
The MODUS Quarterly

Issue # 4 » YOUR LAST ISSUE <<i

to until you renew.November 198530

_u
23

Modula-2 News for MODUS, -.he Modula-2 Users Association.-jj
>oz

CONTENT

Cover 2. MODUS officers ana contacts di :ec . r’z
-j Page 1. State of MODUS by George Symons

2. MODUS Meeting Report by Bob Peterson

4. A Writer’s View of a Programmer's Conference by Sam'l Bassett

6. Concerns of a Programmer by Dennis Cohen

8. A Few Modifications to a Modula Standard Library Proposal
by Robert J. Nagler and Jeremy A. Siegel

13. Proposal for a standard library and an Extension to Modula-2
by Martin Oaersky, Peter Sollich & Mike Weisert

26. Standard Library for the Unix OS by Morris Djavaheri

28. An Implementation of the Standard Library for PC's
by E. Verhulst

34. Editorial by Richard Karpinski

34. Modula-2 Compilation and Beyond by D.G. Foster

S)

>

mi
S'
<
ZD
O'

2

47. Modula-2 Processes - Problems and Suggestions by Roger Henry

Cover 3. Membership form to photocopy

Cover 4. Return address

Copyright 1985 by MODUS, the Modula-2 Users Association.
All rights reserved.

Non-commercial copying for private or classroom use is permitted.
For other copying, reprint or republication permission,

contact the author or the editor.

i

\

Directors of' MODUS, the Modula-2 Users Association:

Svend Erik KnudsenRandy Bush
Institut fuer InformatikPacific Systems Group

601 South 12th Court ETH Zuerich
CH-8092 ZuerichCoos Bay, OR 97420

(503) 267-6970 (Oil

Tom DeMarco Heinz WakJburger
Atlantic Systems Guild EJ22SSA

CH-1800 Vevey 2 Switzerland353 West 12th Street
New York, NY 10014 (021)6261 71
(212) 620-4282

Jean-Louis Dewez
Laboratoire de Micro Informatique
Conserveratoire ANM
2, Rue Conte
F-75003 Paris
(01) 271-2414

Administration and membership:

Mrs. Aline SigristEurope:USA: George Symons
c/o ERDISMODUS

PO Box 51778 (021)52 61 71Case Postale 35
Palo Alto, CA 94303
(415) 322-0547 1800 Vevey 2 Switzerland

Missing an issue? «Editor, Modula-2 News: >> Problems?

Richard Karpinski Contact your membership-
coordinator (see above).6521 Raymond Street

Oakland, CA 94609
Weekdays (415) 666-4529 (12-7 pm)
Anytime (415) 658-3797 (ans. mach.)
TeleMail M2News or RKarpinski

dick@ucsfccaBITNET
CompuServe 70215,1277

...iucbvaxiucsfcgllcca.ucsfidickUSENET

Publisher: Publication schedule:

George Symons (see above) Deadline Issue

Feb15 Jan
Submissions for publication: 15 Apr May

Aug
Nov

15 Jul
Send CAMERA READY copy to the editor. 15 Oct
Dot matrix copy is often unacceptable.
Machine readable copy is preferred: 60 lines, 70/84 characters.

TeleMail address: M2News

Please indicate that publication of your submission is permitted.
Correspondence not for publication should be PROMINENTLY so marked.

:\
I

BBMB&A& M&TBS3

Issue Number H of the Newsletter. This means tha^one year hasWe have now reached
transpired since MODUS began accepting memberships and printing Newsletters. This
also means that it is time for everyone to renew their membership for another year so
that they may continue receiving the Newsletters. This is done by filling out 3 new
Membership Application (which can be found in this Newsletter), and sending it in with a
check to the appropriate address.

For those who are confused by this renewal policy, it is because Modus membership is on
an academic year basis. When you sena in your money and membership form, you are a

® member for that academic year (including the following summer), and therefore receive

all of the Newsletters for that year (including those missed if you join mid-year) This
both makes it easier on the organization since renewals happen only once a year, and
provides the members with all of the Newsletters for that year so that it is harder to

miss information.

During this year, membership in MODUS has grown to fjver 300 members through the

United States office, and over 200 members through the Switzerland office We arm
looking forward to continued growth during this next year, with the following cca’s t

mind:

• Publish more papers in the Newsletter.
• Publish more language and library discussions
• Hold the September and possibly future meetings
• Cooperate further with the British Standards Institution m op°r- meet’ng?»

We look forward to your continued membership

Sincerely,

Last C\4wceGeorge J. Symons
Secretary

PI BA SB BBBBW M@W

1
\Modula-2 Users’ Association

MEMBERSHIP APPLICATION
\

.

pu^^
issu

m
not,

wo<!
\i«'.

Name:

Affiliation:
\

Address:
. .*

xer
Address:

\p-Country:Postal Code:State t:

Electronic Addr:Phone:(

c fOption :___Do NOT print my phone number in any rosters
or :__ Print ONLY my name and country in any rosters

Do NOT release my name on mailing listsor

or RenewalApplication as New Member

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of US group who are outside of North America, add $ 10.00

in North and South America, please send
check or money order (drawn in US dollars) transfer (in Swiss Francs) payable to
payable to Modula-2 Users' Association at: Modula-2 Users' Association at-

Otherwise, please sena check or bank

o
9.0 Box 51778
'alo Alto, California 94303
Jnited States

Aline Sigrist
moous Secretary
EJZJDtS SA
P.O.Box 35
CH-1800 Vevey 2

The Modula-2 Users' Association is a forum for all parties interested in the Modula-2
Language to meet and exchange ideas. The primary means of communication is through
the Newsletter which is published four times a year. Membership is for an academic
year, and you will receive all newsletters for the full year in which you join. Mid-year
applications receive that year's back issues. Modula-2 is a new and developing language;
this organization provides implementors and serious users a means to discuss and keep
informed about the standardization effort, while discussing implementation ideas and
peculiarities. For the recreational user, there will be information on the status of the
language, along with examples and ideas for programming in Modula-2. For everyone,
there is information on current known implementations and other resources available for
information on the language.

a

The State of Modus

welcome to a new yearl Modus has successfully completed its first year of
W blishin9 newsletters, and except for a slight delay with the final

ssue, I think we did an excellent job. I would like to thank all of you
iho contributed to the newsletter, and to encourage those of you who have
not to please submit an article or a letter if you feel the subject is
important to you.

pu

Modus has also managed toc sponsor a number of meetings during the year,
of these were in the UK and Europe, with the final one being held in

I only attended the meeting in the US, but from the reports I
received, all of these meetings were quite successful and deserve a repeat
performance sometime during this coming year.

During our initial year, the organization evolved in many ways, and grew
to a size larger than our original projections. For those of you who are
not familiar. Modus is a diverse international organization. We have
headquarters in Palo Alto, California and Vevey, Switzerland. The
organization shares the newsletter between the two headquarters as well as
many mutual directors. But legally, there are two separate organizations,

(^jith the US portion being a California Corporation.

The membership of Modus has grown from just a handful at the beginning of
last year to over 350 in the US and over 250 in Europe with the number
growing every day. We have received a lot of cooperation from the
companies producing and selling Modula-2 compilers which has helped spread
information on the organization without requiring advertising by Modus.
Modus does not plan to advertise in order to increase membership. We are
interested in providing a means of communication for serious users and
implementors of Modula-2, and information for those interested in the
language. To meet this goal, compiler vendors notices, and word of mouth
from you gets Modus information to potential members.

As far as the financial situation, I only have figures for the California
Corporation. The Corporation is solvent and even slightly profitable.
With income from Memberships at about $7,000 and payment from the European
group for Newsletters that were sent over in bulk, there was a $950 profit
at the end of our fiscal year (Sept. 30). There are also about 400 copies
^f each issue of the Newsletter left over for new members who want them.

Two
the USA.

I would like to take this opportunity to thank all of the people who have
given their time to help Modus. Modus has been run completely by
volunteers. Up to this time the only services we have paid for are our
legal, accounting and printing services. I would like to give special
thanks to Randy Bush and Tom DeMarco who spearheaded the effort on the US
side to make the organization a reality. I would also like to thank all
of the people at Pacific Systems Group who gave their time to make the
make sure the membership database was in order, and the first three issues
of the Newsletters were mailed out. I would also like to thank Logitech
and Charmaine Bennett for taking over the job of mailing out the
Newsletter. And most of all, I would like to thank TDick Karpinski for
being the editor of this Newsletter. [Being is easy, doing is hard, rhk

I hope all of last years members enjoyed the Newsletters and received
information that was useful to you. I also hope that the information that
will be upcomming in this and future issues will be at least valuable.

But remember, that depends on you.

George J. Symons, Secretary 1

MODUS Meeting Report
by Bob Peterson e*s

\e*s
This article is about the recent MODUS meeting held *n Menl° Park,

Thursdayand Friday? September 5 a 6. I don't intend to cover much i„
way of content, since other articles will contain detailed information. ,
Rather, I hope to provide something of the flavor or atmosphere of the .
meeting. To do so, I will adopt something of aneditorial point of view,y
ie, writing about my impressions more than the facts . ,%/

The Alhambra Conference Center, site of the meeting/ is like an oasis iri;
the middle of the desert. The Center grounds featured large, old evergreen1
trees, lots of lawns, vines on trellises, well-kept buildings, and an old
mansion with an iron front door. Sleeping rooms were not luxurious, but
quite adequate. The meals, served in the cafeteria to all attendees, were
quite good. And since everyone ate together there was lots of good
conversation during and after each meal.

Attendees began arriving Wednesday evening in time for dinner.
Afterward almost everyone participated in an informal social gathering^,!
the mansion.

Thursday morning the formal program began with introductions, schedule
corrections, and a bit of Modus’ history, current status, and a minimum of
formal business.

Much of the morning was taken up by Susan Eisenbach’s discussion of the
current British Standards Institute's efforts to standardize Modula 2.
Ms. Eisenbach covered the Committee's organization, introduced the members
present, and summarized the current state of the effort and the schedule
leading to adoption. A number of questions were asked by attendees,
leading some some discussion of how the Committee was proceeding.

Immediately after lunch, Ms. Eisenbach continued to be the center of
attention with a presentation titled, "Contentious Language Issues". While
summarizing issues on which the Committee has taken a position, the
discussion focused on language issues which are not clear and which
unresolved. As might well be expected, many questions and comments cam°
from the audience, and Ms. Eisenbach, as the Committee's representative,
asked for a sense of where the audience members stood on some of the issue

remain

After the "Contentious Issues" discussion died down, Mr. Ed Videki
The issueexplained "An Often Mis-implemented Aspect of the Language"..

Mr. Videki highlighted relates to scoping rules and, in detail, how
various declarations are or are not visible in various scopes.

compiler implementors present at the meetino by the varlous
some of these presentations »ere sUppIIftSli s acheSe?”1”*3'

Presenters included fKen Butler of Tartan TaKc__... .
compiler, Morris Djavaheri of Djavaheri on thoi r connnVAX/Uni?
various Unix flavors, Eberhart Enger on his CP/M ?omPiler for

“Zurich 68000 sources, David Foster of CERN dicr„c6'K ^aptation of the
by and for the high energy physics 1 h f f"9 the adaPtation done

environment?* S*VVy C°“PUli"9 talk1"9 a “°»PUe? ^

The CERN Modula 2 compiler system includes at" least one tool not
generally provided: utilties tQ-create. :and maintain a database of module
/ersions, to assist the development team. The! utilities track which

' c version of a module is current, point out which object modules are
' invalid,-and help create compiler scripts. Unfortunately, the compiler

O/} fy,and utilities are not products and are not generally available.
*

The Borland presentation discussed the Z80/CP/M compiler, but did
* mention that a PC-DOS/MS-DOS/8086 version is also in the works. While not

yet a product, an early copy of the functioning system (compiler, editor,
and execution control) was available for demonstrations. Also made
available were copies of Borland's library implementation, including some

See the article for details.

Jeff Savit offered some very interesting comments about moving Modula 2
into a mainframe environment using a different character set (EBCDIC) and

Savvy Computing is just getting started on this effort.

documentation on language extensions.

batch processing.

Most of the compilers process the language described in ^Programming in
A Third Edition is now available,Modula 2 Second (corrected) Edition^.

^ well as letters documenting other language changes Dr. Wirth has made.
The BSI draft standard will also be available in the near future. Severe
of the compiler writers are eager to have a stable language to process as
well as a "good” standard libary.

Randy Bush, a BSILibrary issues began the Friday discussions.
Committee member, introduced the topic and discussed the Ad Hoc Library
Committee's efforts from a philosophical and stylistic point of view
rather than describing the technical aspects of the proposal,
attendees had at least read the proposal in Modus News Issue #1, January
1985, and the comments in the following issue.

Most of the

Like the Compiler Implementor's Panel, the Library Implmenetor's Panel
wasn't really a panel, but more of a series of interactive presentations.
Roger Henry of the. University of Nottingham and a BSI Committee member
discussed processes and where in the language they should be. Comparing
Modula-1 processes with Modula-2 processes, a number of problems with
Modula-2 processes can be seen. Providing a portable implementation of
coroutines (the language construct underlying processes) seems to be best
<j^ne by standardizing the SYSTEM module or by moving process-related
facilities into the language as standard identifiers. See his paper for
details.

*Rob Nagler, implementor of several versions of the Ad Hoc Committee's
proposed library, made a number of observations. Other than style
comments, he felt some of the modules were improperly structured and, his
major comment, that too many decisions were left to the implementor. He
also offered his own Standard Library Proposal and asked for comments on
it. [The full paper is available from Dick Karpinski at cost. rhk]

The final session allowed users of Modula-2, as opposed to implementors,
to discuss how they use the language, problems they've had, and so forth.

Terry Anderson, from.Walla Walla College, has moved a simulation package
from mainframes to micros, using UCSD Pascal, and has recently moved much
of the package into Modula 2.

Bill Bonham from Stride Micro discussed an operating system he is
writing in Modula 2. So far there is a very small part that had to be
written in assembler. He's using a compiler supplied by Scenic Computer,

3

.or* done b, Volition.Systems, OS ansu.es ^
terminal#-

*6which is based on
management hardware, multitasking
multiple jo» tunn|n^£^m;^ .Jb,}.

Stan Osbdfne, San Francisco State University, and two of his student
described how the kernel of an operating system was developed in Modu^
The interesting wrinkle was the design approach they used. It avoids *\
contention and unnecessary waiting on resource locks better than other
design approaches.

: v. -si V C *' !< i WTT S.'s* • r »t?u 1 i
Richard :;Patti-S-:ndi,§t^ssed,’teaibhing''fntroiS'uctory computer science class*

using Modula-2. His major problem is lack of textbooks. The major issue
he faces is what sequence to use to introduce the various programming

%

\

y

0.u. rurbue Nuir.asr * . ■*. i
%

\
\

concepts. \

The meeting wound .up -with closing remarks by Randy Bush.

i• i VU
rhk][We save a whole page by starting the Sam’l Basset article here.

A Writer's View of a Programmer's Conference
by Samuel Basset

Being a computer-literate liberal arts graduate, rather than an
engineer or programmer, I found the attitudes and outlooks of the
people at the MODUS meeting on September 5 and 6 as interesting as the
contents of the presentations.

The most striking dichotomy was between theoreticians and
practitioners — most of the former were European, and seemed to be
most interested in the purity, clarity, and unambiguousneylss of the
definition of the language. Most of the latter were denizens of the
U.S.A
that

O
and were most concerned with getting something "out there"

worked_, and cleaning up the details later, when the finicky
details of language definition had been worked out (by someone else).

• f

■ho. i!.rss°si?5otrsi1iJsr*u,jss*0j'rthe ^ °£
standard theoretical response seemed to be:
when we come to it lt<s merely a matter of implementation, after

but we _must have a clear definition of the language to
prevent its fragmentation into a host of dialects, like Pascal."

room:
real_ computer?", the

"Well, we will face that
all

theoreticians, being British^were^er^good at°thlt the
remember any ad hominem attacks or real tha£, and 1 do not
grudgingly admitted that theoretical purity would b^h® prac^ltioners
have, but pointedly drew the group's attention to tfLvery.n^ce to
— getting working compilers into the hands of o?trH need f°r speed
soon as possible. They also expressed some ^ °£dlnary programmers as
.ould .eve,, be . co.pLte ,„d lh"e

f>h<r<S- <4

V

The other dichotomy was between what I would call the
organizational and the entrepreneurs. The dividing line between
these two groups was clearly ^not_ the Atlantic Ocean, however.

The organizational interest in a Modula Language Standard seemed
to be threefold: consensus, marketing and support.

The consensus point of view, which is explicitly the position of
the British Standards Institute team, was that as wide agreement as
possible to the Standard before promulgating even a proposed draft is
vitally necessary — evidently to avoid later backbiting of the "But
you didn’t address the issue of . . .") sort.

[For copies of the BSI Working Documents, contact Karpinski.]

The marketing people want a Standard as quickly as possible, so
that they can point to it, and say: "See — we have a Standard Modula,
which, if you buy it, will do all of these wonderful things for your'
programming effort."

i
The support people are pretty blunt about saying that a company

has only a finite amount of resources, and _can't_ support umpteen
different versions/dialects ("So, would you people _please_ make up
your minds, and as quickly as possible, too . . .")

The entrepreneurs tended to be people working in two to ten
programmer shops (some within _much_ larger organizations) who were
most concerned with getting working compilers (and libraries) out the
door. Questions (and suggestions) about the semantics of the language
and implementation details were the meat of their comments.

In regard to the form of the presentations, I found (as I have,
all too often, in the past) that the presentations by academics were
less than sparkling — delivered in a monotone, consisting of reading
transparencies word-for-word, and booooring. This despite the
interesting and wide-ranging nature of what they were talking about.

Representative from medium-sized companies seemed to have better
• speaking technique, so long as they were talking about the "official"

aspects of their products, but too often got maddeningly vague about
other details.

What the "hackers" may have lacked in polish, they more than made
up in enthusiasm and energy. An outstanding example was J. Savvit,
who is almost single-handedly doing a Modula 2 implementation for the
IBM 370 architecture (and is one of the very few people in my
experience who didn’t work for IBM to be enthusiastic about the 370).

Nobody, but nobody, likes any of the existing libraries, and
everybody wants one which includes { For I := 0 to
Sqr (Maxint) do New(__________)? Fillln(); End:) — to
lapse into Pascal for a moment. R. Bush loudly and repeatedly
disassociated himself from the draft Standard Library, as printed
in MODUS #1 ("Its* not _MY_ library, dammit!")

At the end of the day on the 6th, the overall consensus seemed to
be that, while not much had been _done_ or ^determined , a lot had
been learned, and that all concerned were more than willing to work
together.

s/cCONCERNS OF A PROGRAMMER
by.Dennis R, Cohen

Before I go into my “"'V™ somewhat reguffi
of all the programming languages I use ° Pascal

basis, Modula-2 is favo“^e’ SjCeas well as others that do not FORTRAN,. Ada, Assembler, and BASIC as wen
get used 'so frequently.

that C,

I attended the recent Stride Faire in Reno, Nevada, wJje!ie ®Modula-related and I was both
somethe presentations were .

interest in the language and distressed by
number of
heartened by the ..
of the statements made by people who should know better.

i
\
\
\
vMy concerns are as follows:

* The lack of a standard library:
Every language that has made a success of itself has been
able to guarantee that certain functions will be consistent
across all implementations — FORTRAN code is portable, C
programmers depend upon Kernighan-& Ritchie conformance,
and COBOL programmers have-it just as well. This issue MUST
be resolved early in the game — before the onslaught of
vastly divergent implementations,
being made in this regard; however, it is vital that it be
done well and quickly.

* Numeric Data Types:
It is necessary that LongReal (or Double), Longlnt, and
LongCard (or WIDE) be made part of the language definition.
If there is not a guarantee of support for multi-precision
numeric types at least to this level, I do not believe that
Modula-2 will ever make significant inroads into scientific
fields—in fact, I would not be able to use it for database
development, since numeric data types of high-precision
used regularly in this field. The areas of application are
many.

There is some effort

are

* Support for existing libraries written in other languages:
This is probably one of my major concerns. My programming
background is fairly diverse — databases, word processing,
utilities, compilers, operating systems, accounting, and
scientific programming. In many of these areas, access to
existing libraries of routines saved me from writing large
quantities of code. There needs to be some method, even if
only the writing of a dummy DEFINITION MODULE, allowing
access to these libraries. At Reno, Prof. Wirth stated,
"You should rewrite the libraries in Modula-2, you will
make them better." This is an interesting pedagogic
argument, but it will not happen in the real world.
Development companies will not expend the resources to
convert existing, functional, and reliable libraries to
a new language just so that their development may be done
in that new language — they will do what they have always
done, they will choose a language that gives them that
access, whether it is FORTRAN, C, Ada, or something else.
Yes, even the DOD realized the necessity of providing for
existing libraries and required access in the lanquaqe
definition.

Ph(r€ &

I/O is a major concern of mine. This must be standardized in the
library and quickly — great divergence between implementors al­
ready exists and before you know it, no program will port between
implementations, . .

When describing numeric data types, it is sufficient to state
that the thr^e.types above exist in the language and that their
ranges either are the same as the base types or properly contain
the base ranges — similar to how the types double and long are
defined in C.

Access to existing libraries must be guaranteed and a standard
language construct must be defined to signify that access.

A final point is the multi-dimensional open array parameter.
While I grant that many programs will never make use of this ca­
pability, whole classes of application require it and the people
who write these programs also write programs which do not require

^ it and they will not choose to be multilingual in their work
where it is unnecessary. In other words, they won't bother to
learn Modula-2 when it will not help them do their work.

I want to use Modula-2 in my work, but I cannot start a major
development effort in Modula-2 until I have some assurance this
basic functionality will be performed and that there will be a
consistency between implementations. I do not particularly like
C as a language, but I use it on a regular basis because it pro­
vides that functionality and consistency and if Modula-2 is to
ever achieve "real world" usability, it will have to emulate C to
at least that extent.

A
i1

!i
[Editorial note: (I warned you about leaving blank space)

Among many other good deeds, Dennis provided this copy more
than half a year ago. I lost it three times, and forgot it
twice. Finally, you have a chance to see Dennis' concerns.
They have not, I believe, suffered any loss of relevance in
the months that have passed.0I

i
The issue of a Standard Library is the one I worry about
first.i You may recall that the Ad Hoc Implementors Proposed
Standard Library took up a large part of Issue # 1 of this
journal. In an excess of zeal, I labeled it with just the
words "Modula-2 Standard Library". Unfortunately, this has
confused many people into thinking that it has some official
status. Not only is this in error, but none of the team who
created it is entirely happy with the details of that draft
now that more time and experience have revealed a variety of
defects and inadequacies in the original design.

•;;

•! rhk]

ii
I

i me 7I
;

Modula Standard Library ProposalA Few Modifications to a
’ Robert J. Nagler

Jeremy A. Siegel

ABSTRACT

After implementing and using the proposed Modula Standard Library as
presented in Modula-2 News Issue #1, significant experience and insight was gained
about its shortcomings. In this paper, those problems are discussed and a new
definition1 of the library with proposed changes is presented. The modifications
presented attempt to improve implementability and usability via a simplified, more
modular approach.

"The nice thing about standards is that there are so many different ones to choose from."

Introduction
Standards are a way of life for some and for others they just get in the way. Developing standards is
usually quite difficult especially by committee. The Modula Standard Library Ad Hoc Working Group
is a committee of exceptional people. These people have worked very hard at the design for the current
proposal and have done quite well as a result. However, it is not perfect (nor is any other proposal or
standard I have seen). Some of its flaws may appear to be major when in fact, they are superficial in
comparison with the problems in other libraries. Therefore, the modified proposal being presented here
should not be looked at as a new creation, but as a rework of some ideas passed over or left out by the
Working Group.
The discussions presented are often substantiated through examples in other languages without extensive
descriptions of those languages. The main languages used are: Ada, C, and Mesa. Pascal is not used
as an example, because we feel it has nothing to offer except its simplicity (which is reflected in Sim-
plelO). We also assume a fair amount of familiarity with the current proposal (keeping a copy at one’s
side while reading this paper may prove useful).

File Objects
Throughout the history of libraries, the most common classes of file 10 supported are binary and text.
Binary 10 is sometimes called low level or direct and treats files as arrays of records. The records are
sometimes variable in length and others are fixed in size. Text 10 on the other hand is a higher level
concept. Each record is treated as a line of characters. The file may contain pages, that is, a way of
organizing groups of lines.
a samDlina of today’s structured language libraries reflects the distinction between the two types of file
objects: text and binary. Ada has its DIRECT_IO.FlLE_TYPE for binary files
TEXT 10 FILE TYPE for texts. C uses its int type as a file handle for its low level routines and

i pjpcr covers conceptual issues used in ihe new proposal and details are only introduced where necessary. The
specification of our proposal could not be presented in its entirety due to the limited space provisions. In this pa-

r we do speak of modules, types, and procedures, but their definition should be self-evident from the context in which they^are referenced. The Editor has been kind enough to provide interested panics with copies of
specification for the cost of copying.

and a

exact

our complete

pA^C 9

provides a FILE object for* text 10. Mesa provides a FileHandle for direct disk 10 and StreamHandles
are used for texts.
In one of the drafts of the library proposal, text and binary objects were treated separately. The latest
draft, however, merges these two objects into one syntactic entity called Files.File. The justification is
that the generic procedures for both objects are sufficient in number to warrant this change. There are
twelve procedures in^ the module Files; but upon careful study it becomes apparent that there are not
twelve generic operations required.
First, three of the routines in Files may be eliminated since they duplicate functionality available else­
where: Reset can be accomplished in two procedure calls to FilePositions. Rewrite is simply Get-
FileName followed by Create. Remove can be implemented with three calls (one of which is
Directory .Delete). By: some simplification, we have reduced the number of generics from twelve to
nine.
One can question’the’substance of the term-"generic". After implementing these procedures on several
machines, we observed that the generic interface did not reflect the non-generic implementation. For
example, VAX/VMS binary and text files are handled quite differently, so the implementation of Files
consists of two parts:'binary and text; If an1 implementation does in fact find it convenient to treat these
files the same, there is nothing preventing the implementation from having a shared GenericFiles
module which is hidden from the programmer. This type of sharing is considerably more modular than
the current design. ^ :
Taking a wider view of the library, the modules Text and Binary may be considered extensions to the
Files module; they supply procedures which operate on the File object. These procedures are clearly
not generic (which is why they were separated)“but since they operate on the same syntactic object
run-time checks are required to detect inappropriate usage.
For these reasons, we have eliminated the module Files. We eliminated some duplicated functionality
in the module Binary and added the necessary functions from Files to create a new module called
BinarylO. Similarly, we created the new module TextIO from the module Text. Each of these new
modules exports a type called File syntactically separating the two types of files.

4
$

i File states, EOL, EOF, success,...
Any file operation may fail as the result of conditions external to a module’s control. Hence, traditional
file system interfaces provide facilities to detect failure on most (if not all) entry points. The Ad Hoc
Committee’s proposal follows this tradition. However, the approach taken is unnecessarily complex and
not sufficient to satisfy the needs of robust programs.
In order to simplify the model, we need to address the categories of errors. The Ad Hoc Proposal
presents a straightline model for file errors, that is, all errors are defined in one enumeration. Although
it is true that one can list all possible error conditions as one type, it is not useful to bind mutually
exclusive classes together. For example, one cannot get an existingFile error from a read operation.
Similarly, a call to Open would never return outsideFile. This problem was apparent enough to the Ad
Hoc Committee that the description of the FileState attempts to categorize the errors into groups based
on the routines which can return sub-categories of errors. The problem is the same as presented earlier
with merged file types: semantic conventions should be enforced with syntactic definitions.
The error categories we use are defined by two classes of operations: directory transactions and file
manipulations. The former concerns manipulation/mapping of external file object names. The routines
in Directory are all of this category, as are the procedures which map Modula-2 file objects to external
file objects (Create and Open). File manipulations act upon the file object (reading, writing, determin­
ing state, ...). These two classifications syntactically enforce the semantic description already imposed
by the Ad Hoc Committee’s Library. For further discussion, the names of these error lists are
AccessResults and IOErrors, respectively.«...
AccessResults are sufficient to determine the failure or success all directory operations, but IOErrors do
not adequately describe the result of all file manipulations. Read operations can fail for two reasons (as
defined by both the Ad Hoc Library and our modified version): IOErrors and change in EOF (EOL for
text files) state. We consider errors to be abnormal conditions and encountering EOF (instead of read­
ing data) is a normal transaction. This separation imposes the model of EOF (EOL) being treated as
out of band data which is read in a system/character set independent-fashion. The authors*agree with

0

Pa tr e

&\
this model2, but disagree with its implementation.
The difficulty one finds with the Ad Hoc Committee’s model can best be demonstrated by an example.
The following code fragment S'the standard way one reads and processes strings from a text hie:

..

■

.
\LOOP

Text.ReadString(input, string, state);
IF Files.EOF(input) THEN \

\EXIT; \
\END;

IF Files.EOL(input) THEN
Text.ReadLn(input, state);
IF state # Files .ok THEN

Abort(input, "error on readln");

V

END;

oELSE ,e
(* Data is okay *)
Process! string);

END; (* IF *)
END; (* LOOP *)

IF state # Files.ok THEN
Abort! input, "error on read");

END:

One simple observation is that ReadString and Process are separated by far too many statements. There
is no information processing in the middle of the loop; it is all bookkeeping. Next one observes the
occurrance of unnecessary operations. For example, ReadString actually encounters the end ot-line
(indicated by EOL being true), but one cannot perform another ReadString without "reading" the EOL
that was encountered. Also, the abort condition for "read" is separated from its occurrance. In general,
one cannot determine the result of an 10 operation based on a single returned value.
To resolve this problem, we enumerate the various checks associated with a file operation as follows:

TYPE
3FileStates = (ok, endOfLine , endOfFile, error);

1
The constants indicate the reason for the result of the previous file operation. If the state of the file is
ok, then the operation was successful. An error state indicates that one of the lOErrors occurred and
the program can call a procedure to determine the exact nature of the failure. We address the robust
programming issue with this state as well: a program will be terminated by the file modules, if and only
if the file being operated upon is in an error state. Therefore, all terminations are detectable whereas in
the Ad Hoc Library a program may be terminated for reasons which are not detectable (e.g. attempted
Text operation on a file in binMode).
Encountering endOfFile and endOfLine indicates the previous read operation failed for that reason. The
endOfFile condition is sticky in that an ensuing read operation will fail as a result of
lOErrors.readPastEOF (unless the file position is changed). The endOfLine is treated as out of band
data and signifies that no data was read on the last read operation. However, one does not have to call

2 'Hie discussion of COP (EOL) as procedural versus daia driven versus exceptions, cic. is not pan of ihe scope of this
The authors believe that our model is simple enough that it can be implemented on any system that treats text

more complicated mechanism which would improve
efficiency (exceptions come to mind), but such systems arc not simple to implement and have definite portability prob­
lems given the definition of Modula-2 at this time.
3 Wc arc using the FileStates from our module TcxiIO. The module BinarylO has an identical enumeration excluding

paper.
files as sequence of lines of characters. Clearly, one could use a

the endOfLine constant.

ReadLn to clear this condition. Ensuing reads are permitted and behave as one would expect (they start
reading after the end-of-line that was just encountered).
To better appreciate our model, we will rewrite the previous example in terms of our proposal.

LOOP
TextIO.ReadString(input, string, state");
CASE state OF

TextIO.ok:
Process(String);

i TexQOVendOfLine: (* nothing to process *)

TeXtlO.endOfFile:
EXIT;

TextIO.error:
Abort(input, "error on read");

END; (* CASE ♦)
END; (• LOOP *)

»
v •

StandardIO
The concept of default input and output is in many systems (Ada, C/UNIX, Fortran, and Pascal to name
a few). One needs such a mechanism to initiate file 10 with the outside world in a portable program
(given that we assume file names are non-portable). Given this history and logic, the Ad Hoc Commit­
tee defined the module SimplelO. Most libraries provide facilities for changing the external file object
associated with the default files. Hence, the need for StandardIO in the Ad Hoc Library. These
features are all very useful; it is the extensions to the traditional model that cause problems.
One problematic extension is echoing standard input to standard output. First, the authors know of no
library which implements echoing in this fashion. The concept of echoing at the file system level
(versus the device driver level) introduces many interesting questions. What happens when one exe­
cutes an UndoRead followed by another Read? Is the character echoed again? Is EOL echoed when
EOL becomes TRUE or only when ReadLn is called? For files which are implemented as interactive
devices: if the device is running in local echo mode (most commonly associated with half-duplex termi­
nals), how does SetEchoMode(noEcho) cause the local echoing to be terminated? For line buffered
devices which have interactive line editing: if part of the line is read with echoing off after which echo­
ing is turned on, do ensuing reads cause the characters already buffered to be echoed? For devices that
already echo: does the library cause duplicate echoes?
We could list other problems associated with this mechanism, but it would be in vain. This sequence
of questions is sufficient to demonstrate the problems associated with echoing at the file system level
and justifies its elimination from StandardIO.
Logging standard output is another feature that is not available in other libraries, but is provided in the
Ad Hoc Proposal. Granted that this feature may be useful under certain circumstances, it is not clear
that its usefulness outweighs its implementation overhead.

€

1

Text Manipulations
The Ad Hoc Library allows all modes of access on text files; more importantly, text files can be opened
in readWrite mode. Allowing reads and writes from the same text file can be extremely complicated
and difficult to implement on some systems. It is ill defined under certain circumstances. For exam­
ple, if one opens a text file for reading and writing, positions4 the file pointer to the middle of a line,
and the string written extends beyond the end of the current line in the file, does the line get extended
or is a line break lost? In fact, many libraries (C/UNIX, Mesa, Ada, Pascal) treat text files as one way

4 Note that file positioning is only allowed on files with read access.

?*Crt I |i

1
I

write only. For these reasons, we have not included read/write text files in ■

streams, that is, read only or
our library.
Our new proposal does not include the ability to

stj—. -«. <—
The Ad Hoc Library included a conditional read facility (CondRead) for text files. Its purpose was to
provide non-blocking 10 for text files. Clearly, this utility is only applicable to interactive devices
implemented as files. We believe this contradicts a goal of the library specified in Modus Issue #1.
"Do not specify the operating system

\
\

calculate file indices for text files. The Ad Hoc
unpredictable. Calculating file posi-

' \
were)

\
\
l

\

\Other Modules
The status of the module Terminal is the most questionable of all the modules. One needs it to perform
interactive 10 with the user, therefore it is crucial to interactive programs. At the same time, interac­
tive 10 is not portable and presents the most problems. For example, does ReadString do line editing?
(What is line editing?) If a capability does not exist, what happens? We have included a definition in

library that attempts to solve the problems associated with interactive 10. However, this module is
quite complex which leads one to believe that the solution may be better left to an implementation
dependent library. We are still studying the issues involved.
The Ad Hoc Library’s Storage.CondAllocate is sufficient to implement a program robust against
memory exhaustion, but it is not simple to use. One would like to use NEW with
Storage.CondAllocate, because it gives that extra level of protection against allocating objects of the
incorrect size. NEW, however, requires a procedure named ALLOCATE with two parameters whereas
CondAllocate has three parameters. Instead of CondAllocate, we introduce a new module called
CondStorage which exports two routines that match the requirements of NEW and DISPOSE. The
definition of Storage is such that it is defined to be a higher level layer on top of CondStorage so as not
to introduce dual memory managers.
The module Program has been eliminated in our proposal. The execution of sub-programs is intimately
connected with the underlying system and thus cannot be portably defined. We list some questions to
better state our case. Can non-Modula-2 programs be executed? If module A is imported by module B
and module B executes sub-program C which also imports A, can data be shared between modules B
and C via A? What is the programName passed to Program.Call: a file name, module name, or some­
thing else? Why are Setlnitialization and SetTermination used in systems which do not share data
between programs? How does the user get a hold of the reason (CailResult) passed to
Program.Terminate?

Conclusion
The authors would like to thank Jeanette Symons for her patience while providing continuing support
and critiques of the new library proposal. We appreciate the input from Jon Bondy, Chris Jewell, Ted
Powell, and Roger Sumner based on their experience implementing, using, and further defining the Ad
Hoc Committee’s Proposal. Finally, we are grateful for the insight into the Ad Hoc Committee’s deci­
sions provided by Randy Bush.
This paper has served to introduce the reader to what the authors believe are the major drawbacks of
the Ad Hoc Committee’s Proposed Standard Library. The complete specification of our new proposal
addresses issues similar to these but on a smaller scale. The fundamental issues we have with the Ad
Hoc proposal are; lack of modularity, lack of specification, and excessive numbers of features,
new proposal addresses these issues with the scope of the Committee’s goals. We believe the
modifications to the Ad Hoc Committee’s Library proposed in this paper will greatly increase its useful­
ness and implementability.

\

our

)

Our

!

Proposal For a Standard Library and an Extension to Modula-2
»*>i. "7• t By

Martin Odersky, Peter Sollich & Mike Weisert
Borland International

4585 Scotts Valley Drive
"Scotts Valley, CA 95066I) r V-

Introduction

Many proposals have been made for a set
modules, however, they all have come up against the same problem
of what to; do in error situations.
(unfortunately) caused by the definition of Modula-2,
why we propose a modification to the language and at the same
time we present a clear, and usable Standard Library which
results from a simple but well thought-out extension to Modula-2.

of Standard Library

This problem is
This is

The problems which other library proposals have come to face is
how to deal with error checking across module boundaries,
inevitable solution is to use a success/failure flag that can be

This is

4 The

tested after each call to a library procedure,
undesirable in either of the two methods proposed.

first method sets a flag after each successful or unsuccess-
This means that the user program must check

The
theful operation.

value of the flag after each library call to ensure it is not
changed by a subsequent call. The second method is to initialize
the
failure status if something goes wrong.

flag to a successful value and then only set the flag to a
While this saves the

user program from continually checking the error flag, it makes
it very difficult for the program to determine where and when an
error occurred.

Another method which has been proposed is to allow the user
program to install an error handling procedure which is called
when the library detects an error condition. This may appear to

.(4k solve the problem of constantly checking flags, but it does not.
™ This is because an error procedure can only do one of two things.

It can either print an error message and then terminate the
program or it can try to recover (possibly set a flag) and then
return to the place where the error occurred. Thus to recover
from an error condition without termination, the error handler
must set some flag which can be checked by the calling program.
This method does not solve the problem.

A variation of the above methods has been proposed which
the user program to set a error handling mode,
checked by the library to determine whether the user
checking the error flags or if the library procedures
terminate on any error. This method keeps simple programs
simple, but presents many problem to the designer of a general
purpose library which is intended to be robust. The major pro­
blem with this method is that several processes may be setting
the library mode to different values, thus causing unpredictable
results•

allows
This mode is then

will be
should

1

«$&-

cppin to have been solved by
problem does no , ht hard about any possibv'

previous proposals, we h elegant error handling can nh
solution. Our conclusion xs^fchat eiega stands. We propose

achieved in the Hodula-2^ang,uagej*^
is based on the

theSince
a

be
to the language

and effective. The extension we Pr railed EXCEPTIONS
handling method used in the language Ad ,
extension error

program to trap error
Since the

the userBriefly/ exceptions allow
conditions which are generated in some library module.

not know what the user wants;to do in an error
an exception which thelibrary module, can user canit simply raisessituation/

either handle or ignore. Program control never returns to the
point where the error occurred and so no status flags need to

Thus simple programs remain simple/
be

whilechecked.set and
handlehave the flexibility and power to errorlarger modules

conditions easily.

This has a profound effect on our proposed library modules.
Instead of exporting some status flag (or having extra status
parameters) the library exports exceptions. The user modules can
choose to handle exceptions or not. If not/ the Modula-2 system
will trap the exception and issue an appropriate error message.
This greatly simplifies library modules. The following presents
explanation and justification of our proposed library modules.

Proposals for Library Modules

The input/output library

When dealing with I/Or error handling is very important,
are write-protected or have bad sectors; printers are

. Disk files opened for reading may not be
due to improper names, wrong drive codes, etc.

Disksget full.
on line.not present

Another concern is reliability. We have to make
of I/O modules cannot disturb the function of clientssure

the modules.
Most important to users is. of course,
especially true for the I/O library,
very often. Common operations should be

convenience. This
as it is going to be

is
used

, . . . expressed as simpleshould use a minimum number
want too many library modules.

aspossible. Procedures of parameters.also don’tUsers

There seem to be two fundamental modes of I/O: there iq
I/O (in Pascal performed on variables of type’text)
binary I/O (involving variables of type '
Pascal). Textual I/O involves conversions
restricted to disks, but is also possible
and other sequential devices.

textual
and there isFILE OF <type> inand is usually not

on terminals, printers.

therefore decided to use a module called "Tpy*-q"
I/O and another module, "Files", for binary i/o. f
We

textual

?*&c >H

The Module Texts

We will*first^looto-at "Texts",
first.
as. follows:

as one naturally uses this one
Some of the things to notice in the definition module are

. Ltu * . ••i. ■ ■ L. {.■ A. i. \ .
" . i. . v- 5 - - • • j ■ vi1.*

Type TEXT was declared as a'subrange [1..16]. " This is done to
allow user written I/O driver"procedures'to be installed (via
ConnectDriver). The following demonstrates that TEXT procedures
can be used in an extensible manner. A user could define a low-
level driver for any device. Imagine for example a window
handler. If we use

TYPE window = TEXT;

then the user module WindowHandlet can have its private tables
(arrays indexed by TEXT variables) containing the properties of
the windows. We have only‘to implement *a simple driver procedure
for writing single characters, install it via ConnectDriver and
then we can use any of the formatted write procedures to write on
our windows.

REAL and LONGINT I/O are included in this module rather than a
separate one. However, LONGREAL I/O is packaged separately.

Done(t) denotes successful conversion on numeric input, rather
than denoting completion of a procedure. This is because other
errors that occur during library calls are trapped by the
exception facility. Exceptions are raised for illegal operations
or when Texts reaches its limits.

OpenText returns a boolean result indicating whether the text was
found.
found.
them very elegant.

It has the side-effect of opening the Text if it was
A boolean result makes searching for texts and opening

One may write, for example

REPEAT
WriteString("Filename ?>"); Readstring(filename);

) OR OpenText(text,filename);UNTIL (filename =
IF filename #

n n
if ti THEN

(* process the file *)
END

There Tf fhlT opinion,
with side effects. We opt for the
proposed standard for library modules (Modula-2 News,
January 1985) would require the following:

however, that one should not use functions
more elegant solution. A

Issue # 1,

?Mr£ ir
3

REPEAT
WriteString("Filename ?>
IP filename # THE#

Open(file,filename

Readstring(filename);

JtextMode,readonly r state)

= OR (state = ok)")1
THEN

(* process the file *)

&

END;
UNTIL (filename
IF filename #

. i ■:

n n

END
It has justWe think users will like our version of Open better.

The other version is usable, buttwo parameters instead of five,
it takes more effort to remember the correct number and sequence

think of declaring the additional state \of parameters, to
variable and to get the logic correct. vTextFile returns the file connected to a text. This is useful for
doing low-level (e.g. SetPos) operations on texts. See discussion
of module Files below.

The variable haltOnControlC determines how programs react to AS
and during a call to a TEXT procedure,
specific feature and is not proposed as standard.

In Texts, exceptions are only used for errors that should normal­
ly not happen. It usually makes little sense to
exceptions. However, the module Texts has to rely upon the module
Files for disk I/O. If the Disk gets full. Files would raise the
exception DiskFull, which propagates through Texts to the

To catch this exception, one has to import this excep­
tion from Files, even if nothing else is imported from Files.

The definition module is as follows:

This is a CP/M

catch these

userprogram.

DEFINITION MODULE Texts?
FROM Files IMPORT FILE?

TYPE TEXT = [1. .16]?
W-'VAR input,output,console: TEXT;

PROCEDURE ReadChar
PROCEDURE Readstring (t: TEXT? VAR s: ARRAY OF CHAR)
PROCEDURE Readlnt (t: TEXT? VAR i: INTEGER);
PROCEDURE ReadCard (t: TEXT? VAR c: CARDINAL);
PROCEDURE ReadLong (t: TEXT; VAR 1: LONGINT)?
PROCEDURE ReadReal (t: TEXT? VAR r: REAL);
PROCEDURE ReadLn (t: TEXT);
PROCEDURE ReadLine (t: TEXT; VAR s: ARRAY OF CHAR);

(t: TEXT; VAR ch: CHAR);
?

PROCEDURE WriteChar
PROCEDURE WriteString(t: TEXT; s: ARRAY OF CHAR)
PROCEDURE Writelnt (t: TEXT; i: INTEGER;
PROCEDURE WriteCard (t: TEXT? c: CARDINAL•
PROCEDURE WriteLong (t: TEXT; 1: LONGINT;'
PROCEDURE WriteReal (t: TEXT; r: REAL;

(t: TEXT);

(t: TEXT? ch: CHAR) ?

n: CARDINAL)
n: CARDINAL)
n: CARDINAL)
n: CARDINAL;

digits; INTEGER)PROCEDURE WriteLn

4

PROCEDURE ReadAgain
PROCEDURE Done
PROCEDURE EOLN
PROCEDURE EOT
PROCEDURE Col
PROCEDURE SetCol
PROCEDURE TextFile

(t: TEXT);
(t: TEXT): BOOLEAN;
(t: TEXT): BOOLEAN;
(t: TEXT): BOOLEAN;
(t: TEXT): CARDINAL;
(t: TEXT; column: CARDINAL);
(t: TEXT): FILE;

(VAR t: TEXT; name: ARRAY OF CHAR): BOOLEAN;
(VAR t: TEXT; name: ARRAY OF CHAR);

PROCEDURE OpenText
PROCEDURE CreateText
PROCEDURE CloseText (“VAR t: TEXT);

A CONST EOL=36C;

TYPE TextDriver = PROCEDURE(TEXT, VAR CHAR);
PROCEDURE ConnectDriver(VAR t: TEXT; p: TextDriver);

(* CP/M specific *)# VAR haltOnControlC: BOOLEAN;

EXCEPTION TextNotOpen, TooManyTexts;
END Texts.

The Module Files

The Module Files is meant to perform binary I/O on disks and
similar devices. When examining the module note the following:

Type FILE is an opaque type (in effect a pointer to a file
descriptor). Like OpenText, Open returns a boolean result. Flush
empties the file buffer to detect DiskFull errors at once.

Using file variables for Delete and Rename was done because most
applications which delete and rename files deal with files that
are already open. Many programs generate temporary files which
are then either deleted or renamed. Note that Delete and Rename

w have the side-effect of closing the file.

Being able to obtain the name of a file is useful when a file
variable is passed to another procedure or module (e.g. to issue
meaningful error messages).

The alternative to using LONGINT for file positions would have
been to use some record type. The advantage of LONGINT is that we
can easily do calculations on it and that it can be returned by
functions. If we want to advance by,
simply write:

say, one kilobyte, we can

SetPos(f,NextPos(f)+1024L)

to go to the end of the file,
obtain the current position in the file.

The meaning of the read and write procedures is
functions ReadBytes returns the number of bytes actually
The two procedures, NoTrailer and ResetSys, were developed exclu­
sively for the CP/M environment. They are proposed only for
systems with similar problems.

SetPos(f,FileSize(f))or

Notice the use of NextPosO to

obvious. The
read.

P*<r£ 175

used in Files are as follows:The meanings of the exceptions
iSattempted to read or position pastmeans we haveEndError *9

theraise?^operations other than Open or Create
.StatusError is. \files that are not open.

to the file is impossible, becauseon \means access
it is write protected, etc.
is raised for hardware failures.

writing to the disk is impossible.

UseError

DeviceError
DiskFull means

\
\The definition module of Files looks as follows:

DEFINITION MODULE Files?
FROM SYSTEM IMPORT BYTE, WORD, ADDRESS;

TYPE FILE?

(VAR f: FILE? name: ARRAY OF CHAR): BOOLEAN;PROCEDURE Open
(VAR f: FILE? name: ARRAY OF CHAR);PROCEDURE Create

PROCEDURE Close (VAR f: FILE)?
PROCEDURE Delete (VAR f: FILE)?

(VAR f: FILE? name: ARRAY OF CHAR)?PROCEDURE Rename

PROCEDURE GetName (f: FILE? VAR name: ARRAY OF CHAR);
(f: FILE): LONGINT?PROCEDURE FileSize

PROCEDURE EOF (f: FILE): BOOLEAN?
PROCEDURE ReadByte (f: FILE? VAR ch: BYTE)?

(f: FILE? VAR w: WORD)?
PROCEDURE ReadRec (f: FILE? VAR rec: ARRAY OF WORD)•
PROCEDURE ReadBytes (f: FILE? buf: ADDRESS? nbytes: CARDINAL): CARDINAL?

PROCEDURE ReadWord

PROCEDURE WriteByte (f: FILE? ch: BYTE);
PROCEDURE WriteWord (f: FILE? w: WORD);
PROCEDURE WriteRec (f: FILE? VAR rec: ARRAY OF WORD)•
PROCEDURE WriteBytes(f: FILE? buf: ADDRESS? nbytes: CARDINAL); 4;
PROCEDURE Flush (f: FILE);
PROCEDURE NextPos (f: FILE): LONGINT?

(f: FILE? pos: LONGINT);PROCEDURE SetPos

PROCEDURE NoTrailer (f: FILE); (* CP/M specific *)
(* procedures.PROCEDURE ResetSys (); *)

EXCEPTION EndError, StatusError, UseError, DeviceError Dic*leF»n
END Files. '

Other I/O Modules:

The module InOut is just there because Wirth's book
standard module. We ourselves use it very rarely. says it is a

DEFINITION MODULE InOut?
CONST EOL=36C;
VAR Done: BOOLEAN?

IS

\

»6 termCH: CHAR;

PROCEDURE Openlnput(defext: ARRAY OF CHAR);
PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
PROCEDURE Closelnput;;
PROCEDURE CloseOutput;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE Readstring(VAR s: ARRAY OF CHAR);
PROCEDURE Readlnt(VAR x: INTEGER);
PROCEDURE ReadCard(VAR x: CARDINAL);A PROCEDURE Write(ch: CHAR)* - .•
PROCEDURE WriteLn;
PROCEDURE WriteString(s: ARRAY OF CHAR);
PROCEDURE writemt(x: INTEGER; n: CARDINAL);
PROCEDURE WriteCard(x,n: CARDINAL);
PROCEDURE WriteHex(x,n: CARDINAL);
PROCEDURE WriteOct(x,n: CARDINAL); - . ,

PROCEDURE ReadReal(VAR x: REAL);
PROCEDURE WriteReal(x: REAL; nfdigits: CARDINAL);

END InOut.

The module Terminal gives low level access to the console:

DEFINITION MODULE Terminal;

PROCEDURE ReadChar(VAR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);
PROCEDURE ReadAgain;
PROCEDURE ReadLine(VAR s: ARRAY OF CHAR);

PROCEDURE WriteChar(ch: CHAR);
PROCEDURE WriteLn;
PROCEDURE Writestring(s: ARRAY OF CHAR);

VAR numRowsfnumCols: CARDINAL;

PROCEDURE ClearScreen;
PROCEDURE GotoXY(colfrow: CARDINAL);

PROCEDURE InitScreen;
PROCEDURE ExitScreen;

TYPE SpecialOps = (clearEolfinsertDelete,highlightNormal);
= SET OF SpecialOps;OpSet

VAR available: OpSet;

PROCEDURE ClearToEOL;
PROCEDURE InsertLine;
PROCEDURE DeleteLine;

PROCEDURE Highlight;
PROCEDURE Normal;

END Terminal.

7

Clearing the screen and positioning the cursor are assumed to be
present on any system. ipitScreen and EXitSCE_£&II provide for
terminals that must be initialized on entry or reset on exit. The
set variable available determines whether clearing to the end of
the line, inserting or deleting lines and highlighting work on
the specific installation.

e
\ t

\
\
\

■ \
.
\

The Module Comline

The module Comline provides for commandline arguments to programs
and input/output redirection.

DEFINITION MODULE ComLine;
FROM Texts IMPORT TEXT;

V

VAR commandLine : TEXT;
inName,outName2 ARRAY [0..19] OF CHAR;

; ARRAY [0..7] OF CHAR; ■AprogName U!
PROCEDURE RedirectInput;
PROCEDURE RedirectOutput;

PROCEDURE PromptFor(prompt: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);
END ComLine.

The commandline is declared as a text, so we can read anything
out of it. The variables inName and outName contain the names of
the redirection arguments, progName contains the name of the
program. Redirectlnput and RedirectOutput enable I/O redirection.
The procedure PromptFor reads s from the commandline, if it is
not yet exhausted. Otherwise it writes the prompt on the
and reads s. from the terminal. In this way arguments to programs
can be given on the commandline or via an explicit prompt.

screen

The Module Convert
t; •

jj/

The module Convert provides for conversions
numbers and vice versa. As in Texts,
conversions from the rest.

from strings to
we did not separate REAL

DEFINITION MODULE Convert;

PROCEDURE StrToInt (VAR s:ARRAY OF CHAR; VAR i:INTEGER) :BOOLEAN
PROCEDURE StrToCard(VAR StARRAY OF CHAR; VAR c:CARDINAL):BOOLEAN
PROCEDURE StrToLong(VAR s:ARRAY OF CHAR; VAR IsLONGINT)
PROCEDURE StrToReal(VAR s 2ARRAY OF CHAR; VAR r 2REAL) :BOOLEAN

:BOOLEAN
PROCEDURE IntToStr (i: INTEGER; VAR s: ARRAY OF CHAR)•
PROCEDURE CardToStr(c: CARDINAL; VAR s: ARRAY OF CHAR)•
PROCEDURE LongToStr(1: LONGINT; VAR s: ARRAY OF CHAR)-
PROCEDURE RealToStr(r 2 REAL; VAR s: ARRAY OF CHAR;'

digits: INTEGER);EXCEPTION TooLarge;
END Convert.

zo
8

4
A°<-3 Those procedures that convert from strings to numbers return an

explicit boolean result to indicate success of the conversion.
The conversions from numbers to strings can only fail because of
too little space in the result string. For that case, the
exception TooLarge is raised.

The philosophy is that incorrect syntax in numbers is to be
expected quite often, so the programmer should check for it. The
result string being too small is usually a programming error.

cl*o:^

Other modules

The Module Storage

DEFINITION MODULE STORAGE?
FROM SYSTEM IMPORT ADDRESS?

m (VAR a: ADDRESS? size: CARDINAL)?PROCEDURE ALLOCATE
PROCEDURE DEALLOCATE(VAR a: ADDRESS? size: CARDINAL)?

(VAR a: ADDRESS)?
(VAR a: ADDRESS)?

PROCEDURE MARK
PROCEDURE RELEASE

(): CARDINAL?PROCEDURE FREEMEM
END STORAGE.

The procedure FREEMEM returns the largest block that can be
allocated, i.e. the largest gap in the free list. No problem
exists with intervening interrupts, because each process uses a
separate heap.

Running out of memory causes the exception OUTOFMEMORY (exported
by SYSTEM) to be raised. This may be caused either by a call to
ALLOCATE or a procedure call that causes the runtime stack to
meet the heap.

t
The Module Stxipgs

Strings performs several quite useful functions. The reason for
featuring Append instead of the more familiar Concat is that
almost all Concat's are in fact more easily expressed as Append's.
DEFINITION MODULE Strings;

TYPE string = ARRAY[C..80] OF CHAR;

PROCEDURE Length (VAR strs ARRAY OF CHAR); CARDINAL;
(substr,str: ARRAY OF CHAR); CARDINAL;

PROCEDURE Insert (substr: ARRAY OF CHAR;
VAR str: ARRAY OF CHAR; inx: CARDINAL);

PROCEDURE Delete (VAR str: ARRAY OF CHAR; inx,len: CARDINAL);
PROCEDURE Append (substr: ARRAY OF CHAR;

VAR Str: ARRAY OF CHAR);

PROCEDURE Pos

II
9

1
i

(VAR str; ARRAY OF CHAR; inx,len: CARDINAL;
VAR result: ARRAY OF CHAR);

(VAR str: ARRAY OF CHAR);

PROCEDURE Copy
\

PROCEDURE CAPS \

EXCEPTION StringError;
END Strings.

The procedure CAPS provides a similar function for strings as CAP
The exception StringError is raised if the

resulting string is too long to fit into the result variable.

\
\.

\is for characters. \ \

f

The Modules Mathlib and Longmath

These modules provide the usual mathematical functions for
and LONGREAL arguments.

REAL:

I ;! K: lDEFINITION MODULE MathLib;

(x: REAL): REAL;
(x: REAL): REAL;
(x: REAL): REAL;
(x: REAL): REAL;
(x: REAL): REAL;
(x: REAL): REAL;
(x: REAL): INTEGER;

I PROCEDURE Sqrt
PROCEDURE Exp
PROCEDURE Ln
PROCEDURE Sin
PROCEDURE Cos
PROCEDURE Arctan
PROCEDURE Entier
PROCEDURE Randomize(n: CARDINAL);
PROCEDURE Random

i

i

0 : REAL;

EXCEPTION ArgumentError;
END MathLib.

DEFINITION MODULE LongMath;
PROCEDURE Sqrt
PROCEDURE Exp
PROCEDURE Ln
PROCEDURE Sin
PROCEDURE Cos
PROCEDURE Arctan(x: LONGREAL): LONGREAL
PROCEDURE Entier(x: LONGREAL): LONGING-
EXCEPTION ArgumentError;

END LongMath.

(x: LONGREAL): LONGREAL
(x: LONGREAL): LONGREAL
(x: LONGREAL): LONGREAL
(x: LONGREAL): LONGREAL
(x: LONGREAL): LONGREAL

«k •
;

Both math libraries raise the exception ArqumentErrnr if
function cannot be calculated because arguments are out of the

range.

The MQdul^
This is just the standard module

definition MODULE Processes;
TYPE SIGNAL;

as given by Wirth in his book.

ZZ

10

PROCEDURE Sta*tProcess(P: PROC; n: CARDINAL);
(* start a concurrent process with program P
* and workspace of1 sizet:n:,iu^ ■*)

PROCEDURE SEND (VAR ss SIGNAL) r ^ K;V
(* one process waiting for s is resumed *)

PROCEDURE WAIT(VAR s: SIGNAL);
(* wait for some other process to send s *)

PROCEDURE Awaited(s: SIGNAL): BOOLEAN;
(* Awaited(s) =

"at least one process is waiting for s" *)

A v.

.. •<
j . >, . ;• rw '

*
r- > v •

PROCEDURE Init(VAR s: SIGNAL);
(* compulsory initialisation *)! ‘ *

EXCEPTION DeadLock;

END Processes.

For any practical application Wirth's module will of course not
suffice. We take it more as an illustration of how to make use of
the coroutine facilities,
schedulers for different purposes, including (not very demanding)
real-time applications. Wirth's proposal has the technical draw­
back of not avoiding indefinite overtaking.

have written several processWe

The Module Loader

This module serves to load overlays via the procedure Call.

DEFINITION MODULE Loader;

PROCEDURE Call(modName: ARRAY OF CHAR);

EXCEPTION LoadError;
END Loader.

The Module Doubles

The module Doubles provides conversions and I/O for the
data type. As the conversions are fairly complicated and
used very often, we did not include these procedures in
and Texts. The variable legal is used to check for legal input.
The exception TooLarge (imported from Convert) is raised by
DoubleToStr if the result is too large to fit into the result
string.
DEFINITION MODULE Doubles;

FROM Texts IMPORT TEXT;

LONGREAL
not

Convert

VAR legal: BOOLEAN;

PROCEDURE StrToDouble (VAR s: ARRAY OF CHAR;
VAR r: LONGREAL) : BOOLEAN;

?A<r€ Z3
11

f;
,

\

t: aSyEOf'*CHAR? digits: INTEGER)

PROCEDURE ReadDouble (t: TEXT; VAR ’
PROCEDURE WriteDouble (t: TEXT; r: LONGREAL,

CARDINAL; digits: INTEGER; ,
■7 ■- ’

PROCEDURE DoubleToStr (;VAR s:

V
s'
ci n:

END Doubles.

!«

; '•
syntax and semantics flf. Proposed Exception Handling‘V ’

Declaration of Exceptions

exception declaration is similar to other declarations. There
a special keyword (EXCEPTION) followed by a list of

identifiers. Example (taken from the module Files):

.1 An'
is:

EXCEPTION
EndError, StatusError, UseError, DeviceError, DiskFull?

Exception identifiers
be exported and imported like normal Modula identifiers.

All the usual scope rules of Modula apply,
can

:

Raising Exceptions

are raised when the program detects an
(For example, when the module Files has detected that

Exceptions
condition.
the disk is full). Raising an exception will transfer control to
an exception handler, either provided by the user or the system.

error

A program may raise an exception with the reserved word RAISE
followed by the exception identifier and optionally by a string.
Example (taken from MathLib):

IF x < 0.0 THEN
RAISE ArgumentError, 'Negative argument for Sqrt';

END?

When an exception is raised.. . . th<* system looks in
procedure for a matching exception handler,
the calling procedure is examined, then the
procedure, and so on, until a matching exception
found. This handler is then executed, and the procedure
containing the handler is exited. if no handler is found the
system prints the exception identifier's name and the optional
message string. ^

the current
If none is found,

caller of that
handler is

pA <rf 2-1
■

12

ftandlinq Exceptions

Exception handlers are written at the end of procedures and
modules to handle exceptions issued by a RAISE statement. The
syntax is similar to the familiar CASE statement. Example of a
save procedure containing an exception handler:

PROCEDURE SaveFile;
BEGIN

(* Code to write something to disk *)
EXCEPTION

| DiskFull :
Terminal.WriteString("Disk Full, Press <ESC>")?
REPEAT Terminal.ReadChar(ch) UNTIL ch = CHR(27);

| DeviceError:
Terminal.WriteString("Bad Disk, Press <ESC> ");
REPEAT Terminal.ReadChar(ch) UNTIL ch = CHR(27);

END SaveFile;

An exception handler may catch and then pass
condition with a special form of the RAISE statement,
is not followed by an exception identifier or message string.

on an error
This form

Conclusion

As exceptions are an extension to Modula, we have to have good
reasons for including them.

The three error handling methods used by other implementations
are the following:

a) return an explicit success parameter after every operation
b) allow user programs to install error handling procedures
c) set a mode indicating whether the user program wants to

check for itself or be aborted on error
fj Our conclusion is to prefer exceptions to these solutions. One of

the advantages is that handlers are present statically in the
program text, near the place they are needed. They are much
clearer than modes or error handlers that are set somewhere. They
also follow the nested structure of the language itself. We
think, they fit very nicely within the framework of the language
Modula.
If you have read this far,
like to hear any comments, criticisms,
have. Send them to Mike Weisert, Borland International.
(408) 438-8400 x421.

we thank you for your time. We would
or suggestions you may

Phone:

13

f
An Implementation of the Proposed

Standard Library for the Unix Operating System

Morris Djavaheri
Djavaheri Bros., 697 Saturn Court, Foster City, California 94044

\ &
\ V■V

ABSTRACT

This is a short report about our implementation of the British Standards Institute's
ad hoc committee's proposal for a Standard Modula-2 Library. While trying to stay as
close to the proposed standard library definition as possible we ran into a number of
issues not properly addressed. These issues and our current solutions are discussed.

Vi ...

1. Unix Portability
One of the most basic problems is that there

is no standard Unix interface which we could use
to build our libraries and remain compatible
across the different implementations of Unix.
(There is no standard for an interface to an operat­
ing system in general. Though one is being
developed for Unix.) Therefore we chose to use a
set of basic primatives which are always needed,
such as: open, read, write,
lork, etc. From these basic primitives we imple­
mented an interface between the Unix routines to
Modula-2 procedures. These provided essentially
the same interface, but they also provide a porta­
bility layer between the Modula-2/68 libraries and
the different implementations of Unix primitives.

For example, the definition opsn(2)
depends on the implementation of Unix. For each
Unix implementation it can have a different
number of parameters, and these parameters may
have different meanings.
Under 4.2 BSD opin (path, flag, mods)

op • a (path, flag, mod* , If in. Max)
Mop*a(path,flag,mod*)

Note that UNOS is a Unix like operating sys­
tem sold by Charles River Data Systems. 4.2 BSD
is the implementation of Unix from UC Berkeley
available for a number of MC68000 hardware sys­
tems including Integrated Solutions, and Sun
Microsystems.

The main purpose for our abstraction of the
Unix primitives is to isolate our library from the
lack in Unix of a portable interface to the operat­
ing system primitives. This makes retargeting the
compiler, linker, and libraries to a different

operating system or even to a ROM (special appli­
cations) much easier to do. In a sense, we have
defined our own interface to the host operating
system to make the library routines highly port­
able.

2. Specific Implementation Problems
The Unix operation systems provides a rich

file system interface to application programs for
manipulating files and hardware devices. With
Unix the access to disk files, pipes, terminals and
other devices is all very similar. Compared with
the Unix programming environment, the proposed
library is primitive.
2.1. Filemodes

Every file under Unix has three levels of ^
„. — f group, and world. Each level has

three types of permitted access (permissions):
read, write and execute. When a file is created on
Unix, one needs to have a default permission
already set. Also an application may need to
change the permission settings for a file after it
has been created.

close ,

Under UNOS
Except for the RsadWrit-s

Open there is no place in the
where such
one

our internal mode set during
proposed library

a capability is discussed. How
map the ReadWrit-s mode of the

definition to Unix file permission modes?
Currently our solution is to allow

tion to use the
file modes.

can
library

an applica-
Uma«k library routine to adjust

2.2. Truncate
The truncation of a file using an operating

system primitive is only available with 4.2 BSD

f *<re it
October 21, 1985

-2-

Unix. This means other implementations of Unix
will force Trunc»t« to copy the data to
and shorter file. This can be an extremely time
and a space consuming process.

2.3. ReallO
The proposed library allows Realio to be

done only with files controlled by simpleio.
This most likely is an oversite. Realio should
be possible with all types of files, especially to
files controlled by such modules as Text or
Terminal.

2.4. SimplelO
Simple I/O provides control over the echoing

^0 mode of the stdOut file. Under Unix echo is
controlled by the device driver software, interfac­
ing the hardware to users application. A majority
of terminal device drivers process the input char­
acters based on application controlled settings of
device driver characteristics. The proposed library
does not provide a general interface for controlling
and setting device drivers with this capability.
Also it is not clear if user echo means device
driver echoing or simple io independent echo­
ing. (see raw and cooked modes on Unix)

2.5. Terminal
This is a very basic interface to an output

device. On Unix termcap is a general purpose
database used with libraries to provide a terminal
independent interface to application program for
the controlling of screen I/O applications. There­
fore a mapping of Terminal to tarmc&p under

®, Unix O/S is the correct choice, but makes the
implementation of the procedure more compli­
cated. The definition Terminal should include
some facility for taking advantage of sophisticated
hardware and operating system device drivers.

2.6. I/O Buffering
Providing good I/O buffering to applications

under Unix is very important. (It is almost always
needed for high performance applications.)
Therefore we provided buffering for both input
and output data files. Though Unix has system
internal buffering, performance studies show an
application's performance will improve dramaticly
with proper buffering of the data files. For exam­
ple a Modula-2 pretty print program using itself as
input runs 4 times faster with buffering than with
no buffering The proposed libraries do not pro­
vide and interface for buffer I/O. Also having a
way to adjust the number of buffers and each
buffer's size is important.

2.7. Process Creation and Termination
The standard Modula-2 low level primitives

such as newprocess or transfer are not suit­
able under Unix for multi-processing. Though
these primitives can be implemented within the
context of a single Unix process, it is better to use
the Unix equivalents of these operations as a start­
ing place for process control primitives. Also the
proposed library interfaces Call and Tar-
minatt are not adequate for use on Unix, since it
expects parameters to be passed to the new pro­
cess.

2.8. Error Conditions
Most of the proposed library procedures

have a rich set of error conditions associted with
them, except for process control operations.
There are a group of error conditions under Unix
which can't be mapped to the Tarmlnata code.
Also there is no general interface to lookup an
error message string for error codes with the pro­
posed library.

Lastly, error conditions must be checked
after each operation. For example:

ReadChar(lile.ch,state)
IF state <> ok

THEN
Usssa.ge("Can't read from the file")

END;

a new

Generaly application programs do a lot of
character reads and writes instead of block reads
and writes, this makes it necessary to check the
file state after each I/O operation. This can lead
to an intolerable performance overhead.

An alternative is to have an exception han­
dling interface like Lisp, or PL/1 to reduce the
checking for I/O errors and allow exceptions to be
handled with less impact on performance.

3. Summary
The proposed library was implemented with

less than 5000 lines of Modula-2. This includes
some procedures for error messages, and I/O
buffering not defined in the current library propo­
sal. The implementation effort now provides us a
library for use in the Unix environment that is
likely to be close to the final standard library
definition. It has also given us a deeper under­
standing of the problem of defining a standard
library. Hopefully this paper passes some of this
understanding along to others.

i7
October 21, 1985

the standard Library for PC'sAn implementation of

Standard Library has been implemented for the Logitech Modula 2 compiler
Some important data structures andThe

under the MS-DOS operating system.
procedures as used in this implementation, are described in this article.
library has been implemented for didactical purposes : Modula-2 can be learned
using a standardised (let's hope so) and well designed library; additional
features for error analysis have been implemented. i

The module Files and Binary

The modules File and Binary have been implemented using the Logitech
FileSystem module. The type File is defined as a record in the module
FileSystem. We give a partial definition s

TYPE Flag = (er,ef,rd,wr,ag,txt);
FlagSet = SET OF Flag;
BufAdd = POINTER TO ARRAY [0..0FFFEH] OF CHAR;
Response = (done,notdone,notsupported, caller ror, unknownmed i urn,

unknownfile,paramerror ,toomanyf iles,eom,userdeverror);
File = RECORD

bufa : BufAdd;
buflength : CARDINAL;
validlength : CARDINAL;
buflnd : CARDINAL;
flags : FlagSet;
eof : BOOLEAN;
res : Response;
lastRead : CARDINAL;

(* address databuffer *)
(* length of the buffer *)
(* number of characters in the buffer
(* current position in the buffer *)
(* state of the file *)
(* TRUE at end of file *)
(* result of last operation
(* last word

*)

performed *)or byte read *)• • •
END;

Most of the library file operations can be implemented using this data
structure. However for the Files.GetFileName operation there are no
references to the name of the file that is associated with this data
structure. We define a new type as follows :

RECORD
f : FileSystem.File;
n : ARRAY [0..13] OF CHAR

END

The name field "n" will contain the
MS-DOS syntax for filenames. name of the file using the

This type is defined conventional
as an opaque type in the

library. An opaque type means that the other modules cannot directly access
the fields of the record. A module FileBase for the intermodule communicationis defined as :

Pf*(rV Z
i

l

DEFINITION MODULE FileBase;
IMPORT FileSystem;
EXPORT QUALIFIED FileStructure,GetFileVar,PFile;

TYPE FileStructure = RECORD
f s FileSystem.File;
n : ARRAY [0..13] OF CHAR

END;
PFile = POINTER TO FileSystem.File;
PFileStructure = POINTER TO FileStructure;

PROCEDURE GetFileVar (f : PFileStructure; VAR p : PFile);
END FileBase.

The procedure GetFileVar produces the address of the field FileStructure.f :

PROCEDURE GetFileVar(f : PFileStructure;VAR p : PFile);

BEGIN
f := ADR(file~.f)
END GetFileVar;

The type File is defined as an opaque type in the Files definition module,
the implementation, this type has been defined as :

File = POINTER TO FileStructure;

In

The current implementation of Files allows direct access tot the fields "f"
and "n" of this structure. However, the other modules, such as Binary,
FilePositions and Text, must access these fields by calling the GetFileVar
procedure. This is illustrated by the folowing example :

i)
FROM SYSTEM IMPORT ADDRESS;
FRCM Files IMPCRT File;
FROM FileBase IMPORT PFile,GetFileVar;
IMPORT FileSystem;

VAR file : File;
f s PFile;

.. •
GetFileVar(ADDRESS(file) ,f);
IF f'.res # FileSystem.done THEN

Even though referring to a similar data structure, the opaque type File and
the type FileBase.PFileStructure are not assignment compatible.
ADDRESS type transfer function can bypass the compiler type checking.

• •.

Use of the

Error analysis
For almost every operation on files the filestate will be evaluated.
Detection of an illegal state causes interruption of the program as the
standard procedure HALT is called. This procedure generates a memory dunp
file which can be inspected by a symbolic debugger. Most of the source files

not available in a development environment. To avoid difficulties and for
the module Errors has been provided by the implementation.are

didactical purposes
V

DEFINITION MODULE Errors;
FROM Files IMPORT File;
EXPORT QUALIFIED lOError,Module;

TYPE Module = (files,binary,text,numberio,f impositions,directory,
standardio); W-

PROCEDURE lOError(f : File;module : Module);
END Errors.

The procedure lOError is called just before HALT is. This procedure prints an
error message including a description of the filestate, the module name and
the filename, e.g.

"operation on an unopened file in Module Text using abc.xyz"

Use of this imformation allows investigation of the error in the client
modules of the library..

Module Text and StandardIO

QThe module Text includes the operations for manipulation of text files.
Redirection of standard input and output will be offered by the implementation
of this module. The operations managing this redirection are defined in the '
module Standardio.

Redirection of standard input and output

The module Text redirects the standard input and output, updates a logfile and
manipulates the error input and output files. The state and the use of these
files is set by the operations of Standardio. Only the definition modules
Standardio and Text define the possible operations. Any direct communication
between these modules concerning the data structures of the files is
impossible. Therefore, we define an extra module StndBase which
communication : performs this !

P*-<rlr

Text StandardIO

StndBase

The module StndBase defines the error, log and redirection files and the state
of the use ::

DEFINITION MODULE StndBase?
FROM Files IMPORT File?

EXPORT QUALIFIED standardIn,standardOut,echoOn, logCto, in,out, log,
error In, errorCXit;

VAR standard In, standardOut,echoOi, logOi : BOOLEAN;
in,out,log,errorln,errorCXjt : File?

END StndBase.

The StandardIO operations consult or change the objects defined with StndBase.
The Text operations consult the state of the use and read or write the error,
log and redirection files.

The following constraints hold for the current implementation :
- the input of the error file is always read from the terminal;
- the output of the error file is always written to the terminal.
In both cases no real file is involved.

The state "eol"

The function EOL returns TRUE if the last operation was not performed due to
the occurrence of either an end of line or an error. The state of a file
"alfa" in maintained in the field alfa.flags. An error state can be tested by

IF FileSystem.er IN alfa.flags THEN

Since the eol state is not provided in flags, we define a new type Flag :

TYPE Flag = (er,ef,rd,wr,ag,txt,eol)?

and the type ExtFlagSet

TYPE ExtFlagSet = SET OF Flag?

For the implementation of the type ExtFlagSet we use the property that some of
the bits of the internal representation of FileSysten.FlagSet are not used.
The procedures SetEol and ResetEol manipulate the "eol" state of a file,
type identifiers FileSystem. Flag Set and ExtFlagSet are also used for type

END• • •

The

p *rG-E

transfer.
PROCEDURE SetEol(file : File);
VAR g : ExtFlagSet;

f : PFile;

BEGIN
GetFileVar(ADDRESS(file),f);

ExtFlagSet(f*.flags);

FileSystem.FlagSet(g)

rI! g :=
INCL(g,eol);
f*.flags :=
END SetEol;

PROCEDURE ResetEol(file : File);
VAR g : ExtFlagSet;

f : PFile;
i

i BEGIN
GetFileVar (ADDRESS (file) ,f) ;
g := ExtFlagSet(f".flags);
EXCL(g,eol);
f".flags 2= FileSystem.FlagSet(g)
END ResetEol;\

The eol state of a file can be evaluated using the statements
t GetFileVar(ADDRESS(alfa),f);

RETURN eol IN ExtFlagSet(f~.flags)

Module Number 10
!
; This module has been implemented using the procedures Text. Read St ring and

Text.WriteString and the conversion procedures of module Convert,
parameter of the ReadNum and WriteNum procedures is restricted to the interval
[2..16].

The base

Module Terminal

The Terminal module is based on the Logitech Terminal module,
conflicts between these modules, the library module has teen"renamed to
TermnllO. The procedures for screen manipulation are implemented for an trm
or compatible PC using the ANSI.SYS driver program. 811 IBM

To avoid

Module SiaplelO

P*Crr

i

Module SinplelO

The module SimplelO has been implemented using the procedures of the module
Text and the Logitech module InOut. We used the InOut implementation instead
of the TermnllO module so that redirection with the command line can be
specified with the operators "<", ">" and "»*. For example the execution of
the command '•

m2 prog <in >out

when using the operations of SimplelO, has the same effect as the explicit
programed redirection, which is realised with the statements :

Open (input," in" ,textMode,readChly, state);
Setlnput(input);
Open(output,"out",textMode,readWrite,state) ;
SetOutput(output);

• • •
Close(input,state);
Close(output,state);

Module Program

This module has been implemented using the Logitech modules Program and
System. To avoid conflicts between the Logitech Program module and the
library module, this last one is renamed ProgramCall.

Module String

String is based on the Logitech Strings module. Additional tests have been
added to evaluate the success parameter of the library procedures.

Some conclusions

The library was implemented on a PC within a few weeks and works very well.
The linking speed of programs is rather slow due to the lot of standard and
Logitech modules involved. The program listing of the implementation takes
about 50 pages.

E. Verhulst
Software Engineer
Langbaanvelden 140
B 2100 Deurne

L. c t urt pt-o-e 55

%
\

\EDITORIAL

MODUS Quarterly #4, November 1985

I
I

The

!i ?. L-iArt■. *The MODUS meeting
• • ■

i . .

We met in Menlo Park, Standards work, library suggestions, compiier and applications were all subjects of discussion. Several papers frS

the conference are reproduced here. "NewStudio: Engineering a Modula-
Application for Macintosh" is scheduled to appear in the February is
If you need it sooner, write to me for a copy now.

Timeliness

I have revised the schedule of deadlines and publication,
are on the inside front cover. This might be termed defeat.

t ■* *

Prizes for articles/suggestions

Notwithstanding his flaws, your editor now has begun to charge MODUS
for the-task of putting out each issue. This revenue permits offering
two prizes per issue. The winners of the "Best Article" and the "Best
Suggestion" prizes will each receive a full year's membership in MODUS
as well as a tacky "Certificate of Honor" to express the gratitude of
your editor (and perhaps other MODUS members) for their contributions.
Send your vote and your suggestion to the editor. Do it today!

Mailing problems (USA)

The details

1:
t. ■

I

i

5
We found another way to get sub-optimal mailing for issue #3.
time the "special first class" rate was used which apparently
that forwarding instructions are not honored. Some of these copies
were returned, but we suspect others were not. If you are missing
issue #3, please contact your administrator: see inside front

This
means

cover.
Last chance to RENEW

If you are one of the many readers who have not renewed your membershL
in MODUS, then YOU WILL NOT GET THE NEXT ISSUE. You are forewarned?

[Just try to get a square inch past me.]

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

rhk

Modula - 2 Compilation and Beyond
D.G.Foster*)

Geneva, 29 August 1985

Presented at Modula - 2 Technical Conference, Menlo Park, CA. 5-6th Sept. 1985.

1) CERN, DD Division, Geneva, Switzerland

CERN2

1. Abstract

The implementation of a new Modula-21 (3). cross compiler is described. The compiler creates, and
• f /

maintains, a simple "module base" file that contains information about separately compiled modules.

The information within the module base file can be used by a small number of portable tools to aid

program development and maintenance. Tools that provide automatic recompilation of modules,

graphical representation of multi —module systems and prelinking functions are described.

In addition the implementation details of a multi-language cross compiler suite are discussed

with reference to the specific requirements of Modula-2.

%

2. Introduction

Programming "stand alone" microprocessor systems poses some problems for software develop­

ment. One is obliged to prepare programs on a host machine and load the resultant object modules

into a target microprocessor to be executed. The minimum software required is a cross assembler, al­

though the use of cross compilers for high level languages is becoming more widespread. In practice

the cross compilers do not replace assembler programming especially where direct access to hardware

dependent features are required. Therefore an important requirement of a cross software system must

be the ability to mix, with a given high level language, either assembler routines or routines produced

by other cross compilers.

We have produced a cross software system to support the Motorola 680x0 series of microproces­

sors. The cross software has been described in (1). The rest of this paper will concentrate on one

aspect of the cross software, namely the implementation of the Modula-2 compiler (2).

: i

Modula - 2 was designed at the ETH, Zurich. pAfre Jrv
1

r

CERN

3. Compiler requirements

identified as the principle requirements of the Modula 2 compiler:The following were

1. It should be an integral part of the cross software system. This ruled out available compilers

and fixed the implementation language as Pascal.

2. It should support the full Modula-2 language, not just a subset. This forced a multi-pass

compiler configuration.

3. It should obey the calling convention requirements to provide inter — language mixing, and

should provide symbolic debug tables (1). This is satisfied by sharing a common code genera­

tor between the cross compilers.

Figure 1 shows the chain of processes that take place to produce a load image from a source pro­

gram. It should be noted that the identity of the originating language is lost after code generation. In

our system the link editor is a general tool with no language specific features. I will come back to this

point later.

Having provided a new "front end" to the common code generator, some additional requirements

became clear:

1. To find a technique to order module bodies correctly and have them initialised before the

mam program.

2. To provide the essential tools for a programmer to create and maintain a collection of related

modules.

CERN4

3

4. Compiler design

I will not attempt to provide complete justification for each stage of the design, instead I will

concentrate on describing the final product which I will call 'Mod68k'. To avoid confusion the 'front

end' can be considered as consisting of passO and passl that feed the code generator (pass2).

It was decided to produce a recursive descent implementation of Modula-2 that would be a two

pass front end producing the intermediate format of the common code generator. Multi pass compilers

tend to have a lot of almost duplicated code in each pass, with additional code to write out and read in

the interpass formats. In order to avoid this, Mod68k uses 'in memory' symbol table information that

is created as an unbalanced binary tree during passO and subsequently used during passl. Thus, passl

can be considered as performing the actual semantic analysis after passO has passed declaration infor­

mation to it.

The functions of passO and passl can be coalesced, almost completely, such that very little special

code is required to differentiate between the two passes. This is at the expense of some speed since it

implies that the source code is read, and parsed, twice. Simply then, the compiler is organised as a sin­

gle pass recursive descent compiler. Complete compilation is attempted by calling the main program

twice with just a boolean variable to distinguish between passO and passl. The compiler can also be

instructed to attempt complete compilation in 1 pass only; in this case forward references would be

flagged as errors.

In multipass mode the symbol table information for each scope is organised as a linked list and as

outer scopes are re —visited and more declarations found, these are simply added to the tree of that

scope level. Complete compilation is then attempted by passl using the, now complete, symbol table

information at each scope level.

This recursive descent compiler will compile a module. A compilation unit is defined as being an

implementation, definition or program module. However in terms of compiler organisation the local

module may be considered as being part of that list. To compile a local module the current state of the

compilation of the parent implementation, program or local module is saved and the main program of

the compiler called recursively. After compilation of the local module the parent state of compilation is

restored and the scope of variables exported from the local module extended. 17

V'
fe

ion of modules. From the above idea* * -
50 f“ “te,e" -<—*- * - -

in a variety of ways. One technique is to

4

small extension to allow the
c<*available for the importing module and this can be don

definition module which contains the, already pro-
produce a symbol table file after compilation of a

«*—> * «- T° *■“ “* a“ “

simply recompile all definition modules from which ob-

identical way to the compilation of local modules. That is,

i ymbol table information, Mod68k willsave s

jects are imported. This is achieved in an

the current compilation state is saved, the appropriate file opened and the main procedure of the com-

pilcr called recursively. All declarative information required during the subsequent compilation is thenI

available from the preserved symbol table trees.

Visibility of objects and scope rules are obeyed by copying objects between appropriate symbol

table trees.

i

I
S

» ■ :

5. The module base concept

The previous chapter introduced the idea of recompiling definition modules when objects from them

were required. The source of these definition modules need to be made available to the compiler. This

is done by using a so called "module base".

Initiating the compiler causes it to read information from one file, the module base. This file may

be empty, or it may contain information relating to previously compiled modules. For each module

compiled an entry in the module base is either created (the first time) or updated. Figure 2 indicates

the contents of this module base.

, :

H

i !

Each entry has an entity number that is used for reference purposes within the module base, and

the module name of the entry. Attached to each entry are the file names, dependency lists (of entity

numbers) and checksums for the definition and implementation parts of the module. The compiler

finding an IMPORT statement can therefore find the physical file of the definition module and process
it.
PA-G-F **

CERN

There is an assumption here, that the host Pascal system used to implement the Modula-2

compiler be capable of opening a file whose name is contained within a variable. The file name in the

module base is usually a path name of some description. This will vary from system to system, but to

enable the module base files to be copied within a given file base, the file name should uniquely iden-
•';-r -I-

tify the file within the file base. Since one normally passes to the compiler an incomplete path name, it

is the command script invoking the compiler which expands the name to the full path. The compiler

itself merely passes the name from the command line to the module base.

5.1 Module invalidation

Recompiling a definition module requires that all modules which depend on it be recompiled also.

The compiler, having compiled a definition module, determines from the dependency fists all depen­

dent modules. These modules are marked in the module base as being invalid. In practice this means

the date/time field for an invalid entry is set to null.

6. Tools

The information in the module base can now be used, by a number of tools, to provide the facilities

required by a programmer to maintain his multi module system easily These tools consist of a Pascal

which reads the module base and performs the necessary processing. The result is passed to a

command script which performs the necessary operating system dependent functions. In this way the

"non portable" code has been kept to a few fines of command script.

In the following discussions I shall use the terminology (a) < — (b) to mean that module "a" im­

ports from, and therefore depends on, module "b".

program

PACrB ?<=(

CERN %
1

6.1 Recompilation
<■

to automatically recompile iThe recompilation tool (Modrecom) enables the programmer mvaii.

filename argument, in which case Mod68k isdated modules. Modrecom may be invoked with a

Modrecom checks thefilename argument. In either case‘I yoked to compile thegiyen to,, or wth no

module base for invalid Modules and determines the order of recompilation. For definition modules
i •;!•

this order is important. Consider the system definition (a) < - definition (b) < - definition(c) in

which recompiling definition module V has invalidated both 'a' and V. The optimal order of re-

compilation is V followed by 'a'. If 'a' is recompiled first then recompiling *b' would again invali-

date 'a" requiring it to be compiled a second time.

Additionally, modrecom may be instructed to compile all definition or implementation modules

;
i i

M-

1
i

that appear in the module base. This is very useful when installing new compiler versions.

|l;f

6.2 Graphical representation
! ilj

The reason for producing this tool (Modgraph) is somewhat historical in that it produces the

representation as was created by hand before this tool became available. This is simply a grid

representation where I and/or TT at the junction of a horizontal and vertical module indicate that

the horizontal module imports from the vertical definition module in either the implementation or

definition module. Given the information in the module base other,

could be generated, but we have not found the necessity for this.

ii i i
same

more aesthetic, representations,

6.3 Link editing

It is now appropriate to discuss the functions which must be performed during the link edit phase.

™S is induded m the tools section because it is the tool 'Modlink' that orders the modules for the

link editor. Hus order is important since this determines the order in which module bodies will be ini-

tialised in our

p*6*e vo
system. Modlink determines, from the dependency lists, which modules should be ini-

/»
CERN8

tialised first. Given the possible system: implementation (a) < - definition (b), the implementation

module of V must be initialised before that of 'a'. Variables assigned initial values in the implemen­

tation module of *b may be used in the module body of 'a'. However in conjunction with the above

system, the following is possible: implementation (b) < — definition (a). Now the order of initialisa­

tion of module bodies is undefined. In this case Modlink will issue a warning, and will produce, if re­

quested, a complete list of all such cyclic dependencies.

/

6.4 Concatenation

The module base is recommended to be used to reference an entire program, containing just one

program module, or as a "library" containing references to a number of related modules. As a starting

point several "library" module bases may be concatenated to enable access to a variety of facilities. For

example one might consider concatenating the module bases for I/O, file handling and transcendental

functions. Thereafter, any program written may reference these facilities without any need to know

their positions in the file base.

The tool "Modcat" has been provided to concatenate module bases and perform the necessary

renumbering of entity numbers and dependency lists. In a given module base, each entry must have a

unique entity number.

&

#

pkL€ V/

V
\ \0

i \
!

\ 7. Consistency checking!

points at which consistency checking should be performed in the software chabi

distinct because the acts of creating separate object modules and of li^.

;
There are two

shown in figure 1 . These are

mg them to create a complete program are disjoint. The compiler may check as it is using a definition

module that the interface has not changed since it was compiled by verifying that the calculated

■.;
i

checksum is identical to the corresponding checksum in the module base. Within one module base any

change of an interface module will flag dependent modules as being invalid. However consider the fol­

lowing sequence of events: A library is created with a module base. This module base is copied as a

starting point for a software project. A program is generated correctly. If now the library is changed

BEFORE the new program is link edited, but AFTER it has been compiled then this will not be de­

tected. The reason for this is that invalidation of dependent modules only takes place within one mod­

ule base. An extra verification is therefore required in this case before link editing. One approach is to

I !
:

:i:a I iI

r ii have an extra tool that simply performs the same checksum verification as the compiler. This may be

run prior to link editing as the object modules
If

being ordered by modlink. Essentially it would

check that the library files referenced by the current module base have not changed since the library

are

module base was copied.

i:

8. Module body initialisation

Each object module produced after the compilation of an implementation

considered as consisting of 3 sections.

. • < or program module may be
i. I

1. The CODE section contains the executable statements and long constants.

2. The DATA section contains the global variables.

pkc-e wz.

t

CERN10

3. The BODY section contains one word holding the address of the entry point of the module

body.

ui .1

All object modules that constitute a complete program are initially ordered and subsequently

concatenated by Modlink and passed to the link editor. The link editor joins like sections together as it

reads the concatenated file and performs the usual functions of linkage edition.

The important point to note is that the BODY section is allocated before the CODE section and

the first module allocated in the CO D& section is the run time system. A memory map of a Modu­

la-2 program will look like Figure 3 . Adjoining the run time system, in memory, is now a 'stack' of

entry points to all the module bodies. It is a simple matter for the runtime system to execute each of

the module bodies, as a procedure in reverse order of loading. The last module body to be executed in

this way is the main program (Modlink arranges this).

This approach to module body initialisation does not require a special link editor, dedicated to

Modula-2, to be ported with the compiler. It does require the tools to be ported, but these each

sist of a few hundred lines of 'vanilla" Pascal.

con-

9. Some implementation information

The compiler consists of less than 9000 lines Pascal, for the front end, and less than 6000 for the

code generator. The intermediate format is a low level linearised tree structure that is recreated into a

data structure by the code generator. For systems with sufficient memory this tree could be kept in

place with the pointer to its root passed from the front end to the code generator. Table 1 indicates the

sizes allotted to the basic types by the compiler.

The default REAL is the larger precision REAL, in this case 6 bytes, with REAL32 the identifier

for the smaller precision. For consistent naming conventions these should be LONGREAL and

REAL respectively.

£

:

:

:
i!

.

PA *0 j

I
CERN

Basic sizes allotted by the compilerTable l:'

SIZE in BYTESTYPEi ' 2INTEGER
2CARDINALh ;i' 4LONGINT

ii 4LONGCARD
2BITSET
2WORD
4ADDRESS
6REAL: I 4REAL32
Up to 32 bytesSET OF

-1 At present, function procedures may return structured types — This is the only way to make ex­

ported structures read only.

The compiler has been ported to VAX computers running UNIX and VMS, as well as NORD

500 computers running SINTRAN. Workstation ports include APOLLO, SUN and CADMUS. A

1 port to an IBM system running VM is in progress.i;

)

10. ConclusionM

The module base concept provides a portable way of accumulating information on separately compiled

modules. This removes the need to create special symbol files and ensures that the interface (i.e. defi­

nition modules) seen by both the programmer and compiler are identical. The information in the

module base can then be used by portable tools to build a programming environment for Modula — 2.

This environment enables a programmer to maintain his separately compiled modules easily and goes

beyond simply providing a compiler. Hence the title of this talk.

Pflrfre

T '*;

References
/

Developing Programs for the Motorola 68000 Microprocessor at CERN, J. Blake, H

Eicken and D. Foster. Europhysics Conference on 'Software Engineering Methods and

Tools in Computational Physics'. August 1984.

Separate Compilation in a Modula-2 Compiler, D. Foster. Software Practice and Experi­

ence. — to be published.

Programming in Modula-2, N. Wirth. Springer—Verlag publication, 3rd Corrected Edition.

1985.

(D- . voni
■

(2).

i (3).

TJ
“3
O
Cl“n c
nT3O 13003 toCO
2Jnm co

33 —
-n cr-s 9CD CTi 20OClCO CLCD cOm ^53 no

0)0 0
a)0-0

TD cl r~ a 3c 3 S73
r-t- ZD mCO mO 7C CDU CD \nn ~n“Hc zCDCO O oc "3ni -n73 O ro oOo O<o 33 CLOo 35o C 03“1

CL COui m oo o
35 c=

"3Cl NO n
CD

pAO-e * F

1

Modula-2 Processes - Problems and Suggestions

Roger Henry

Computer Science Group
University of Nottingham

Nottingham NG7 2RD
UK

written version of paper presented at the
Technical fleeting of the Modula- 2 Users' Association

Menlo Park .California
September 5th - 6th 1985

Introduction

Nodu/d-2 is ! assume our (currently) favourite language. While its very name forces us to
recognize the influence of its immediate predecessor, Modula, perhaps tne comparisons made
most frequently are those with Wirth’s best known language Pascal This is understandable
since Modula-2 and Pascal both have potential as general-purpose programming languages.
Modula was aimed solely a* the very specific applications area of programming embedded
industrial and scientific real time computer systems (and that primarily for tne DEC PPP-!!
range of machines) Modula- *\ as perhaps we should now call it, still has its loyal users but to
tne pest of my knowledge if -as not nad the benefit of a users' association like Modus. and nearer
nas :f lsao -ts name included w the title of a journal to whicn present company may subscribe*
One definite attraction tor me to the second nearer of tne name Modula is that my involvement
with it has given me tns opportunity to visit California.

Now 1 admit to using Modula-1 before Pascal, but then i aiso admit to reading The Robots of.Daw:
•>etore erner The Caves of Steel or The Naked Sun and tnere are definite advantages a
programmer's initial view of a language seems to be dominated oy the languages we or she nas
studied first rhus on discovering Modula-2, a Pascal programmer may take most notice of the
audition of' modules and the subtraction of high-level input/output When i octamed Mocuia-2
from Zurich in 1980 ; worried about.tne subtle changes m tne module construct out took most
notice «:»? the subtraction of the process keyword together with the associated operators and
types.

! was sensitized to the apparent removal of built-in processes because \ nac been championing
the use of Module for the on-line control of experiments in what was then my home ground: the
Psychology Laboratory. Typical applications w-udeci the study o* visual performance using
computer generated dynamic displays for output, and key presses or eye-movement monitoring
for incut. This was work whicn had previously relied on tricky assembly language,
program mine; Even then it had been found that the use of multiple execution threads often
simplified the solution to a control problem. Sometimes a demand-driven scheduling approach
enabled experiments whicn would otherwise have been infeasible within the real-time
constraints ’nstead of a single process needing to juggle to try anc keep more tnan one activity
going at once, the scheduler could route the flow of control to suit the dynamic needs of each task
Separation into processes aiso facilitated the modular ization of large programs

pA-c-e-

7
Modula-2 Processes

\

\

\
minn facilities of Modula-1 since they nsve

X 'device procassss and the —

;iS —'oSE« hmtm » b— '■
* semaphores in Module-1)

module Example 1; (\
odole resour cereservation:

interface •
define
semaphore. P, V. in it.

typesemaphore *
record
taken: Boolean;
free: signal;

end;
s: semaphore);procedure P(Tar

kf^s* taken then vaiKs.freel end:
s taken - true

end P;
procedure Vtrars semaphore)
begin

s taken 3 false;
send(s.free)

end V;

procedure init(T»r s semaphore)
begin

s taken > false
end init;

end resourcereservation

var
turn semaphore;

processdoit(x integer):
begin
▼hile x >0 do
P(turn); (* now use resource *) VIturn);
x > x-1

end
end doit

begin
init(turn); doit!20); doit(15)

end Example 1

Modula-2 Processes

The program of a process is distinguished from a procedure by the syntax of the declaration but
not by the form of the call. Notice that parameters may be passed when processes are started.
The activating process statements are restricted to the body of the main program. This
simplifies the allocation of workspace. When control reaches the end of a process, the process
goes out of existence - but its workspace is not reclaimed.

The interface module is intended as a construct to maintain mutual exclusion between processes
in access to shared variables. It therefore corresponds to the monitor of Concurrent Pascal
The assurance is that there be no interleaving of statements belonging to the procedures of the
same interface module except during the execution of the synchronizing operations on signals.
So once a process executing P in Example 1 has found s.taien to be true, another process cannot
intervene before the inevitable wait for s.free - at least not in a way which will allow a call of
V to invalidate the condition. This assurance may be given as a result of the method of process
scheduling.

In Modula-1, signal is a kind of sub-standard type. It can be used in further type declarations
and in variable declarations, although the resulting objects are not variables in the sense of
having values which may be assigned. Operations are limited to the standard procedures wait
and send Wait delays the calling process until there is a corresponding call of send Sene
transfers control to the process which has been waiting longest for the given signal or simply
does nothing if no processes are waiting for it. When a process waits, another ready process is
selected which then returns from its call of send The standard predicate awaited may be used to
test if any process is waiting for a given signal.

In practice, the only difference between interface modules and ordinary modules is that interface
procedures must not call imported procedures. This excludes the possibility of interleaving
oeing induced by external calls of the signal operations. The whole strategy is very conservative
in the sense that mutual exclusion occurs when it is strictly not necessary - for example
between calls of P and V on different semaphores. The security of semaphores is guaranteed by
the intransparency of exported types in Modula- i. Nowhere outside the module can the program
directly alter the taken field for example, since the structural details are not available to the
programmer.

Device processes are processes declared and initiated entirely within device modules.
Essentially they serve as interrupt handlers. The heading of a device process shows the vector
address of the interrupt they are designed to handle and the heading of the device module shows
the pr ior lty levei to which the processor is to be raised- This pr iority should correspond to the
interrupt priority of the device so that interrupts are fended off until the device process has
issued a synchronizing 'wait for interrupt' reauest. This it does by executing the standard
procedure doio Only one instance of a device process may be started because of the way in which
it is associated with a fixed interrupt vector. All of this is illustrated by the module realtime
in Example 2.

The interface between a regular process and a device process is provided by exported procedures
of the device module. Mutual exclusion is assured by raising the processor priority to the
priority of the device module during the execution of device procedures. An interrupting device
process is prevented from upsetting mutual exclusion in interface modules by enforcement of
the rule that no external procedure may be called from within a device module.

Signals may be used for synchronization between a regular process and a device process (but not
between device processes). Because of the implied higher priority , the semantics are modified

Modula-2 Processes

\' i»n so trial sending a signal from a devicei ? dKiflKttwaitTetth™ fo?a signaH^nl
1 re,™,ne process w»,cO

was interrupted. '

(* Example 2 - device modules and processes *)

device Module realtimel6);
define time, tick, pause;
tit

time: integer;
tick; signal; .
LCSl 17756-4B1; bits; (* PDP-11 line clock status register)

procedure pause(n: integer);
begin
▼bile n > 0 do
wait! tick); dec! n)

end
end pause;

process clock! lOOB);
begin
LCS(6l:»true;
loop

doio; inc(time);
while awaited!tick) do send!tick) end

end
end dock;

{

I

i

begin
time - 0; clock

end realtime
; : r ;

Multiprogramming in Modula-2

As a systems implementation language, Modula-2 has been designed to allow the actual
construction of schedulers such as the one which underlies Modula- I. if we take a layered
approach to system building, the bottom layer is either the actual hardware, or an operating
system, as ‘fixed-up1 oy the run-time system to make the underlying machine suitable for
executing Modula-2 programs. Higher layers are all expressed as Modula-2 programs, that is
using the same notation, but with further operations available through the published definition
modules of lower layers. Some layers may provide facilities which are intended to replace those
of lower layers as far as higher layers are concerned. A process scheduler will occupy one of
these layers.

An obvious first step in evaluating Modula-2 for real-time control applications is to implement
a Modula-1 style scheduler, in fact Wirth nas done this for us in his proposed standard module
Processes Comparisons can therefore be made quite easily. However, for me, and i hope for
you, Modula-2 offers the prospect of experimenting with other approaches. It may turn out that
a different design would have advantages as a middle layer in a system built with Modula-2 We

4

V Modula-2 Processes

^system dependent but, as a general rule, we should aim to achieve portability at as lower a
layer as possible.

jnw-level facilities
.... .. •

Let us proceed then by looking at the tools offered to us for building a process scheduler in
Modula-2. We rely, of course, on the syntactical facilities of the language - the ability to
declare self-initializing modules, procedures, types, opaque types, variables and so on. What
else we can rely on depends upon the status of the pseudo-module SYSTEM. In the latest version
of the Modula-2 report, Wirth states that the facilities exported from the module SYSTEM are
specified by individual implementations. "Normally, the types WORD, ADDRESS, and the
procedures ADR, TSIZE, NEWPROCESS, TRANSFER are among them.'1 It is the latter two which
interest us in the present context since they provide the essential coroutine mechanism for
creating separate threads of control and transferring execution between them. Originally,
coroutines were referred to by values of the type PROCESS which was also exported from
SYSTEM. Now, as if to press home the low-level nature of coroutines, PROCESS has been
replaced by ADDRESS.

PROCEDURE NEWPROCESS(
P: PROC;
A: ADDRESS;
n CARDINAL;
VAR p. ADDRESS);

coroutine with program P and workspace starting at A of length n. The returned
refers to the coroutine in its initial state. For correct programming, it is

orepares a new
ADDRESS value, p. r rr.rf.e
vHal to realize that the same coroutine mery subsequently be rererred to by a different AODKEoS
v3iue as its state changes, ihese values really oruy have meaning while ihe coroutine is not

The latest value vs stored for us wnen one coroutine explicitly transfers control toexecuting,
another by calling

PROCEDURE TRANSFEROR pi, p2: ADDRESS);

The value of p 1 is the one to use later as p2 if control is to be returned to the calling coroutine
This applies equally to the main program as to any dynamically created coroutine. The
possibility of building a scheduler on top of these iow-ievel facilities rests cr. the
meaningfulness of these vd/ues and of their assignment to designated var tables.

There is some debate as to whether these routines belong in SYSTEM. The general intention is
that this module be the repository of facilities close to the computer being used. Unless you are
using a Lilith, this does not seem to encompass NEWPROCESS and TRANSFER. The run-time
system provides these mechanisms for the benefit of Modula-2 programs It also handles the
termination of the program should the procedure nominated in NEWPROCESS attempt to return
and sets up the main program to look, like a coroutine itself. All of this should be possible to
implement on any machine capable of supporting the rest of Modula-2. If PROCESS were to oe
kept, and made a standard type, only the way in which the workspace is currently specified
would prevent NEWPROCESS from being raised to the status of a standard procedure. There
would be no such problem with bringing TRAN5FER 'out into the open'. A precedent for such
migration has alreatfy been set for the prxedure SIZE.

PA«-ff S I
C

noaula-<L processes
■;n

jil
. . ’ __ nf rnroutines out of SYSTEM. provided that it was clearly

!TSX» SEMK-; -u-r , „TRANSFER are examples of facilities that should be replaced_a^\^erm^,ate^layers^and

used by the higher layers.

I would argue
understood that the mechanisms

never
used by the higher layers. It is therefore not appropr iate to make them into standard procedures
which are available everywhere without being explicitly impor

i \;

The standard module ProcessesI

What should come at the intermediate layers? Following Wirth's book and the original yellow
book' report from ETH, many implementations provide the Processes module for
synchronization between regular processes. This is modelled on the regular process facilities of
flodula-1 as can be seen from the published definition module

DEFINITION MODULE Processes;
TYPE Signal;
PROCEDURE StartProcessfP- PROC; n: CARDINAL);
PROCEDURE SENDfVAR s: SIGNAL);
PROCEDURE WAITtVAR s: SIGNAL);
PROCEDURE Awaitedfs: SIGNAL)- BOOLEAN;
PROCEDURE InitfVAR s; SIGNAL):

END Processes.

w

:ri

i

The book shows how this is implemented by creating a descriptor for each process and linking It
into a ring. Descriptors of processes waiting for a signal are linked into a queue for that signal
The initialization part sets up the r ing to include only a descr ip tor for the main process.

Some differences are forced upon us by the language changes Thus procedures and processes are
now distinguisned only by the form of the call: P or StartProcessiP, n). ; suspect that it could
be argued that this is actually an improvement as far as program readability is concerned. The
removal of parameters to processes, on the other hand, represents a significant Joss o*
convenience. The procedure P has to be written to copy global variables into local variables
which makes the code less easy to understand. The relaxation of me restriction mat processes
cannot be started in procedures or processes does help in structur mg programs

In Modula- I we were used to the tact that a process would simply go out of existence if it reached
the end ot Us program in the case ot the usual implementation of the module Processes in
Modula-2, if the procedure of a process attempts to return then the entire multiprogram goes
out of existence. • nis is simply because the procedure P given to StartProcess is used direct :y
in a call of NEWPROCEoS. A partial tix wcuid be to have StartProcess employ a local procedure
ot its own as the program ot all processes and then by copying into and out of a global variable
have U call P. On return the process could unlink its descriptor from the ring and arrange tor
he next: ready process to be selected. The workspace could also be reclaimed out not Dy the

terminating process' The fix is partial because there is no getting away from the fact that the
end will come when the mam process comes to the enc of its program. With the standard
Processes module, the only way for a process to give up and leave the work to its coorccesses is
to introduce the overhead ot waiting for a signal which never
tomorrow. comes, it perhaps should be called

nost of the other changes have detrimental effects on program security. Thus the user must

pA-fi-e- 52.

6

■ : ■'

Modula-2 Processes

specify the workspace size and risk disaster if too small a value is chosen. Unfortunately, the
safe value for this parameter may be the only non-portable aspect of a program which uses
Processes. This could be ameliorated to some extent if the semantics were changed to make the
given size an increment over and above some minimum chosen by the implementation of
Processes. Scaling the size by SIZE(CARDINAL) might also help but is clearly not a completely
satisfactory solution to this problem.

The user must now remember to call Init once only for each declared signal. As with all hidden
types, signal values can be tested for equality and assigned even though this is of doubtful
meaning. For example, are these equivalent code fragments?

IF SomeTesK) THEN WAIT(sl) ELSE VAIT(s2) END;

IF SomeTestt) THEN ssi ELSE s :• s2 END;
WAIT(s);

The answer depends upon the implementation of signals. With Wirth’s code, signals point to the
head of a list of descriptors of waiting processes and so the second statement sequence would
leave si or s2 with an incorrect vaiue. An equally valid implementation would mare signals
pointers to a pointer to the head of a list of descriptors which are therefore never changed by
WAIT A hint against this is given by the choice of VAR parameters for the signal operations,
■out it would seem safer for the language to have ruled out altogether tests of equality and
assignments on hidden types.

The role of the interface module is now taken by an ordinary Modula-2 module There 'an
therefore be no enforcement of the rule tnat interface modules should not cai; non-leoa-
procedures. Beware of the fact tnat the logic of the argument which assures mutual exclusion in
interface procedures may oe subverted by calls to external routines..

interrupt handling

Modula-2 is not a contender for real-time control applications without a method *«f handing
interrupts (confusingly called exceptions on some machines), indeed it *> the linking to
external events which breathes life into a multiprocess system implemented on a single
processor - as is assumed to be the case for Modula-2 (This ;s cot to deny that
quasi-concurrent solutions to some non real-time problems can be attractive.;

There is no doubt that the details of interrupt handling are going to be system dependent. The^e
will be some implementations for which -here are no interrupts to handle, .n other cases the
interrupts will oe generated nv the hardware but may either oe specified by number :-r bv a
vector address, i would like to see implementations wnere interrupts were generated ov
completion of asynchronous transfers handled by an underlying operating system. W'trth nas
shown us how an interrupt handler ran. oe modelled as a cyclic process synch-cnirmc w;M .r
externally generated event. In Modula-i this synchronization was expressed by the doit
statement within special &viceprocesses. In Modula-2 for the PDP-J1 handling hardware-
interrupts there is the lower-level procedure

IOTRANSFERCYAR pi, p2: ADDRESS; va: CARDINAL);

which stores a reference to the current state of the calling coroutine in p 1 and transfers to the
coroutine referred to by the value of p2. The run-time system arranges matters so that when ar

Q

$T3

..... -- --

Modula-2 Processes

ril=l?ls§iip?5 >
priority corresponding to the priority assigned by the hardware to the interrupting device.
More precisely, the processor priority must be kept at this level while interrupts are enabled
and the handling process is executing.

The generality of specifying the vector address 8t each call of lOTRANSFER may seem to be a
small prize to win for the price of setting up the vector dynamically each time. The comparison
with traditional interrupt handlers can be misleading as there the interrupt routine uses the
stack of whichever process it interrupted. Most of the extra overhead comes in arranging to
switch stacks rather than in setting up the vector. This has the rich prize of allowing local
var iables to remain in existence between interrupts.

It comes as no surprise that lOTRANSFER must be imported from SYSTEM, although it is
interesting to see that some implementations for processors other than the PDP11 have been ^
able to keep a compatible interface. There may be problems with some processors in ensuring
the indivisibilty of the transfer operation from the interrupted to the interrupting prccess.

MODULE Printer [4); <* Example 3 * >
FROM SYSTEM IMPORT

NEW PROCESS, TRANSFER. lOTRANSFER, LISTEN, ADDRESS WORD. ADR;
LX PORT Print;
CONST N - 32. intEnable -6. intVec - 64B.
VAR

n CARDINAL. in. out: (l..N»: waiting; BOOLEAN;
buff: ARRAY [1..NI OF CHAR;
user, driver: ADDRESS;
wsp ARRAY [1. 100] OF WORD;
statusReg i!77564Bl; BITSET. outBuf [177566B]: CHAR;

PROCEDURE PrintCch; CHAR);
BEGIN

WHILE n -NDO LISTEN END;
buffiin] ■» ch in :• in MOD N *1; INC(n);
IF waiting THEN waiting - FALSE TRANSFERtuser. driver) END;

END Print.

. ?

V
l«il!
t li \:ti(

;
ill
ii;

!

k

PROCEDURE Handler;
BEGIN

INCL(statusReg, intEnable);
LOOP

IF n - 0 THEN waiting * TRUE; TRANSFER (driver, user) END:
outBuf > bufflouti; out - out MOD N ■* l DEC(n);
lOTRANSFER! driver, user. intVec);

END
END Handler:

BEGIN
n - 0; in 1; out -1.
NEW PROCESS (Handler. ADR(wsp). SIZE(wsp), driver)
TRANSFER(user. driver);

END Printer

pA-G-r

8

Modula-2 Processes

Many commercially available systems provide no higher-level facilities akin to those of
Modula-1 device processes. It turns out that the coroutine transfer model is quite useable for
device handling.- This is because the interface procedure called by the user process knows the
identity of the device process with which it interacts. This is not the case for regular interface
modules where the anonymity of processes waiting for signals is more appropriate. A common

case is illustrated by Example 3.

The use of the Boolean flag waiting, allows the user to access a slot in the buffer as soon as the
character has been taken out by the driver but avoids a TRANSFER being made while the driver
is still waiting tor an interrupt. Without this flag, the user could instead test for the case n * 1
but then the statement DEC(n) would have to be postponed until after the interrupt had been
received.

It may seem tempting to turn on interrupts in the module body along with the initialization axle.
After all, the body does execute at priority level A. Unfortuneately there are implementations,
including those for the PDP11, in which NEWPROCESS sets the initial priority to 0. On the
first transfer to the process, the processor priority will be lowered to 0 before the code of the
procedure gets a chance to raise it back to its proper level. Possible fixes would be to add a
parameter to NEWPROCESS to give the initial priority, or to make the initial priority the same
as that of the caller.

To guard against the posslbilty of spurious interrupts occurring when no IOTRANSFER has Dean
issued, it would be safer to enable interrupts before each IOTRANSFER and to disable them again
immediately afterwards.

The LISTEN procedure momentarily lowers the processor priority to let in pending interrupts,
it should not be possible for you to write your own version of USTFN in Modula-2 - unless you
took the trouble to transfer to a priority level 0 process which then immediately transferred
back to you The language rules imply that a process currently executing a procedure (declared
in a module) at priority level n must not cal! a procedure at priority level m < n. This is to
protect the mutual exclusion afforaed by a high priority module A compiler can cheek for
violations within comoilatw units but run-time eooe wou’d oe neeoec for calls across
separately compiled modules.

L imitations and alternatives

:he significant limitation m the direct use of iOTRANSFER is that user processes are forcea to
employ busy waiting, fnis is acceptable if there is only one user process out is intolerable
otherwise. If anyone did want to mix the direct use of IOTRANSFER witn the standard module
Processes then a safety precaution might be to give its implementation an explicit priority of
zero. In theory this should trap any attempts to use signal operations from a device process but
your system probably does not employ the necessary checks. This fanciful suggestion could also
be tried with interface modules, designed for use with Processes, in order to protect mutual
exclusion.

m3Y seem that a way forward would be to extend me standard Processes moGule to allow for
device processes. User processes could then wait for a signal sent by a device process ana in the
mear time other user processes would be scheduled. The ETH M2RT i l compiler is distributed
with a module PR0CES5SCHEDULER which attempts this (be warned there are bugs). Their
definition module ados two further procedures:

?*(rt S"T
9

Modula-2 Processes \

-

PROCEDURE SENDDOWN(VAR s: SIGNAL);
PROCEDURE DOIO(va: CARDINAL);

3oth regular and device processes are still started with StartProcess and so are all linked into
the ring together. The user is required to differentiate between them by using SENDDOWN and
D010 only in device processes. SENDDOWN simply marks the receiving regular process as
read/. If the device process has interrupted another process then it returns to it directly on a
subsequent WAIT or DOIO. If no ready process can be found on the ring then LISTEN is called
before restarting the search - on the assumption that at least one regular process is waiting for
a signal to be sent down by a device process which is in turn waiting for an interrupt

But all this solution does is give us a poor emulation of Module- I. It remains the case that
'broadcast' signals are used for interaction with device processes even though the examples with
IOTRANSFER have shown us that a closer coupling may be more appropriate. We also have the
various restrictions on signal exchange between device processes and on waiting for interrupts
in regular processes, although these can no longer be effectively policed. An alternative is to
look for a new layer in our design - between the low-level coroutine mechanism and the higher
level of signals. Then we have a chance of improving on Module-1.

A new Processes module

is
I y

iii \iI;

[::

j;

I:

The intermediate level module described here is based on an initial implementation for the
PDP I i wnich has since been, moved to the Motorola 68000 and the Intel 8086 It is used in the
experimental McaO$ rea‘*-t:me operating system which ?s being btrlt with partial support t>om
tne Ur E5RC.

!::l

The name Fnressesis kept and a higher level module offering synchronization primitives Is
given the more appropriate name of Snjnd/s < he definition module is as shown;

DEFINITION MODULE Processes;
(* © Roger Henry (Nottingham University) *)
(* IMPORT and EXPORT lists omitted for brevity *)

TYPE Process;
PROCEDURE NewProcess(

code PROC.
priority: INTEGER;
wkspAt SYSTEM ADDRESS.
wkspSize: CARDINAL:
param; CARDINAL.
VAR p Process)

PROCEDURE Enabie(other; Process);
PROCEDURE SuspendMe
PROCEDURE SuspendUntillnterrupUva. SYSTEM ADDRESS)
PROCEDURE Disable(other Process)
PROCEDURE Cp(): Process;
PROCEDURE PriorityOftp Process)- INTEGER,
PROCEDURE MyParam() CARDINAL,
PROCEDURE MinWksp() CARDINAL;

END Processes.

!f;
pi !
Ml '

I

. ..•
F, .

low-level mechanism of independent coroutines and explicit transfers is replaced nv a
scheme in which processes are scheduled automatically according to simple pnority
me is a fixed integer priority associated with each process. The main program becomes tne
initial (main) process and runs at a priority of 0. Additional processes may he created
dynamically., during the execution of any process, by calling NevProcess and specifying the
required priority. The returned value of type Process can be stored and remembered to identify
the process in subsequent operations. The function Cp() will deliver tnis value for the current
process. It is guaranteed that tests of equality and assignment of these Process values will
produce sensible results (although the values might be recycled).

Transfers of control between processes occur in three cases. The first of these is when the
current process enables another process by calling Enable(p) and the condition holds that
PriorityOf(p) > PriorityOf(CpO).

Secondly the current process may call SuspendMe. Then control passes to the process of highest
priority that has been enabled for longest at that priority. An idle process is provided that is
always enabled and has the priority MIN(INTEGER). The suspended process must have made
arrangements to be enabled again if it is ever to regain control. This usually happens when an
awaited event occur s.

? fft#

The third case is when the current process suspends itself by a cal) of SuspendUntiJInterrupt.
The immediate effect is the same as for normal suspension. When the specified hardware
interrupt arrives, the suspended process will be enabled automatically, it w?51 resume
execution as soon as the priority rules allow

This definition implies, correctly, that on this scheme any process m3y synchronize with an
external interrupt (But of course only one process at a time lor eacn interrupt) • rus can lead
to much simplification in avoiding the need for special device processes enclosed entirely
high-(processor)priority module it turns out that these are only strictly necessary when the
device generates interrupts spontaneously - as with keyboards and clocks.

in a

ThisMyParamO delivers the value given for param when the current process was started,
service is provided since the copying of global variables, into local process variables car be
unsafe. The reason is that when a process creates a new process at the same or a lower priority
as itself and then enables it for the first time, there will not be an immediate transfer oi
control The passed parameter is sufficient 'or direct use in many cases. In others, it can be
used as an index into an ar^ay of per-process variable;, of any required type. The value 0 is
returned in the main process.

Finally, before an example, the procedure Disable can he used to disable another enabled
Disable(CpO) has no effect. Whenever it is known, that a process will not oe enablesprocess

again then the corresponding workspace may be reused.

Typical direct use for device handling closely follows the pattern for the direct use of
IOTRANSFER. This is illustrated by suitably adaoted versions ot the procedures from Example 5
for buffered keyboard input. Now user and driver are variables of type Process.

Pic-e
n

Modula-2 Processes

i
PROCEDURE Print!ch: CHAR):
BEGIN

IFuserNJcpO: userWaiting -TRUE; SuspendMe;

END;
buffi in]ch; in in MOD N ♦ 1; INC(n);
IF driver Waiting THEN .

driverWaiting FALSE; Enable(driver)

, i

\i
I

5
!! VI
i

END;
END Print;

PROCEDURE Handler;
BEGIN

INCL(statusReg. intEnable);
LOOP

!

IFn-OTHEN
driverWaitingTRUE; SuspendMe

END;
outBuf - bufflout); out :■ out MOD N *1; DEC(n),
IF userWaiting THEN

userWaiting FALSE; Enable(user)
a '

END;
SuspendUntillnterrupUintVec);

END
END Handler:

The enclosing module must still specify a processor priority of 4. By convention, the driver
process is started with a software priority of 40 = 4x 10

NewProcesst Handler. 40, ADR(wsp). SIZE(vsp). 1, driver).
Enahle(driver):

Through the parameter mechanism, it is possible to have several device processes executing the
same procedure anG serving multiple instances of a device where each nas its own vector and
register set.

The next example shows how the new operations are used without a special device process to
achieve ur>huffered output to a terminal without busy waiting.

MODULE Printer 14!,
(* IMPORTS. EXPORTS and declarations omitted for brevity *)

PROCEDURE Print(ch: CHAR);
BEGIN

IF NOT (readyBit IN statusReg) THEN
INCLtstatusReg. intEnable);
SuspendUntillnterrupUintVec);
EXCL(statusReg. intEnable);

END;
outBuf -ch

END Print.
END Printer

The ability to set up vectors dynamically can now he used to great advantage.

P ACrf 5%
12

1Modula-2 Processes

/

scheduling strategy

Enabling a higher priority process than yourself is like asking the other process to interrupt
you. An interrupted process remains enabled and so will remain the process that has been
enabled for longest at its priority. When the interrupting process suspends itself, control will
therefore return to the interrupted process before any other of the same priority. Of course,
the interrupting process may have enabled some processes of intermediate priority and they
will be executed first.

By design, an interrupting process cannot tell the identity of the process it has interrupted.
There is therefore no way that the basic scheduling strategy can be subverted, say by a clock
process which disables the interrupted user process and then selects another one which it has
previously disabled.

A user may easily provide her or nis own idle process Dy giving it a negative priority. For
simulations of consumption and production activity, we have built a module employing such a
low priority process. The exported procedure Nrext. stores the Process value or the caller in a
free slot in a table and then calls SuspendMe. The idle process then selects a suspended process
at random and enables it. It would be a simple matter to weight the probability cf selection by
the priority of the process.

Mutual exclusion

Given the usual arguments about not calling external routines which could cause a process
switch, mutual exclusion in modules used as interfaces between processes is guaranteed -
provided all calling processes are of the same priority. !f more general interfaces are required
then the interface module must specify a processor priority high enough to prevent ali
interrupts. No process switching can then occur other than that requested by the intefface
procedures. The value of the necessary priority will vary from machine to machine and so is
exported from a separate module as the constant monitorPriority. It is kept separate so that it
can be used with higher - level operations wmcn woulo otherwise not require tne user to import
directly from Processes.

This monitor solution is extremely simple. Or rather it is simple but extreme. More selective
exclusion can be provided by the use of semapnores. Operations on general -semaphores are
provided by a separate module which is implemented above the Processes layer.

Higher-level modules

At the Processes level, there is a deliberate separation of the creation and the enabling
operations. The user must also provide the workspace. This choice is appropriate at its
relatively low layer of a system since it avoids dependency on a storage allocator. A module at a
higher-level exports the procedure StartProcess which adds an increment to wnat the caller
thinks is needed for the amount of workspace (using Processes Min Wk$p(>), allocates It from
a heap, and then creates and enables the prxess. The current implementations use the given
procedure directly as the program of the process but it is likely that future versions will
arrange for it to be called indirectly. This will allow processes to terminate cleanly as far as
the client is concerned. Already it is possible to call StopMe to terminate and arrange for the
workspace to oe released to the heap. The killing off of one prxess by another is not envisaged
since it would assume knowledge of data structures built by other modules, from which,
references to the dying process would need to be removed.

/

p*c-r n
13

Modula-2 Processes

Other modules built on top of Processes which build such data structures include Signals.
Semaphores and Timing. A signal queue now becomes simply a linked list of records
containing the Process values of the waiting processes. There is no need to have a record field
allocated for the queue in the process descriptor itself. This is part of the layered approach to
system design.

• i• i >i«■: . m • ■ 'r
The consistent interpretation of the priority rules forces a change in the semantics of the signal
operations between processes ef equal priority. Now when the first waiting process is enabled,
there will not necessarily be an immediate transfer of control. (However, the waiting process
will have been enabled longer than any process subsequently receiving a signal and so will start
to execute first.) The moral is that interface procedures using signals for synchronization,
should be written to make no assumptions about the relative speeds (scheduling) of two ready
processes (the receiver and sender of the signal). Rewriting the semaphore operations of
Example 1 accordingly we have

aO \

i

VviI
; i

If

* * *• l 1 f *

PROCEDURE P(VAR s: Semaphore);
BEGIN

IF s taken THEN
Wait(s.free) v

v.
ELSE

s.taken ;= TRUE
END

END P;

PROCEDURE V(VAR s: Semaphore).
BEGIN

IF Awaitedls.free) THEN
Send(s free)

ELSE
s taken > FALSE

END
END;

It is now impossible for the signalled condition to be invalidated before the waiting process
proceeds (The general Semaphores module of the ModOS system uses the Processes
operations dr set-y)

• he time at which internal and external events occur is of great importance in real-time
laboratory applications. The Timing module allows the time of output events to be controlled
and the time of input events to be measured. The essential idea is to allow all user processes to
de’ay for a specified period by sharing the use of a single hardware interval timer. The clock, is
set to interrupt at the end of the period which will expire first. A high priority device process
handles the interrupt and enables the corresponding user process before restarting the clock for
the next interval. The Signals module makes use of Timing to offer timeouts during waits.

Conclusion

4

; hope that you are now convinced, as > nave been, that Modula-2 is of'considerable value in
building portable real-time systems in a ’ayereci fashion. That the end result is worthwhile is
demonstrated by the efficiency which can oe achieved without sacrificing structured design. As
an indication of this, we can achieve millisecond precision in timing using a DEC LSi- »i/23.

PA <r<f 60
14

0 October 1984,-_2 Hews MODUS Quarterly # 2 April 1985
visions ... to Modula-2, Wirth
fc* of Standard Modules, Hopper

Suia-2 bibliography, Brown-*-
Lus Membership list
Modula-2 Implementation Questionaire

Letter on Library, Anderson
Letter to Editor, Emerson
Comments on Modula-2, Emerson
Opaque Types, French & Mitchell
Dynamic Instantiation, Sumner
Linking Modula-2, Symons
Library Comments, Peterson
Modula Compilers, Smith
Coding War Games, DeMarco
M2, Alt. to C, Djavaheri/Osborne

MODUS Quarterly # 3 July 1985

Letter re opaque types, Endicott
Letter on language issues, Hoffman

^Modula-2 in "Real Time", Barrow
RajalnOut: safer I/O, Thiagarajan
Contentious Problems, Cornelius
Expressions in Modula-2, Wichmann
Scope Problems: Modules, Cornelius
Corrections to compiler list

#odula-2 News # 1 January 1985

Letter to Editor, Layman
Letter to Editor, Bush
Gleaves' Modula-2 text, DeMarco
MODUS Paris meeting, Blunsdon
Report of M2 Working Group, Souter
Library Rationale by Randy Bush
Library Definition Modules
Library Documentation by Jon Bondy
Validation of Modula-2 Impl, Siegel

O
MODUS Quarterly # 4 November 1985

MODUS Meeting Report by Bob Peterson
A Writer's View of a Programmer's Conference by Sam'l Bassett
Concerns of a Programmer by Dennis Cohen
A Few Modifications to a Modula Standard Library Proposal by Nagler & Sieg
Proposal for a standard library and an Extension to Modula-2

by Martin Odersky, Peter Sollich & Mike Weisert
Standard Library for the Unix OS by Morris Djavaheri
An Implementation of the Standard Library for PC's by E. Verhulst
Modula-2 Compilation and Beyond by D.G. Foster
•Modula-2 Processes - Problems and Suggestions by Roger Henry

MODUS Administrators supply single copies at $5 US or 12 Swiss Francs.

(If in doubt, send it in; we can then discuss i

Send CAMERA READY copy to an editor (dot matrix copy is usually unacceptab
Machine readable copy is preferred. Present facilities permit printing pa
of 60 lines (80 characters wide). Pages limited to 70 characters per line
be printed in 10 pitch (Pica). Page numbers will be shown on line 60 if s
permits. Long or loosely formatted contributions may be reduced for print

Hints for contributers:

Your text will not be altered without your permission. Editorial remarks
be enclosed in square brackets []. Additional text may be added to aid th
reader in identifying the subject and author of contributions. Modula-2 N
is copyrighted, but the author retains all rights to further publication o
contributed material. Working papers and notes about work in progress are
encouraged. Modula-2 News is not perfect, it is current.

Please indicate that publication of your submission is permitted.
Correspondence not for publication should be PROMINENTLY so marked.

Richard Karpinski
6521 Raymond Street
Oakland, CA 94609
(415) 666-4529 (12-7 pm)
(415) 658-3797 (ans. mach.)

TeleMail
BITNET

M2News or RKarpinski
Dick@ucsfcca

CompuServe 70215,1277
UUCP !ucbvax!ucsfcglicca.ucsfIdick• • •

u

!

i-

Modula-2 Users' Association

MEMBERSHIP APPLICATION

\
t

AName:

KAffiliation:

Address:i

Address:

CountryPostal CodeState:
j

Electronic Addr:Phone: (

C .Option __ Do NOT print my phone number in any rosters
Print ONLY my name and country in any rosters
Do NOT release my name on mailing lists

or
or

I

or RenewalApplication as- New Member

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of US group who are outside of North America, add $ 10.00

Otherwise, please send check or bank
transfer (in Swiss Francs) payable to
Modula-2 Users' Association at-

In North and South America, please send
check or money order (drawn in US dollars)
payable to Modula-2 Users’ Association at:

Aline Sigrist
Moots Secretary
ERIXS SA
P.O.Box 35
CH-1800 Vevey 2

P.O. Box 51778
Palo Alto, California 94303
United States

The Modula-2 Users’ Association is a forum for all parties interested in the Modula-2
Language to meet and exchange ideas. The primary means of communication is through
the Newsletter which is published four times a year. Membership is for an academic
year, and you will receive all newsletters for the full year in which you join. Mid-year

applications receive that year’s back issues. Modula-2 is a new and developing language;
this organization provides implementors and serious users a means to discuss and keep
informed about the standardization effort, while discussing implementation ideas and
peculiarities. For the recreational user, there will be information on the status of the
language, along with examples and ideas for programming in Modula-2. For everyone,
there is information on current known implementations and other resources available for
information on the language.

:J

:
Modula-2 Users' Association

MEMBERSHIP APPLICATION

name:

Affiliation:

J Address —

\

Address

CountryPostal CodeState:

Electronic AddrPhone (

Do NOT print my phone number in any rosters
Print ONLY my name and country in any rosters

Do NOT release my name on mailing lists

Option#
or
or

or RenewalApplication as: New Member

Implementation(s) Used

** Membership fee per year (20 USD or 45 SFr) **
Members of US group who are outside of North America, add $ 10.00

Otherwise, please send check or bankIn North and 5outh America, please send
check or money order (drawn in US dollars) transfer (in Swiss Francs) payable to
payable to Modula-2 Users' Association at Modula-2 Users' Association at:

•1^0 Box 51778
Palo Alto, California 94303
United States

Aline Sigrist
moous Secretary
Erects SA
P.O.Box 35
CH-1800 Vevey 2

The Modula-2 Users' Association is a forum for all parties interested in the Modula-2
Language to meet and exchange ideas. The primary means of communication is through
the Newsletter which is published four times a year. Membership is for an academic
year, and you will receive all newsletters for the full year in which you join. Mid-year
applications receive that year's back issues. Modula-2 is a new and developing language;
tms organization provides implementors and serious users a means to discuss and keep
informed about the standardization effort, while discussing implementation ideas and
peculiarities. For the recreational user, there will be information on the status of the
language, along with examples and ideas for programming in Modula-2. For everyone,
there is information on current known implementations and other resources available for
information on the language.

