1985 — C.Jewell 
*)

FROM SYSTEM
FROM SysTypes IMPORT LONGINT, Handle;

IMPORT ADDRESS, CODE, REGISTER;

(* The following constants are for use with the CODE 
* construct. They embody the instructions which will

. be
* needed to provide an interface to the ROM routines.
*)0

CONST
(* Macintosh OS or Toolbox trap*) 
(* OS trap with "pass AO" set .*) 
(* MOVE.W d(SP),-(SP)
(* MOVE.L d(SP),-(SP)
(* MOVE A. L d (SP) , AO 
(* MOVE.L d(SP),DO 
(* MOVE.L AO, d (SP )*
(* MOVE.L DO,d(SP)
(* LEA d (SP) , AO
(* MOVE.L A5,-(SP)
(* MOVE.L short.abs,A5 *)
(* an anchored variable *)
(* MOVE .L (SP) +, A5 
(* MOVE . W (SP) +, d (SP)
(* MOVE . L (SP) + , d (SP)
(* SUBQ.L #2,SP 
(* SUBQ.L #4,SP 
(* return from subroutine *)

=* 0A000H; 
= 0A100H; 
« 03F2FH; 
= 02F2FH; 
= 0206FH; 
= 0202FH; 
= 02F48H; 
= 02F40H; 
= 041EFH; 
= 02F0DH; 
= 02A78H; 
= 00904H; 
= 02A5FH; 
= 03F5FH;

Mac 
Macl
DupWParm 
DupLParm 
GetAParm 
GetDParm 
StoreAO 
StoreDO 
LEAParm 
SaveA5 
SetA5 
currentA5 
RestoreA5 
CopyResultW 
CopyResultL = 02F5FH; 
MakeRoomW

*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)= 0558FH; 

= 0598FH; 
== 04E75H;

*)MakeRoomL0 RTS

(*$P-*)
(* Here is a register-based routine. The trap takes its *) 
(* parameter in DO, and returns its function result in AO *) 
PROCEDURE NewHandle (logicalSize : Size) : Handle;

BEGIN
CODE (SaveA5);
CODE (SetA5); CODE (currentA5);
CODE (GetDParm); CODE (8);
CODE (Mac+34);
CODE (StoreAO); CODE (12); 
memError INTEGER (REGISTER (0));

(* Note that memErr is an integer variable, *) 
(* exported from our definition module 

CODE (RestoreA5);
CODE (RTS);

END NewHandle;

*)

- page 47 -



/

L

\
Cj'l

V\

(*$p-*) ,
(* Here's another register-based trap-
in *)
(* AO, and returns 
negative *)
(* error code, 
bit *)
(* type, we 
value *)
(* which has its sign bit turned on. 
PROCEDURE GetHandleSize (h: Handle) : Size;- 

BEGIN

\It wants the handle \

in DO either a positive size. or a

Since the compiler doesn't have a signed 32- 

will have to compare for >” the least ADDRESS

.*)

CODE (SaveA5);
CODE (SetA5); CODE (currentA5);
CODE (GetAParm); CODE (8);
CODE (Mac+37);
CODE (StoreDO); CODE (12);
IF REGISTER (0) >= 80000000H THEN

memError := INTEGER (REGISTER (0));

!'■

ELSE
memError := 0;

END;
CODE (RestoreA5); 
CODE (RTS)/

END GetHandleSize;

END MemoryMgr.

IMPLEMENTATION MODULE ResourceMgr;

FROM SysType-s IMPORT Handle, OSStr255; 
FROM SYSTEM IMPORT CODE;

C
CONST

MOVEQ = 07000H; (* MOVEQ 
DBRA - 051C8H; (* DBF 

(* Many of the constants shown in MemoryMgr are also needed

#0,D0 (just add data) *) 
DO,disp *):

, i
: *)

(*$P-*)
(* Here is an example of a stack-oriented function trap. *) 
PROCEDURE OpenResFile (VAR fileName : OSStr255) : INTEGER; 

BEGIN

1

CODE (SaveA5);
CODE (SetA5); CODE (currentA5); 
CODE (MakeRoomW);
CODE (DupLParm); CODE (10);
CODE (0A997H);
CODE (CopyResultW); CODE (12); 
CODE (RTS);

END OpenResFile;

i.

- page 48 -



(* And here's another, with more parameters, *) 
(* but no function value to return *)
PROCEDURE GetResInfo (theResource : Handle;

VAR theID

f

?
: INTEGER; 

VAR theType : ResType; 
VAR name,. ?,OSStr25StWM.-.• .*

■ BEGIN
CODE (SaveA5); 
CODE (Set AS) ; 
CODE (MOVEQ+3); 
CODE (DupLParm); 
CODE (DBRA); '
CODE (0A9A8H) ; 
CODE (RTS);

END GetResInfo;

CODE (currentA5)*r ** - -

CODE (20) ; (* done 4 times *). 
CODE (OFFFAH); (* to the DupLParm *)

?. • V-

END ResourceMgr.

References
1 N Wirth The Personal Computer Liljthj Institut fur Informatik, ETH Zurich, 
April 19a1 Printfifi October 1983, by IModula Research Institute, Provo,
Utah.

- page 49 -



1

.

NewSUidiP"*- FnffineeHnff a Modula-2 Application (OT MflCinVOSh^ 

Andrew H. Davidson, H. Bruce Herrmann, Erin Rae Hotter VJl5?»4ine 7 
P.O.Box 1211 

Culver City. CA 90232 
213/277-7217 pfv.

NewStudio*4 is a 3-D graphics application for visual designers of all 
kinds. The initial implementation, in Modula-2 for the Apple 
Macintosh*4, is tailored for use by architects. NewStudio*4 allows a 
designer to rapidly explore alternative designs in the early stages of a 
project. It accomplishes this by generating 3-D views of the design, 
in a flexible manner and with a variety of rendering methods, as it is 
being created

Abstract

il!

This paper describes the software engineering aspects of the design 
and implementation of NewStudio1”, as they are related to Modula-2 
and the Macintosh**. We discuss the implementation language and 
compiler selection decisions, the development environment, and the 
software architecture of the application. Finally, an analysis of the 
project is made, considering the facilities and problems encountered 
during development.

;

i 0

Introduction

In a typical architectural project, the building design phase is limited to approximately 20* of 
the total time allocated to the project, due to budgetary and deadline constraints. The remaining 
80* of the time is used for the creation of "working" (construction) drawings. This requires the 
architect to conceive and develop the overall plan of the project in a fairly short period of time. 
While computer aided design systems can help speed up the production and modification of 
construction drawings once the design Is complete, they are not normally an effective tool In the 
design process itself. They impose a rigid and inflexible methodolog/ upon the designer, which is a 
reasonable price to pay for sets of accurate detailed production documents but entirely 
unreasonable for more preliminary design documents.

! - page 50 —

i

Vs



NevStodio"
PM 2

Architectural designs ore generally conceived and drawn In two views - plan (top) tnd elevation 
(side). One of the most difficult tasks for the designer is converting these two 2-0 views into a 
realistic 3-D rendering. However, this is an important pert of the process only in 3-0 
can the effectiveness and appropriateness of a design be evaluated But perspective, and even 
parallel projection renderings, are difficult and time-consuming to execute, and thus slow down 
the design process, shortening even more an already tight schedule. NewStudio** is a software tool 

. which allows a designer to rapidly explore alternative designs in the early stages of a project, 
when he is experimenting with rough shapes and layout constraints. The designer enters objects 
into the system by specifying two 2-0 views of the object which are automatically extruded to 
3-0 solids. NewStudio*1 can calculate and present a 3-0 view at any time during this process.

The remaining sections of this paper describe the software engineering aspects of the design and 
implementation of NewStudio” We discuss the various harAvars and software choices made for 
implementation, the development environment for the project, and the software architecture of 
the application. Finally, on analysis of the project is mode, considering the facilities and problems
encountered during development

Choices

Once NewStudio*1 was conceived, a number of decisions had to be made before its implementation 
could be begun. First was the choice of o target computer. We felt, for a number of reasons, that 
NewStudio** should run on a microcomputer. The primary user of the predict is likely to be an 
architect in a relatively small firm. The current popularity of microprocessors in professional 
fields, their low cost, and the wide software base available in a variety of applications ell 
contribute to the micro s appropriateness for this task.

Having targeted NewStudio** for a micro, two obvious candidates presented themselves; IBM PC end 
Apple Macintosh. We chose the Macintosh for its well known ease of use, its appeal as a graphic 
tool, aid the standard user interface it provides. Despite the richer development environment 
available on the PC, and the difficulty of developing software for the Macintosh, marketing tconsiderations dictated the choice.

Once we had settled on the Macintosh, we had to select a development language. We wanted to do all 
of our development work directly on the Macintosh, rather than using a Lisa cross-development 
system, because of the cost and the uncertain future of the Lisa. At the time we began work on 
NewStudio** (December, 1984) the programming languages available on the Macintosh were 
68000 assembly language. Pascal, C, and Modula-2. We ruled out assembly language immediately 
because of the high-level nature of our application, and the inherent difficulties in implementing

f

- page 51 -

!



r v

i
pap 3NevStudio'*

limitations, unacceptable run-time execution speed, and incomplete access operating system 
functions. Although there were a number of mature C compilers on the market,we preferred a 
language with strong type-checking and had personal biases against the style of programming Into 
which one tends to be led with a Modula-2, being strongly typed, providing a rich set of (Me 
structuring and control facilities, allowing efficient and convenient access to system level 
features, and designed for large system development efforts, was an alternative that mat our 
requirements. None of us hod used the language before, but strong Pascal backgrounds and an 
Interest in working in Modula-2 led us to feel confident about our choice of MotUJa-2.

We beta-tested two different implementations of Modula-2 for the Macintosh. The first was a 
UCSO p-System product from Yolition Systems. The other, MacModula-2, is derived from the 
original ETH M-code compiler and is marketed by Module Corporation. We deckfed to use 
MacModula-2, partly because it was closer to being a commercially supported product at the time, 
and partly due to our inexperience with the p-System environment We had some concern about 
compiler and run-time performance of the MacModula-2 system, due to the fact that it is an 
interpreted system, but preliminary benchmarks indicated run-time performance to be adequate 
for graphics interactions. As it turned out, the Yolition Systems product was never commercially 
released.

ii
i

\

Implementation

The implementation team for NewStudio*1 consisted of three part-time software engineers using 
independent 512K Macintosh systems for all development and testing. One of us concentrated on the 
interactive graphics portion of the software - the Macintosh Toolbox interface (drawing routines, 
mouse input, menu and window control, etc). A second developer did all of the 3-D graphics 
software - clipping, perspective, and rendering algorithms. The third member of the teem 
implemented a data base management system (DBMS) and various utilities, handled the operating 
system interfaces, and served as the system coordinator and integrator.

There were a number of learning curves which had to be overcome during the project, and all of 
these figured heevily in the character of our development efforts. Modula-2, although familiar to 
us in theory, W8S a new language for all of us to be writing in, and there is no substitute for 
experience in mastering the details and idiosyncracies of any programming language. Another area 
which was new to all of us was the Macintosh Toolbox. It is a software package which allows a 
Macintosh programmer to create very sophisticated applications, but with that power comes 
complexity. It takes a long time to absorb all of the capabilities available in the Toolbox, and it 
does not lend itself easily to stepwise refinement - you need to understand most of it before you can

■4

;

I

- page 52 -
i:

l



"V
i
/

NevStodio"
p«g»4

use any oC it, and this takes many re-readings of the Toolbox manual (Inside Macintosh). Another 
learning curve was the Mactlodula-2 system itself. It provides a large set of library modules, 
many of which we needed to use, including complete interfaces to the Toolbox routines. And finally,’ 
despite having been specified in fair detail beforehand, the desip of NewStudki*4 itself was 
changing as we worked on it Our ittees about user interfaces, necessary features, internal data 
structures, and implementation techniques were constantly evolving during the development cycle.
All of these things conspired to complicate our task.

NewStudtom is divided into 15 Modula-2 modules. Figure 1 illustrates this module decomposition. 
The directed arrows loosely describe the import and export relationships between modules. Module 
Glob*ls contains system-wide constant and type declarations and is imported by all other modules 
in the system. Utilities is a collection of application-independent routines, primarily string 
manipulation functions (conversion between binary and text format). NevStudio is the main ' 
proyam and contains the software which processes all events (mouse, menu, and window 
activities) dispatching control to all other functions. Initialization performs all necessary 
startup operations for the application and synchronizes the initialization of all other modules. 
Rendering handles all 3-D calculations. The Menu, Window, Keyboard, Display, and Control 
modules are very tightly coupled and perform all the user-interface and drawing functions. The 
DesignData, DesignParams, and DesignFile modules implement interfaces to the different 
parts of theNewStudio"1 data base. Module Filel/O concentrates the access to the Macintosh file 
system in one module.

Because the MacModula-2 system does not have a symbolic debugging capability, we implemented 
debugging features of our own (in module Debugger). This debugger provides the ability to set 
breakpoints at any place in the system, and to display text messages under program control from 
these b rede points. The debugger allows the messages to be directed to e normal text window on the 
Macintosh screen, a dialog box, a disk file, printer, or serial port (connected to another 
Macintosh, for example). Whether or not breakpoint messages ere issued at all may be controlled 
dynamically at run time through a special menu item installed when the application enables the 
debugger. Each breakpoint message is tagged with both the module end routine in which it 
originates, and this information is automatically inserted into the message when it is displayed. A 
set of modules which filters messages to be displayed may also be dynamically specified in order to 
receive debugging messages from specific modules in the system. Figure 2 illustrates the debugger 
control dialog box, and F igure 3 is a sample breakpoint message.

Evaluation

An evaluation of the software engineering of NewStudio*' with respect to Modula-2 must address 
two areas - the Modula-2 language itself, and the MacModula-2 implementation of the language.

~ Page 53



1
Npwfstndio™ Mnfillle Decomposltioa

kNevStudio

}( RenderingInitialization
i;ll

Interactive Or gobies.

^ Menu Window JTlCeyboard^ Display ^ Control ^

DBMS

}—(M(
Design File Design Para msDesign Data

I
( )

FUe I/O

! 1 t t
)(c )( )

Globals Debugger Utilities

Figure 1- page 54 -



NewStudio’" Debugger Control

j file Edit Options Uieu) 3-D Settings

NewStudlo Debugger Options 

Message Display:

O Off (§) On

E3 NewStudio 

Lj Global 
H Initialization
□ DesignOata
□ DesignPoroms
□ OesignFile
□ Menu
□ Window
□ Keyboard
□ Display 
13 Control
□ Rendering 
EJFilelO
□ Utilities

Message Destination: 

O Terminal 

® Dialog Boh 

OFile 

O Printer 

O Serial Port

[ Cancel ]

Figure 2

Np.wStudio'" Breakpoint Message

MenuModule:
ProcessMenuSelectionProcedure:

Message: Menu selection mode - ID - 7004; item - 2

i «» i (Debugger Halt )

NS

Figure 3

~ page 55-



PM5NevStadio”

The chart in Figure 4 summarizes the issues.

For the most part, we found that the design and features of Mobile-2 worked to our advantage, A 
strongly typed language enforces a discipline on programming which fundamentally changes the 
software debugging process: by moving much of that debugging effort from run-time to 
compile-time. Because of the difficulty in debugging interactive, timing-dependent applications, 
this is a very useful feature. The rich data-structuring and control mechanisms in the language 
make it very easy to produce readable, maintainable software. Modula-2 provides clear, flexible, 
and controlled access to low-level system features on the host computer. In building large, 
"reel-world", applications this Is almost always a necessity, and MoAJla-2 does well In that 
regard.

Perhaps the most important feature of Modula-2 to us as a development team was the combination 
of Module-2’s separate compilation facility and the ability to divorce module interfaces from their 
implementations. Due to the part-time nature of the project, it was necessary to do much of our 
work at separate locations and times. A typical cycle would be for the development teem to spend a 
weekend together designing and specifying modules and interfaces between them, followed by a 
week of separate implementation efforts. The following weekend would begin by integrating our 
modules and then go back into the interface/implementation cycle. The facility provided by 
Modula-2 for compiling DEFINITION modules to specify interfaces separately from their 
IMPLEMENTATIONS was invaluable in our "distributed" programming environment

There were a few things about the Modula-2 language which did hinder, rather than aid, our 
(efforts. The language does not provide for automatic type transfers and conversions in arithmetic 
rexpressions. This often forced what would ordinarily be fairly simple mathematical expressions to 

• / become long and cumbersome. The underlying formula became obfuscated by multiple layers of 
I CARDINAL to INTEGER, INTEGER to CARDINAL, REAL to INTEGER, INTEGER to REAL, etc. 
Vconversions.

k
0:

The fact that input/output functions are not defined in the language is both a blessing and a curse. 
It is good in that a system designer using Modula-2 is not limited to the I/O features provided in 
the language, but is free to take advantage of ail the capabilities of the host computer via library 
modules. However, the lack of a simple intrinsic function like Pascal's vriteln, allowing the 
printing of an arbitrary list of mixed data types, is a handicap to efficient debugging efforts. Most 
ModJla-2 implementations provide EcUefiurd, fntelnt, VriteRol, RritcStr. and TriteLa. 
and it is true that the function of Pascal’s writeln can be achieved with these substitutes. Having 
to import these routines from the proper library and simply having to write more code 8llows for 
more typos and more compiles. This makes simply examining the values of variables difficult.

We are well aware of the reasons that the above-mentioned features are not part of the Modula-2 
language. We only want to point out that their lack has been a disadvantage to us in our development

• page 56



NewStudio™ Software Engineering Evaluation

Pros Cons+- Modula-2

type transfers cumbersome in 
arithmetic expressions 

no simple intrinsics for debugging 
(e.g. Pascal WRITELN)

type checking 

code readability 

low-level system access 
separation of DEFINITION and 

IMPLEMENTATION

MacModula-2

compilation speed 
M-code interpreter makes using 

native debuggers difficult

simple, efficient Toolbox access 
good run-time performance 
excellent technical support

Figure 4

- page 57



<<

pag* 6NevStudio"

Venvironment

The MacModula-2 Implementation providea simple, efficient access to the Macintosh Toolbox. The 
run-time system, despite being an M-code interpreter, provides acceptable performance for most 
functions. We also received excellent technical support from the Motola Corporation One problem 
with the M-code interpreter, however, is that it prevents using the native Macintosh debuggers 
since they operate on the interpreter rather than the actual MoAila-2 application cods But the 
single biggest obstacle to development progress we encountered in using MacModula-2 was the 
slow compilation speed - approximately 80 lines per minute. This could have been improved 
somewhat by using a hard disk instead of floppies for source code and library mobiles, but the real 
limiting factor in compilation is computation, not I/O. With an average implementation modite 
si2e of 800 lines, the turnaround time is excessive for larga system development efforts. The 
reason for the slow speed of the compiler appears to be the interpreter overhead, since the 
compiler itself is written in Modula-2 and runs under the M-code interpreter. Presumably, a 
native-code version of the same system would be more satisfactory.

Summary

To date (September, 1985), we have completed a prototype implementation of NewStudio™ It is 
composed of 15 modules with 10,000 lines of source code. This effort involved approximately 18 
person-months in 6 elapsed months. Our estimates for turning the prototype system into a final 
product are an additional 5-10,000 lines of code with another 12 person-months of effort In 
addition, we will be converting computationally expensive portions of the rendering algorithm to 
68000 assembly language. Figures 5 and 6 are sample screens of the NewStudio*1 prototype in
use.

A set of software tools, in addition to a compiler, is necessary for efficient software development A 
should be part of every software development environment It should be 

3XmJyJjP,»that debugging can take place at the source code level, and it should be interactive, so 
that the developer can manipulate the execution of the program as he is debugging it A compiler 
gm-reference is useful in tracking down logical errors in syntactically valid source coda. As an 
example, consider the case of (erroneously) multiply declared variables at different scope levels. 
A fetch, script" file processor helps automate the compiling and linking of systems composed of 
many modules. These software tools are all independent of the development language.

One final useful tool, specific to Modula-2, is a module dependency analyzer. Because of the 
version checking across modules which is done by Modula-2 compilers and Tinkers, it is often 
necessary to derive a list of modules (DEFINITION and IMPLEMENTATION) which must be 
recompiled when another module has been recompiled. These dependencies quickly become very

- page 58 -



NewSludio 2-D Views

rT~ flit M|^0ption^Uieu^3-P Scttingt
dgsiqnjjPtan

i iiA! ! I !i : i! ?
t

! \ ii
4-2 ii I; 5 □ !!! \i 1

i\ L* ■

;p

El
desionljSection

• 1*.i II u !s i| S5l "T !I I* [ '1! I! iI \! } !
!! :!i : j iI5 fI! [\ ii ; :1 !

Figure 5

NpM/Sttidin'" 3-D Perspective View

6 File Edit Options Uieu> 3-P Settings

IQ

Figure 6



N 4f
\

w7 ■
/

NavStudicT W 7
♦

V

complex in large systems, and it is vary difficult to maintain a list of them manually whan the 
system is undergoing rapid change. A moduhf dependency lister would analyze motto la source code 
files and automatically generate the list of inter-module dependencies^ It could also be made to 
automatically generate batch files in order to initiate the recompilation of necessary modules.

In conclusion, we consider our use of Modula-2 as a system implementation language to horn been 
quite successful in the development of NewStudio**. c
Acknowledgements

We wish to thank Donald Q. Leeper for his help in unlocking the Toolbox and writing demo 
programs, and Emily K. Nagle for editing this paper. Mary Ann Morris Ahearn and Stephen n. 
Skipper, were instrumental in the original design of NewStudio**. Finally, for genera! 
partnership, continuous support, and NewStudio** design, we are indebted to Jackson Calvin Green 
and Emily K. Nagle.

"NewStudio" is a trademark of Newline 7.
“Apple" is o registered trademark of Apple Oomputer, Inc.
“Macintosh" is trademark licensed to AppleComputer, Inc.
"IBM" is a registered trademark of International Business Machines Corp.

~ Page 60 -



2 News # 0 October 1984 MODUS Quarterly # 3/uU- July 1985
/Ljifli'ons ... to Modula-2, Wirth Letter re opaque types, Endicott

jpec* of Standard Modules, Hoppe Letter on language issues, Hoffmann
/kodula-2 bibliography. Brown Modula-2 in "Real Time", Barrow
Modus Membership list RajalnOut: safer I/O, Thiagarajan
Modula-2 Implementation Questionaire Contentious Problems, Cornelius

Expressions in Modula-2, Wichmann
Modula-2 News # 1 January 1985 Scope Problems: Modules, Cornelius

Corrections to compiler list
Letter to Editor, Layman 
Letter to Editor, Bush 
Gleaves1 Modula-2 text, DeMarco 
MODUS Paris meeting, Blunsdon 
Report of M2 Working Group, Souter 
Library Rationale by Randy Bush 
Library Definition Modules 
library Documentation by Jon Bondy 

walidation of. Modula-2 Impl, Siegel

# 2 April 1985

MODUS Quarterly # 4 November 1985

MODUS Meeting Report by Bob Peterson 
A Writer's View of Conf, Sam'l Bassett 
Concerns of a Programmer, Dennis Cohen 
Mods to Standard Lib, Nagler & Siegel ~ 
Std Lib and Ext'n to Modula-2, Odersky 
Std Lib for Unix by Morris Djavaheri 
Impl of Std Lib for PC's, Verhulst 
M-2 Compilation and Beyond, Poster 
Modula-2 Processes, Roger Henry

MODUS Quarterly # 5 February 1986

Export Module Identifier, Cornelius 
multi-dimensional open arrays, Wirth 
DIV, MOD, /, and REM, Niklaus Wirth 
Multi-dimensional open arrays, Steiger 
NULL-terminated strings, Poulsen 
ISO Ballot Results re BSI Modula-2 
Draft BSI I/O Library, Eisenbach 
Portable Language Rationale, Hopper + 
ETH-Z Modula-2 for Macintosh, Jewell 
NewStudio: for Macintosh, Davidson +

MODUS Quarterly

Letter on Library, Anderson 
Letter to Editor, Emerson 
Comments on Modula-2, Emerson 
Opaque Types, French & Mitchell 
Dynamic Instantiation, Sumner 
Linking Modula-2, Symons 
Library Comments, Peterson 
Modula Compilers, Smith 
Coding War Games, DeMarco 
M2, Alt. to C, Djavaheri/Osborne

1
.)

MODUS Administrators supply single copies at $5 US or 12 Swiss Francs. 

Hints for contributers:
Send CAMERA READY copy to the editor (dot matrix copy is usually 
unacceptable). Machine readable copy is preferred. Present facilities 
permit printing from electronic mail and floppy disks (Sage, IBM PC, 
Macintosh) using troff. Script and PostScript formatting systems. 
Working papers and notes about work in progress are encouraged.
MODUS Quarterly is not perfect, it is current.
Please indicate that publication of your submission is permitted. 
Correspondence not for publication should be PROMINENTLY so marked.

Richard Karpinski, Editor TeleMail
BITNET

M2News or RKarpinski 
Dickgucsfcca6521 Raymond Street 

Oakland, CA 94609 
(415) 666-4529 (12-7 pm) 
(415) 658-3797 (ans. mach.)

CompuServe 70215,1277 
UUCP lucbvaxlucsfcglIcca.ucsfldick...



Modula-2 Users’ Association 

MEMBERSHIP APPLICATION

Name:

Affiliation:

NAddress:_

Address:
Ti'

Country:Postal Code:State:

Electronic Addr: _—1Phone:(

rOption : __ Do NOT print my phone number in any rosters
or :__  Print ONLY my name and country in any rosters
or :__  Do NOT release my name on mailing lists

or Renewal___Application as: New Member

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of U5 group who are outside of North America, add $ 10.00

In North and South America, please send 
check or money order (drawn in US dollars) transfer (in Swiss Francs) payable to 
payable to Modula-2 Users' Association at: Modula-2 Users' Association at:

Otherwise, please send check or bank

P.O. Box 51778
Palo Alto, California 94303
United States

Postfach 289 
CH-8025 Zurich 
Switzerland

The Modula-2 Users' Association is a forum for all parties interested in the Modula-2 
Language to meet and exchange ideas. The primary means of communication is through 
the Newsletter which is published four times a year. Membership is for an academic 
year, and you will receive all newsletters for the full year in which you join. Mid-year 
applications receive that year's back issues. Modula-2 is a new and developing language; 
this organization provides implementors and serious users a means to discuss and keep 
informed about the standardization effort, while discussing implementation ideas and 
peculiarities. For the recreational user, there will be information on the status of the 
language, along with examples and ideas for programming in Modula-2. For everyone, 
there is information on current known implementations and other resources available for 
information on the language.



Modula-2 Users' Association
MEMBERSHIP APPLICATION

/

Affiliation

Address:

Address:

Country.Postal Code:State:

Electronic Addr:Phone:(
«

Option :___ Do NOT print my phone number in any rosters
or :___ Print ONLY my name and country in any rosters .
or :___ Do NOT release my name on mailing lists

Application as: New Member___ or Renewal-----

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of US group who are outside of North America, add $ 10,00

Otherwise, please send check or bankIn North and South America, please send 
check or money order (drawn in US dollars) transfer (in Swiss Francs) payable to 

9 payable to Modula-2 Users' Association at: Modula-2 Users' Association at:

Postfach 289 
CH-8025 Zurich 
Switzerland

P.O. Box 51778
Palo Alto, California 94303
United States

The Modula-2 Users' Association is a forum for all parties interested in the Modula-2 
Language to meet and exchange ideas. The primary means of communication is through 
the Newsletter which is published four times a year. Membership is for an academic 
year, and you will receive all newsletters for the full year in which you join. Mid-year 
applications receive that year's back issues. Modula-2 is a new and developing language; 
this organization provides implementors and serious users a means to discuss and keep 
informed about the standardization effort, while discussing implementation ideas and 
peculiarities. For the recreational user, there will be information on the status of the 
language, along with examples and ideas for programming in Modula-2. For everyone, 
there is information on current known implementations and other resources available for 
information on the language.




