
NORD-12

REFERENCE MANUAL

NORD-12

REFERENCE MANUAL

iii

TABLE OF CONTENTS

i+

Chapters :

INTRODUCTION

General Characteristics
Peripheral Equipment

.3 Software —
 R
O

SYSTEM ARCIITECTURE

Introduction

Central Processor

.1 Indicators

Instruction and Data Formats

Instruction Formats
Data Formats
Single Bit

8-bit Bytle
16-bit Word
32-bit Double Word
48-bit I'loating Point Word
Interrupt System

DN
N

DN

D
N
D
D
N
D
D
N
D

-

N
N

N
D
N
D
N
D

N
N

DN

DN

S

W
i
+
~

H

W
W
W
w
w
W
w
w
W
w

w

w
o

b
y
~

INSTRUCTION REPERTOIRLE

Memory Reference Instructions
Addressing Structure
Store Instructions
Load Instructions
Arithmetical and Logical Instructions
Sequencing Instructions
Byte Instructions
Register Block Instructions
Operate Instructions

1
O

U

W

IFloating Point Conversion Instructions
Shift Instructions
Register Operations
ROP Register Operation Instructions
IEXTended Register Operation Instructions

3 Inter Level Register Instructions
Skip Instructions
Argument Instructions
Bit Operation Instructions

D
o

=
 Bit Skip Instructions

Bit Setting Instructions
3 One Bit Accumulator Instructions

Accumulator Transfer Instruction
Transfer to A register

.2 Transfer from A register

o

W
W
W
R
W
W
W

W
W
w
W
W
W
W
w
W
w
w
W
w
w

W
w
w
w
w
w
w
w
w
 w

p—

I
O

O
U

R
W
W
W

W

Page:

b

e
|
-

o
o

N
L
\
D
N
N
[
\
'
)
[
\
D
[
}
D
N

N
N

DN

DN

I
I
o
m
o
o
d
o
y

o
L

=

|
@

iv

Chapters: Page

1 [

Do
 Input/Output Control Instructions

.1 Recommended Device Addresses

2 Format of Status and Control Word

System Control Instructions

L
W
L
 w

W
w
w
w

Ww
|

o
o
y
l

1
o

M
H
O
=
1

1
N

Interrupt Control Instructions
Monitor Call Instruction

3 Wait or give up Priority
Customer Specified Instructions

[\

W

w
w

W
w
w
w
 W

T
k

W
 w

W

=

4 THE INPUT/OUTPUT SYSTEM 4-1

4.1 Input/Output Hardware 4-1

4.1.1 General Description 4-1
4.1.2 Vectored Interrupt Identification 4-2
4.2 Input/Output Programming 4-4

4.2.1 Programming Examples 4-4

4.2.2 Input/Output Interrupt Programming 4-5

4.2.3 ‘Design of an Input/Output Handler Routine 4-5

5 THE INTERRUPT SYSTEM 5-1

5.1 Control of Program Levels 5-2

5.1.1 Program Level Activation 5-4

5.2 Initialization of Interrupt System 5-4

5.3 Interrupt Program Organization 5-5

5.4 Internal Interrupts 5-6

5.4.1 Monitor Call Interrupt 5-6

5.5 Vectored Interrupts 5-7

6 CONTROL PANEL 6-1

6.1 NORD-12 Control Panel 6-1

6.1.1 Power On/Off 6-1

6.1,2 Master Clear 6-1

6.1.3 Restart 6-2

6.1.4 -Load 6-2

6.1.5 Continue 6-2

6.1.6 -Stop 6-2

7 NORD-10 OPERATOR'S PANEL 7-1

7.1 Panel Elements 7-1

7.2 18-hit Switch Register 7-1

7.3 18-bit Light emitting Diode Register 7-1

7.4 16 Selector Pushbuttons and 16 associated Light

emitting Diodes 7-1

7.5 Display Level Select 7-3

Chap ters:
<D

3
-3

-3

-3

-
3
1
~
3
~
3
1
-
3
-
3
-
3
-
1

-3

o
0
0
0

=
D

00

=
1

U

o

o
o

00

00

o

OO
0

00

0
o

GO

0
0

0
O

0
o

o

0

1
S

U

L
o

DO

DO

DI

DO

B
DO

F

b=

=
b

e

e

G
~

W
~

APPENDIX
APPENDIX
APPENDIX

Control Buttons

Master Clear

Restart

Load

Decode Address

Sct Address

Deposit
Iinter Register
Single Instruction
Continue

Stop
Mode Indicators

OPLERATOR'S COMMUNICATION

IF'unctions

Start a Program
Memory Iixamine

Memory Deposit
Register Examine
Internal Register Examine
Current Location Counter
Break [Function
Bank Number
Bootstrap Loaders

Octal Format Load
Binary Format Load
Mass Storage Load
Automatic Load Descriptor
Examples

A
B
C

Page

-1

-
3
-
3
-
3
-
3
-
3
+
-
3
-
3
-
3
1
-
3
-
3

=3

[

A
T

R
D
R

R
W
W
W
 W

O
N
-
1
o
U

U

W
w
w
W
w
N
D
N
D

N

=

O
0

0
0

O
O

OO
0

oo

0
0

o
o

o

W

o
t

O
L
l
_
d
3
>

=

1.

1-1

INTRODUCTION

General Characteristics

The NORD-12 computer system is a compact mini-computer system
with an unusually large instruction set.

The NORD-12 belongs to the NORD-10 family of 16-bit computers where
program compatibility with the NORD-10 is assured by the fact that both
the instruction set and the Read Only Memory which controls the instruc-
tion execution is common to both the NORD-10 and the NORD-12. For
readers familiar with the NORD-10, we recommend you read Appendix C
which lists all differences between NORD-12 and NORD-10.

A basic instruction set is common to all NORD-12 machines, and

this set is highly optimized to produce effective code; hardware
floating point arithmetic is standard as are the instruclions to mani-
pulate individual bits at high speed.

The register structure and addressing scheme facilitate the proces-

sing of structured data with high efficiency.

The NORD-12 is micro-programmed, and all NORD-12 instructions
are executed by means of a micro-program located in a very fast (65 ns)
read only memory. Micro-programming gives the NORD-12 computer
flexibility and a very large growth potential. New instructions may be
acdded to the NORD-12, and instructions for special applications may be

optimized for a particular use.

NORD-12 provides up to 1024 customer-specified instructions. These
instructions are micro-programmed in a programmable read-ouly
memory, which is added onto the standard read-only memory.

Micro-programming in NORD-12 is also used to control the operator's
panel and to perform operator communication between the operator and

the console Teletype or display.

Bootstrap loaders both for character-oriented devices and mass
storage devices are also controlled by a micro-program.

The NORD-12 uses MOS lype memorics with memory size from 4K to 64K

words; memory increment size is 4K. Memory parity is an option in

which case the word-length is 18 bits with one parity bit for each 8-bit

hyte.

Another option is a power fail/auto restart system which also provides

30 minutes of memory stand-by power.

The NORD-12 standard processor executes at a speed of 490 ns

for each micro-instruction. This manual gives complete timing

figures for all instructions.

1.

1.

1-2

The input/output and interrupt systems of NORD-12 are designed for
case of use and very high speed. NORD-12 has 16 program levels
each with its own set of registers, making possible a complete con-
text switching from one program level to another in only 2.0 pus.
In addition 2048 vectored priority input/output interrupts are standard.

Peripheral Equipment

A compléte range of peripheral equipment is available for the NORD-12.
The I/0 system is common for both the NORD-12 and the NORD-10,
and all interfaces for the NORD-10 are immediately available also for
the NORD-12. When upgrading from a NORD-12 to a NORD-10 all
peripherals and interfaces may he moved from the NORD-12 to the
NORD-10.

Most peripherals to the NORD-12 are offered with a range of different
performances. The range of peripherals include several types of
console typewriters, teletypes or display terminals, paper tape equip-
ment, line printers, card equipment, high speed electrostatic printer/
plotters, magnetic cassette tape, 9-track magnetic tape also including
high performance 90 ips 1600 bpi tape, fixed head drums, moving
head cartridge disc, A/D - D/A equipment, transmission line inter-
faces and a CAMAC interface.

Software

Based on 7 years of experience with NORD-1 and NORD-10 a wide range
of system software is available including a SINTRAN I1I/12 operating

system. :

For further information, please contact A/S Norsk Data-Elektronikk's
Sales Offices.

2. 1

2-1

SYSTEM ARCHITECTURIE

Introduction

The NORD-12 in its minimum size has 4K MOS memory, a Teletype

interface and a small control panel, From this initial configuration
it is possible to expand to a very large computer system.

1 11 12 13 32
— K

NORD-12 CPU]?wos

T—Teletype Interface

———— Optional Paper Tape Reader

Interface

The NORD-12 initial configuration provides 20 unused slots, a slot may

either be used for a 4K memory module (max 64K) or for an I/O inter-
face (max 12 interfaces in the CPU crate).

If more I/0 slots are required an External Bus Driver which takes 3 slots in the
CPU crate, provides a full NORD-10/NORD-12 bus on differential line
driver/line receiver signal levels.

This I/0 bus may then be connected to one or more of the following units:

1. Bus Controller, which provides core address registers for
DMA type interfaces, and another 8 or 16 I/O slots.

2 Bus Switch, making it possible to switch peripherals
between different NORD-10/NORD-12 computers.

31 CAMAC crate controller, providing access to the wide
range of CAMAC equipment available.

Figure 2.1: Example of a larger system.

1 11 _ 21 32
4K MOS Memory

NORD-12 CPU
 {

00
1D

Bu
wl

]
B9

y

I2
AL

I(
]

s
n
g

9
0
®
J
I
9
U
]

JO
PE
BR
Y

PJ
IB
)

a
o
e
J
a
s
i
u
l

2
d
A
l
8
I
a
]

90
BJ
JI
DI
U]

J9
}U

LI
Ig

SU

IT

p
o
g
j
a
o
u
]

J
o
p
e
a
y

a
d
e
l

oo
rj
aa
iu
]

y
o
u
n
g

ad
e[
,

 1 8 9 16 32

Bus 5 unused DMA

Controller I,/0 slots Interface

 L__PPrint Plot DMA

Interface Magnetic Tape
Interface

In this example a 48K with 6 intcrfaces for programmed 1I/0 and

3 DMA inlerfaces for a 10 Mbyte Cartridge disc (expandable to 40

Mbytes), a 90 ips 1600 bpi Magnetic tape and a 1000 lines/ min

clextrostatic printer/plotter will fit into two 7" high standard 19"

crates.

2. Central Processor

2-3

The conncction of main modules in the CPU is through the common
data bus. BD. and common address bus.
For simplicity control lines and inter-register buses are omitted in
this figure.

AMemory

modules

Input /Output

interfaces

BA. as shown in Figure 2. 2.

Interrupt

system

 BD

 BA

Figure 2.2: NORD-12 CPU Bus Structure

Operator's

pancl

Control

scction

Registers,

Arithmetic,

A more detailed diagram of the control scction and register block
is given in Figure 2. 3.

2-4

Sum

1 \

A v © 4.

16 x 10 > 16 or 32 bit

~ "1 Registers B Arithmetic

|

Micro Inst, Register

| A
Main Inst, Format ’ Timing

Register Convert Control

J

Address

Deccoder

f
Micro Prog. 1K - 32 bhit

Counter R.O.M

TFigure 2.3 CPU Block Diagram

The register block contains 8 general registers for each program
level and two scratch registers for each level to be used hy the
micro-processor,

The arithmetic unit is normally operated in a 16-hit format. The
32-bit format is used for floating point and double precision operalions.
The arithmetic unit contains the necessary buffer registers to do the
complete inner loop in the filoating point micro-programs using only
490 ns. 32-bit format is achieved by two 16 hit operations in sequence.

Some instructions in the NORD-12 insiruction sct are gencral Lwo-
address inter-register instructions., Due to the generalily of these
instructlions, 2048 inter-register instructious (sec Section 3. 2. 3)
arc converted directly to the three-address format of the micro-
instruction and fed directly into the micro-instruction register., The
remaining bits, i.e. cycle control ete. are read from the read-only memory.

2.2.1

2.3

Indicators

Six indicators are accessible by program. These six indicators are:

C Carry indicator. The carry indicator is dynamic.

Q Dynamic overflow indicator.

O Static overflow indicator. This indicator remains set
after an overflow condition until it is reset by program.

4 Error indicator. This indicator is static and remains

set until it is reset by program.

K One bit accumulator. This indicator is used by the BOP
bit operations, instructions operating on one-bit data.

M Multi-shift link indicator. This indicator is used as
temporary storage for discarded bits in shift instructions
in order to case the shifting of multiple precision words.

These six indicators are fully program controlled either by means of
the BOP instructions or by the TRA or TRR instructions where all
indicators may be transferred to and from the A register.

Instruction and Data Formats

The NORD-12 has a 16-bit word format. The bits are conventionally

numbered 0 to 15 with the most significant bit numbered 15 and the

least significant bit numbered 0.

15 0

16 -bit NORD-12 word

Figure 2.4: NORD-12 Bit Numbering Convention

The content of a NORD-12 word is conventionally represented by a

6-digit octal number. Thus, the content of a word with all 16 bits set

to zero is represented as 000000 while the content of a word with all

hits set to one is represented as 177777,

2.3.1

2.3.2

2.3.2.1

2.3.2.2

2-6

Instruction Formals

All NORD-12 instructions are contained in one single 16 bit word.

The instruction set is divided into the following five subclasses:

Memory Reference Instructions

Operate Instructions

Input/Output Control Instructions

System Control Instructions

Customer Specified Instructions,

In Chapter 3 each inslruction is given a short description. This
includes a diagram showing the instruction format.

Data Formats

The standard NORD-12 instruction set provides instructions for the
following five different data formats:

a) Single bit

b) 8-bit byte

c) 16-bit word

d) 32-bit double word

e) 48-Dhit floating point word

Single Bit

A single bit data word is typically used for a logical variable; the bit
instructions (see Scction 3.2, 6) are for manipulation of single bit
variables. The bit instructions specify operations on any bit in any
of the general registers, as well as the accumulator indicator K.

8-bit Bytle

Two instructions arc available in the standard NORD-12 instruction

set for byte manipulations, i.e. load byte and store byte, sce
Section 3.1.6.

A byte consists of 8 bits giving a range of 0 < X < 255.

2.3.2.3

2.3.2.4

2-7

The byte addressing, see Section 3.1.6. is such that when two bytes

are packed into a word the even byte address points to the left half of

the word

15 8 1 0

Even address Odd address

n n+1

Byte Format,

16-bit Word

The most common data word format is the 16-bit word contained in

one memory location or one register.

Representation of negative numbers is in 2's complement. The skip

instruction, see Section 3. 2.4, also contains instructions to treat

numbers as unsigned (magnitude) numbers.

Range -32768 £ X £32767

or 0 £X «£65535

32-bit Double Word

Two instructions are available to handle double word formats, load

double and store double, sce Sections 3.1.2 and 3.1.3.

A double word is a 32-bit number which occupies two consecutive

locations (n, n+l) in memory, and where negative numbers are in

2's complement.

31 A 16 15 D 0

Most significant least significant J

n n+l

Double Word Format.

A double word is always referred to by the address of its most

significant part. Normally a double word is transferred to the re-

gisters so that the most significant part is contained in the A register

and the least significant in the D register. Range as integers:

-2 147 483 648 =X <2 147 483 647

2.3.2.56

2-8

48-bit Floating Point Word

The standard NORD-12 instruction set provides full floating point

hardware arithmetic instructions, load floating, store floating, add

subtract, multiply and divide floating, convert floating to integer and

convert integer to floating.

The data format of floating point words is 32 bits mantissa magnitude,

one bit for sign and 15 bits for a biased exponent.

The mantissa is always normalized, 0.5 <mantissa <1. The

exponent base is 2. the exponent is biased with 214, A standardized

floating zero contains zero in all 48 bits.

In main memory one floating point data word occupies three 16-bit

core locations, which are addressed by the address of the exponent part.

n exponent and sign

n+1 most significant part of mantissa

n+2 least significant part of mantissa

In CPU registers bits 0-15 of the mantissa are in the D register, bits

16-31 in the A register and bits 32-47, exponent and sign, in the T

register. These three registers together are defined as the floating

accumulator.

47 T 32 31 A 16 15 D 0

+ Exponent Man-| -tissa

n n+1 n+2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any

integer up to 232 has an exact floating point representation,

The range is

-16384 16383
2 0.« X =«2 clorX=20

—4¢ g or 10 4920 —x 4104.)20

Examples (octal formaty:
T A D

0 0 0 0
+1: 040001 100000 0
-1: 140001 100000 0

2-9

Interrupt System

The NORD-12 Interrupt System allows priority interrupt handling at
extremely high speed. The interrupt system consists of 16 program
levels in hardware, each program level with its own complete set of
general registers and status indicators. The program levels are
numbered from 0-15 with increasing priority; program level 15
has the highest priorily, program level 0 the lowest. The context
switching from one program level to another is completely automatic
and requires only 2.0 us.

All program levels can be activated by program. In addition program
levels 10-13 and 15 can be activated by external devices. Level 14
is used for monitor calls.

As many as 2048 vectored interrupts may be connected.

By using these program levels large programming systems may
be greatly simplified. Independent tasks may be organized at
different program levels with all priority decisions determined by
hardware and with almost no overhead because of the rapid context
switching. '

The program level to run is controlled from the two 16-Dbit registers:

PIE - Priority Interrupt Enable

PID - DPriority Interrupt Detect

Each program level is controlled by the corresponding bits in these
registers. The PIE register is program controlled, and the PID
register is controlled by both program and vectored interrupts.

At any time. the highest program level which has its corresponding
bits set in both PIE and PID is running. This level is called PL.

Program

Level Select

BD |
- P[0

416

EN | o Lol
r J 7

16 Co 4 4
L1 der

BD
~—— PID

INT *\/L" Change
COMPARATOR Program

Level

IFigure 2,10: Program Level Control

2-10

A change from a lower to a higher program level is caused

by an interrupt request. A change from a higher program level

to a lower takes place when the program on the higher program level

gives up its priority.

3-1

INSTRUCTION REPERTOIRE

In NORD-12 all instructions occupy a single word, 16-bits, yiclding

a very efficient use of memory, and also producing code with unusual

efficiency with regard to speed. 48 bits floating point arithmetic

operations and floating integer conversions are standard.

Note that in this chapter one is always referring to the register set on

current program level, for example ''the A register" means ' the A

register on current program level"”.

In this manual the instruction set of NORD-12 is divided into the

following five subclasses:

3.1 Memory Reference Instructions

3.2 Operate Instructions.

3.3 Input/Output Control Instructions

3.4 System Control Instructions

3.5 Customer Specified Instructions

Each instruction is given a short description. This includes its

mnemonic as used in the assembly language, octal code, a diagram

showing its format, timing information and special comments. For

each instruction the systems and indicators that can be affected by the

instruction are listed.

The definitions used in the descriptions are as follows:

General Registers Status Word

Bit

A A register 2 K One bit accumulator

D D register 3 7 Error indicator

T T register 4 Q Dynamic overflow

L L rcgister indicator

X X register o O Static overflow indicator

B B register 6 C Carry indicator

P Program counter 7 M Multishift link indicator

STS Status register 8-11 PL Program level indicator

containing K, 15 IONI Interrupt System On

Z2,Q,0,C,M indicator

3-2

Special Registers

OPR

LMP
PVL
PID
PIE
ALD
IR

Operator's panel
switch register
Lamp register
Previous level register
Priority interrupt detect
Priority interrupt enable
Automatic load descriptor

Instruction register

Abbreviations

EL

EW
AD
A
DW
r'w
sT
dr

A
A%
V

0
us
ns

Effective location

Effective word
Double accumulator
Tloating accumulator
Double word
Floating word
Source register
Destination register
Logical AND
Logical inclusive OR
Logical exclusive OR
The contents of
Microsecond
Nanosecond

The NORD-12 is offered with dynamic MOS memories, these memory

chips have the following specifications (as measured on the chip-level)

access—-time 300 ns.
cycle-time 490 ns

The instruction times specified in this manual are as measured from

a program running in a standard NORD-12, with standard MOS memory.

3.

3.

1

1. 1

3-3

Memory Reference Instructions

Memory reference instructions specify operations on words in memory.

For all the memory reference instructions in NORD-12 the addressing
mode is the same, with the exception of the conditional jump, the byte
and the register block instructions. The addressing structure for
these memory reference instructions is given under the specific instruc-
tion specification.

The NORD-12 has the following groups of memory reference instructions:

3.1.2 Store Instructions
3.1.3 Load Instructions
3.1.4 Arithmetic and logical Instructions
3.1.5 Sequencing Instructions
3.1.6 DByte Instructions
3.1.7 Register Block Instruction

Addressing Structure

In memory reference instruction words, 11 bits are used to specify
the address of the desired word(s) in memory, 3 address mode bits
and 8-hit signed displacement using 2's complement for negative
numbers and sign extension.*

15 11 10 9 8 7 0

op. code X | T B displacement

NORD-12 uses a relative addressing system, which means that the
address is specified relative to the contents of the program counter,
or relative to the contents of the B and/or X registers.

The three addressing mode bits called ", X' "I'""!" B" provide eight
different addressing modes.

The addressing mode bits have the following meaning:

~ The I bit specifies indirect addressing

- The , B bit specifies address relative to the contents of
the B register, pre-indexing. The indexing by , B takes

place before a possible indirect addressing.

- " The ,X bit specifics address relative to the contents of the
X register, post-indexing. The indexing by , X takes place
after a possible indirect addressing.

* Excepted from this is the conditional jump, the byte, and the
register block instructlions.

3-4

If all the ,X. I and,B bits are zero, the normal relative addressing
mode is specified. The effective address is equal to the contents of

the program counter plus the displacement, (P) + disp.

The displacement may consist of a number ranging from -128 to +127.
Therefore this addressing mode gives a dynamic range for directly
addressing 128 locations backwards and 127 locations forwards,

Generally, a memory reference instruction will have the form:

<operation code> <addressing mode> <displacement>

Note that there is no addition in execution time for relative addressing,
pre-indexing, post-indexing or both. Indirect addressing, however,
adds 0.9 us to the listed execution time.

The address computation is summarized in Table 3.1, The symbols
used are defined as follows:

, X Bit 10 of the instruction

1 Bit 9 of the instruction

, B Bit 8 of the instruction

disp. Contents of bits 0-7 of the instruction -

(displacement)

(%) Contents of the X register

(B) Contents of the B register

(P) Contents of the P register

(0 Mcans contents of the register or word.

The effective address is the address of that memory location which is
finally accessed after all address modifications (pre- and post-indexing)
have taken place in the memory address computation.

X 1.8 Mnemonic Lffective Address

0 0 0 (P) + disp.

0 1 0 I ((P) + disp.) J

0 0 1 , B (B) + disp.

0 1 1 B I ((B) + disp.)

1 0 0 , X (X) + disp.

1 0 1 B , X (B) + disp. + (X)

1 1 0 I X ((Py + disp.) + (X)

1 1 1 ,B1 X (B) + disp.)+ (X)

Table 3.1 Addressing Modcs

3-5

Wise and compelent use of the NORD-12 addressing modes will result
in efficient programs. Advanced readers may wish to skip the rest
of this section after perusing Table 3.1, which summarizes the

addressing struclure.

P-relative Addressing X =0 1=0 ,B3=0

The P-relative addressing mode is specifed by setting the ,X I and

,B bits all to zero. In this mode the displacement bits (bits 0-7)
specify a positive or negative 7-bit address relative to the current
value of the program counter (P register). .

Example:

Suppose memory location 403 contains the instruction
004002g, which in this chapter we shall represent by
STA * 2, and this instruction is executed. The , X 1

and ,B bits are all set to zero indicating P-relative
addressing, and a positive displacement of 2 is given;
the contents of the A register will therefore be stored
in memory location 405. If, instead location 403 contains
the instruction JMP* -2 and it is executed, the next

instruction to be executed will be taken from location

401, While there is an obvious limitiation to this mode
of addressing (locations more than 1284 words away

from the instruction being executed cannot be accessed).

this mode of addressing is still quite useful for doing
local jumps and accessing nearby constants and vari-

ables.

NIGI’I_:IOI‘)’

-128
Range with

P-relative J

addressing

P registler

Displacement

127
Tifective address

Figure 3.1: Schematic Illustration of P-relative Addressing

3-6

Indirect P-relative Addressing , X=0 =1 ,B=0

Since one must be able to access memory locations more than 128 0

words away from the instruction being executed, the simplest

method of doing this is to use the indirect P-relative addressing

mode, specified by setting the I bit to one and the ,X bit and , B bit

to zero in memory address instructions. In this mode an address

relative to program counter is computed, exactly as for P-relative

addressing, by adding the displacement to the value of the program

counter; but, rather than the addressed location actually being accessed

the contents of the addressed location are used as a 16-bit address of

a memory location which is accessed instead.

Example:

Suppose location 405 contains the instruction LDA I* 2

(045002g), and this instruction is executed. Further-

more, suppose memory location 16003 contains the

value 17, and the memory location 407 contains 016003.

The net result of executing the instruction in location

405 is to load the value 17 into the A register. First

the displacement, 2, of the LDA instruction is added

to the value of the location counter, 405, giving the

result 407; then the contents of location 407, 16003.

are used as an address and the contents of this address

17, are finally loaded into the A register.

Memory

4—1——-—1’ register

|
1

i
1

Pisplucement

Pointer to any location

e | " within 64K

< flcclive address to any
locution within 64

Figure 3.2: Schematic Mustration ol indirccet P-relutive addressing

B-relative Addressing X=0 =0 ,B=1

The above two addressing modes are quite sufficient; in fact

theoretically, either one alone is sufficient. ITowever, if the

NORD-12 provided only one or hoth of the two addressing modes

already described, it would not be particularly convenicnt for

program efficiency. TFor instance, suppose that two subprograms

each a couple of hundred words long, need to communicate, Within

cach subprogram memory accesses are commonly made using

P-rcaltive addressing, or occasionally, indirect P-relative addressing.

But between the subprograms indirect P-relative addressing would

have to be used almost exclusively since, in general, locations in one

subprogram, which instructions in the other subprogram must access,

will not be less than 128 words apart. But this is very inefficient

since both subprograms must contain indirect pointers to data and

instructions local to the -other subprogram.

To overcome this difficulty another addressing mode is available

B-relative addressing, which permits both subprograms to directly

address a common data area. B-register relative addressing is

specified by setting the ,X and I bits to zero and the , B bit to one in

memory address instructions. This addressing mode is quite closely

related to P-relative addressing, but instead the displacement is added

to the current value of the B register, the resultant sum is used to

specify the memory location accessed.

Memory

B register

| Displacement

- T.—Tffective address

Figure 3.3: Schematic illustration of B-relative addressing

3-8

Example:

Let location 405 contain the instruction LDA -4 | DB

(044774g) and the B register contains the value 10035.

Execute the instruction in location 405. This causes

the contents of location 10031 to be loaded into the

A register. The minus 4 in the displacement field

of the LDA instruction in location 405 is added to

the contents of the B register, 10035, giving a sum

of 10031, and the contents of location 10031 are loaded

into the A register.

Indirect B-relative Addressing X=0 =1 ,B=l

Naturally, there is also an indirect B-relative addressing mode which

is specified by setting the ,B and I bits to one and the , X bit to zero

in memory reference instructions. This mode has the same relation-

ship to B-relative addressing that indirect P-relative addressing

has to P-relative addressing. This permits a subprogram to access

data or locations in other subprograms indirectly via pointers in an

area common to several subprograms. This address mode is used

extensively for calling library routines.

Example:

Let location 10031 contain the instruction JPLI 3 , DB

(135403g) and the B register contains 400, a pointer to

an areca common to several subprograms. IFFurther-

more, let location 403 contain the value 2000. If the

instruction in location 10031 is executed, the sub-

routine beginning at location 2000 will be called.

The displacement, 3, in the JPL instruction is

added to the contents of the B register, 400, giving

a result of 403. The contents of locations 403, 2000,

are then used as a pointer to the subroutine.

Mcemory

+1—-— I3 register

Displacement

) Pointer to any locution
T within 64K

M Effective address

Figure 3.4: Schematic illustration of indirect B-relative addressing

3-9

X-relative (or Indexed) Addressing , X=1 1=0 ,1B=0

The other four addressing modes all involve use of the X register.

The simplest of these is X-relative addréssing which works like P-

and B-relative addressing, but the displacement is added to the

X register's contents during the address calculation instead of

to the contents of the P or B register. This addressing mode is

often used for randomly accessing the elements of a block of data.

Example:

I.,et a rccursive subroutine when being called save

the contents of the L, A and B registers in a three

word block on a pushdown stack, and the X register

point to the first free register in the stack. The

following code might then be found at the beginning

of the recursive subroutine:

SUB, STA 1, X
COPY SL DA
STA 2, X
COPY SB DA
STA 0, X
AAX 3

Memory

X register upon entry

to the subroutine

Stiack — — B register saved here

A register saved hecre
- L register saved here

X register after execution
of AAX instruction

Figurc 3.5: The effect of this code is illustrated in the figure

3-10

For another example reread B-relative addressing

mentally substituting "X register' for "B register".

Memory

H4——— X register

Displacement

<+Y—— [Effective address

Figure 3.6: Schematic illustration of X-relative addressing

B-relative Indexed Addressing ,X=1 I=0 ,B=1

When the , X and , B bits are set to one and the I bit to zero in memory
reference instruclions, the mode is called B-relative indexed
addressing. In this mode the contents of the X and B registers and
the displacement are all added together to form the effective address.

B-relative indexed addressing is often very useful; for instance, when
accessing row by row elements of a two-dimensional array stored column
by column.

Memory

I3 register

Nieplacement

Content ol X register

Lffective address

Figure 3.7: Schematic tllustration ¢f B-relative indexed addressing

3-11

Indirect P-relative Indexed Addressing ,X=1 1=1 B=0

The last two addressing modes are rather difficult to describe, but
very useful. Indirect P-relative indexed addressing is selected by
setting the ,X and I bits to one and the , B bit to zero in the memory
address instruction. This mode allows successive elements of an
array arbitrarily placed in memory to be accessed in a convenient
nanner,

The address calculation in the mode takes place as follows:
The contents of the P register, say 4002, are added to the displacement
say -1, and produce a sum, 4001. The contents of the location 4001,
say 10100, are added to the contents of the X register, say -100,
to produce a new sum, 10000, the effective address, By incrementing
the X register, successive locations may be accessed, IFor instance:

using the above example, locations 10000 through 10100 can be succes-
sively accessed by stepping the contents of the X register from -100 to
ZCTO.

Readers are advised to go over this example carefully: S‘fiepping
through an array in this fashion is done very often.

Alemory

P register

Displacement

— Pointer to any localion
within 64K

Content of X register

Lffective address

IMigurc 3.8: Schematic illusiration of indirect PP-relative indexed
addressing

3-12

Indirect B-relative Indexed Addressing ,X=1 I=1 , B=1

The final addressing mode, indirect B-relative indexed addressing,
is identical to indirect P-relative indexed addressing except that the
contents of the B register are used in place of the contents of the
P register in the effective address computation. This mode can
therefore by used to step through arrays pointed to from a data area

common Lo several subprograms.

Memory

B register

Displacement

Content of X register

Io[[eclive address

Figure 3.9: Bchematic illustiration of indirect B-relative indexed

' addressing

As an example of efficient use of different addressing techniques, we
will write a general program which moves an array starting in location
ABEG and has a length which is stored in location LONG, to a location

starting in BBEG.

INIT, LDA (ABEG
ADD LONG
COPY SA DB % (B) = ABEG + (LONG)
LDA (BBEG
ADD LONG
STA TEMP % (TEMP) = BBEG + (LONG)
LDX LONG
COPY CM2 SX DX % (X) = -(LONG)

LOOP, LDA ,X ,B
STA I TEMP ,X
JNC LOOP % INCREMENT,

% TEST AND JUMP
% FINISHED

3-13

DONE,

TEMP, 0

As is shown, the innerloop consists only of 3 instructions (or 64 bits
when the indirect address is also counted).

The X register is used to step through both arrays, and it is initialized
to contain the two's complement of the length of the arrays. This

makes it possible to combine the incrementing of X, the test for com-

pletion and the jump into one instruction JNC (see Section 3.1.5).

Because the X register is now reserved, we use the B-register to

compensate for the correct start address in the LDA instruction, and

because both the X and B register are now reserved, we have to use

an indirect address for the STA instruction. . (Note that this example

gives the shortest program, not the fastest!)

3-14

1.2 Store Instructions

STZ Store zero Code 000 000

Format: STZ «adr.mode><disp>

The effective location is cleared.

Affected: (EL) Time: 2.2us

STA Store A register Code: 004 000

Format: STA < adr. mode><«disp.>

The contents of the A register are
stored in the effective location.

Affected: (EL) Time: 2.2us

STT Store T register Code: 010 000

Format: STT «adr. mode> <disp.>

The contents of the T register are stored
in the effective location.

Affected: (EL) Time: 2.2us

STX Store X register Code: 014 000

Format: STX «adr.mode> <disp.>>

The contents of the X register are stored
in the effective location. The address
of this instruction may be modified by
the contents of the X register.

Affected: (EL) Time: 2.2us

STD Store Double word Code: 020 000

Format: STD «adr.mode> <disp.>

The contents of the A register are
stored in the effective location, and

the contents of the D register are stored
in the effective location plus one.

Aflected: (EL) , (EL+1) Time: 3.5us

STTF Store floating accumulator Code: 030 000

Format: STTF <adr.mode><disp.>

The contents of the floating accumulator
are stored in three memory locationsg,
starting with exponent part in effective
location.

Affected: (EL), (EL+1), (EL+2) Time: 4.3us

. 1.

MIN

LDA

LDT

LDX

LDD

Increment memory and skip if zero

Format: MIN <adr. mode><disp.>

Effective word is read and incremented
by one and then restored in the effective
location. If the result becomes zero, the
next instruction is skipped.

Affected (EL), (P)

Load Instructions

Load A register

Format: LDA <adr.mode > «disp.>

The effective word is loaded into the

A register.

Affected: (A)

Load T register

Format: LDT <adr.mode><«disp.>

The elfective word is loaded into the

T register.

Affective: (T)

Load X register

Format: LDX «adr.mode><disp>>

The effective word is loaded into the

X register., The address of this
instruction may be modified by the pre-
vious contents of the X register.

Affected: (X)

Load double word

Format: LDD <adr.mode><£disp.>

The contents of the effective location

are loaded into the A register, and the
contents of the effective location plus
one are loaded into the D register.

Affected: (A), (D)

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

040 000

044 000

2.3us

050 000

2.3 us

054 000

2.3 us

024 000

3.6us

3-16

LDF Load floating accumulator Code: 034 000

Format: LDF <adr.mode ><disp.>

The contents of the effective location
and the two following locations are
loaded into the floating accumulator, i.e.
T, A and D registers.

Affected: (T), (A), (D) Time: 4.5us

1.4 Arithmetical and Logical Instructions

ADD Add to A register Code: 060 000

Format: ADD <adr. mode><disp.>

The effective word is added to the A

register with the result in the A register.

The carry indicator is set to 1 if a carry

occurs from the sign bit position of the

adder, otherwise the carry indicator is

reset to 0. If the signs of the two operands

are equal but the sign of the result is diffe-

rent, overflow has occurred, and both the

dynamic and static overflow indicalors are

set to one. If the condition for overflow

does not exist, the dynamic overflow indi-

cator is reset to 0, while the static over-

flow indicator is left unchanged.

Affected: (4), C, O, Q Time: 2.3 us

SUB Subtract from A register Code: 064 000

Format: SUB <« adr.mode> <disp.>

The 2's complement of the effective word

is formed and added to the contents of the

A register with the result in the A register.

The same rules as for ADD apply for the

setting of the overflow and carry indicators.

Affected (4), C, O, Q Time: 2.3pus

AND

ORA

MPY

3-17

Logical and Code: 070 000

Format: AND <adr.mode> < disp.>

The logical product of the effective word
and the contents of the A register are
formed, with the result in the A register.
The logical product contains a one in each
bit position for which there is a corres-
ponding one in both the A register and
the effective word, otherwise the bit
position contains a zero.

Affected: (A) Time: 2.3us

Logical inclusive or Code: 074 000

Format: ORA <adr.mode> < disp.>

Logical inclusive or is formed between
the effective word and the contents of
the A register, with the result in the
A register. Logical inclusive or contains
a zero in each bit position for which
there is a corresponding zero in both the
A register and the effective word, other-
wise the bit position contains a one.

Affected: (A) Time: 2.3 us

Multiply integer Code: 120 000

Format: MPY <adr. mode><disp>>

The effective word and the A register

are multiplied and the result is placed in
the A register. Both numbers are regarded
as signed integers and the result as a
16-bit signed integer. If the result in
absolute value is greater than 32767,
overflow has occurred and the static and
dynamic overflow indicators are set to one.

Affected: (4), O, Q Time: 16.7 us

FFAD

s

IrMu

DV

3-18

Add to floating accumulator Code: 100 000
Format: FAD <adr.mode> <disp>

The contents of the effective location
and the two following locations are added
to the floating accumulator with the result
in the floating accumulator. The previous
setting of the carry and overflow indicators
is lost,

Affected: (T), (4), (D), C, O, Q Time: 7.5-32,8us

Subtlract from floating accumulator Code: 104 000

Format: FSB <« adr.mode™> <disp.>

The contents of the effective location and
the two following locations are subtracted
from the floating accumulator with the
result in the floating accumulator. The
previous setting of the carry and overflow

_ indicators is lost.

Affected: (1), (A), (D), C, O, Q Time: 8.0-33.3us

Multiply {loating accumulator Code: 110 000

Format: FMU <adr. mode>disp.>

The contents of the floating accumulator
are multiplied with the number of the
effective floating word locations with the
result in the floating accumulator. The
previous setting of the carry and over-

flow indicators is lost.

Affected: (T), (A), (D), O, Q Time: 27.8-29.3 us

Divide floating accumulator Code: 114 000

Format: FDV < adr. mode> «<disp>>

The contents of the floating accumulator
are divided by the number in the effective
floating word locations. Resull in floating
accumulztor. If division by zero is tried,
the error indicator Z is set to one. The
error indicator Z may be sensed by a BSKP
instruction (see BOP). The previous selting
of the carry and overflow indicators is lost.

Affected: (T), (A), (D), Z, C, O, Q Time: 11, 2-31.7us

3-19

3.1.5 Sequencing Instructions

JMP

JPL

CJP

JAP

JAN

Jump Code:

Format: JMP <adr. mode><disp.>

The effective address is loaded into the

program counter, and the next instruction

is.taken from the effective address of the

JMP instruction.

Affected: (P) Time:

Transfer P to L and jump Code:

Format: JPL < adr. mode><disp.>

The contents of the program counter are
transferred to the L register, the
effective address is loaded into the

program counter, and the next instruction
is taken from the effective address of

the JPL instruction. Note that the program

counter points to the instruction after the

jump (it has been incremented before transfer

to the L register).

Affected: (P), (L) Time

Conditional. jump

Instruction bits 8-10 are used to specify

one of 8 jump conditions. If the specified

condition becomes true, the displacement

is added to the program counter and a jump

relative to current location takes place. The

range is 128 locations backwards and 127

locations forwards. If the specified condition

is false, no jump takes place.
Execution time depends on condition, but is

the same for all instructions.

A conditional jump instruction must be speci-

fied by means of the eight mnemonics listed

below. It is illegal to spedify CJP followed

by any combination of ,B1I and ,X.

The eight jump conditions are:

Jump if A register is positive or zero, Code:

A bhit 15=0

Format: JAP «disp.>

Jump if A register is negative, Code:

A bit 15=1

Format: JAN «disp.>

124 000

2.3 pus

134 000

2.3 us

130 000

130 400

3-20

JAZ Jump if A register is zero Code: 131 000

Format: JAZ <«disp.>

JAF Jump if A register is filled (not zero) Code: 131 400

Format: JAT «disp>

JXN Jump if X register is negalive, i.e., Code; 133 400

X bit 15=1.

Format: JXN <disp.>

JX7Z Jump if X register is zero Code: 133 000

Format: JXZ «<disp.>

JPC Count and jump if register is Code: 132 000

positive or zero.

Format: JPC <«disp™>

X is incremented by one, and if the X bit 15
equals zero after the incrementation, the

jump takes place.

JNC Count and jump if X register is Code: 132 400

negative.

Format: JNC <disp.>

X is incremented by one; if then the
X bit 15 equals one, the jump takes place.

Affected: (P) and (X) for JPC and JNC. Time:
Condition false: 1.8 us
Condition true: 2.3 us

3. 1.

3-21

Byte Instructions

To facilitate the handling of character strings, the NORD-12 provides
two instructions for byte handling, load byte, LBYT, and store byte,

SBYT.

Because of the requirement of full 64K addressing, the LBYT and

SBYT use an addressing scheme different from the normal NORD-12

‘addressing.

For byte addressing, two of the NORD-12 registers, the T and X
registers are used for addressing the byte.

The contents of the T register point to the beginning of the character
string, and the contents of the X register point to a byte within this
string, Thus the address of the word which contains the byte equals

(T) +5 (%

If the X register is even (,X, = 0,) the byte is in the left part of the
word, if X, =1, the byte is in the right part of the word.

A byte consists of eight bits.

T register

\t X repister

2

n nti

n+2 I n+d

3.1. 7

3-22

The specifications for the two byte instructions are then as follows:

LBYT

SBYT

Load byte

Format:

The 8-bit byte specified by the contents of
the T and X registers is loaded into the
A register bits 0-7, with the A register
bits 8-15

Affected:

Store hyt

Format:

The byte contained in the A register
bits 0-7 is stored in one half of the
effective location pointed by the T
and X registers,

unchange

Affected:

LBYT

cleared.

(A)

e

SBYT

d.

(EL)

Register Block Instructions

the second half of
this effective location being unchanged.
The contents of the A register are

Code: 142 200

Time:

Left byte: 11.4us
Right byte: 6.8 us

Code: 142 600

Time:
Left byte: 16.5pus
Right byte: 12. 0 us

To facilitate the programming of registers on different program levels,
two instructions, SRB and LRB, are available for storing and loading of
a complete register block to and from memory.

A register block always consists of the following registers in this

sequence:

U
>

3
X

STS

B

Program counter

X register

T register

A register

D register

L register

Status register bits 2-7, bit 0-1 and bits 8-15 are zero

B register

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address
from where the register block is read or written into.

3-23

The specifications for the two instructions are as follows:

15 7 6 3 2 0

LRB 000

SRB level 010

SRB Store Register Block Code: 152 402

Format: SRB <levelg * 10g~>

The instruction SRB<levelg * 10g>stores the
contents of the register block on the program
level specified in the level field of the instruction.
The specified register block is stored in succeeding
memory locations starting at the location specified
by the contents of the X register.

If the current program level is specified, the
stored P register points to the instruction

following SRB.

Affected: (EL), (EL+1) ... (BL+T7) Time: 16.5us

Example:

Let the contents of the X register be 042562,

then the instruction

SRB 1404

stores the contents of the register block on

program level 12 into the memory addresses

042562, 042563,....... , 042571,

LRDB Load Register Block Code: 152 600

Format: LRB <1eve18 * 108>

The instruction < LRB level, * 10g> loads the
contents of the register block on program

level specified in the level field of the instruc-
tion. The specified register block is loaded
by the contents of succeeding memory locations

starting at the location specified by the contents

of the X register. If the current program level

is specified, the P register is not affected.

Affected: All the registers on specified program

level are affected. Note: If the current level
is specified, the P register is not affected.

Time: 15.8 us

3. 2

o

3-24

Operate Instructions

Floating Point Conversion Instructions

NLZ

DNZ scaling

Two instructions are available. A single precision fixed point number

may be converted to a standard form floating point number. A floating

point number may be converted to a fixed point single precision number

For hoth instructions the scaling factor is specified in the displacement

part of the instruction. The range of the scaling factor is from -128

to +127, which gives a conversion range from approximately 10739 to

1039, The exccution time depends on the scaling factor and the argument

to convert.

The two sub-instructions are:

NLZ Normalize Code: 151 400

Format: NLZ <«scaling>

Converts the number in the A register to a

standard form floating number in the floating

accumulator, using the scaling of the NLZ

instruction as a scaling factor. For integers

the scaling factor should be +16, a larger

scaling factor will result in a higher floating

point number. Because of the single precision

fixed point number, the D register will be

cleared.

Affected: (T), (4), (D), Time: 4.5-14.5 us

DNZ Denormalize Code: 152 000

Format: DNZ <«scaling >

Converts the floating number in the floating
accumulator to a single precision fixed

point number in the A register, using the

scaling of the DNZ instruction as a scaling

factor. When converting to integers, the

scaling factor should be -16, a greater

scaling factor will cause the fixed point

number to be greater. Afler this instruction

the contents of the T and D registers will all

he zeroes.

If the conversion causes underflow, the T, A and

D registers will all be set to zero.

3. 2. 2

If the conversion causes overflow,* the error indicator

7 is set to one. Overflow occurs if the resulting

integer in absolute value is greater than 32767.

The conversion will truncate, and negative numbers

are converted to positive numbers before conversion.

The result will again be converted to a negative number.

Some examples:

T-A-D before conversion

(in decimal)

0.9 DNZ

3.141592 DNZ

3.141592 DNZ

3.141592 DNZ

3

3

3

-3

T DNZ

.1 DNZ

.7 DNZ

.141592 DNZ

-3.7 DNZ

32768.0 DNZ

-32768. 0 DNZ

-20

1 Do

<o

@

o

i
1

|
!

i
i

|
|

DO

N

FE

N

o

o

o

H

=N

o

o

3

o

oW

o

v

0w

o

o

W

®©

|
[\

<

Affectedt (A), (T), (D), Z

Shift Instructions

15 11 10 9 8 7

1

A-after conversion

Overflow

Overflow

Time: 5,5-15.5 us

shift type reg.

number

Shift instructions operate on reégisters.

of three parts: the register to be shifted,

number field, A shift instruction will have to form:

A shift instruction consists

specified by the shift

reg. fields, type of shift to be performed, specified by the type

field; and the number of shifts to be performed, specified by the

< shift register> <type> <number >

* The overflow test is fail-proof for a scaling constant of -20g4 only.

3-26

Every shift instruction causes the last bit which is discarded to be
contained in the M; the multi shift link indicator. This may then
be used as end input for the next shift instruction,

Note that bit 6 in the instruction is ignored.

The time of a shift instruction is independent of the type of shift.

The following four specifications of the «shift regislter> are available:

SHT Shift the T register reg. field 00 Code: 154 000

Format: SHT «<type><number>

The T register is shifted as specified by
the <type> and <number>.

Affected: (T), M Time: 2.9+0.5-Ng

SHD Shift the D register reg. field 01 Code: 154 200

Format: SIID «<type><number>

The D register is shifted as specified by
the <type> and <number>.

Affected: (D), M Time: 2.9+0.5-Ny

SIHA Shift the A register reg. field 10 Code: 154 400

Format: SHA<«type> <number>

The A register is shifted as specified by
the <type > and <number >

Affected: (A), M Time: 2, 9+0.5-Nj

SAD Shift the A and D reg. field 11 Code: 154 600

registers connected

TFFormat: SAD< type” <number>

Bit 0 of the A register is connected
to bit 15 of the D register.

Affected: (A), (D), M Time: 4,4+0.5'N,

3-27

type field

For cach shift instruction the following four types of shift can be

gspecified, one al a time:

Mnemonic type field

nil Arithmetical shift. 00 Code: 000 000

During right shifts the
sign bit (bit 15) is ex-
tended during the shifting,
in left shift zeroes are fed
into vacated bit positions.

ROT Rotational shift. 01 Code: 001 000

In single register shift
bit 0 is connected to bit 15,

in double shifts bit 0 of the
D register is connected to
bit 15 of the A register.

ZIN Zero end input. 10 Code: 002 000

LIN Link end input. 11 Code: 003 000

The contents of the M

indicator will be shifted into

the vacated bit(s).

number field

The <numbers of the instruction in the number ficld is a signed

number, 5 bits plus sign, which specifies the shift direction (positive

or negative shifl) and the number of shifts.

N = 0, i.e., if bit 5 =0 then shift left

N <« 0, i.e., ifbit5 =1 then shift right

The maximum number of shifts is 31 left shifts and 32 right shifts.

Only the A, T and D registers may be shifted, If any other register

is to be shifted, its contents must first be placed in the A, T or D

register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number,

3-28

A right shift may be specified either by the correct 6 bit negative

shift count or by writing the mnemonic code SHR followed by the

positive number of right shifts. A shift instruction to shift the

accumulator 3 positions to the right may be spe01fled by one of

the following identical instructions:

SHA 5

SHA 100-3g

SHA SHR 3

In a right shift, nothing should be written between the SHR mnemonic

and the number of right shifts * (a space to distinguish between SIIR

and the number is necessary). SHR must be the last mnemonic used

in the instruction.

Some examples of correctly specified shift instructions:

Ixample 1

Shift the A and D registers connected 8 positions

(octal 10) left.

SAD 10g

IExample 2

Rotate the T register 6 places to the left.

SHT ROT 6

Example 3

Shift the connected A and D registers 16 positions

to the left. Rotate shift is specified, which in

this case will cause the contents of the A and D

registers to be exchanged. The same effect may

be obtained by means of a SWAP SA DD instruction.

SAD ROT 20

LExample 4:

Shift the D register two places to the right. Feed

zeroes into the left end during the shifting. Bits 15

and 14 in the D register will become zero.

SIID ZIN SIIR 2

* This is an assembler peculiarity.

3. 2.3

3-29

Register Operations

The register operation instructions specify operations between any
two general registers; a source register, sr, and a destination
register, dr. Any instruction may consist of the parts:

<register operation> <subinstruction> <sr><dr>

There are ten basic register operations belonging to the two groups:

ROP register operations Section 3.2.3.1

EXTended register operation instructions Section 3. 2.3.2

In addition there are two instructions for accessing single registers

outside current program level, see Section 3.2.3.3, and two
instructions for accessing a whole register block outside current
program level, see Section 3.1.7,

Only the ROP instructions have subfields.

The ROP register instructions are:

RADD Register addition, dr «dr + sr Code: 146 000

RSUB Register subtractions, dr-dr - sr Code: 146 600

RAND Register logical AND, dr -—dr Asr Code: 144 400

RORA Register logical OR, dr -—dr V sr Code: 145 500

REXO Register logical exclusive OR Code: 145 000

dr < dr ¥V sr

SWAP Register cxchange, Code: 144 000

sr-dr and dr<sr

COPY Register transfer, dr < sr Code: 146 100

The EXTended register instructions are:

RMPY Integer inter-register multiply, Code: 141 200

AD - dr * sy

RDIV Integer inter-regisler divide Code: 141 600

AD/ <sr> => A-—Quotient
D -——Remainder

EXR Execute register, Code: 140 600

Instruction register «—sr

MIX3 Multiply index by 3, (X)=~((A)-1) * 3 Code: 143 200

3.2.3.1

3-30

The source registers <sr> are specified as follows:

SD D register as source Code: 10

SP Program counter as source Code: 20

SB B register as source Code: 30

SL L register as source Code: 40

SA A registler as source Code: 50

ST T register as source Code: 60

SX X register as source Code: 70

If no source register is specified, zero will be taken as the source

register.

The destination registers <dr> are specified as follows:

DD D register as destination Code 1

DP Program counter as destination Code: 2

DB B register as destination Code: 3

DL L register as destination Code: 4

DA A register as destination Code: 5

DT T register as destination Code: 6

DX X register as destination Code: 7

ROP Register Operation Instructions

15 11 10 9 8 7 65 3 2 0

ROP RAD Cc | 1 £M1|CID 8T dr

The instruction decodes bits 0-10 as follows:

Bits 0-2 specily one out of seven registers to be the destination

register.

dr=20

The destination register will be loaded with the result

of the ROP instructions.

Normally a no - operation instructions, except that the
carry indicator will be reset if RAD = 1.

3-31

Bits 3-5 specify the one out of eight registers which contains the
value to be used as the source register operand.

sr=20 Produces a source value equal to zero

CLD=1 Clear destination register before operation. If the
source and the destination register are the same,
the register as source is not cleared.

CM1 =1 Use complement (one's complement) of source register
as operand. The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether
the RAD bit is zero or one.

RAD =1 Add source to destination.

When RAD =1, bits C and I are decoded as follows:

c=1,
I =0 Also add old carry to destination, ADC.

Cc= 0,
I =1 Also add 1 to destination, AD1.

It is not possible both to add previous carry and to add 1 in the same
ROP instruction. (If it is tried, 1 will be added regardless of
the status of the carry indicator.)

RAD =0 Binary register operations.

The C and I bits are decoded as follows:

C,1=0,0 Register swap, destination and source exchanged, SWAP
0,1 Logical and , RAND
1,0 Logical exclusive or, REXO
1,1 Logical inclusive or, RORA

If RAD = 1, the overflow and carry indicators are set according to the
same rules as apply for ADD: if RAD = 0, the overflow and carry

indicators remain unchanged.

The following groups of ROP mnemonics are mutually exclusive, i.e.
only one may be used in a ROP instruction.

(SD, SP, sSB, SL, SA, ST, 5X)

Only one source register must be specified.

(DD, DP, DB, DL, DA, DT, DX)

Only one destination register must be specified.

3-32

(ADC, ADI)

Both 1 and old carry cannot be added in the same instruction

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)

Only one type of operation must be specified.

(ADC, AD1, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the binary
register operations.

(RSUB, CM1, ADC, AD])

RSUB uses CM1 and ADL1.

The recommended way to specify ROP instructions is to use the
following mnemonics which will be correctly translated by the
assembly language.

RADD, dr <-dr + sr Register addition

RSUB, dr --dr — sr Register subtraction

RAND, dr -dr /1 sr Register logical AND

RORA, dr ==dr V sr Register logical OR

REXO, dr «<=dr ¥ sr Register logical exclusive OR

SWAP, dr <»sr Register exchange

COPY, dr - sr Register transfer

Note that the ROP instruction is included in the above mentioned

mnemonics.

Time: RADD, RSUB, RAND, REXO, RORA : 1l.4us

Time: SWAP : 2.9us

If the P register is used as destination (DP), an additional micro
cycle, 490 ns, will be required.

3-33

Decoding of

c - A Instructions die St (_).f
o = A Instructions
MU~ OO

00000 SWAP <sr><dr> | sr «» dr

00001 SWAP CLD <sr=«dr:>|dr « sr, sr « (

00010 SWAP CMl1 <sr><drs | dr <« 87, sr <« dr

00011 SWAP CMt CLD <sr:<dr> |dr « sr, sr « 0

00100 RAND <sr: <dr:>|dr < dr A sr

0o0ot1old RAND CLD <«srr<dr>|dr « 0

g0t RAND CM1 <sT><dr> | dr « dr A ST

0011t RAND CDM{ CLD <«sr><dr:|dr « 0

01t 00o0 REXO <.8T>» <dr> | dr <« dr V sr

01001 RIEXO CLD <sr>«<dr>|dr <« sr

0101090 REXO (M1 <sr> <dr> | dr « dr V sr

01011 REXO CM1 CLD «<srx»<drs|dr « ST

01100 RORA <sr> <dr> |dr - dr V sr

01101 RORA CLD «sr><dr:-|dr < sr

01110 RORA CM1 <sr><dr> [dr <+ dr V 57

01111 RORA CMI{ CLD <sr»<dr> |dr <« Sr

10000 RADD <8r> «dr> | dr « dr + sr

1000t RADD) CLD «<sr><drs |dr + sr

10010 RADD1 CM1 <sr><dr> | dr <« dr + ST

f 0011 | RrappY CMi CLD «Srs-drs|dr < &¢
1 01 00 RADI)i) ADI1 <sr> <dr> |dr +dr + sr + 1

101 01 RADDs, AD1 CLD <sr> «dr>|dr 4« sr + 1

1tot1o RADD{_ADI CM!t «sr><drs |dr «dr - sr
10111 RADD “f/lm CMi CLD <sr» <drs |dr « -sr

11000 RAJ)D1 ADC <sr><dr>|dr <= dr + sr + ¢

11001 |RADD' ADC CLD <sSrs <dr> |dr « sr +c
11010 1{,\[)[)1) ADC CMti <sr><dr> | dr « c_l_r + 8T + ¢

11011 _RADD ADC CMt CLD <sr»> <dr> | dr « sr + ¢

111400 |]

i 1 } (1) (1‘ LNot applicable

11111 J

Table 3.2 The ROP Instruction

This tuble shows all possible combinations of the ROP instructions

and their results,

dr destination register
sr gource register
sr one's complement of sr

c : old carry

1)
2)

RADD CLD is equal to COPY

RADD AD1 CMI1 is equal to RSUB

3-34

The assembly language will also permit use of the following

combined mnemonics:

CM2 CM1 AD1 Two's complement

EXIT COPY SL DP Return from subroutine

RCLR COPY 0 Register clear

RINC RADD AD1 Register increment

RDCR RADD CM1 Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by

the destination register specification.

Some examples of use of the ROP instruction:

Example 1:

Add the contents of the A and X register with the

result in the X register: ’

RADD SA DX

Example 2:

Complement (two's complement) the A register:

COPY CM2 SA DA

Example 3:

Subtract the contents of the T register from the

contents of the B register, with the result in the

B register:

RSUB ST DB

Example 4:

Increment the X register by one:

RINC DX

Example 5:

Decrement the L register by one. (One's complement

of zero equals -1 in two's complement.)

RDCR DL

3-35

Example 6:

Clear the T register:

RCLR DT

Example 7:

Set the X register equal to one:

RCLR AD1 DX

Example 8:

Set the B register equal to minus one:

RCLR CM1 DB

Example 9:

Copy the contents of the X register into the T

register:

COPY SX DT

Example 10:

Exchange the contents of the A and D registers:

SWAP SA DD

Example 11:

Form logical AND between the contents of the L and

X registers with the result in the X register:

RAND SL DX

Example 12:

Copy the contents of the A register into the X

register, and clear the A register (the CLD code

causes a destination register of zero to be swapped).

SWAP CLD SA DX

3-36

Some short programs using ROP instructions:

Example 13:

Form the two's complement of the 32 bit double word

in A and D:

COPY CM2 SD DD
COPY CM1 ADC SA DA

Example 14:

Add together the two double wordlength numbers

N1 and N2 with the result in the A and D registcrs:

LDD N1
SWAP SA DD
ADD N2+1
SWAP SA DD
RADD ADC DA
ADD N2

Example 15:

Subroutine jump, and return from subroutine to main program:

JPL SUBR % LERROR STOP
ERR. WAIT
NORM, '

SUBR, LDA OLA
SUB PER
SKP IF DA EQL 0

EXIT % ERROR EXIT
EXIT AD1

The JPL instruction will place the address of the WAIT instruction

into the L register. (When JPL is executed, the program counter

points to the address after this instruction.)

The subroutine SUBR has two exits, one to the location immediately

following the jump (EXIT), which in this case is an error exit, and

one to the location two addresses after the jump.

Note: If the P register is used as source (SP), the P register has

already been incremented and points to the next instruction.

3.2.3.2

3-37

EXTended Register Operation Instructions

RMPY

RDIV

Integer inter-register multiply Code: 141 200

Format: RMPY <srd><drd>

The st and dr fields are used lo specify the
two operands to be multiplied (represented
as two's complement integers), the codes
are the same as for ROP, see Section 3. 2. 3.

The result is a 32-bit signed integer which will
be placed in the A and D registers with the 16
most significant bits in the A register and the
16 least significant bits in the D register.

Affected: (A), (D) Time: 15.9 pus

Integer inter-register divide Code: 141 600

Format: RDIV «sr>

The 32-bit signed integer contained in the
double accumulator AD is divided by the
contents of the register in the sr field, with
the quotient in the A register and the
remainder in the D register, i.e.,
AD/sr = A € quotient, D «— remainder.

The sign of the remainder is always equal
to the dividend (AD), The destination field of
the instruction is not used. If the division causes
overflow, the error indicator Z is set to one.

The numbers are considered as fixed point
integers with the fixed point after the right-
most position.

5T
Affecled: (A), (D), Z, C, O, Q Time: 6.0 - 24. 0 us

3-38

Example:

Before division After division:

Double accumulator Divisor A D Z

22 4 5 2 0

-22 4 -5 -2 0

378452 -16 -23653 -4 0

32767 1 32767 0 0

32768 1 1

65535 2 327062 1 0

EXR Execute register Code: 140 600

Format: EXR <sr>

The contents of the register specified in the

<sr> field of the instruction are transferred

to the instruction register, and the contents are

then executed as an instruction.

Nole: 1If the instruction specified by the

contents of «sr>in a memory reference
instruction with relative addressing, the

address will be relative to the KXR «sr>

instruction. If the instruction specified

by the contents of «sr> is a JPL in-

struction, the L register will point to the

inslruction after the EXR «sr>.
Note also that it is illegal to have an
EXR «sr>, where the contents of <sr>
are a ncw EXR «8r >, if it is tried, the
error indicator Z is set to one.

Affected: (IR), affections of the Time: 3.8 us

specified instructions.

MIX3 Multiply index by 3. Code: 143 200

FFormat: MIX3

The X register is set equal to the con-

tents of the A register minus one multi-

plicd by three, i.e.,

(X) <= [(a) - 1] *3

Affected: (X) Time: 2.0us

3.2.8.3

3-39

Inter Level Register Instructions

In the NORD-12 there are 16 complete sets of registers and status

indicators, one set for each level,

The access to and from registers outside the current program level

is by two instructions:

IRR Inter Register Read

IRW Inter Register Write

The format of this instruction is as follows:

15 6 3 2 0

IRR level dr
 IRW

Bits 0-2 specify the register to be read, using the same codes and

mnemonics as are used for specifying destination registers for the

register operations, see Section 3. 2. 3.

Bits 3-6 specify the program level number. It is possible to read

the current program level as well as all outside program levels.

IRR Inter register read Code: 1563 600

TFormat: IRR /_levels * 108> <dr>

This instruction is used to read into the

A register on current program level one

of the general registers inside/outside
current program level. If bits 0-2 are
zero, the status register on specified
program level will be read into the
A register bits 1-7, with bits 8-15 and

bit 0 cleared. Time: 2.9 us

Example:

The instruction IRR 160 DP will copy the contents

of the program counter on program level 14 into

the A register on current program level.

3. 2,4

IRW

Example:

3-40

Inter register write Code: 153400

Format: IRW <1eve18 * 108><dr>

This instruction is used to write the A

Register on current program level into

one of the general registers. It is also

possible to write into the registers on
current level. Then, if the P register

is specified, the IRW instruction will be

a dummy instruction. If bits 0-2 are

zero, the A register bits 1-7 are written

into the status register on specified level. Time: 2.9 us

The instruction IRW 110 will copy the bits 0-7 of the

A register on current program level into the status

register on program level 9.

Skip Instructions

11 10 8 17 6 5 3 2 0

SKP cond. 00 sr dr

SKP Skip next instruction if specified Code: 140 000

condition is true.

Format: SKP «drp<cond><sr>

The cond. field spe cifies one of eight
conditions between the registers dr and
sr. If the specified condition is true,
the next instruction is skipped. If not,
the next instruction is not skipped. The
registers dr, destination register, and
sr, source register, are specified as
for register operation registers, see

Section 3. 2. 3.

Note that bits 6 and 7 are both zero.

Otherwise, the instruction would belong

to the EXTended instruction, see

Section 3. 2, 3. 2,

3-41

The SKP conditions test upon the result
of the arithmetic expressions (dr) - (sr)
which set the four indicators:

s - sign
z -result zero

¢ -carry

o -overflow Time:

No skip: 1.8 us
Skip: 2.3 us

The eight SKP conditions are a s follows:

Cond. Condition

Mpemonic | g4 | true if:

EQL 000 z=1 Equal. The condition tests for
equality between the source and
destinalion registers (dr)=(sr)=0.

GEQ 001 s=0 Greater or equal to. (dr)-(sr) >0.
The contents of the source and
destination registers are treated
as signed numbers. Overflow is
not taken care of.

GRE 010 |sVo=0 Greater or equal to. (dr)-(sr) = 0.
The contents of the source and
destination registers are treated
as signed numbers. Overflow is
taken care of.

MGRE 011 C 1 — Magnitude greater or equal to.
(dr)-(str) = 0. The contents of
the source and destination
registers are treated as unsigned
magnitudes, where 000 000 is
the lowest and 177 777 the
highest number. Overflow is
taken care of.

UEQ 100 z=0 Unequal to. The condition tests

for equality between the source
and destination registers (dr) # (sr)
0

LSS 101 s=1 Less than (dr)-(sr)< 0. The con-
tents of the source and destination

registers are treated as signed numy
bers. Overflow is not taken care of]

3-42

Cond. Condition

Mnemonic | field true if:

LST 110 sVo=1 Less than (dr)-(st) < 0. The contents

of the destination and source

registers are treated as signed

numbers. Overflow is taken

care of.

MLST 111 c=0 Magnitude less than (dr)-(sr) < 0.

The contents of the source and

destination registers are treated

as unsigned magnitudes, where

000 000 is the lowest number

and 177 777 is the highest number.

Overflow is taken care of.

By swapping the register code in the sr and dr fields and inverting the

relationship code, it is also possible to test these relationships.

>-Greater than

< Less than or equal

The programmer is advised to use the same format as in these examples

when specifying a skip instruction. (The mnemonic IF and the number

0, which both have the value zero, are used for easy readability).

Comparing a register with zero:

SKP IF DL UEQ - 0 Skip if 1 register # 0

SKP IF DX GRE 0 Skip if X register =0

SKP IF DB LSS 0 Skip if B register <0

SKP IF 0 LSS ST Skip if T register =0

SKP IF 0 GRE SD Skip if D register <0

Comparing the arithmetic value of the contents of two registers:

SKP IF DD EQL SL Skip if D register = L register

SKP IF DT UEQ SX Skip if T register # X register

SKP IF DB LSS SA Skip if B register < A register

(or Aregister > B register)

SKP II" DX GRE SB Skip if X register = B register

(or B regislter < X register)

3. 2m i

3-43

Comparing two magnitude numbers:

SKP IF DL MGRE ST Skip if L register > T register

(or T register =« L register)

SKP IF DB MLST SX Skip if B register < X register
(or X register > B register)

The magnitude tests are especially uscful when comparing the relation-

ship between memory addresses which are represented as magnitude

numbers in a computer with more than 32K memory.

Argument Instructions

15 1110 9 8 7 0

ARG \ func number J

Argument instructions operate on registers. The function field is

used to specify one out of eight argument instructions. The number

field is uscd to specify the argument, a signed number ranging from

-128 to 1217.

Bits 8 and 9 in the function field specify one out of four registers, B, A,

T or X, and bit 10 one of the operations: set argument to or add argument

to.

The eight argument instructions are:

SAA Set argument to A register Code: 170 400

Format: SAA <number >

AAA Add argument to A register Code: 172 400

Format: AAA <number>

SAX Set argument to X register Code: 171 400

Format: SAX < number >

AAX Add argument to X register Code: 173 400

Format: AAX snumber >

SAT Set argument to T register Code: 171 000

Format: SAT <« number >

AAT Add argument to T register Code: 173 000

Format: AAT «number >

3-44

SADB Set argument to B register Code: 170 000

Format: SAB <number >

AAB Add argument to B register Code: 172 000

Format: AAB «number> Time: 1.4 pus

An argument instruction should be specified by means of one of the

eight mnemonics listed above.

Examples of argument instructions:

Example 1:

Set the contents of the T register equal to 135. DBits

8-15 will become zero:

SAT 134

Example 2:

Set the contents of the B register equal to -284. Bits

8-15 will become one. sign extension:

SAB -2064

Example 3:

Add 3 to the contents of the X register. The addition

is modulo 215

AAX 3

Example 4:

Subtract (i from the contents of the A register

(modulo 2

AAA -0

Iixample 5

The contents of the A register will be 177 640g after
the execution of this instruction (sign extension).

SAA -140g

In an add argument instruction the carry and overflow indicators are
set according to the same rules as apply for the ADD instruction.

see Seclion 3.1.4.

3.2.6 Bit Operation Instructions

11 10 7 6 3 2 0

subinstructions bn dr

BOP Bit Operation

The BOP instruction specifies operations on single bits in

one of the seven general registers, or the status register.

The specific bit to be manipulated is specified by the = dr=

and <bn> fields in the instruction. The <dr> field specifies

the particular register and the «bn> field the particular bit in

that register.

The register dr is specified by means of the same mnemonics

as used for destination registers in the ROP and SKP instructions,

see Section 3.2.3, except if dr = 0 the status is specified.

The BOP instruction may use a one bit accumulator register,

K, to hold temporary results.

16 different subinstructions are available in the BOP instruction.

In the following description "bit" means the bit specified

by destination register dr and bit number bn. Note that

bn is specified by octal numbers and the "bits'" are numbered

0, 10, 20, 30, 170.

The six control indicators of the status register which may

be operated upon by means of the BOP instruction should

be specified with the following mnemonics:

(Subscript o signifies the complement of the specified bit.)

SSK One bit accumulator indicator.

SSZ Error indicator

SSQ Dynamic overflow indicator.

SSO Static overflow indicator.

SsC Carry indicator.

SSM Multi shift link indicator.

3.2.6.1

3.2.6.2

3-46

Bit Skip Instructions

Four subinstructions are available to test the setting of the specified

bit.

BSKP ZRO <bn><dr> Skip next instruction if bit =0 Time: 2

BSKP ONE <bn><dr> Skip next instruction if bit =1

Time: 2.

BSKP BCM <bn><dr> Skip next instruction if bity= K
Time: 3.

BSKP BAC <bn><dr> Skip next instruction if bit = K
Time: 3.

Bit Setting Instructions

Four subinstructions are available to set the specified bit.

BSET ZRO <bn><{dr> bit <« 0 -
Time: 1.

BSET ONE <bn><dr> bit<1 Time: 1

BSET BCM <bn><dr> bit «-bit;, complement bit .
) Time: 1.

BSET BAC <bn><dr> bit<«K Time: 3.

.3-2.8 us

3-2.8 us

3-3.8 us

3-3.8 us

4 us

.4us

Ops

3.2.6.3

3-47

One Bit Accumulator Instructions

Eight subinstructions are available to specify operations between the
specified bit and the one bit accumulator,

BSTA

BSTC

BLDA

BLDC

BANC

BORC

BAND

BORA

<bn > <dr>

<bn><dr>

Lbn>Ldr>

Zbhn><dr>

<Zbn><dr>

<bn><dr™>

<bnD><dr>

Zbn><dr>

bit « K, K &0

bit « Ko, K &1

K < bit

K <bit,

K ¢bitg A K

K ¢ bity V K

K «<bit A K

K<bitVK

Store and clear

Time: 3.3 us

Store complement
and set

Time: 3.3 us

Load

Time: 2.9 us

Load complement

Time: 2.9 us

Logical AND complement

Time: 2.9 us

Logical OR complement

Time: 2.9 us

Logical AND

Time: 2.9 us

Logical OR

Time: 2.9 us

Some examples of correctly specified bit operation instructions.

Example 1:

Skip next instruction if the carry indicator is set.

BSKP ONIL S5C

Example 2:

Reset the static overflow indicator.

BSET ZRO SSO

3. 2.7

3-48

Example 3:

Complement the sign bit in the T register (complement

a floating point number).

BSET BCM 170g DT

Example 4:

Set bit 6 in the X register to one.

BSET ONE 60g DX

Example 5:

Copy A register bit 14 into X register bit 13.

BLDA 160g DA - % K <A bit 14

BSET BAC 150g DX %Xbit 13« K, K<0

Accumulator Transfer Instructions

The internal registers in NORD-12 which cannot be reached by the

register instructions are controlled by the following four instructions:

TRA Transfer to A register, Section 3.2.7.1

TRR Transfer from A register, Section 3.2.7.2

MCL Masked clear, Section 3.2.7. 2,

MST Masked set, Section 3.2.7. 2.

3.2.7.1

3-49

The registers which are read and /or controlled by these instructions

are:

Name Codeg | Description

STS 1 Status register. Bits 2-7 may be read or set,
while bits 8-11 (PL) bit 14 (PONI) and bit 15
(IONT) may only be read.

OPR 2 Operator's panel switch register, see Section 7.2

LMP 2 Operator's panel lamp register, see Section 7. 3.

PVL 4 Previous level. The contents of the register are:
IRR « previous level ¥ 10g > DP, see Section 5.4

PID 6 Priority interrupt detect, see Section 5.1,

PIE 7 Priority interrupt enable, see Section 5.1

ALD 12 Automatic load descriptor, see Section 8. 2. 4.

Table 3. 3: Survey of Registers controlled by accumulator
Transfer Instructions. Codes not shown should

not be used. Sece also Table 3.4.

There are also two instructions for accessing single registers outside

current program level, see Section 3. 2. 3.3,

Transfer to A register

TRA Transfer lo A register Code: 150 000

Format: TRA <register name>

The register which may be transferred to the A
register with the TRA instruction is shown in
Table 3.4. The contents of the register speci-
fied by the register name are copied into the
A register. The operator's panel and the

paging systems are optional, and without these

options a TRA instruction, which tries to read
a non-implemented register, will cause the
A register to be cleared.

Time: 4.3 us

3-50

3.2.7.2 Transfer from A Register

The transfer from the A register may be either an ordinary transfer
of all 16 bits or a selective setting of zeroes and ones.

The three subinstructious are:

TRR Transfer to register Code: 150 100

Format: TRR «register name >

The contents of the A register are copied
into the register specified by «register
name>. The registers which TRR may
operate on are shown in Table 3. 4. Time: 4.8 us

MCL Masked clear Code: 150 200

Format: MCL .register name>>

For each bit which is a one in the
A register the corresponding bit
specified by «register name> will
be set to zero. The register which
MCL may operate on is shown in

Table 3. 4. Time: 5.8 us

MST Masked set Code: 150 300

Format: MST <register name >

FFor each bit which is a one in the
A register the corresponding bit in
the register specified by « register
name> will be set to one. The
registers which MST may operate on
are shown in Table 3. 4. Time: 5.8 ps

3-51

Register e Codeg | TRA TRR MCL MST

STS

OPR

LMP

PVL

PID

PIE

ALD 1 M

N

S

s~
D

i
><

.>
<

-><

X

» » >

Table 3. 4. Accumulator Transfer Instructions

3.

3.

3

3. 1

Input/Output Control Instructions

10X Input/Output execute Code: 164 000

Format: 10X device register address
Time: 2.7 us

15 11_10 0

10X] device register address :I

All program controlled transfers between the CPU A register and

the external devices are controlled by using the IOX instruction.

The 10X instruction is loaded into the instruction register, IR, of

the CPU. The CPU in its turn generates the Input/Output timing and

enables the sclection of the appropriate device, which is specified

by its device register address, <device register address> , bits

0-10. These 11 bits define an upper limit of 2048 device register

addresses to the number of registers that may be addressed. Some

registers may require two device register addresses, one for reading

and one for writing. Different devices will, however, require diffe-

rent number of device register addresses, Thus, the maximum number

of physical devices that may be connected will depend on the specific

configuration of devices.

Simple devices will usually require at least three different instructions

(addresses), write control register, read status register, and read

or write data buffer register. More complex devices like magnetic

tape units may need up to eight instructions. Instructions for the same

device are assigned successive device register addresses.

Recommended Device Addresses

Device addresses used for A/S Norsk Data-Elektronikk produced

equipment on a standard Input/Output bus follow a preset assignment.

The standard address formats for the different groups of devices are

shown in Figure 3. 5.

Standard
Device Group - Group Address Bits

Address 10 9 8 7 6 56 4 3 2 1 0

Directly controlled| ¢ 000 0 |e 0|0 |0 | register no.

registers
o e L o o i

Syncronous, e 100 0 le|olo|a [modem | g% &
Modems no- g8 5

<o |8
o|o |k

— | ~

Asyncronous . . 2|8 <
Modems e 200 0 |e|0|1|0 |display| § - a

no. glo| @
olo|H

— ~
0| |8

Teletypes e 300 0le|0]1]|1 | Tele- glE 5
type no. 215 &

Q O |

— |~
Q| o g

Paper tape devices| e 400 0le|[1] 0|0 | device E1&8|®
line printers, etc. type 218 é

Q OS5

=
Mass storage e 500 0lell1| 0|1 :}Lgiige reg. |&
d' B g 0
evice no. no. 5

=
=

Plotters, intercore . S ‘*qm-J'

other DMA devices e 600 off ef 1f 14 © dev;ce_z typet & g register no.| §| §
Q|+

o
Miscellaneous e700 | 0| e| 1] 1|1 @

&
1 1 T T

ban

20
00

10
00

40
0

20
0

10
0 40

Table 3.5 Standard Device Addresses for ND

produced Equipment.

The ¢ bit is used for extension of the groups, extension: e=1

The e is normally equal zero,

channel {O input channel, i.e. input devices

1 output channel, i.e. output devices

control {0 data register
1 status or control register

0 input transfer
transfer {1 output transfer

Bit 10 is used to distinguish between ND produced and customer

produced equipment, bit 10 equals zero: ND produced equipment.

In the following some examples are given of device addresses.

For further programming specifications a NORD-10 Input/Output

manual should be consulted.

Example 1:

Teletype Addresses:

The codes below ai‘_e relevant for the first Teletype,

Teletype number 0. The codes for the first eight

Teletypes are found by adding 10g * N for the codes

given, where N is the specific Teletype number.

Input Channel,

10X 300 Read Data Register

10X 302 Read Status Register

10X 303 Write Control Register

Output Channel,

10X 305 Write Data Register

10X 306 Read Status Register

10X 307 Write Control Register

Example 2:

Paper Tape Reader Addresses

10X 400 Read Data Register

10X 402 Read Status Register

10X 403 Write Control Register

Example 3:

Paper Tape Punch Addresses

10X 411 Write Data Register

10X 412 Read Status Register

10X 413 Write Control Register

Example 4:

Line Printer Addresses

10X 431 Write Data Register

10X 432 Read Status Register

10X 433 Write Control Register.

Example 5:

The standard device addresses for the mass storage

devices are as follows:

500
510
520
530
540
550
560
570

Disk I with four units
Disk II with four units
Magnetic tape I with four units
Magnetic tape II with four units
Drum I

Drum II

Drum III
Drum IV

and the standard register addresses within each device.

D
N

D

Example 6:

Drum Addresses

Core Address Register
Sector Block Address Register
Status Control Register
Word Count Register

The codes below are relevant for drum 1

TOX 540
10X 541
10X 542
JOX 543
10X 544
10X 545
10X 547

Example 7:

Read Core Address

Load Core Address

Read Sector Counter

Load Block Address
Read Status Register
Load Control Register
Load Word Count Register

Real Time Clock Addresses

JOX 10
10X 11

10X 12
10X 13

Read Data

Write Data

Read Status

Write Control

3. 3. 2 Format of Status and Control Word

The format of status and control word may he assigned by the designer

of each device controller. The following standard is used by ND for

its own device control cards (when applicable) and is recommended

for customer use.

Bit

L
1

U

W
+

Oo

11
12
13

14
15

Bit

O

o
o
k

Nn

H
O

Status Word

Ready for transfer, interrupt enabled
Error interrupt enabled
Device active.
Device ready for transfer
Inclusive OR of errors
Error indicator
Error indicator

Error indicator
Error indicator
Sclected unit
Selected unit
Operational mode of device
Operational mode of device
Operational mode of device
Operational mode of device
Operational mode of device

Control Word

Enable interrupt on device ready for transfer

Enable interrupt on errors

Activate device
Test mode
Device clear
Address bit 16
Address bit 17
Not assigned
Not assigned

Unit
Unit

Device operation
Device operation
Device operation
Device operation
Device operation

3.4

3.4.1

3-57

System Control Instructions

The following five instructions are denoted as the system control

instructions:

ION Interrupt system on

10F Interrupt system off

IDENT Identify Input/Output interrupt

MON Monitor call

WAIT Wait or give up priority

Interrupt Control Instruc;cions*

The NORD-12 computer has a priority interrupt system with 16 program
levels. IEach program level has its own set of registers and status
indicators. The priority is increasing: program level 15 has the
highest priority, program level 0 the lowest.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts.

14 Reserved monitor calls

13-10 Vectored interrupls, maximum 2048
vectored interrupts.

9-8 System programming.

7-0 User programming levels.

All 16 program levels can be activated by program control. In
addition, program level 15, 13, 12, 11 and 10 may also be activated

from external devices.

The program level to run is controlled from the two 16-bit registers:

PIE Priority interrupt enable

PID Priority interrupt detect

Each bit in the two registers is associated with the corresponding
program level. The PIE register is controlled by program only.

s A complete description of the NORD-12 Interrupt System is found

in Chapter 5.

The PID register is controlled both by program and hardware interrupts.
At any time, the highest program level which has its corresponding bits
set in both PIE and PID is running, i.e. the contents of the PL register.

The PIE and PID are controlled by the TRA, TRR, MST and MCL
instructions, see Section 3.2.7.

When power is turned on, the power-up sequence will reset PIE.
and the register set on program level zero will be used.

Two instructions are used to control the on-off function of the inter-

rupt system.

ION

I0F

Interrupt system on Code: 150 402

Format: ION

The ION instruction turns on the interrupt
system. At the time the ION is executed, the

computer will resume operation at the program level
with highest priority. If a condition for change of
program levels exists, the ION instruction will
be the last instruction executed at the old program
level, and the P register at the old program
level will point to the instruction after ION,
The interrupt indicator on the operator's
panel is lighted by the ION. Time: 2.3 pus

Interrupt system off Code: 150 401

Format: IOF

The IOTF instruction turns off the interrupt
system, i.e. the machanisms for changing
of program levels are disabled.
The computer will continue operation at the
program level at which the IOF instruction
was executed, i.e. the PL register will
remain unchanged. The interrupt indicator
on the operator's panel is reset by the IOF
instructions. Time: 2.3 pus

Initialization of the interrupt system is treated in

Section 5. 2.

In addition the following register is available to ease the interrupt
programming:

PVL Previous level causing internal hardware
status interrupt.

Its use is described in Section 5.4. In NORD-12 there are possibilities
for 2048 vectored Input/Output interrupts where each physical Input/
Output unit will have its own unique identification code and priority.
The IDENT instruction is used to distinguish belween vectored inter-
rupts.

IDENT Identify vectored interrupt Code: 143 600

Format: IDENT <program level number »

When a vectored interrupt occurs, the IDENT
instruction is used to identify and serviced the
actual Input/Output device causing the inter-
rupt. Actually, there are four IDENT instruc-
tions, one to identify and service Input/Output
interrupts on each of the four levels 10, 11, 12
and 13. The particular level to serve is speci-
fied by the program level number,

The four instructions are:

IDENT PL10 Identify Input/Output interrupt Code: 143 604
on level 10

IDENT PL11 Identify Input/Output interrupt Code: 143 611
on level 11

IDENT PL12 Identify Input/Output interrupt Code: 143 622
on level 12

IDENT PL13 Identify Input/Output interrupt Code: 143 643
on level 13.

The identification code of the Input/Output
device is returned to bits 0-8 on the A
register with bits 9-15 all zeroes.

If the IDENT instruction is executed, but
there is no device to serve, the A register
is unchanged.

3. 4, 2

3-60

If several devices on the same program
level have simultaneous interrupts, the
priority is determined by which Input/
Output Slot the device is plugged into, and the
interrupt line to the corresponding PID bit
will remain active until all devices have
been serviced. When a device responds to
an IDENT, it turns off its interrupt signal Time: 3.3 pus

For NORD-12 the identification codes are standardized for Input/
Output devices delivered from ND.

Table 3.6 on Page 3-63 shows the IOX addresses and IDENT codes

used in standard software.

Monitor Call Instruction

MON Monitor Call Code: 153 000

Format: MON <« number >

The instruction is used for monitor calls, and
causes an internal interrupt to program level
14. The parameter,snumber >, following
MON, must be specified between -200g and 177g.
This provides for 256 different monitor calls.
This parameter, sign extended, is also loaded
into the T register on program level 14.

Time: 3.3 us

3.4.3

3-61

Wait or give up Priority

WAIT Wait Code: 151 000

Format: WAIT <number87

The WAIT instruction will cause the com-

puter to stop if the interrupt system is not
on. The program counter will point to the
instructions after the WAIT.

In this programmed wait the STOP button on
the operator's panel is lighted. To start the
program in the instruction after the WAIT,
push the button CONTINUE or type! on the
console TTY.

If the interrupt system is on, WAIT will
cause an exit from the program level now
operating (the corresponding bit in PID
is reset), and the program level with the
highest priority will be entered, which normally
will then have a lower priority than the program
level which executes the WAIT instruction.
Therefore, the WAIT instruction means

"Give up priority".

If there are no interrupt requests on any
program level when the WAIT instruction is
executed, program level zero is entered.
A WAIT instruction on program level zero is
ignored.

Note that it is legal to specify WAIT followed
by a number less than 377g. This may be useful
to detect in which location the program stopped.
The WAIT instruction is displayed at the operator's

panel, IR register.
Time: 5.0us

3.5

3-62

Customer Specified Instructions

The remaining free codes on the skip instruction may be used to
augment the NORD-12 instruction set. The codes to be used for
customer specified instructions are as follows:

1401XX 1403XX 14056XX 1407XX
1411XX 1413XX 1415XX 1417XX
1421XX 1423XX 1425XX 1427XX
1431XX 1433XX 1435XX 1437XX

These 16 instructions have provisions for 16 new enlry points in a
Read-only-memory outside the address space in the 1K standard
Read-only-memory. -

If these instructions are not implemented, they will cause the CPU to
enter STOP mode.

All the 16 customer specified instruction have the source (sr) and
destination (dr) fields available for further specifications.

These fields may either be used to let the customer specified instruc-
tion operate on the general registers, or used to augment the number
of customer specified instructions.

If the sr and dr fields are used to increase the number of customer

specified instructions, up to 1024 instructions may be added.

A/S Norsk Data-Elektronikk should be contacted for further information
on specifications and programming rules for the NORD-12 micro-
processor,

3-63
$0poo

LNIJ]
PUB

S9SS8IPPE
XOI

PABPUE}S
‘9°¢

9I9BL

LI-¥1
G

eT-0T
1

€1
yoo1o

ewr}
[8oy

000T+
€1

LEG-0€G
L
3
6
-
0
8
S

L'g
1T

ade;
"SeIN

LLG-02L6°L95-09¢
9
1
2
1

L8G-0S¢
‘L¥S-0%¢

9°2
It

w
n
i
d

0001+
6z

‘ST
LIG-0TS

‘L06-00S
¢t

1T
Hs1d

000T+
FI

L09-009
¥

11
Ispold

o9jBSIBA

000T+
LEL-0EL

-
19)I2AU0D

Soreue
/1811810

0
0
0
T
+

12
1.-032

L
-

I
9
1
I
9
A
U
O
D

1B3I81p/S0TBUY

0001+
LL-0L

LLZ-003
L9-09

gT0T
w
e
p
o
w

‘ouisy

000 T+
16-08

LLE-008
|

L
¥
-
F
¥
L
9
°
G
 T

3101
 edferel,

000
T+

L3
LLL-0LL

L1
gr

ot
sies1sal

1e3dta

LIL-0TL
L
O
L
-
0
0
L

1211
g1

ode}
oposseD

=
-

-
01

11
[euuweyd

O/1
I-N

LET-0ET
‘L3TI-03T

¥2
08

LIT-0TT
‘L0T-00T

P
1
9

Z1°0T
w
e
p
o
w

‘oufs

000T+
£¢

LZ¥-¥3¥
‘€2¥-03¥

€2
‘¢

¢t
I19pBad

pIeD

000 T+
ee

LET-FET
‘€E¥-0¢€F

€2°‘¢
0T

aoqutad
s
u
r

000T+
Ge

LOP-¥0%
‘€0%-00%

2%
‘2

g1
Iopeaa

ode],

000T+
ge

LTP-¥1%
‘€1¥-0T¥

223
0T

yound
ade,

XOI
INAAI

XO0I
INAAT

19497

N
O
I
L
N
I
L
X
H

A
Y
V
A
N
V
Y
L
S

A
O
I
A
T
A

4.1

4.1. 1

4-1

THE INPUT/OUTPUT SYSTEM

Input/Output HHardware

General Description

In NORD-12 all Input/Output device interface cards are made to a

common standard. The CPU module contains a pre-wired bus with

a number of identical interface slots permitting any mixture of devices

without changing the backwiring and plug panel. Device plugs are also

made to a common standard. |

This system permits the use of printed backplane wiring for all wiring

within one module. Cable connectors are plugged directly into the

backplane.

The direct memory access channel, DMA, has a transfer capacity of

1.2M word/second. There may be a single very high-speed device

requiring this speed, or several different slower devices sharing the

channel. In the latter case, there will be no channel time overhead

in switching between devices. Thus, several devices using the channel

simultaneously, will be given a total throughput equivalent to the

maximum speedof the channel.

An optional controller which permits control of the devices from two

different CPU's, multi-machine environment, is also available.

Both modules in Figure 4.1 are standard 19" modules, each with 32
card posilions.

The CPU module contains:

= The CPU, consisting of Registers, Arithmetic, Micropro-
grammed Control Section, Interrupt System, and Opcralor's

Panel Driver. (11 card positions.)

- 13 card positions for Input/Output device huffers, Kach pro-

gram controlled device, such as Teletypes, Paper Tapce Reader,
Paper Tape Punch, Czrd Reader, Line Prinler, efc. rcquires
one card position in this bus. The bus loading may not exceed
that of 12 normal Input/Output device buffers. When more
buffers are needed (or the space is uscd for memory extension
as described below). External Bus Driver is used. This
Bus Driver occupies 3 of the 13 card positions, but it only
represents a load of one device buffer,

1. 3

4-2

- 8 card positions for 4K by 16 bits semiconductor memory

cards, giving a standard capacity of 32K words (64K bytes).

Memory may be expanded to maximum 64K words by a

small amount of optional wiring in 8 of the 13 card positions

for Input /Output device buffers.

The External Bus Driver is used to drive a differential Main 1/O Bus

with a maximum cable length of 50 meters. Several Bus Controller

Modules may be connected to this bus, to drive Local Inpu /Output buses

where Input/Output device buffers may be plugged in,

The Bus Controller Modules drives 8 or 16 card positions on a Local 1I/0

Bus, and contains 8 or 16 card positions for one or two complex device

controllers (drum, disc, magnetic tape, etc.).

The posilion of the device interface in the modules determines the
interrupt priority of the device. If several devices within onc modules
are connected to the same program level, the device closes to the con-
troller has the highest priority within that level. Also if two devices in
the same module compete for a direct memory access, the device closest
to the controller has the highest priority and will win the first access.

Vectored Interrupt ldentification

The NORD-12 has a multiprogram systcm with 16 program lcvels. Eaoch
program level has a complete sct of registers. Out of these 16 program
levels five different program levels may be triggered by hardware inter-
rupts. These levels are: 15, 13, 12, 11, and 10.

Several different interrupt sources may be connccted to the program
levels 10, 11, 12, and 13, while program level 15 is reserved for
extremely fast uscr Input/Output.

To identify which device is interrupting a "who are you" type of instruction
is used, This rcturns a 9-bit identification from the interrupting device
to the A register, The instruction has the format:

IDENT program level number

and is described in Scction 3.4.1,

For program level 15, which is exclusively reserved uscr Input/Output,
there is no identification system, and identification is obtained by reading

a status word,

CPU module

Operalor's

4-3

Periphera
Equipment

Memory

i

Y |

 Section

Microprogrammed Control

N

—

|
|
|
|
|
|
|
|
|
!
- A

Figure 4.1:

Bus /

- <
Brancher <

Local I/0O Bus

 {

Periphe-
ral Equip
ment In-

terfaces

NORD-12 Bus System,

Panel
Modules

Interfaces

1 1 h
7 Y

CPUI/0O Bus
N | 4 A

' : ¥

1 iste {eguliltcrs Interrupt Bus ‘ ’ , Expander A1:1thmet1c System (Optional)

4.2

4.2.1

4-4

Input/Output Programming

The recommended way to perform Input/Output in a software system
is to use standard input/output subroutines. Input/Output subroutines
and drivers for all standard devices are available from A/S Norsk
Data Elektronikk,

Data transfer between the A register and an external device will be
controlled by 10X instructions containing an 11-bit "Device register
address'' - DRA.

For direct memory accegs devices like disks, drums, magnetic tape,
etc., the IOX instruction is used to write or read control information
to or from the controller’'of the specific device. Complex devices like
those mentioned may need several DRA's. A device like a punch,
reader, Teletype input, Teletype output will require at least three
DRA instructions.

The three instructions are:

10X load device control register

10X read device status register

10X read device data buffer register or
write device data buffer register

ND's standard for use of the bits in device status and device control

register is shown in Section 3.3.1.

The Input/Output system makes it possible for the programmer to
control external devices in a tight and flexible manner.

Detained information about DRA, status, control, etc., for different

devices are found in the "Programming Specification' for each device
type.

Programming Examples

The following example shows a simple subroutine which reads a byte

from the tape reader:

INPUT, SAA 4
10X DEVC + RDR %SET CONTROL (ACTIVATE DEVICE)
I0X DEVS + RDR %READ DEVICE STATUS
BSKP ONE 30 DA %DEVICE READY?
JMP* - 2 %NO
IOX RDEVB + RDR %READ DEVICE BUFFER
EXIT

RDR = 400 % 1. DRA FOR TAPE READER
DEVC = 3 '
DEVS = 2
RDEVD = 0

Programming examples for complex devices may be found in the

appropriate programming manuals.

4.2.2

4.2.3

Input/Output Interrupt Programming

Input/ Output via waiting loops as shown in the previous section is very

ineffective due to the fact that most of the computer time will be spent

in the Input/Output loops. This may be avoided by utilizing the interrupt

system. An interrupt will occur every time the device is ready for

transfer.

The necessary software will normally be:

- Input/Output subroutines which will put a byte into a device

buffer. (Software buffers.)

B Interrupt identification sequences on the program levels

which the devices are connected to. (Using IDENT instruc-

tions.)

- Interrupt drivers fro each device type. The identification

sequence will branch to the driver of the interrupting device.

The driver will fetch a byte from the device buffer and output

it to the device (output device) or read a byte from the device

and put it into the device buffer (input device). The user of

such a system, however, will only "see' the Input/Output

subroutines and does not have to bother about details.

Design of an Input/Output Handler Routine

This is an example of a simple Input/Output driver system:

%PROGRAM ON LEVEL 12
RET, SAA 0
INT12, WAIT

IDENT PL12
RADD SA DP

JMP ERROR

JMP DRIVERI1
JMP DRIVERZ

JMP DRIVERN
JMP RET

%DRIVER FOR AN INPUT DEVICE

DRIVERI, IOX STATUS
BSKP ZRO 40 DA
JMP ERRORD
I0X RBUF

%GET INTERRUPT IDENTIFICATION
%ADD NUMBER TO
%P REGISTLER
%BIDENT 0 MEANS I/0
%SYSTEM ERROR
%GO TO 1. DRIVER

%READ DEVICE STATUS

%DEVICE ERROR

%READ DEVICE BUFFER

PUT BYTE INTO BUFFER ETC.

ENABLE AND ACTIVATE DEVICE FOR NEXT

TRANSFER

JMP RET

a

[}
 |

—

THE INTERRUPT SYSTEM

The NORD-12 interrupt system is designed to simplify programming,

and to allow multiprogramming at extremely high efficiency.

This is achieved by use of a complete set of registers and status

indicators for each program level.

There arc 16 program levels in NORD-12 and therefore 16 sets of

registers and status indicators. Each set consists of: A, D, T, L,

X and B registers, program counter, and each of the status indicators

0, Q, Z, C, M, and K.

The context switching from one program level to another is completely

automatic, and requires only 2.0 ps; the saving and unsaving of all

registers and status indicators are included.

In addition to the 16 program levels, there is a maximum of 512 vectored

interrupts connected to each of the program levels 13, 12, 11 and 10.

For the vectored interrupts there is an automatic priority identification

mechanism, thus no polling of interrupts is necessary.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts.

14 Monitor call

13-10 Vectored interrupts, up to 2048 vectored

interrupts.

9-8 System programming

7-0 Programming levels.

The priority is increasing, program level 15 has the highest priority,

program level 0 the lowest.

The structure of a large programming system may be greatly simplified

by the use of these program levels where independent tasks may be

organized at different program levels with all priority decisions deter-

mined by hardware, and with almost no overhead because of the rapid

context switching.

All 16 program levels can be activated by program control. In addition

program levels 15, 13, 12, 11 and 10 may also be activated from

external devices.

A

D
 { e

Control of Program Levels

The program level to run is controlled from the two 16-bit registers:

PIE Priority interrupt enable

PID Priority interrupt detect

Each bit in the two registers is associated with the corresponding
program level. The PIE register is controlled by program only.
The PID register is controlled both by program and hardware inter-

rupts. At any time, the highest program level which has its corres-

ponding bits set in both PIE and PID is running.

The actual hardware mec‘hanisms for this are as follows:

The number of the current program level is called PL (0 « PL <« 15),

and this 4-bit PL register controls which register set (context block)

to use.

All the time the PL number is compared to a 4-bit register PIK,
At any time, PIK contains the number of the highest program level
which has its corresponding bits set in both PIE and PID. Whenever
PIK becomes different from PL, an automatic change of context block
will take place through a short micro-program sequence. This

sequence will do the following:

1) Read PL and store it in the PVL register,
previous program level.

2) Read PIK and store it into PL.

3) Resume operation with a new register set

determined by PL.

This complete sequence requires only 2. 0 us, from the completion of
the instruction currently working when the interrupt took place, and

until the first instruction is started on the new level with its new set

of register and status.

The programming control of the interrupt system is as follows:

P1D and PIE may be read to the A register with the instructions

TRA PID and TRA PIE

Three instructions are available for the setting of these registers

TRR PID and TRR PIE

The TRR instruction will copy the A register into the specified

regisler.

9]
 1

Lo

MST PID and MST PIE

The MST, masked set, instruction will set the bits in the specified

register to one where the corresponding bits in the A register are

ones. (The A register is used as a mask for selection of which bit

to set.)

MCL PID and MCL PIE

The MCL, masked clear, instruction will reset to zero the bits in the

specified register where the corresponding bits in the A register are

ones.

In addition to TRA, TRR, MCL and MST the PID register is also
controlled in the following ways:

External interrupts may set PID bits 15, 13, 12, 11, 10.

The resetting of PID bits is also controlled by the WAIT instruction,

which will reset PID on current program level. (The WAIT instruction

is also called "Give up Priority".)

For example a program on program level 14, which issues a WAIT

instruction, will cause PID bit 14 to be zero, which again will cause

a new program level to be entered because PIK became different from

PL (= 14).

The interrupt system is also controlled by the two instructions,

ION Turn on interrupt system

10F Turn off interrupt system.

When power is turned on, the power -up sequence will reset PIE and PL

and the register-set on program level zero will be used.

The ION instruction will resume operation at the highest program level

at the time ION is executed, if a condition for change of program levels

exists the ION instruction will be the last instruction executed at the

old program level, and the P register at the old program level will

point to the instruction after ION.

The IOF instruction will turn off the mechanisms for changing of

program level, and PL will remain unchanged.

IOF and JION may also be used to disable the interrupt system for

short periods, for example in order to prevent software timing hazards.

5.

W7
}

1. 1

o | N

Program Level Activation

All pfogram levels may be activated by program, by setting the
appropriate bits in PIE and PID.

Example:

If program level 9 is already enabled, bit 9 in PIE is
set, then the program level is activated from a lower
program level by setting bit 9 in PID.

SAA 0 .
BSET ONE 110 DA %SET BIT 9 TO ONE
MST PID ‘ %SET PID BIT 9

NEXT, verrnron.

The MST PID will be the last instruction executed, and the P register
at the lower program level will point to the NEXT instruction.

Note that it is not possible to program-activate a program level which
already is activated (i.e., has its PID bit set to one), if it is tried,
the program level will only be entered once.

Initialization of Interrupt System

The initialization of the NORD-12 interrupt system is simple. After
power-up, PIE and PL will be zero and register block zero is in
use. The initialization sequence must include the following:

1) Enabling of the desired program levels by setting PIE.

2) The program counter on all program levels used have to
be initialized. The program counter must point to the
entry point of that particular program level.

The remaining initialization of registers may be performed
either at program level itself at the time of the first entry,
or together with the initialization of the program counter.

3) The last instruction in the initialization sequcnce is ION.

5. 3 Interrupt Program Organization

A program at a program level will typically be organized as a loop,

which is executed once each time the program level is activated:

ENTRX, %FIRST ENTRY POINT

WAIT %GIVE UP PRIORITY
JMP ENTRX

If response time is impoftant the following organization is better:

WAIT %GIVE UP PRIORITY

ENTRX, B %FIRST ENTRY POINT

JMP ENTRX - 1

Note that a WAIT instruction on program level zero will reset PID

bit zero, but since there are no program levels with lower priority,

the program on program level zero will be re-entered at the

instruction following the WAIT.

[
]

o
 4.1

5-6

Internal Interrupts

Program level 14 is reserved for internal interrupts. On NORD-12
these internal interrupts are caused by the MON, Monitor Call instruc-
tion, see also Section 3. 4. 2,

To speed internal interrupt processing an instruction for reading the
previous level is provided. This is done with the instruction

TRA PVL

which reads the PVL register, previous program level (level causing
internal interrupt) into bits 3-6 in the A register, with remaining bits
in the A register being equal to the code for inter-register read the
D register, i.e., the contents of the A register:

IRR <previous levelg * 10g> DP

This technique gives a very fast access to the P register of the
program level causing the internal interrupt.

Example:

TRA PVL BA: =IRR =«level> DP
EXR SA %A: = P register on interrupting

level

COPY SA DX
L.DA -1 ,X % A: = Interrupting instruction

Note: PVL is only set when enterin level 14 from a level with lower
priority. Care should be taken so that programs on level 14 and
level 15 do not cause internal interrupts.

Monitor Call Interrupt

A monitor call has becen executed. The level may be found as pre-
viously explained. The number of the call is automatically set to the
T register on level 14,

Note that this number is 8-bit with sign-extension, (i.e. in the range
-200g to 177g). See Section 3.4.2,

o]

7]
 1 -3

Vectored Interrupts

In NORD-12 there may be up to 2048 vectored interrupts: typically

each physical input/output unit will have its own unique interrupt

response code and priority.

These vectored interrupts must be connected to the four program

levels 13, 12, 11 and 10.

The standard way of connecting is as follows:

Level 13 Real time clock

Level 12 Input devices |

Level 11 Mass storage devices

Level 10 Output devices

The vectored interrupts are connected to the corresponding bits in the

PID register.

When a vectored interrupt occurs, the IDENT instruction is used to

find out which device gave interrupt on this program level, if several

devices have simultaneous interrupt. The priority is determined by

which Input/Output slot the device is plugged into. I'or further

information, see Section 4.1.3, or the Input/Output Manual.

The IDENT instruction provides a very fast response time, and no

polling of devices is required.

Programming example:

RETURN, SAA 0
WAIT 9% GIVE UP PRIORITY

LEV13, IDENT PL13 9% IDENTIFY DEVICE ON
% LEVEL 13

RADD SA DP 9% COMPUTED GO TO

JMP ERR13 % CODE 0, ERROR

JMP DRIV1 % CODE 1,

JMP DRIV2 9% CODE 2

JMP DRIVN % CODE N

Note that only three instructions are required from time of the inter-

rupt until the specific Input/Output driver is entered.

The IDENT instruction will turn off the interrupt signal of the device which

gave interrupt. If several devices have their interrupt signals on,

the interrupt line to the corresponding PID bit will remain active, and

as soon as the WAIT instruction has reset one bit in PID, this bit will

be set again, and the WAIT instruction will have no effect.

6.1

6.1.1

6.1.2

CONTROL PANEL

The NORD-12 is controlled from the same micro-program which con-
trols the NORD-10. Therefore the same control panel as developed
for the NORD-10 may also be used for the NORD-12. This panel is
described in Chapter 7. In addition the complete micro-programmed
operator communication as developed for the NORD-10 is also available
for the NORD-12, This communication which requires a Teletype or
visual display unit is described in Chapter 8.

NORD-12 Control Panel

To reduce costs a special panel for the NORD-12 has been developed.
This pancl consists of six pushbuttons. The function of each of the
huttons is given below. The panel buttons may be locked by means of
a key.

Power On/OIf

The power button may only be operated if the panel is unlocked. With
the panel locked, none of the control buttons may be operated.

MASTER CLEAR

Pushing this bulton will generate a hardware master clear signal. This
signal sets the control logic in the CPU and the Input/Output systecm to
a defined state and the micro-programmed operator's communication
(MOPC) is started. If the CPU is running when "MASTER CLEAR" is
pushed, the program cannot be restarted by pushing the CONTINUE
button, because the contents of the P and A registers are lost. The
PIE register is reset by the master clear signal.

Light in the MASTER CLEAR button indicates an error inpul lo the CPU
from the operator's communication program or onc of the load programs.
The light is reset when the MASTER CLEAR button is pushed.

6.

6.

6.

6.

1.

1.

1.

1.

5

6-2

RESTART

This button generates a restart signal. When this signal is detected
by the micro-program in stop mode, the CPU will start in address 20,
The RESTART button has no effect when the CPU is running. IF the
CPU is running, the STOP button must be pushed hefore the RESTART.
To be sure that the program has been started on level zero, the
MASTER CLEAR button should also he pushed.

LOAD

The LOAD button starts automatic program load from a device. The
device may be an Input/Output device or a mass storage device, de-
pending on the setting of a switch register (ALD) on the Panel Driver
Card., The uge of this register is explained in Section 8. 2. 4.

When a load program is active, the LOAD button lights.

CONTINUE

When this button is pressed, the machine starts running from the
address specified by the P register. The level is given by the contents
of the PIE and PID registers. If the MASTER CLEAR is first pressed,
PIE is cleared and the program is started on level zero.

STOP

Pushing this button stops the machine i,e., the micro-program
running in stop mode is started. The stop mode is indicated by light
in the STOP button.

7.

-]

=~
1

1

7-1

NORD-10 OPERATOR'S PANEL

Panel Elements

The operator's panel for the NORD-10 computer has the following
elements:

i. An 18-bit switch register

2, An 18-bit light diode register

3. 16 selector pgshbuttons and 16 associated light emitting
diodes.

4, 8 mode indicdfiors

A two—digit'display and two pushbuttons [2
]

6. 10 control buttons

Power on/off button ~1

18-bit Switch Register

This register is used to present 18-bit data to the CPU. Normally
only 16 of thesce are used, the switches may be read from program
with the "TRA OPR" instruction. In installations with big memory,
more than 64K, 18 switches and lamps may be needed to represent
the possible 18-bit addresses.

18~bit Light emitting Diode Register

This is used to display 16-bit data or 18-bit addresses from the CPU.
Register contents, addresses and contents of memory locations may
be displayed in this register. The register 16-bits can be set with
the "TRR LMP'" instruction (the user register (see below) must be
sclected).

16 Selector Pushbuttons and 16 associated Light
emitting Diodes.

These pushbuttons are used to select one of 16 possible registers to
be displayed in the data display register. When one button is pushed,
(2 register selected) this is indicated with light in the associated diode
above the button.

The possible register selections are:

ACTIVE
LEVELS : When this button is pushed, the data display (described

above) will show the active program levels. 16 diodes
(0-15) are used, one for each of the 16 levels. In this
mode the lamps are provided with after-glow so that it
is possible to observe a single instruction on a program

level,

ND-06.001.01

DMA
ADR

ADR

P

ADR

DATA

EXM

IR

If this button is pushed, the data display will show
the active DMA (direct memory access) address.

(See also Section 7.6.4.)

This register shows the actual memory address
being referenced, excluding DMA references and
instruction (program) addresses.

This is the memory address each time an instruction
is read (fetch cycle). Effectively the data display will
show Lhe program address.

This is the user register set by the "TRR LMP"
instruction.

Note: If the U register is set from program by
"TRR LMP" and the U is NOT selected, the sctting of

U will disturb the displaying of the selected register.
The degree of disturbance will depend on the frequency
of the U updating related to the panel interrupt frequency.

Displays data going to and from memory and on the [/O-bus.

This selection has two uses:

CPPU in STOP

The data display will show the contents of the memory
location whose address is set in the switch register
when the SET ADDRESS button was last pushed (sce
below). When the CPU stops, this address is preset
to zero. (The selected address is always zero after
pushing the SINGLE INSTR button).

Usc of the '/' (sce Scction 8.1,2) in MOPC will also set
the memory address displayed.

CPU runs

The data display will show the contents of the memory
location whose address is set in the switch register.

The memory location is sampled after each panel inter-
rupt, (about every 20 ms).

This sclection will display the CPU instruction register.

STS, P, L, B, X, T, A, D.

If one of these is selected, the data display will show the
contents of that register. The register is sampled at each
panel interrupt. There is a complete set of these registers
on each of the 16 interrupt levels, so one has to select the

appropriate level when one of these registers is examined,
sce Section 7.5,

ND-06, 001, 01

~

7.

7.

<

6. 1

Display Level select

This consists of two pushbuttons, "+'" and "-", and a two-digit

display. By means of the two buttons, the level may be stepped
up or down. The contents of the display show the selected level.
If the display is stepped outside the limits 0-15, the 2 digit display
will show the active program level and the selected register (STS,
P, L, B, X, T, A or D) is taken from the active level.

Control Buttons

These 10 pushbuttons are used to control the CPU and to modify
registers and memory. The function of each of the buttons is

given below, '

MASTER CLFAR

Pushing this button will generate a hardware master clear signal.
This signal sets the control logic in the CPU and the Input/Output
system to a defined state and the micro-programmed operator's
communication (MOPC) is started. If the CPU is running when
"MASTER CLEAR" is pushed, the program cannot be restarted by
pushing the CONTINUE button, because the contents of the P and
A registers are lost. The PIE register is reset by the master clear

signal.

Light in the MASTER CLEAR button indicates an error input to the
CPU from the operator's communication program or one of the load
programs. The light is reset when the MASTER CLEAR button is
pushed.

RESTART

This button generates a restart signal. When this signal is detected
by the micro-program in stop mode, the CPU will start in address 20,
The RESTART button has no effect when the CPU is running. If the
CPU is running, the STOP button must be pushed before the RESTART.
To be sure that the program has been started on level zero, the MASTER
CLEAR button should also be pushed.

LOAD

The LOAD button starts automatic program load from a device. The
device may be an Input/Output device or a mass storage device, de-
pending on the setting of a switch register (ALD) on the Panel Driver
Card., The use of this register is explained in Section 8.2.4.

When a load program is active, the LOAD button lights,

ND-06.001.01

7.6.4 DECODE ADDRESS

This button is used in connection with the displaying of addresses
(DMA ADR, ADR or P ADR selected). When this button is
pushed, the address is not displayed directly. The address space
is divided into 4K segments and each bit in the display register
represents one segment. Bit 0 is lighted if addresses 0 - 7777
are used, etec. Light in the buttonindicates the state of the address
display register.

7.6.5 SET ADDRISSS

When the machine is’in 's.top mode and a memory examine is wanted.
the address must be set up in the panel switch register and the SET
ADDRESS button pushed. The address is now saved and is not changed
before the ST ADDRESS button is pushed again with a new content in
the switch register. This address is also changed when a memory
examine is executed fromthe consoledevice (character"/" used).

Note that this button is used in stop mode only. When the machine
is running, the address in the switch register is uscd directly.

When the machine enters stop mode, the register used by the set
address function is set to zero. This means that after a single
instruction the examined address is zero.

7.6.6 DEPOSIT

When an address is selected with the SET ADDRESS button, the
contents of this cell may be changed with the DEPOSIT button. The
new contents are set up in the switch register and the DEPOSIT
button pushed. The display selection must be EXM.

7.6.7 ENTER REGISTIR

This button is used to load a register. One of the registers STS, P,
L, B, X, T, A or Dis selected with the register selection switches.
Level is selected with the level selector. The contents ol the switch
register are now stored in the selecled register whenthe ENTER
REGISTER button is pushed.

7.6.8 SINGLI; INST.

Pushing the SINGLE INSTRUC TION button causes a program to ad-
vance one instruction. The address is taken from the P register
and the CPU goes back to stop mode after execution of one instruc-
tion. The instruction is executed on the level given by the PIE and
PID registers.

ND-06.001.01

7.

7.6.10

-1

6. 9

7-5

CONTINULE

When this button is pressed, the machine starts running from the
address specified by the P register. The level is given by the
contents of the PIE and PID registers. If the MASTER CLEAR is
first pressed, PIE is cleared and the program is started on level
Zero.

Light in the CONTINUE button indicates that the CPU is running.

STOP

Pushing this button stops the machine i.e., the micro-program
running in stop mode is started. The stop mode is indicated by
light in the STOP button,

Mode Indicators

USEIR Indicates that the program is running
on ring 0 (see Section 6.5).

PROTECTED
USER Indicates that the program is running

on ring 1 (see Section 6.5).

SYSTEM Indicates that the program is running
on ring 2 (see Section 6.5).

PROTECTED
SYSTEM Indicates that the program is running

on ring 3 (see Section 6,5),

INTERRUDPT Indicates that the interrupt system is
turned on i.e., an ION instruction has

been executed.

PAGING Indicates that the paging system is

' turned on, i.e., PON instruction has

been executed.

IDLE Indicates interrupt system on, and that

the CPU is running on level zero.

TEST Not used.

ND-06.001.01

-6

<
T
I
N
V
d

S
.
H
O
L
V
U
I
d
O

0
T
1
-
Q
H
O
N

uu

aiva
il

1
0
y

L
n
O
D

3
W
I
S

1O
=

-
O
O
O

O
O
O

0
0
0

0
0
0

0
0
0

¢
SIS

W
WxIwuve

A
Y

osou
S
0

O
O
O

O
O
O

O
O
O

0
0
0

0
0
O

Q
0
w

E

vAivQq

A
s
3
t

3
7
q
1

B
A
1
5
v
d

N
I

L
T
A
T

[3
1
2
0
1
0
%
d

W
I
L
S
A
S

¥
I
T
n

1173.10%d

 e

®
6
0
0

0
0
0

0
0
O

o

zTiSt
M

S
9

£l
O

O
O
0

O
O
0

0
0
O

ND-06. 001. 01

8-1

OPERATOR'S COMMUNICATION

The NORD-10/NORD-12 has a micro program in the read only memory for
communication between the operator and the machine. This program
is called MOPC (Micro programmed Operator's Communication).

MOPC is always running when the machine is in stop mode, or the
state of the machine, when MOPC is running, is defined as the stop
mode.

To control a NORD-10 or a NORD-12 two different operator's panels
arc available. The panel-specifically developed for the NORD-10 is
described in Chapter 7. The smaller panel developed for the NORD-12
is described in Chapter 6, in the NORD-12 Reference Manual. Both
panels are available for NORD-10 and NORD-12, and one of these panels
must be selected.

When in STOP mode the NORD-10/NORD-12 micro-program is designed in
such a way that either the large operator's panel or the console device
(Teletype or Visual display unit) may completely control the NORD-10
or NORD-12, (For special applications the console device may be
omitted).

The NORD-10/NORD-12 operator's communication includes bootstraping
programs and automatic hardware load from both character oriented
devices and mass storage devices.

When communicating with the MOPC program, the following characters
are legal input chatacters:

Characters: Use:

0,1,2,3,4,5,6,7 Octal digits use to specify addresses and data

(0 Restart MOPC, clear PIE

8 Octal load

& Binary load

! Start program in main memory

/ Specifies register or memory cell cxamine

CR (carriage return) Terminator of line

LF (line feed) Ichoes, no other effect

u (space) Octal number before the space is ignored

B Used to specify bank number

I Internal register examine

*) Does not apply for NORD-12.

8.

8.

8.

1.

1.

1.

!

Characters: Use:

R Specifies operation on one of the eight registers

STS, D, P, B, L, A, T, X on a specified level

* Current location counter

All other characters are ignored and followed by '?'".

Functions

Start a Program

Format:

< octal number > !

The machine is started in the address given by the octal number.

If the octal number is omitted, the P register is used as start address,

i.e., this is a "continue function". The program level will be the same

as when the computer was stopped (if Master Clear has not been pushed

or /) typed).

Memory Examine

Format:

~octal number> /

The octal number before the chatacter ''/" specifies the physical

memory address.

When the ''/" is typed, the contents of the specified memory cell are

printed out as an octal number.

If a CR (carriage return) is given, the contents of the next memory

cell.are printed out.

Example:

717/003456 % EXAMINE ADDRESS 717

717/003456 (CR) % EXAMINE ADDRESS 717

003450 (CR) % EXAMINE ADDRESSES 720

000013 % AND 721

8. 1.

1. 4

8-3

Memory Deposit

Format:

octal number (CR)

After a memory examine the contents of the memory cell mat be
changed by typing an octal digit terminated by CR.

Example:

717/003456 3475 (CR) % THE CONTENTS OF
003450 1700 (CR) % ADDRESS 717 IS CHANGED
000123 (CR)’ % FROM 3456 TO 3475 AND 720
123456 % IS CHANGED FROM 3450 TO

% 1700. 721 CONTAINS 123 AND
% REMAINS UNCHANGED

Register Examine

IFormat:

<octal number> R < octal number> /

The first octal number specifies the program level (0-17), if this number
is omitted, program level zero is assumed.

The second octal number specifies which register on that level to examine,

the following codes apply:

Status register, bits 1-7

D register

P register

B register

=~
W

N

O

L register

A register

T register

1

o

w

X register

After the "/" is typed, the contents of the register are printed out.

Examples:

R5/ A register level 0

TR2/ P register level 7

8. 1.

1.

.1,

5 Internal Register Examine

FFormat:

I octal number /

The octal number specifies which internal register is examined, the

following codes apply:

0 Maintenance only

p—
t STS Status register, program level is contained in

bits 8-11, bit 14 = PONI and bit 15 = IONI

2 OPR Operator's panel switch register

* 3 PGS Paging status register

4 PVL Previous program level

& 5 IIiC Internal interrupt code

6 PID Priority interrupt detect

7 PIE Priority interrupt enable

10 Maintenance only

11 Maintenance only

12 ALD Automatic load descriptor

& 13 PES Memory error status

14 Maintenance only

* 15 PEA Memory error address

16 Maintenance only

17 Maintenance only

Current Location Counter

When * is typed, an octal number is printed indicating the current

address on which a memory examine or memory deposit will take

place. The current location counter is set by the memory examine

command /, and it is also incremented for each time carriage

return is typed.

Break Funclion

When a is typed, the MOPC is restarted. This function is also

used to terminate an octal load. PIE is sel to zero.

8.

" 8.

1

. 2.

.8

il

Bank Number

Format: *

octal number B

This command is used when the computer has more than 64K memory.

The memory is divided into 64K banks (0-3).

This command has to be used to specify the bank number when a memory

examine/deposit has to be done.

Bootstrap Loaders

The NORD-10/NORD-12 has bootstrap loaders for both mass storage

and character oriented devices. Three different load formats are

standard:

Octal format load

Binary format load

Mass storage load

Oclal Format Load

Octal load is (normally) started by typing:

physical device address 8

The operator's communication will start taking its input from the

device with the specified device address. The actual device must

conform with the programming specification of either Telelype or

tape reader. The device address is the lowest address associated

with the device.

During octal load there is no echoing of characters. All legal operators

commands are accepted. Illegal commands terminate the loading and

non ig typed¥* on the console. Normally a or ! is used to termi-

nate an octal load.

If no device address precedes the § command, then g is nearly

equivalent to pushing the LOAD button on the operator's panel.

(See Section 8. 2. 4).

* PDoes not apply for NORD-12

** In installations without console an attention lamp is turned on.

8. 2. 2

8-6

Binary Format Load

Binary load is (normally) started by typing:

physical device address &

Loading will take place from the specified device. This device

must conform with the programming specification of either Teletype

or tape reader. The device address is the lowest address associated

with the device.

The binary information must obey the following format :

Figure 8.1: ' Binary load format

A Any bytes ot including ! (ASCII 41)

B (Optional) octal number (any number of digits)

terminated with a non-octal character*:

C . (Optional) octal number terminated with the

character ! (see below).

! Signals start of binary information. (ASCI 41g).

I Block start address, Presented as two bytes

(16 bits), most significant byte first.

r Word count. Presented as two bytes (16 bits),

most significant byte first. (E, F and H is not

included in).,

G Binary information. Each word (16 bits) presented

as two bytes, most significant byte first.

H Checksum. Presented as two bytes (16 bits), most

significant byte first. The checksum is the 16-bit

arithmetic sum of all words in G.

I Action code. If I is a blank (zero), then the program

is started in the address previously found in the

octal number B (see above). If B is not specified,

B=0 is assumed. If I is not a blank, then control

is returned to the operator's communication,

which decodes I. (The number B will be found

in the P register on level 0.)

* Line feed (ASCII 12g) is ignored within octal numbers.

8.

.2.3

2.4

If no device address precedes the & command, then the & is nearly

equivalent to pushing the LOAD button on the operator's panel.

(See Section 8.2,4.)

If a checksum error is detected, "?'" is typed * on the console and

control is returned to the operator's communication.

Note that the binary loader does not require any of the main me mory.

The binary load will change the registers on level 0.

The binary load format is compatible with the format dumped by the

)BPUN command in the MAC assembler.

Mass Storage Load

When loading from mass storage, 1K words will be read from mass

storage address 0 into main memory starting in address 0. After a

successful load, the CPU is started in main memory address 0.

If an error occurs, a new load is tried, If it is never possible to

load, Master Clear must be pushed to get the micro-program out of

the load sequence.

The actual mass storage must conform with either drum or disc

programming specification.

Mass storage load must be started by typing g or &, or pushing the

LOAD button on the operator's panel. If ALD is not set for mass

storage load the appropriate code for mass storage load must precede &.

Automatic Load Descriptor

The NORD-10/NORD-12 has a 16-bit switch register called Automatic

Load Descriptor (ALD)**, This register specifies the load prodedure

to use when the LOAD button is pushed or when a single § or & is

typed.
T

The ALD format is as follows

15 14 13 12 11

E[R| M| O Address

L

lo

Automatic Load Descriptor (ALD) Format

* In installations without console an attention lamp is turned on.

*ok Situated on the Panel Driver Card.

8-8

E Extensions

If this bit (bit 15) is 1, then the load function is extended.
Effectively the micro program jumps to the micro address
found in ALD, bits 0-11.

Note: This bit is active even if the $ and & commands

are preceded by a device address.

(The E bit is used when starting micro-programmed
diagnostic programs. The start address is put in ALD
bits 0-11. -

R Restart*

If this bit (bit 14) is 1, the load junction degenerates to a
jump to main memory address:

Address =4 * (ALD bits 0-13)

This bit is used when the bootstrap program is held in
read only main memory. Note: E=0).

M Mass storage load

If this bit (bit 13) is 1, mass storage load is taken from
the device whose (lowest) address is found in ALD bits
0-10 (unit 0).
Note: E=R=0.)

O Octal format load

If this bit (bit 12) is set, octal format load will take place
from the device whose (lowest) address is found in ALD
bits 0-10.

Note: & will override this bit, a single & will start a
binary format load from the device whose (lowest) address
is found in ALD bits 0-10,

If bit 12 is not set, binary format load will take place
from the device whose (lowest) address is found in ALD
bits 0-10.

Note: § will override this bit, a single § will start an
octal format load from the device whose (lowest) address is
found in ALD bits 0-10, (Note: E=R=M=0,)

* Not to be confused with the RESTART button on the operator's panel.

8-y

Examples 2.5 8.

Following is a table showing possible use of the ALD setting

000¢€
000¢

000€
000¢€

000¢€

g
s
a
a
p
p
e

"
s
s
o
a
p
p
e

1
s
s
o
a
p
p
e

1
sseapper!

ssoaappe
7

000€0T

0}
d
u
n
g

0}
d
u
n
p

01
d
u
n
p

03
d
w
u
n
p

01
d
u
n
p

{

|
|

00LLLI
“

0
0
L
L
L
T

L
U
’

w
o
i
j

0
0
L
L
L
T

<
u
>

w
o
a
j

S
S
a
1
p
p
e

S
S
a
I
p
p
e

S
S
8
1
p
p
e

09LL20

ur
31e3s

._
ul

11815
peol

A
x
e
u
l
d

ur
1Iels

peol
18320

"

0FC
W
0
}

peol
mowm

w
o
a
]

peol

<
u
>

wodal
|

0
§

w
o
x
j

peo]
<
u
z
>

wWoajf
.

o3v10}S
SSBIN

|08e101S
SSBIN

peol
A
x
e
u
r
g

|

©38i103S
SSBIN

PEO]
18190

00%
woJaj

00F
w
o
a
y

<
u
>

w
o
l
j

00%
w
o
a
j

<
u
>

w
o
a
j

:
00¥0T0

peO]
18390

|
PeO]

A
t
e
u
r
g

peo]
L
x
e
u
r
g

peol
183190

PEOL
18100

00€
w
o
a
j

00€
w
o
a
y

< U
7

wWoaj
00g

w
o
i
j

<
u
>

wodaj
TOETT0

peol
Axeurg

|

peol
A
i
e
u
r
g

peol
A
x
e
u
r
g

pPEO]
18190

peOl
18190

L

>
0

dvVOTl.
Surysnd

3
3

<u>
2

@
<
u
>

aiv
p
u
B
w
W
w
i
o
)

Table 8.1

APPENDIX A

NORD-12 MNEMONICS AND THEIR OCTAL VALULES

AAA

AAB

AAT

AAX

ACT

ADC

ADD

AD1

ALD

AND

,B

BAC

BANC

BANC

BCM

BLDA

BLDC

BORA

BORC

BSET

BSKP

BSTA

BSTC

CLD

CM1

CM2

COPY

DA

DB

DD

DL

DNZ

1 172400

: 172000

173000

173400

000400

: 001000

006000

000400

000012

070000

000400

000600

177000

: 177200

: 000400

: 176600

: 176400

177600

: 177400

174000

175000

: 176200

176000

000100

000200

000600

: 146100

000005

000003

000001

000004

1 152000

DP

DT

DX

EQL

EXIT

EXR

FFAD

I'DV

FMU

I'sB

GRE

IDENT

IF

IOF

ION

10X

IRR

IRW

JATF

JAN

JAP

JAZ

JMP

JNC

JPC

JPL

JXN

IdX7Z

LBYT

LDA

LDD :

000002

000006

000007

000000

1 146142

: 140600

: 100000,

114000

: 110000

: 104000

001000

001000

: 143600

000000

: 1560401

: 150402

164000

: 153600

: 153400

: 131400

: 130400

: 130000

: 131000

: 124000

132400

: 132000

: 134000

: 133400

: 133000

: 142200

044000

024000

LDF

LDT

LDX

LIN

LMP

LRB

LST

MCL

MGRE

MIN

MIX3

MLST

MON

MPY

MST

NLZ

ONE

OPR

ORA

PID

PIE

PIN

PL10

PL11

PL12

PL13

PVL

RADD

RAND

RCLR

RDCR

RDIV

REXO

RINC

034000

050000

054000

003000

000002

: 152600

003000

: 150200

001400

040000

143200

003400

: 153000

: 120000

: 150300

: 151400

000200

: 000002

074000

: 000006

000007

002000

000004

000011

000022

000043

000004

: 146000

144400

: 146100

: 146200

141600

1 145000

: 146400

RMPY

RORA

ROT

RSUB

SA

SAA

SAB

SAD

SAT

SAX

SB

SBYT

SD

SHA

SHD

SHR

SHT

SKA

SKP

SL

SP

SRB

SSC

SSK

SSM

SSO

55Q

SSZ

ST

STA

STD

STI

STS

STT

1 141200

: 145400

: 001000

: 146600

: 000050

: 170400

: 170000

: 1564600

: 171000

: 171400

000030

142600

000010

: 154400

: 154200

000200

¢ 154000

: 001000

: 140000

000040

000020

: 152402

000060

000020

: 000070

000050

000040

000030

000060

004000

: 020000

030000

000001

010000

STX

STZ

SUB

SWAP

SX

TRA:

014000

000000

064000

144000

000070

150000

TRR

UEQ

WAIT

ZIN

ZIRRO

: 150100

002000

151000

002000

002000

000000

APPENDIX B

NORD-10/NORD-12 INSTRUCTION CODE

EIZ S aars « ea @ d e

000. 000 STZ 0lo|o oo

', 1.004: 000 STA oloo |ol1

010. 000 STT oloo|1]0

014. 000 STX olofo |11

020. 000 STD 0l01]0]0

1 024.000 | LDD [0[0f1 |01

11 030. 000 STF 0lo |1 [1]0

034. 000 LDF 0lof1 |1]1

040. 000 MIN 0|1 [0]0]0

g (144,000 LDo 01t 101 X1 B| Digplacem¢nt
050. 000 LDT 0({1]0 |10

054. 000 LDX 010 |11 &
060. 000 ADD 0[{1]1]0]0

064. 000 SUB |01]1 o1

’ 070. 000 ~ AND. |01 {1 f1]0

074.000 ORA 011 {11 |

100.000 | _FAD _ [1|00 [0 [0
g |104:.000 | FSB 111010 101 |

110. 000 _FMU___ (11010 |1]0

114. 000 FDV 1jofof1]1

120. 000 MPY 1/01][00 |

| 124.000 JMP 1(0]1 |o1

| 130.000 CJP /0|1 |1 |0 |Subin.
134,000 JPL 1jof1|1]a

140. 000 SKP+EXT [1]1]0 |00

o | 144000 | mop afrfolof | [[f 1[5 [P
150. 000 MIS 1{1 |0 |1 [0 |Subin.

154,000 | sHT __f1j1j0)1 | | | | | | No. of shifts |

160. 000 10T 1|11 [0]o | Device number

; |-164.000 10X 11101 Device address

| 170.000 | ARG __ |1/1]1 1110 _F_ngn-] _Argument
174.000 BOP 1{1 1 |1 (1 Function] Bitno. | D

2885888888583 "
e Ta~ =

APPENDIX C

DIFFERENCES BETWEEN NORD-10 AND NORD-12

This appendix is provided for those comparing NORD-10 with NORD-12.

1. Maximum memory size of the NORD-12 is 64K words.

The Memory Management Sy stem option is not available
for the NORD-12. With this option the maximum memory

size for NORD-10 is 256K words.

2. The speed of the NORD-10 is 300 ns per micro-instruction

for NORD-12 it is 500 ns per micro-instruction. This
gives a 5/3 ratio for floating point, for all other instruc-
tions cousult the NORD-10 and NORD-12 Reference Manuals.

3. Internal hardware error interrupts are not connected to

level 14 on the NORD-12, and there is no IIE (Internal

Interrupt Enable) register and no IIC (Internal Interrupt Code)

However, on the NORD-12 it is possible to hardwire interrupts

to level 14.

4., NORD-12 is only available with dynamic MOS memories

(4096 bit/chip), while the NORD-10 is offered with a range
of different memories.

] The rounding algorithm for floating point differs between -
NORD-10 and NORD-12. On NORD-12 there is no TG
(Rounding) flip-flop in the Status Register (bit 1 in Status
on NORD-10), and for NORD-12 all floating point results
are truncated. On the NORD-10 the least significant bit
in the result is forced to one if the result could not be
exactly represented. For both the NORD-10 and NORD-12

all integers up to 232-1 will be exactly represented in

floating point format, and all results to this limit will also

be exact,

6. Only NORD-10 may have a NORD-1 Inpuf/Output Channel as

option.

7. The Memory Parity system differs between NORD-10 and

NORD-12. On NORD-10 TRA instructions are used for
reading memory parity error information, on NORD-12 the
parity mechanism is an Input/Output device which plugs

into an I/0O Slot, For both NORD-10 and NORD-12 Memory

Parity is an option.

3. On NORD-10 the Bus Transceiver or Bus Extender is

standard, this is an option on NORD-12.

s
)

15
7

o

R et A TR R L R LtTtieS

A/S NORSK DATA-ELEKTRONIKK @KERNVEIEN 145 OSLO 5 NORWAY PHONE: 217371 TELEX: 18284

