

RID-G0.196.2 ER

0 oo 9000 ® ® O
00 ' 0 ¢
PO.Q.........O......O 0...0.Q.........Q0.......0.0.0...0..........1

BRF-LINKER

User Manual

ND-60.196.2 EN

The information in this manual is subject to change without notice. Norsk Data A.S assumes no responsibility for
any errars that may appear in this manual. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S. Copyright (©)1986 by Norsk Data A.S.

PRINTING RECORD

PRINTING NOTES

08/84 Version 1 EN

08/86 Version 2 EN

BRF—LINKER User Manual
Publ.No. ND -60.196.2 EN

UPDATING

Manuals can be updated in two ways, new versions and
revisions. New versions consist of a completely new
manual which replaces the old one, and incorporate all

revisions since the previous version. Revisions consist of
one or more single pages to be merged into the manual
by the user, each revised page being listed on the new
printing record sent out with the revision. The old printing
record should be replaced by the new one.

New versions and revisions are announced in the ND

Customer Support Information and can be ordered from
the address below.

The reader’s comments form at the back of this manual
can be used both to report errors in the manual and give
an evaluation of the manual. Both detailed and general
comments are welcome.

RING BINDER OR PLASTIC COVER

The manual can be placed in a ring binder for greater
protection and convenience of use. Ring binders may be
ordered at a price of NKr. 45.- per binder.

The manual may also be placed in a plastic cover. This
cover is more suitable for manuals of less than 100 pages
than for larger manuals.

Please send your order, as well as all types of inquiries and

requests for documentation to the local ND office, or (in

Norway}) to:

Norsk Data A.S
Graphic Center
P.0.Box 25 BOGERUD
N-0621 OSLO 6 - Norway

| would like to order

........ Ring Binders, 40 mm, at NOK 45.- per binder

........ Plastic Covers, at NOK 10.- per cover

NAME: ..ot b AR NS o

Company: ... iRl

AAAross: oiiesevisosmmesisarsim o e mssismis st s

Preface:

THE PRODUCT

This manual describes the BRF-Linker, ND 210721B, running under

SINTRAN III.

The BRF-Linker is used to read Binary Relocatable Format (or "BRF")

output from the MAC assembler and from the ND compilers (FORTRAN,

COBOL, PLANC, BASIC, PASCAL, etc.). It will then link this output into

a program file and make it executable.

Note that the Multisegment Load feature described in chapter 3 is only

available under SINTRAN III version I or later versions. It is

therefore not available on the NORD-10.

THE READER

This manual is written for programmers using the BRF-Linker to load

and link programs to be run in the time-sharing mode. (For loading of

real time programs, see the Real Time Loader manual, ND-60.051.)

PREREQUISITE KNOWLEDGE

No previous knowledge of the BRF-Linker is assumed in this manual.

However, some basic knowledge of SINTRAN III commands and of the

principles and commands for compilation is recommended.

THE MANUAL

This manual describes the basic commands for loading in chapter 1.

Overlay loading is described in chapter 2, and multisegment loading in

chapter 3. In chapter 4, can be found some commands for inspection and

modification, and in chapter 5, the commands for editing are

explained. A detailed description of the Binary Relocatable Format is

found in chapter 6.

A summary of the commands is given in appendix A and a summary of the

various error messages in appendix C. Furthermore, an overview of the

SINTRAN III segment file concept is found in appendix 2. All commands

and error messages are included in the index.

Norsk Data ND-60.196.2 EN

vi

CHANGES FROM PREVIOUS VERSION

The major change is that the chapter about multisegment programs has

been thoroughly revised, so that it now has an emphasis on "how-to"
information, while the SINTRAN overview has been moved to an appendix.
Otherwise, known errors have been corrected, some new commands have

been described and the examples have become more thoroughly commented.

RELATED MANUALS

SINTRAN III Reference Manual ND-60.128

Real Time Loader ND-60.051

Symbolic Debugger User Guide ND-60.183

Norsk Data ND-60.196.2 EN

vii

TABLE OF CONTENTS

Section Page

1 The Functions of the BRF-Linker . 3

1.1 Command Formats . 3

1.2 Loading . . 5

1.3 Normal Mode Load1ng . . . 6

1.4 Example: Compiling, Load1ng and Runn1ng a Program . 9

1.5 Example: Compiling, Loading and Running a Program from many

different Files . . 10

1.6 Inspecting and Changwng the Symbol Tab]e 13

1.7 Two-bank Systems Versus One-bank Systems 16

1.8 Program Information Commands 17

1.9 Miscellaneous Commands 19

2 The Overlay System 23

2.1 The Multilevel Overlay System . 23

2.2 Designing an Overlay Structure 25

2.3 Special Commands for Overlay Loading 26

2.4 Example: Creating an Overlay System . 27

3 The Multisegment System . 33

3.1 Multisegment Loading - Possibilities and Limitations 33

3.2 Programming Considerations Using Multisegment Linking . 34

3.3 Organization of a Multisegment Program System . 35

3.4 Multisegment Linking Commands . 36

3.4.1 Special BRF-Linker Commands for Mu1t1segment L1nk1ng 36

3.4.2 SINTRAN III Commands for Multisegment Programs 38

3.5 Example: Linking and Loading a Simple Multisegment Program 39

3.6 Example: Linking and Loading a Segmented Program Structure 44

3.7 FORTRAN COMMON Blocks . 50

4 Program Inépection Commands . 57

5 Editing commands 61

5.1 Basic Symbol Handling . 61

5.2 Commands for Updating . 62

5.3 Additional Symbol Commands 63

5.4 Other Functions . i 63

Norsk Data ND-60.196.2 EN

viii

Section Page

6 The Binary Relocatable Format . 69

6.1 The BRF Structure . e 70

6.2 Retlocation of Internal Addresses 71

6.3 Program Units . 71

6.4 Separate Compilation 72
6.5 Linking of Program Units 73

6.6 FORTRAN COMMON Blocks . 73
6.7 Fix-up Facilities . 74
6.8 Checksum e e e e e 74

6.9 Description of the BRF Control Numbers 75

APPENDIX

A Command Summary 79

B The SINTRAN III Segment Files 87

-1.1 Introduction e w 89

C Error Messages 91

Index <1

Norsk Data ND-60.196.2 EN

>

ThE FuncTions of THE BRF-LINKER

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 3

0000000000000 00REORC000000000000000000C0O0I0POOPPOOEOOORORDOGROOGO

1 The Functions of the BRF-Linker

The BRF-Linker is a subsystem which is able to convert the output from

language processors (compilers and assemblers) into executable

programs that can run under SINTRAN III. The object files created by
the language subsystems are in Binary Relocatable Format (described in

detail in chapter 6), otherwise known as BRF.

The BRF-Linker maintains a symbol table in which all defined

intermodule references, symbols, and labels appear together with their

addresses. If the address of a symbol has not been defined before

being used, the symbol entry in the table is marked as undefined. All

symbols must be defined before the program can be executed.

1.1 Command Formats

BRF-Linker is started by typing its name to SINTRAN III:

@RRF-LINKER

Whenever BRF-Linker is ready to process a user command, it will type
out the command prompt:

Brl:

BRF-Linker commands follow the same rules as SINTRAN III commands:

- All commands consist of a command name, followed by zero or more

parameters.

- A space or comma may be used as a separator between the command

name and the parameters, or between two parameters.

- Command names and parameters may be abbreviated as long as the

abbreviation is unique.

- A missing parameter is indicated by typing two consecutive

commas. Default values will be used for any missing parameters.

- Some parameters are termed optional. These parameters may be

specified in the command, but if left out the BRF-Linker will not

ask for them, it will just use the default value.

Norsk Data ND-60.196.2 EN

4 The Functions of the BRF-Linker
Command Formats

- A carriage return may be used anywhere in the command string. The

BRF-Linker will ask for any parameters, except optional ones,

that were not specified before the carriage return.

~ Numerical parameters may be given in octal or decimal mode. The

default is octal mode. A decimal number may be specified by a
trailing D, an octal number by a trailing B. Signed numbers may

be used.

- All control characters available for editing SINTRAN III commands

can also be used to edit commands to the BRF-Linker.

Thus, in the commands:

Brl: LOAD FILE-1,FILE-2,FILE-3

Brl: EXIT

the words LOAD and EXIT are command names. The EXIT command has no

parameters, whereas the LOAD command has the three parameters FILE-1,

FILE-2 and FILE-3, separated by commas.

In the command format definitions the parameters are specified in

angular brackets (< ... >). Optional parts of the command are enclosed

in square brackets ([...]). A sequence of full stops following a
parameter means that the parameter may be repeated any number of

times.

Thus, the command definition:

Brl: LOAD <file name>[,<file name>...]

means that the LOAD command takes as parameters any number of file

names, of which all but the first are optional (that is, only the
first one will be asked for if not specified).

Throughout this manual, two different terms are used to denote

quantities of memory, in addition to the usual terms bit and byte. The
symbols are: word which denotes one 16-bit ND-100 word, and page which
is an ND synonym for 1024 16-bit words.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 5

Loading

1.2 Loading

The loading operation consists of fetching relocatable program units

produced by language processors (compilers and assemblers), placing

them in the correct place within the address space, linking together

the references between the different units and, finally, writing the

completed program out to a program file.

The relocatable program units contain information that makes it

possible to place (locate) them anywhere within the address space.
This means that the different units may be placed in the address space

in any sequence. When BRF-Linker has put a program unit in the correct

position, it must go through the program unit and change all addresses

that depend on where the unit is placed.

The final program resulting from the loading is bound to the logical

addresses where it was placed by BRF-Linker. It is therefore referred

to as an absolute program. It may also be called an executable program

or a subsystem.

During loading, the BRF-Linker can operate in different modes:

1) Normal mode:

The loading is done onto a file of type :PROG. This is the

"normal" way of loading a program. Programs must fit into the
ordinary 64-page (one-bank) or 128-page (two-bank) address space.

2) Overlay mode:

When the program is too large to fit into 128 pages, the overlay

mode may be used to enable different parts of the program to be

run alternately in the same address space.

3) Multisegment mode:

Used to prepare programs which occupy several SINTRAN III

segments. It makes it possible to use programs extending beyond

the normal 128-page boundaries, and also to improve execution

times by avoiding reading from a :PROG file when the program is

started. It can NOT be used with one-bank programs.

No symbolic source code modification is necessary in order to switch

from one of these modes of loading to another.

There are some significant differences between multisegment 1linking

and overlay linking:

1) The Symbolic Debugger can be used with overlays, but is not

available in the multisegment mode if you use SINTRAN III version

J or earlier on your computer.

Norsk Data ND-60.196.2 EN

6 The Functions of the BRF-Linker

Loading

2) The finished overlay system uses the monitor call RFILE to read

code and data during execution of the loaded program.

Multisegment linking uses the demand paging facilities with named

two-bank segments that is available in SINTRAN III version I and

later versions.

3) It takes about 5 milliseconds to switch between segments in the

multisegment mode, while it takes at least 50 milliseconds before

execution of a new overlay can start after it has been called.

4) In multisegment loading, segments can be built during several

loading sessions. When building overlay systems, the entire

system must be built in a single BRF-Linker session.

5) Multisegment loading requires the use of special SINTRAN III

commands which are only available to user SYSTEM. Overlay loading

may be done by any user.

6) Subroutine calls within an overlay structure are restricted in

that one routine may call another routine only if both are in

memory at the same time. Thus, you must be careful in organizing

the overlay structure. No restrictions on routine calls apply to

multisegment systems.

7) In multisegment systems, care must be taken with data area layout

to avoid data from one segment being overwritten by data from

another segment.

—————————0w-—————

1.3 Normal Mode

An executable, or absolute program is always built on a file. The file

is specified using the command

Brl: PROGRAM-FILE <file name>

where <file name> is the name of the file onto which the program is

linked and loaded. The default file type is :PROG. If the file does

not already exist, you should instruct the BRF-Linker to make a new

file by enclosing the file name in double quotes, thus:

Brl: PROGRAM-FILE '"<file name>"

PROGRAM-FILE should be the first command given after the BRF-Linker

has been started.

The BRF-Linker can load BRF-units from one or more files. The loading

is initiated by the command:

Brl: LOAD <file name>[,<file name>...]

where <{file-name) is the name of a file the BRF units should be loaded

from. The default file type is :BRF.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 7

Normal Mode Loading

When loading from a file, all routines on that file will normally be
loaded. Any or all routines on the file may, however, have been

compiled in the so-called library-mode. Such routines will only be

loaded if they are called from a previously loaded routine, otherwise

they will be ignored.

Debug information on BRF files can be included or ignored throughout

the loading process by the command:

Brl: DEBUG-MODE <ON/OFF>

Default is ON - debug information will be included.

Program units from library files (compiled with the "“LIBRARY-MODE"
ON), can be loaded without being referred to from units already loaded

by using the command:

Brl: LIBRARY-MODE <ON/OFF>

The default value for this command is ON, library units will only be

loaded if referenced.

Sometimes, it is necessary to select which library file you want to

define a symbol. An example is if you are loading a program written in

different languages, where the same name is used for subroutines which

are used by different languages. Then, you can use the command

Brl: IGNORE-ENTRY <symbol>[,<symbol>...]

to prevent it from being loaded from the first library file you load

after this command has been given. But if the symbol is defined on the

next file that you specify, it will be loaded. So the IGNORE-ENTRY

command affects the next library file you load from only.

If the program is in a high-level language, the runtime system

routines for that language must also be loaded. These routines are

found on files with names like:

xxxxxxx- 1BANK : BRF or xxxxxxx—-2BANK : BRF

where xxxxxxx is the name of the programming language, for example:

FORTRAN- 1BANK : BRF or FORTRAN-2BANK : BRF

Use the 1BANK or 2BANK version of the runtime system depending on
whether the program is a one-bank or a two-bank program.

To leave the BRF-Linker and return to SINTRAN III, give the command:

Brl: EXIT

The BRF-Linker will then close the program file specified, thereby

making it ready for execution from SINTRAN III, and return you to

SINTRAN III.

Norsk Data ND-60.196.2 EN

8 The Functions of the BRF-Linker
Normal Mode Loading

The program can now be started from SINTRAN III by giving a RECOVER

command with the program file name as parameter. For example, if you

have loaded executable code onto the file EXAMPLE:PROG, then the

program could be started by typing the command:

@RECOVER EXAMPLE

As long as there is no conflict between the program file name and any

SINTRAN III command names we may (and usually do) leave out the word

RECOVER, so we would just type:

@EXAMPLE

If we want to debug the program we may instead type the command:

@DEBUG EXAMPLE

which will start up the program under control of the

Symbolic Debugger.

If we want to run the loaded program immediately, we could instead

exit from the BRF-Linker with the command:

Brl: RUN

This command performs an exit from the BRF-Linker and then starts
execution of the program file opened with the PROGRAM-FILE command at

the beginning of the loading session.

Note that the BRF-Linker cannot load programs directly to memory.

Hence, a program file must have been specified in order to use the RUN

command.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 9

Normal Mode Loading

1.4 Example: Compiling, Loading and Running a Program

This section shows how you compile, load and run a very simple program

using the BRF-Linker. The program is written in FORTRAN (but you can

no doubt see what it does, even if you are not familiar with that

language!). In the following example, the input from the terminal is

underlined, and comments to the input are put in boxes.

@FORTRAN- 100

 Starting the FORTRAN-100 compiler.

ND- 100/NORD- 10 ANSI 77 FORTHAN COMPILER

FTN: COMPILE TESTP:SYMB,TERMINAL,"TESTF:BRF"

 Tells the compiler to compile the source

file TESTP:SYMB, direct the listing to your

terminal, and to generate relocatable code

on the file TESTP:BRF. The latter is put in

double quotes, since it did not exist be-

fore this compilation.

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - 203053D

SOURCE FILE: TESTP:SYMB

a* PROGRAM TESTP

2* WRITE(1,*) 'THIS IS A TEST PROGRAM'

g END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=69 COMMON SIZE=0
FTN: EXIT

 Leaving the compiler.

@BRF-LINKER
8

 Here, the BRF-Linker is started.
- BRF Linker

Brl: ?ROGRAM—FILE "TESTP"
4

 The program file is named. Since TESTP:PROG

did not exist previously, it is specified

inside double quotes.

Norsk Data ND-60.196.2 EN

10 The Functions of the BRF-Linker

Example: Compiling, Loading and Running a Program

Brl: LOAD TESTP,FORTRAN- 1BANK

 The BRF-Linker is told to load an execut-

able program from TESTP:BRF and the

FORTRAN-1BANK library. [If you compiled

TESTP with the compiler in two-bank mode,

you must use the FORTRAN-2BANK library

here instead of the 1BANK library.)

FREE: P 000105-177777

FREE: P 035043-177777

Brl: EXIT T

Leaving the BRF-Linker. Now, we can execute

the program by typing its name to SINTRAN:

@TESTP

THIS IS A TEST PROGRAM

1.5 Example: Compiling, Loading and Running a Program from many

different Files

This section shows how you compile, load and run a more complex

program.

As you will see, building this program is not much more complicated

than was the previous program. But this program has a more complicated

structure. Later, we will show how you can build it as an overlaid

program and as a multisegment program as well,

Compared to the last example, the only new commands which are given to

the compiler are the SEPARATE-DATA ON command and the LIBRARY-MODE

command. The first command instructs the compiler to generate

relocatable code that can be loaded to a two-bank program, the second

asks it to generate subroutine libraries from the symbolic file it

compiles. If you do not give the LIBRARY-MODE ON command to the

compiler, the BRF-Linker will load every single subroutine that it

finds on the relocatable file instead of only those subroutines that

your program specifically asks for.

The size of the program is not much of a problem in the current

example, but if you use the files as general library files or in

overlay programs and multisegment programs, you will want only the

subroutines that you need from the relocatable file to be loaded. This

is what the LIBRARY-MODE command does.

The input from the terminal is underlined in the following example.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 11

Example: Compiling, Loading and Running a Program from many different

Files

@FORTRAN-100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE MAINP,TERMINAL,MAINP

ND- 100/NORD- 10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: MAINP:SYMB

1* PROGRAM MAINP

2* WRITE (1.%) 'START MAINP'

3* CALL SUBR1([1)

4* CALL SUBR6(6)

5* WRITE (1,%) 'END MAINP'

6* END

- CPU TIME USED: 0.6 SECONDS. 6 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=53 DATA SIZE=64 COMMON SIZE=0
FTN: EXIT

@FORTRAN-100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

FTN: SEPARATE-DATA ON

FTN: LIBRARY-MODE ON

FTN: COMPILE SUBR1,TERMINAL,SUBR1

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBR1:SYMB

1* SUBROUTINE SUBR1(N]

2* WRITE (1,*) 'SUBROUTINE', N, ' CALLED’

3* CALL SUBR2(2)

4% CALL SUBR5(5)

5* END

- CPU TIME USED: 0.4 SECONDS. 5 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=35 DATA SIZE=58 COMMON SIZE=0

FTN: EXIT

@FORTRAN-100

ND- 100/NORD- 10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

FTN: SEPARATE-DATA ON

FTN: LIBRARY-MODE ON

FTN: COMPILE SUBRZ2,TERMINAL,SUBRZ

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBRZ2:SYMB

Norsk Data ND-60.196.2 EN

12 The Functions of the BRF-Linker

Example: Compiling, Loading and Running a Program from many different
Files

1% SUBROUTINE SUBR2(N)

2% WRITE (1,*) 'SUBROUTINE ', N, ' CALLED'

g CALL SUBR3(N+1)

4* CALL SUBR3(N+1)

5* CALL SUBR4(N+2)

6% CALL SUBR4(N+2)

7* END

- CPU TIME USED: 0.5 SECONDS. 7 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=55 DATA SIZE=63 COMMON SIZE=0
FTN: EXIT

@FORTRAN- 100

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

FTN: SEPARATE-DATA ON

FTN: LIBRARY-MODE ON

FTN: COMPILE SUBR,TERMINAL,SUBR

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBR:SYMB

1* SUBROUTINE SUBR3(N)

2* WRITE (1,*) 'SUBROUTINE ', N, ' CALLED'

3* END

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBR: SYMB

4*

5* SUBROUTINE SUBR4(N)

6* WRITE (1,*) 'SUBROUTINE ', N, ' CALLED'

7* END

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBR: SYMB

8*

9* SUBROUTINE SUBR5(N)

10* WRITE (1,*)] 'SUBROUTINE ', N, ' CALLED’

11* END

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: SUBR:SYMB

12*

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 13

Example: Compiling, Loading and Running a Program from many different

Files

13* SUBROUTINE SUBR6 (N]

14* WRITE (1.,%) 'SUBROUTINE ', N, ' CALLED’

15* END

- CPU TIME USED: 1.7 SECONDS. 15 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=100 DATA SIZE=156 COMMON SIZE=0
FTN: EXIT

@BRF-Linker

- BRF Linker - 10721B0O0O

Brl: PROGRAM-FILE MAINP

Brl: LOAD MAINP,SUBR1,SUBRZ2,SUBR, FORTRAN-2BANK

FREE: P 000065-177777 D 000100-177777

FREE: P 000130-177777 D 000171-177777

FREE: P 000217-177777 D 000267-177777

FREE: P 000363-177777 D 000517-177777

FORTRAN-2BANK-EO 48-BIT FLOATING

PLANC- 2BANK-F0O

FREE: P 030312-177777 D 007416-177777

Brl: M

@MAINP

START MAINP

SUBROUTINE 1 CALLED

SUBROUTINE 2 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 5 CALLED

SUBROUTINE 6 CALLED

END MAINP

= 88¥——m————————

1.6 Inspecting and Changing the Symbol Table

Procedure names, variable names, labels and so on which are defined

and needed in your program are known as symbols. Symbols may be up to

seven characters long. In order to make a loaded and linked program

function properly, the BRF-Linker must fill in the correct symbol

address wherever there is a reference to a symbol. By symbol address

is meant the address of the word or words in memory that are

associated with the symbol. Furthermore, the BRF-Linker will keep

track of the places where symbols are referred to, but not yet defined

and given addresses. Thus, it is able to fill in the necessary

information about these addresses when the symbols get defined.

To this end the BRF-Linker keeps a list of all symbols encountered

during linking. This 1list is known as the symbol table. The symbol

table may be inspected and manipulated by you during loading.

Norsk Data ND-60.196.2 EN

14 The Functions of the BRF-Linker

Inspecting and Changing the Symbol Table

The symbol table is built by the BRF-Linker from the symbols it

encounters in the BRF files. It contains a list of the symbols and the

addresses in the computer's memory they will occupy when the program

is run. Whenever a definition of a symbol is found in a input file,

the value of the current load address is stored as the address of the

symbol. The symbol is then known as a defined symbol.

If a referenced symbol has not yet been defined, it is stored in the

symbol table as an undefined symbol. It is then expected to be defined

later. For instance, this will normally be the case with symbols

representing calls to external procedures which have not yet been

loaded.

In the case of programs loaded in the two-bank mode, the load address

is to a 1location in the program bank if it is a procedure name or a

label and to a location in the data bank if it is a variable name. 1In

the one—-bank case, all references are to the same bank.

To list all symbols in the symbol table, give the command:

Brl1: LIST-ENTRIES-DEFINED

All undefined symbols in the program can be listed by giving the

command:

Brl: LIST-ENTRIES-UNDEFINED

Together with each symbol name will be listed the last address where

the symbol was referenced.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 15

Inspecting and Changing the Symbol Table

The output from the LIST-ENTRIES-DEFINED and LIST-ENTRIES-UNDEFINED

commands may be switched to another output device by giving the

command:

Brl: OUTPUT-FILE <file name>

where <file name> is the name of the new output file. The default

file type is :SYMB. The output device may be reset to the terminal by

giving the OUTPUT-FILE command with an empty file name:

Brl: OUTPUT-FILE

To create a new symbol in the symbol table, use one of the commands:

Brl: DEFINE <(symbol>,<address>,<P/D>

or

Brl: DEFINE <symbol>,<symbol+displacement>, <P/D>

In the first format, the name <(symbol> will be defined as referencing

the word given in <address> and in the bank specified in the parameter

(P/D>. P specifies a word in the program bank and D a word in the data

bank. If the P/D parameter is omitted, the default 1is the program

bank.

In the second format, the first symbol is defined as referencing the

word at the address of the second symbol, optionally plus or minus a

displacement (example: DEFINE a,b+10,p). The second symbol must be

defined previously. Beware that if the already defined symbol (the

second <symbol> parameter) is located in the data bank (P/D parameter

set to D), the P/D parameter must be set to D for the new symbol too,

otherwise the BRF-Linker will output an error message indicating a

reference to an undefined symbol.

We can find which word an entry refers to by typing:

Brl: DEFINE <symbol>,?,<P/D>

The BRF-Linker then writes the octal address of the symbol on the

terminal.

In order to load the program at an address which differs from the

current address, use the command format:

Brl: DEFINE <#PCLC/#NDCLC>.<address>,<P/D>

The parameter <£PCLC/£DCLC> refers to the current location counter in

the program bank (£PCLC) or data bank (£DCLC}. Subsequent loading will

then be performed from the specified address. This command will also

set the BRF-Linker in the specified mode (£PCLC for Program mode or

£DCLC for Data mode).

The address of an entry in the symbol table may be entered into a

memory location by the command:

Brl: REFERENCE <symbol>,<address>,<P/D>

It doesn't matter if the referenced entry is present in the table or

Norsk Data ND-60.196.2 EN

16 The Functions of the BRF-Linker

Inspecting and Changing the Symbol Table

not, as the correct address will be filled in when the symbol value is

defined. The REFERENCE command creates an '‘undefined' symbol if the

symbol 1is not already in the table, and the BRF-Linker expects it to

be defined later.

An entry is deleted from the symbol table by:

Brl: REMOVE <symbol)>,<P/D>

Symbol names may be renamed by the command:

Brl: RENAME <old symbol>,<(new symbol>

To set the restart address of the program file specified in the

PROGRAM-FILE command, use one of the command formats:

Brl: RESTART <address>

Brl: RESTART <symbol>

If <symbol> is wused, then <symbol> must be a defined table entry

referring to the program bank. The default restart address will be

equal to the main start address.

1.7 Twobank Systems Versus One-bank Systeas

To overcome address space constraints in the ND-100, a two-bank system
can be utilized if the compiler (PLANC, COBOL, FORTRAN, PASCAL) is

capable of generating separate output for the program code and the

data part. The address space for each program is limited to 64 pages.

A two-bank program uses a separate address space for code and data,

thus making it possible to have 64 pages of program code and 64 pages

of data.

Since the ND-100 is capable of addressing data by using an alternative

page table, programs may,.h in principle, consist of 64 pages of program

code and 64 pages of data. Programs where code and data are separated

in this way are called two-bank programs, whereas programs whose code

and data share a single address space of 64 pages, are called one-bank

programs.

Two-bank object programs may be generated by an option in the various

compilers and can be loaded by BRF-Linker. The following should be

noted:

= Two-bank programs must be linked with the two-bank version of the

appropriate runtime/library system, for example PLANC-2BANK,

FORTRAN-2BANK, COBOL-2BANK, etc.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 17

Two-bank Systems Versus One-bank Systems

- Care must be taken when linking assembly or NPL routines with

two-bank systems.

- One-bank and two-bank programs may not be mixed.

- The code parts of the two-bank systems are, in principle,

completely read-only.

- Overlay tree structures are still available, and both the code

and data parts are brought in when a link is required.

Two BRF control numbers, PMO and DMO, are used to put the BRF-Linker

into program or data mode (see chapter 6).

Programs compiled in two-bank mode are by default loaded into two

banks of 64 pages each. In this case, the program executes with all

accesses to the data bank via the alternate page table.

All loader commands (DEFINE, REFERENCE, REMOVE) will apply to either

the program code or the data bank according to what is specified in

the mode (P/D) parameter in the commands.

- — —
————

_ e —————— — ——————

1.8 Program Information Commands

The commands described in this section can be used independently of

the other BRF-Linker commands, and have no effect on the program being

loaded. They can even be used when no PROGRAM-FTLE command has been

given.

Brl: PROGRAM-INFORMATION <file name>

[.«Dump Link Information?YES/NO>, <output file>]

The commard lists the information block of a program file. The default

file type is :PROG.

It will print out the following information: start and restart

address, lower and upper bounds for: program, data and debug

information.

If the program is an overlay system or a multisegment system, the BRF-

linker will also print the file name specified {in PROGRAM-FILE

command) when this program file was loaded.

If the file contains overlays, it will also print overlay information.

For multisegment program files, it will print out lower and upper

bounds for link information, and it will ask whether link information

shall be dumped (the default answer is 'No'). If link information is

to be dumped, it will be dumped on the specified output file. The

default output file is TERMINAL and the default output file type is

:SYMB.

Norsk Data ND-60.196.2 EN

18 The Functions of the BRF-Linker

Program Information Commands

As an example, let us inspect the simple program we compiled and

loaded in section 1.4.

@BRF- LINKER

- BRF Linker - 10721B00

Brl: PROGRAM- INFORMATION TESTP,,,.

Start, Restart : 000011B - 000011B

Program : 000000B - 03504°Z2B

Data : 177777B - 000000B

Debug : OOOOCOOB - 000000B

Brl: EXIT

The program file name specified in the PROGRAM-FILE command when the

program was loaded, can be changed by the command:

Brl: PATCH-PROGFILE-NAME <file name>,(new name>

The file name is output to the program file in two-bank programs and

in overlay programs. This command will locate the file name on the

program file and write the <new name> instead. It will inform you if

an overlaid file name is found. The SINTRAN III file is not renamed.

The maximum number of characters in the overlay file name is 63 if you

are using SINTRAN III version I or later, 15 if you are using version

H or earlier.

The usefulness of this command stems from the fact that in two-bank

programs to be run under SINTRAN III version H or earlier versions,

and in overlay programs, the program file is opened according to the

name written on the program file itself. If a program file is renamed

by using the SINTRAN III RENAME-FILE command, the program name written

on the file will not be changed. Such changes can be effected with the

PATCH- PROGFILE-NAME command, or by using the COPY-PROGFILE command

described below.

Some difficulties may also be caused if execution of two-bank programs

owned by another user is attempted under SINTRAN III version H or

earlier versions. In this case, the file name written on the program

file does not contain information about the owner or directory.

Attempts to execute the program will therefore not be successful. Such

difficulties can also be overcome by using the PATCH-PROGFILE-NAME

command.

Brl: COPY-PROGFILE <(source file),<destination file>

[.<Include Debug?YES/NO>]

[.<Include Link Information?YES/NO>]

This command will copy a program file from <source file> to

{destination file>. The default file type is :PROG. If the source file

includes debug information, the BRF-Linker will ask whether debug

information is to be included or not; thus, the command can be used to

strip away debug information if you answer NO. Default is NO debug

information copied.

Norsk Data ND-60.196.2 EN

The Functions of the BRF-Linker 19

Program Information Commands

For nmultisegment files, the BRF-Linker will ask whether 1link

information should be included. The default is NO 1link information

included. If the 1link information is not included, the program file

can no longer be linked to any other program files.

If the source file is overlaid or is a two-bank program, this command

will perform a PATCH-PROGFILE-NAME command using <{destination file)> as

the new file name.

The BRF-Linker will print out information about the pages copied as

shown in this example (our simple little program again).

@BRF- LINKER

- BRF Linker - 10721B0O0O

Brl: COPY-PROGFILE TESTP,"TESTX",,,

Total no of pages:17B First page:0B Last page:16B Bank no:0 Program

Brl: EXIT

1.9 Miscellaneous Commands

The command:

Brl: HELP [<command>]

lists all available commands matching the abbreviation <command>. If

no command is specified, all BRF-Linker commands will be listed.

Norsk Data ND-60.196.2 EN

20 The Functions of the BRF-Linker

Miscellaneous Commands

Norsk Data ND-60.196.2 EN

THE OVERLAY SYSTEM

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

The Overlay System 23

00000000006000000000000000000000000000000000600000000000C000O0RPOORORROO

2 The Overlay System

Sometimes a large program cannot be run because it is too big to fit

into the address space of 64 pages (or 64 pages for the program and 64

pages for data). One commonly used solution is to divide the program
into reasonably small parts which can be run one at a time, and in

such a way that one part {(or subroutine) can use the space freed when

another routine has finished. Thus the program will only need the

space for those routines that have to be in memory at the same time.

The sets of different routines to be loaded one at a time are called

overlays or links and the process of loading an overlay to replace an

existing set of routines is called overlaying these routines.

Building overlays with the BRF-Linker is a convenient way of bypassing

the problem of large programs not being able to fit into the address

space because:

- Programs built as overlay systems do not need source code

modification.

- The Symbolic Debugger is available for overlays.

An overlay structure cannot be made into a reentrant subsystem.

2.1 The Multilevel Overlay System

In order to use the overlay capability on the ND-100, you must

understand how his program operates and the relationship between the

modules within it. He should organize his overlay structure (described

below) so as to retain in memory the links containing commonly used

routines and place the infrequently used routines in links which can

overlay one another. For example, a special error recovery routine

would only need to be brought into memory when the corresponding error

occurred. Each link should be a collection of functionally related

modules and be as self-contained as possible, calling other links as

infrequently as possible. In particular, references to 1links which

would overlay other links should be kept to a minimum.

A tree structure, called an overlay structure, can be used to

illustrate the dependencies among the overlay 1links. In a tree

structure, each link has only one immediate ancestor, but it may have

more than one immediate descendent. The link containing the required

parts of the program and which must always be in memory during

execution is called the root 1link. Since the root 1link receives

control at the start of execution, it does not have an ancestor. The

remaining links branch away from the root 1link and are structured

according to their interdependencies.

Norsk Data ND-60.196.2 EN

24 The Overlay System

The Multilevel Overlay System

Links which do not have to be in memory at the same time are termed

independent 1links whereas links which must be in memory at the same

time are termed dependent links. For example, two modules which do not

reference each other or pass data directly to each other, are

independent links. When such links are no longer required in memory,

they can be overlaid by other links which are brought in. On the other

hand, a link must have all the links upon which it depends in memory

at the same time and cannot therefore overlay them. Every link is

dependent on its ancestor, and consequently, on the root link.

As an illustration, assume we have a program consisting of a main

program MAINP and six subroutines SUBR1, SUBR2, SUBR3, SUBR4, SUBR5
and SUBR6. The subroutines are related as follows:

1) SUBR1 and SUBR6 are called directly from MAINP and are

independent of each other.

2) SUBR2Z and SUBRS5 are called directly from SUBRl1 and are

independent of each other.

3) SUBR3 and SUBR4 are called directly from SUBR2 and are also
independent of each other.

The following tree structure illustrates the subroutine dependencies:

 MAINP is the

MAINP |+—— root 1link

I l SUBR1 and SUBR6

are independent

SUBR1 SUBR6 |e—— overlays

l (first level)

I l SUBRZ2 and SUBR5

are independent

SUBR2 SUBR5 |+——— overlays

l {second level)

I 1 SUBR 3 and SUBR4

I 1 are independent

SUBR3 SUBR4 |+ overlays

(third level]

SUBR4 depends on SUBRl and SUBR2 so they must be in memory when in
order to execute SUBR4. The chain of links which a link depends on is

referred to as the path of the link. The action of bringing a 1link

into memory is termed path loading and the chain of links branching

away from a link is known as the extended path of that 1link. In the

previous example, the path of SUBR4 is MAINP, SUBRl, and SUBR2. There
are three extended paths of SUBRI:

Norsk Data ND-60.196.2 EN

The Overlay System 25

The Multilevel Overlay System

1) SUBR2, SUBR3
2) SUBR2, SUBR4
3) SUBRS

A link may communicate with other links that lie in its own path or

one of its extended paths. The communication is through references to

global symbols. A reference from the current link to a global symbol

in another link in the path is called a backward reference, while a

reference from the current link to a global symbol in another link on

one of its extended paths is called a forward reference. Since all

links on the path of the current link must be in memory, a backward

reference does not cause any links to be brought into memory. With a

forward reference, however, the referenced link may not be in memory.

It must then be fetched, possibly overlaying a link already there.

W

2.2 Designing an Overlay Structure

The first step to be taken when designing an overlay structure is to

draw a diagram showing the functional relationships among the modules

within the program. The tree begins with the root link which contains

the main program and remains in memory throughout execution. The

remainder of the program is contained in the overlay links.

you should remember several points when drawing his overlay structure:

1) References that will overlay existing links should be minimized.

2) Independent links cannot reference each other; communication is

by way of a common link.

3) As a general rule, calls to routines on other links should be

forward references, while returns £from routines should be

backward references.

4) If data is modified during execution, the modification is

destroyed once the link is overlaid. Therefore, if data required

by another 1link is modified, then the data must be returned to

this other link before the link containing the changed data is

overlaid.

5) When a link is to be overlaid, no addresses or references to it

should remain.

6) Modules, routines or data areas used by several links should be

explicitly loaded iuto a link that is common to all links using

these modules or data areas. For cxample, a FORTRAN COMMON data

area should be in a link in the path of &ll links referencing it.

Moreover, COMMON should be positioned in such a way lLhat it never

gets re-initialized after the first call. In other programming

languages using the distinction between local and global data,

similar considerations must be done for the data which are global

to several link paths.

Norsk Data ND-60.196.2 EN

26 The Overlay System
Designing an Overlay Structure

7) The Symbolic Debugger should be used with some care on overlays.
Debugger commands affecting program/data in an overlay should not
be given until a breakpoint is reached on that overlay. Moreover,
these commands are in effect only while the overlay resides in
memory. In other words, overlays are always brought into memory
fully initialized.

Tree-structured overlay systems can be several levels deep. The amount
of memory required to run an overlay system is at least the amount
needed for the path using the greatest amount of space. This is not
the minimum requirement, however, since special tables must be
included when a program is divided into links.

The root link and the COMMON areas defined within it reside in memory
throughout the entire execution, while the overlays and the COMMON
areas defined within them reside on a random read-only file. This file
is specified with the PROGRAM-FILE command.

mmm

2.3 Special Commands for Overlay Loading

Overlay structures are loaded using the same BRF-Linker commands as
for normal loading. However, we also need to specify that we are
loading a new 1link in the overlay structure. This is done by the
command:

Brl: OVERLAY <level),<entry name 1>[,...,<entry name n>]

This command specifies that a new overlay link is to be generated. The
parameter {level> 1is the overlay 1level, and <entry name 1> to
{entry name n> give the names of the subprograms that may be called
from the previous 1level. After this command has been given, the
specified subprograms can be loaded from one or more BRF files. It is
recommended that the overlay subprograms be kept on a separate BRF
file compiled in library mode. In this way, the specified set of
subprograms may be selected and put into the overlay independently of
the compilation sequence.

The level number in an OVERLAY command must not be more than 1 higher
than the level number in the previous OVERLAY command.

The special form:

Brl: OVERLAY O,,

should be used to indicate the start of the root link. This should be
the first command following the PROGRAM-FILE command.

The special form:

Bri: OVERLAY -1,,

will append the last overlaid data part to the previously appended one
in 2-bank programs. This permits all data to be placed consecutively

Norsk Data ND-60.196.2 EN

The Overlay System 27

Special Commands for Overlay Loading

with no data overlay. Make sure that no previous data overlays share

this area with the current data overlay.

The optional command

Brl: END-OVERLAY <level>

ends loading to an overlay level and prints the overlay map for it.

When this command has been given, you must give a new OVERLAY command

to continue loading.

To dump the root link, the COMMON area, and the last overlay link onto

the file specified in the PROGRAM-FILE command, use either the EXIT or

the RUN commands. If you use the RUN command, the execution of the

overlay system will start immediately, otherwise the execution of the

overlay system must be started by a separate command (RECOVER).

—_—

2.4 Example: Creating an Overlay System

This section shows you how to load a rather extensive overlay system.

The program is the same as on p. 10. Due to the prescient nature of

the author's mind, that program has the same subroutine call structure

as on p. 24.

In this example, input from the terminal is underlined, while comments

are given in boxes.

@BRF- LINKER =

 Starting the loading session. The entire

overlay program must be loaded before the

BRF-Linker is left again.

- BRF Linker - 10721B00

Brl: PROGRAM-FILE MAINP

 Telling the BRF-Linker which :PROG-file the

overlay program will be placed on.

Brl: OVERLAY O,,

 The rcot link level, where the main program

will he loaded, is specified.
Brl: LOAD MAINP,FORTRAN-Z2BANK

P

 The main program is loaded, together with the

routines it will need from the FORTRAN-Z2BANK

library.

FREE: P 000065-177777 D 000076-177777

FREE: P 027123-177777 D 007430-177777

Norsk Data ND-60.196.2 EN

28 The Overlay System

Example: Creating an Overlay System

Bri: OVERLAY 1,SUBR1

 Moving to the next overlay level, the name of

the subroutine which the program will find

on the new overlay level is specified with

this command.

Bri: LOAD SUBR1,FORTRAN-2BANK
b

 Then that subroutine is loaded, as completely

as possible with the two-bank library.

FREE: P 027213-177777 D 007622-177777

Brl1: OVERLAY 2,SUBR2

 Next, we proceed to overlay level two to build

an overlay on which SUBR1 can find SUBRZ.

Brl: LOAD SUBRZ2,FORTRAN-2BANK

 On this overlay, SUBRZ and the library is

loaded.

FREE: P 027326-177777 D 007720-177777

Brl1: OVERLAY 3,SUBR3

 Moving up to overlay level three in the same

way as previously.

Brl: LOAD SUBR, FORTRAN-2BANK

 Remember that all the subroutine files were

compiled with the LIBRARY-MODI ON? Now, only

the subroutine which is supposed to be found

on this overlay will be loaded, all others

on the SUBA file will be ignored. Only the

subroutines we need from the FORTRAN-2BANK

file will be loaded, of course.

FREE: P 027403-177777 D 007766-177777

Brl: END-OVERLAY 3 =

OVERLAY COMPLETED. BLOCK NO: 2001 27352-27403/7720-7766

SUBR3....27352 P *........ 27403 P

* L IR Fh 7766 D

END-OVERLAY 3 torces the information above to

be printed. Without it, the information would

come after the next command, 50 you can make

your listing more tidy with the END-OVERLAY

command.

Norsk Data ND-60.196.2 EN

The Overlay System 29

Example: Creating an Overlay System

Brl: OVERLAY 3,SUBR4

 A new overlay on level 3 will contain SUBR4.

Brl: LOAD SUBR,FORTRAN-Z2BANK
k

 SUBR4 is loaded from the SUBR library file,

and supplemented with FORTRAN-Z2BANK.

FREE: P 027403-177777 D 007766-177777

Brl: END-OVERLAY 3

OVERLAY COMPLETED. BLOCK NO: 2003 27352-27403/7720-7766

SUBR4....27352 P *........ 27403 P

Brl: END-OVERLAY 2

OVERLAY COMPLETED. BLOCK NO: 2005 27237-27352/7622-7720

SUBRZ2....27237 P *........ 27352 P

Brl: OVERLAY 2,SUBR5

 Nothing more to be done on level 3 - going

down to level 2 to fill-in SUBRS5.

Brl: LOAD SUBR,FORTRAN-Z2BANK

 SUBR5 is also found on the SUBR library file.

FREE: P 027270-177777 D 007670-177777

Brl: END-OVERLAY 2

OVERLAY COMPLETED. BLOCK NO: 2007 27237-27352/7622-7720

SUBR5....27237 P *........ 27270 P

e 7670 D

Brl: END-OVERLAY 1

OVERLAY COMPLETED. BLOCK NO: 2011 27150-27237/7530-7622

SUBR1....27150 P *........ 27237 P

e . 7622 D

Brl: OVERLAY 1,SUBR6

 Overlay level 2 having been finished, we move

down to level 1 to fill-in SUBR6.

Brl: LOAD SUBR,FORTRAN- 2BANK

 And SUBR6 is also found on the SUBR library

file.

FREE: P 027201-177777 D 007576-177777

Brl: END-OVERLAY 1

OVERLAY COMPLETED. BLOCK NO: 2013 27150-27201/7530-7576

SUBR6....27150 P *........ 27201 P

Norsk Data ND-60.196.2 EN

30 The Overlay System

Example: Creating an Overlay System

Brl: EXIT
And now, the complete overlay structure that

was planned has been loaded, so we leave the

BRF-Linker.

@MAINP

 Now, let's see if it works according to plan.

Remember, MAINP is the name of the program

file.

START MAINP

SUBROUTINE 1 CALLED

SUBROUTINE 2 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 5 CALLED

SUBROUTINE 6 CALLED

END MAINP

Norsk Data ND-60.196.2 EN

THE MULTISEGMENT SYSTEM

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

The Multisegment System 33

3 The Multisegment System

The need sometimes arises for programs which are as big and extensive

as those built by overlay linking, but which are not organized

hierarchically like them. The BRF-Linker allows you to build such

programs by using SINTRAN III's mechanism for handling named reentrant

segments.

This mechanism is only available in SINTRAN III version I or later

versions. In particular, this means that it is not available on the

NORD-10.

Multisegment programs can be debugged using the Symbolic Debugger if

you use a compiler which generates debug information in ND's standard

format and you use SINTRAN III, version K or later. For details about

debugging, see the manual SYMBOLIC DEBUGGER User Guide, ND-60.158.4 EN

or later.

3.1 Multisegment Loading - Possibilities and Limitations

When building multisegment programs on an ND-100, you make use of the

difference between data (real numbers, character strings and so on)

and code, containing the intructions that work on the data. The data

change all the time when your program runs, while the code causes the

changes in the data, but does not change itself.

These two components of the program can be separated by asking the

compiler you are using to produce two-bank relocatable code. Usually,

you load the two-bank code into two separate address spaces of 64

kwords each, thus doubling the size of the memory which is available

to you. Multisegment loading makes it possible to extend the code part

of the program (not the data part) over more than one 64 kword address

space.

Norsk Data ND-60.196.2 EN

34 The Multisegment System

Multisegment Loading - Possibilities and Limitations

The Multisegment system makes use of the following:

a) ND-100 relocatable code which has been made with the compiler in
the two-bank mode

b) the Link-To command in the Brf-Linker

¢) the SINTRAN III commands @DUMP-PROGHAM-REENTRANT and @LOAD-

REENTRANT-SEGMENT

The SINTRAN commands move the loaded and linked program from the

program files to several segments on SINTRAN's Segment File. For a

detailed discussion of the basic mechanisms, see appendix 2.

_—— — ————————

3.2 Programming Considerations Using Multisegment Linking

SINTRAN can put names on reentrant segments, and the BRF-Linker uses

these names and SINTRAN's ability to switch between segments to make

multisegment programs possible. This method of combining many routines

on several segments has the advantage that overlays will not have to

be read from a file during execution; control just switches from one

segment to another instead. Another advantage is that the links need

not be organized hierarchically, giving no means of communication

between 1links on the same overlay levels, only along different

branches of the overlay tree. Instead the program may switch freely

between the various links.

Multisegment linking only works on two-bank programs. Therefore, all

routines in a multisegment structure must be compiled with the

SEPARATE-DATA option turned ON. Afterwards, the programs linked

together in a multisegment structure must be dumped as reentrant

segments on the segment file. SINTRAN ITI commands relating to the

administration of segment files are found in the version of the

SINTRAN III Reference Manual (ND-60.128) and SINTRAN III System

Supervisor (ND-30.003) that pertain to your installation. The commands

for dumping programs onto the segment files are privileged, so that

they are only available to you if you are logged in on User Area

SYSTEM.

It is not possible to combine multisegment and overlay linking within

the same program system.

Data areas which must be globally accessible throughout execution of a

multisegment program system must fit into areas of data space which

are not used for any other purpose in any segment accessed by that

program system. Furthermore, such data areas must be loaded so that

they do not overlap. It is, of course, also possible to keep an area

global to some subroutines, and to use it for other purposes as soon

as these have finished execution. It is not possible, however, to

create holes in the data areas; they must be loaded consecutively from

the start address for that segment.

Norsk Data ND-60.196.2 EN

The Multisegment System 35

Programming Considerations Using Multisegment Linking

>

3.3 Orgenization of a Multisegment Program System

The following illustration shows how the multisegment structure is

organized on the segments. Even if the drawing shows one particular

program structure, the use of segment space is the same here as 1in

every other application of the multisegment, so the information it

gives is general.

600-word

system Sys Sys Svs Sys

routine

Al R1 c1

64-page

{(minus

600 words)

code parts

J B2 —

A2 2

1-page Seg info Seg info Seg info Segy info

segment ||lmmmemeeel]) mnEa S = === = [

info al

az

bl

64-page

data parts
b2

cl

c2

Background Program Program Program

segment segment A segment B segment C

Three program segments plus your background segments are used here.

The segments have been named A, B and C during linking, and the

subroutines and programs that they contain have been numbered

accordingly with capital letters. The data areas used by each program

Norsk Data ND-60.196.2 EN

36 The Multisegment System
Organization of a Multisegment Program System

or subroutine are similarly named in small letters. The drawing shows

one possible call structure. The program numbered Al is the root node,

and is started by typing its name as response to SINTRAN III's @-

prompt. The program Al calls the subroutine Bl, and from then on the

calls may be executed as shown by the arrows on the diagram.

It is not necessary to keep data areas as strictly separated as they

are in this illustration. If one subprogram and its associated data

areas are not needed any more, the data areas may be used freely by

other parts of the program.

3.4 Multisegment Linking Commands

To create a multisegment program, some special commands both to the

BRF-Linker and to the SINTRAN III operating system are needed. The

reason for this is that during linking, the information necessary to

link the program parts together is added to the absolute program file

{with extension :PROG) that the BRF-Linker creates. This information
is used when the different parts of an absolute program are linked

together with the LINK-TO command. Dumping of a multisegment program

is done by using some of the SINTRAN III commands available to user

SYSTEM.

= —————————————

3.4.1 Special BRF-Linker Commands for Multisegment Linking

As mentioned in the previous section, the programs which we want to

link into a multisegment system must be transferred from a user file

to a named segment in a segment file after loading and linking. During

loading, the program file must be specified using a special form of

the PROGRAM-FILE command:

Brl: PROGRAM-FILE <file uame>/<segment name>

The <{segment name> is the name of the segment where the reentrant

subsystem will be dumped. This name must be used with the SINTRAN III

commands necessary to place the linked elements on the segment file.

These commands are described in the next section.

The 1links between the programs on this file and the programs on other

files are established with the command:

Brl: LINK-TO <«file-1>, ... <file-n>

where each <file-n)> is a program file with links to/from the current

program file. The current program file is the file specified in the

PROGRAM-FILE command. Each of the files to be linked must have been

loaded as multisegment program file.

Norsk Data ND-60.196.2 EN

The Multisegment System 37

Special BRF-Linker Commands for Multisegment Linking

When using the command LINK-TO, the BRF-Linker will link the n files

so that programs in the n segment pairs can call each other. Entries

in the files <file-1», ... <file-n> are matched with the corresponding

entries in the current program file. If these files are now dumped to

segment files, routines in the current program file may call routines

in the link files <file-1>, ... <file-n> and vice versa.

Please note that this matching does not imply that programs in the

files <file-1>, ... <file-n> will be able to call each other. If this

is desired, a new linking session is needed to establish these links.

When the relevant information has been written on to the program

files, the BRF-Linker will respond by answering:

<entry> linked to <link ftile> OT

¢entry> linked from <link file>.

If +the BRF-Linker finds the same data or COMMON area in both the

current program file and in a link file, it will output the message:

<entry> defined in both <link file> and <(current file>.

Note that this may not necessarily constitute an error, but you should

check carefully that it is not meant to be the same data or COMMON

area.

If output has been redefined to a file by the OUTPUT-FILE command,

output from the LINK-TO command will be written to this file.

The LINK-TO command will only initiate the linking. The actual linking

process takes place after the EXIT command is given.

The multisegment linking can be used with all programs compiled in the

two~-bank mode. The total global data space (i.e., data space which is

available from all segments) is limited to a maximum of 63 pages. The

remaining 1 page is used for segment information. Local data space can

be overlapped. If a segment using overlapped data space is entered and

another segment has used the same data space, initial data will be

used for the segment entered.

If you want to specify which entries can be linked-to from other

program files, you can use the optional command:

Brl: SEGMENT-ENTRY <symbol>[,<symbol>...]

A1l defined entries will be exported if this command is not used. The

symbols in the list must be defined in the current program file, and

only the symbols in the list can be linked from other program files.

When loading a segment, the command:

Brl: DEFINE #DCLC,<address>

should be used to place its private data in a suitable area. Due to

the paging system, the data area cannot be divided into parts smaller

than 2000B (2000 octal) words. The data of that segment will be placed

Norsk Data ND-60.196.2 EN

The Multisegment System

Special BRF-Linker Commands for Multisegment Linking

w

e o
]

contiguously from that address. The first page (2000B locations) of
the data spacve is used to store segment information.

External data may be shared between segments simply by linking the

program files together. Data on a linked segment will not be available
before that segment has been entered (must bhave been called from

another segment). The data applies until another overlapping segment

is activated.

If the LINK-TO command is given prior to a LOAD command, the defined

data entries (including COMMON areas in the files linked) will be
regarded as defined in the current program file. The entries will not

be defined from any LOAD commands following LINK-TO, but will be

linked from the link files at EXIT.

If a FORTRAN COMMON area is to be linked from another segment, it is

defined by linking the program file where the common area is defined

to the current program file. All common areas not defined (by LOAD or

by LINK-TO), will be defined when the EXIT command is performed. More

details about FORTRAN COMMON are given on p. 50.

When using the multisegment system, the start address is O and the

restart address is 1 for the programs created.

3.4.2 SINTRAN I1I Commands for Multisegment Programs

When a program file (with extension :PROG) has been created with

multisegment 1linking information on it, it must be transferred to a

segment file.

The following commands do that. They must be performed by user SYSTEM.

@ DUMP- PROGRAM- REENTRANT <{subsystem-name),<file>[, {(segment-name>]

This command dumps the program file for the main program onto a

segment in the segment file, and:

@ LOAD-REENTRANT- SEGMENT <file), {segment-name>.

This command creates subprogram segments on the segment file.

These SINTRAN III commands must be given after the linking sessions

have been finished and the resulting program files have been created.

The reentrant main program segment is accessible to all users. If it

is preferable to have some degree of privacy for a multisegment

system, you can dump only the subprogram segments and keep the main

program on a program file (with extension :PROG). The main program
will be read into your background segment when it 1is requested, and

the background segment will subsequently be used as the main program

segment. It will be difficult for unauthorized users to use the

subprogram segments without having access to the main program.

Norsk Data ND-60.196.2 EN

The Multisegment System 39

SINTRAN II1 Commands for Multisegment Programs

The segment file area may need to be cleared before loading. The main

program segment is deleted by the SINTRAN IIT command:

@ DELETE- REENTRANT {subsystem-name>

and the other segments by:

@ CLEAR- REENTRANT- SEGMENT <{segment-name>

If the message:

' Segment Number xx is not cleared’

appears, this means the segment is currently in use. The SINTRAN III

command CLEAR-REENTRANT-SEGMENT should then be repeated at a later

time.

—— e ——————— ——— ————————————

= b0 4 — —

3.5 Example: Linking and Loading a Simple Multisegment Program

To introduce you to how you load a multisegment program system, we

look at an example consisting of two very simple pieces of program.

Even if you are not familiar with FORTRAN, which is the programming

language used in this example, you will probably be able to figure out

what goes on in the main- and subprogram here.

In the example, the input given to the computer is underlined. You

must be logged in on the SINTRAN III User Area SYSTEM in order to use

the final commands in the example.

That is the reason why the User Area name (BRF) is written before file

names below. The input in this example can be typed into a :MODE-file

which can be run from User Area SYSTEM and use files on the User Area

BRF to build a multi-segment system. (Remember that User Area SYSTEM

must have WRITE access to all files that are to be changed by the

:MODE-file 1in this case.) Uderlined text means user input, while

comments are given in boxes.

@fortran-100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24. 1986

FTN: separate-data

Asks the compiler to prepare two-bank

code. [This is default for FORTRAN, but

included here for completeness.

FTN: compile (BRF)SIMPLE-MAIN 1 (BRF)SIMPLE-MAIN
[

Tells the compiler to compile the :SYMB-

file SIMPLE-MAIN into a relocatable file

with the same name on User Area BRF.

Norsk Data ND-60.196.2 EN

40 The Multisegment System

Example: Linking and Loading a Simple Multisegment Program

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: (BRF)SIMPLE-MAIN:SYMB

1* PROGRAM SIMPLE

2% WRITE (1,*])’ This is the main program’

3* CALL SUB1

q* WRITE (1,*)' This is the main program again'

5* END

- CPU TIME USED: 0.5 SECONDS. 5 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=46 DATA SIZE=79 COMMON SIZE=0

FTN: compile (brf]simple-sub 1 (brf)simple-sub

Tells the compiler to compile the :SYMB-

file SIMPLE-SUB into a relocatable file

with the same name on User Area BRF.

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: (BRF)SIMPLE-SUB:SYMB

1 SUBROUTINE SUB1

2% WRITE (1,*)' This is the subroutine’

3* END

- CPU TIME USED: 0.4 SECONDS. 3 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=19 DATA SIZE=35 COMMON SIZE=0

FIN: exit
k

 When compilation is done, exit the compiler

l-— and enter the BRF-Linker.

@brf-linker

- BRF Linker - 10721B00

Brl: program-file (brf)simple-main/simmai

Tells the loader which :PROG-file you will

load the program to, then type a dash fol-

lowed by the name of the segment where you

want the main program to be. The latter is

for use with SINTRANs named segment mecha-

nism.

Brl: define #dclc 2000 d

 Here, the loader is asked to start loading

data on a page limit, which is 2000 Octal.

The first data page is used for informati-

on to SINTRAN.

The default value of #dclc is set to 2000

here, so this command is not strictly

necessary unless #dclc must have a value

different from 2000.

Norsk Data ND-60.196.2 EN

The Multisegment System

Example: Linking and Loading a Simple Multisegment Program

Brl: load ([brf)simple-main fortran-2bank

Loacds the main program to the :(PROG-file

as usual - first the name of the file,

then the library file.

FREE: P 000656-177777 D 002116-177777

41

FORTRAN- 2BANK-EO 48-BIT FLOATING

PLANC- 2BANK- F0O

until now.

Note the first free data address below. We

will need it in the next loading session.

The reason is that the data for the next

program segment must have data which do not

overlap the data addresses we have used

l
FREE: P 031250-177777 D 011015-177777

Brl: ffiifi
b

 Leaving the loader. The only thing which

was unusual about this session was the

segment name specification in the initial

program-file command. But note that you

 r————————————- leave with one undefined reference!

..... 31253 U

@brf-1linker

Stars the next loading session.

- BRF Linker - 10721B00

Brl:

Brl:

program-file (brf)simple-sub/simsub

use.

Here. the name of the :PROG-file for the

subroutine is specified, together with the

name of the next segment that we want to

define #dclc 14000 d aerd e

here 14000 Octal is used.
Since all program segments use the same

data segment, we risk overlapping data if

we do not define a start address for the

data belonging to this program segment

which is higher that the highest data ad-

ress used this far. The address that is

specified must begin on a page boundary,

Norsk Data ND-60.196.2 EN

42 The Multisegment System

Example: Linking and Loading a Simple Multisegment Program

Brl: link-to (brf)simple-main

Brl: load (brf)simple-sub fortran-Z2bank

FREE: P 000623-177777

 We link to the main program. This implies

making an auxiliary symbol table. Data

references which are found in this auxili-

ary table are used immediately in the new

program file, while only the subroutine

references which are still undefined at the

end of the loading session are defined

using this auxilliary table. In addition,

the file which is linked to will have pos-

sible undefined references defined using

the symbol table of the present file.

Then we load the subroutine file. and

finally the program code of the library

routines, plus the data referenced by

library routines which have not been refe-

renced Iin the main program. In this way,

some code 15 duplicated, reducing segment

switching time.

D 014042-177777

FORTRAN- 2BANK-EO 48-BIT FLOATING

PLANC-2BANK- FOO

FREE: P 031057-177777

Brl: exit
3

D 020617-177777

5PTAB. . ..
5EXCINF.
5ESTACK.
5STACK. . .
5FIO_BL.
5USFILB.
5CNCT. ...
5ALTREC. .

13511

.14041

.22622

.1057

. 14037

.16646

16647

23641 v
t
o
Q
o
Q
o
Q
o
o
Q
o
Q
g
o
g

Then we leave the loader. This time, we

get a list of the links which have been

established between the segments when we

exit. Note that the undefined subroutine

from the first session with the Brf-Linker

has been linked to the current segment.

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from (BRF)SIMPLE-MAIN

linked from [BRF)SIMPLE-MAIN

linked to (BRF)SIMPLE-MAIN

'

@delete-reentrant simmai

 Making space for the main program segment

in SINTRAN III's segment file. This com-

mand can only be given from User Area

SYSTEM. This command is used to delete the

segment where the main program starts.

Norsk Data ND-60.196.2 EN

The Multisegment System 43

Example: Linking and Loading a Simple Multisegment Program

@clear-reentrant-segment simsub

 Similarly, room is made for the subroutine

on another segment. This command is used

to delete segments containing subroutines

only. It can only be given from User Area

SYSTEM.

@dump-program-reentrant simple, (brf)simple-main,simmai

 Then, the main program is moved from the

:PROG-file to the segment file by this

command, which can only be given from User

Area SYSTEM. Here, note that

1) the program can be started by typing

simple on the your terminal afterwards

2) it is loaded from the :PROG-file called

simple-main

3) it is placed on a segment named simmai

@load-reentrant-segment [brf)simple-sub.simsub
-

 We are getting close to the end! This

command takes the subroutine code from the

:PROG-file simple-sub and places on a seg-

ment called simsub.
@simple

 And now, we can start the program and

watch the result!

This is the main program

This is the subroutine }*———————-

This is the main program agailin

Norsk Data ND-60.196.2 EN

44 The MuTtisegment System
Example: Linking and Loading a Simple Multisegment Program

-

3.6 Example: Linking and Loading a Segmented Program Structure

Using the same main program and subroutines as in the example on page
10, we now load the main program (MAINP) and its six subroutines
(SUBR1, SUBR2, SUBR3, SUBR4, SUBR5 and SUBR6) onto different segments
and run it.

The program has the following call structure:

SEGTO SEGT1 SEGT2 SEGT3 SEGT4 SEGTS SEGT6

64-page

program MP—| § b——| S |——| S S Si S
bank A U U U U U U

I B B B B B B

N R R R R R R

P 1 2 3 4 5 6

b —

Segm. Segm. Segm. Segm. Segm. Segm. Segm.
info. info. info. info. info. info. info.

64-page -—|=———- arm |mmm—— - | mmm——— e |t = | = m——— == | mm———
data mai

bank np

sub sub

ri ré

sub sub

r2 rh

sub sub

3 r4

SEGTO SEGT1 SEGT2 SEGT3 SEGT4 SEGTS SEGT6

Note that the size of the illustrated subroutines in the program bank
does not indicate the actual size, but is chosen in this way to give a
better view of the calling sequence.

Norsk Data ND-60.196.2 EN

The Multisegment System 45

Example: Linking and Loading a Segmented Program Structure

In this example, each subroutine is compiled from a separate source

file without the LIBRARY-MODE ON option.

If you want to use the output from the previous compilation, you will

have to reference each subroutine that you want on the segment before

loading the library file. This will create some undefined references

which can be defined by the contents of the library file.

The following linking session will create this structure:

@FORTRAN-100

ND- 100/NORD- 10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE MAINP,TERMINAL."MAINP"

ND- 100/NORD- 10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: MAINP:SYMB

1* PROGRAM MAINP

2* WRITE (1.*] 'START MAINP'

3* CALL SUBRI1(1)

4* CALL SUBR6(6)

5* WRITE [(1,*) 'END MAINP'

6* END

- CPU TIME USED: 1.0 SECONDS. 6 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=53 DATA SIZE=64 COMMON SIZE=0
FTN: EXIT

@FORTRAN-100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR1,TERMINAL, SUBRI1"

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR1:SYMB

1~ SUBROUTINE SUBR1(N)

2% WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

3* CALL SUBR2(2)

4% CALL SUBR5(5)

St END

- CPU TIME USED: 1.0 SECONDS. 5 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=35 DATA SIZE=59 COMMON SIZE=0
FTN: EXIT

@FORTRAN-100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR2,TERMINAL."'SUBRZ"

Norsk Data ND-60.196.2 EN

46 ' The Multisegment System
Example: Linking and Loading a Segmented Program Structure

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR2:SYMB

1* SUBROUTINE SUBR2(N)

2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED’

3* CALL SUBR3(N+1)

4* CALL SUBR3(N+1)

5 CALL SUBR4(N+2)

6* CALL SUBR4(N+2)

7* END

- CPU TIME USED: 1.0 SECONDS. 7 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=55 DATA SIZE=63 COMMON SIZE=0

FTN: EXIT

@FORTRAN- 100

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR3,TERMINAL,"SUBR3"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR3:SYMB

1 SUBROUTINE SUBR3(N])

a* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

3* END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0

FTN: EXIT

@FORTRAN- 100

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR4,TERMINAL,"SUBR4"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR4 : SYMB

1* SUBROUTINE SUBR4(N)

2* WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

3* END

- CPU TIME USED: 1.1 SECONDS. 3 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0

FTN: EXIT

@FORTRAN- 100

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR5,TERMINAL,"SUBR5"

Norsk Data ND-60.196.2 EN

The Multisegment System 47

Example: Linking and Loading a Segmented Program Structure

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR5: SYMB

1 SUBROUTINE SUBR5(N]

2% WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

3* END

- CPU TIME USED: 0.8 SECONDS. 3 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0

FTN: EXIT

@FORTRAN- 100

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER

FTN: SEPARATE-DATA ON

FTN: COMPILE SUBR6,TERMINAL,"SUBR6"

ND-100/NORD-10 ANSI 77 FORTRAN COMPILER

SOURCE FILE: SUBR6 : SYME

1+ SUBROUTINE SUBR6(N)

2% WRITE (1,*) 'SUBROUTINE ',N, ' CALLED'

3% END

- CPU TIME USED: 0.9 SECONDS. 3 LINES COMPILED.
- NO MESSAGES
- PROGRAM SIZE=25 DATA SIZE=39 COMMON SIZE=0
FTN: EXIT

@BRF- LINKER

- BRF Linker - 10721B0O0O

Brl: PROGRAM-FILE "FILEO"/SEGTO

Brl: DEFINE #DCLC, 2000

Brl: LOAD MAINP,FORTRAN-2BANK

FREE: P 000665-177777 D 002077-177777

FREE: P 027504-177777 D 010561-177777

Brl: EXIT

SUBR1....27507 U SUBR6....27523 U

@BRF- LINKER

- BRF Linker - 10721B00

Brl: PROGRAM-FILE "FILE1"/SEGTI1

Brl: DEFINE #DCLC, 12000

Brl: LOAD SUBR1

FREE: P 000643-177777 D 012072-177777

Brl: LINK-TO FILEO

Brl: LOAD FORTRAN-2BANK

FREE: P 027345-177777 D 016474-177777
Brl: EXIT
5PTAB. ...13267 U linked from FILEO
5EXCINF..12071 U linked from FILEO
5ESTACK..21375 U linked from FILEO
5STACK....1077 U linked from FILEO
5FI0 BL..12067 U linked from FILEO
5USFILB..14655 U linked from FILEO
5CNCT....14656 U linked from FILEO
5ALTREC..22332 U linked from FILEO
SUBRI...... 600 P linked to FILEO

Norsk Data ND-60.196.2 EN

48 The Multisegment System

Example: Linking and Loading a Segmented Program Structure

SUBR2....27350 U SUBR5....27364 U

@BRF-LINKER

- BRF Linker - 10721B00

Brl: PROGRAM-FILE "FILE2"/SEGTZ2

Brl: DEFINE #¥DCLC,22000

Brl: LOAD SUBRZ

FREE: P 000667-177777

D 022076-177777

Brl: LINK-TO FILEO,FILE1

Brl: LOAD FORTRAN-Z2BANK

FREE: P 027371-177777 D 026500-177777

Brl: EXIT

5PTAB....13313 U 1linked from FILEO

SEXCINF..22075 U linked from FILEO

S5ESTACK. .21421 U 1linked from FILECQ

S5STACK....1123 U 1linked from FILEO

S5FIO BL..22073 U 1linked from FILEO

5USFILB..24661 U linked from FILEO

5CNCT. .. .24662 U 1linked from FILEO

5ALTREC. .22356 U 1linked from FILEO

SUBRZ. 600 P 1linked to FILE1

SUBR3 .27374 U SUBR4....27410 U

@BRF- L INKER

- BRF Linker - 10721B00

Brl: PROGRAM-FILE "FILE3"/SEGT3

Brl: DEFINE #DCLC,32000

Brl: LOAD SUBR3

FREE: P 000631-177777

Brl: LINK-TO FILFEO,FILEZ2

D 032046-177777

Brl: LOAD FORTRAN-Z2BANK

FREE: P 027333-177777 D 036450-177777

Brl: EXIT

5PTAB....13255 U 1linked from FILEO

S5EXCINF. .32045 U 1linked from FILEQO

5ESTACK..21363 U 1linked from FILEO

5STACK....1065 U 1linked from FILEO

5FI0 BL..32043 U 1linked from FILEO

S5USFILB. .34631 U linked from FILECO

5CNCT....34632 U 1linked from FILEQ

S5ALTREC. .22320 U 1linked from FILEO

SUBR3...... 600 P 1linked to FILEZ2

@BRF- LINKER

- BRF Linker - 10721B0O0O

Brl: PROGRAM-FILE "FILE4" /SEGT4

Brl: DEFINE #DCLC,32000

Brl: LOAD SUBR4

FREE: P 000631-177777

Brl: LINK-TO FILEO,FILEZ2

Brl: LOAD FORTRAN-2BANK

FREE: P 027333-177777

Brl: EXIT

D 032046-177777

D 036450-177777

linked from

linked from

linked from

linked from

5PTAB....13255 U

S5EXCINF, .32045 U

5ESTACK. .21363 U

5STACK. ...1065 U

Norsk Data ND-60.196.2 EN

FILEO

FILEO

FILEO

FILEO

The Multisegment System 49

Example: Linking and Loading a Segmented Program Structure

5FIO BL..32043 U 1linked from FILEC

5USFILB..34631 U linked from FILEO

5CNCT....34632 U 1linked from FILEO

5ALTREC..22320 U linked from FILEO

SUBR4...... 600 P linked to FILEZ

@BRF-LINKER

- BRF Linker - 10721B00

Brl: PROGRAM-FILE "FILE5"/SEGT5

Brl: DEFINE #DCLC,22000

Brl: LOAD SUBR5

FREE: P 000631-177777 D 022046-177777

Brl: LINK-TO FILEO,FILE1

Brl: LOAD FORTRAN-2BANK

FREE: P 027333-177777 D 026450-177777

Brl: EXIT

5PTABTTTTI3255 U 1linked from FILEQ

S5EXCINF. .22045 U 1linked from FILEO

5ESTACK. .21363 U linked from FILEO

5STACK....1065 U 1linked f(rom FILEO

5FIO_BL..22043 U linked from FILEO

BUSFILB. .24631 U 1linked from FILEO

5CNCT....24632 U 1linked !{rom FILEO

S5ALTREC..22320 U 1linked from FILEO

SUBR5...... 600 P 'linked to FILE1

@BRF- LINKER

- BRF Linker - 10721B0O0

Brl: PROGRAM-FILE "FILE6"/SEGT6

Brl: DEFINE #DCLC, 12000

Brl: LOAD SUBR6

FREE: P 000631-177777 D 012046-177777

Brl: LINK-TO FILEO

Brl: LOAD FORTRAN-ZBANK

FREE: P 027333-177777 D 016450-177777

Bri1: EXIT

5PTAB....13255 U 1linked from FILEO

S5EXCINF..12045 U 1linked from FILEO

5ESTACK. .21363 U 1linked from FILEO

5S8TACK....1065 U 1linked from FILEO

S5FIO BL..12043 U 1linked from FILEO

SUSFILB..14631 U 1linked from FILEO

5CNCT....14632 U 1linked from FILEO

5ALTREC. .22320 U 1linked from FILEO

SUBR6. 600 P linked to FILEO

Note that in order to get just one copy of the FORTRAN runtime system

data tables, the command LOAD FORTRAN-ZBANK has to be placed after the

LINK-TO command for each subroutine. This is important to remember,

because if each subroutine gets its own copy of the runtime system

tables, the loaded program may not work.

Norsk Data ND-60.196.2 EN

50 The Multisegment System

Example: Linking and Loading a Segmented Program Structure

We can then use the described SINTRAN III commands to load and run

these segments. Remember, this loading must be done from User Area

SYSTEM:

@DUMP- PROGRAM- REENTRANT BRLDEMO,FILEO,SEGTO

@LOAD- REENTRANT- SEGMENT FILE1,SEGT1

@LOAD- REENTRANT- SEGMENT FILE2,SEGTZ

@LOAD- REENTRANT-SEGMENT FILE3,SEGT3

@LOAD- REENTRANT- SEGMENT FILE4,SEGT4

@LOAD- REENTRANT- SEGMENT FILE5,SEGT5

@LOAD- REENTRANT-SEGMENT FILE6,SEGT6

@BRLDEMO

START MAINP

SUBROUTINE 1 CALLED

SUBROUTINE 2 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 3 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 4 CALLED

SUBROUTINE 5 CALLED

SUBROUTINE 6 CALLED

END MAINP

=

3.7 FORTRAN COMMON Blocks

The basic rule is:

Link Before you Load.

This is evident if you recall that when you Link-To another :PROG-

file, which will be dumped on another segment, the BRF-Linker makes an

auxilliary symbol table containing symbols that can be defined using

code or data on the other segment. If you load a :BRF-file with a

COMMON-block on it before you have this auxilliary table, the COMMON-

block will only be reachable from the segment you were loading to. If

you load it afterwards, the two segments will share the COMMON-block.

The following example shows you what a difference this makes:

Norsk Data ND-60.196.2 EN

The Multisegment System 51

FORTRAN COMMON Blocks

@fortran- 100

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

FTIN: compile (brf)common-main 1 (brf)common-main

ND-100/NORD- 10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: {BRF)COMMON-MAIN:SYMB

1* % tab f

2% PROGRAM MAIN

3* CHARACTER*22 ANGOLA

4* INTEGER*2 ZAIRE, CONGO

5* COMMON/AFRICA/ANGOLA, ZAIRE, CONGO

6* DATA ANGOLA/

7* &' Angolese tribes fight'/ZAIRE,CONGO/64,19/

8* WRITE (1.,*)' Main program writing the COMMON block:'

9% WRITE (1.')] ANGOLA, ZAIRE, CONGO

10* CALL CHANGE

11* WRITE (1,%)

12* &' Main program writing the COMMON block again:'

13* WRITE (1,*) ANGOLA, ZAIRE, CONGO

14* WRITE (1.*)' That was it.'

15* END

- CPU TIME USED: 0.8 SECONDS. 15 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=67 DATA SIZE=137 COMMON SIZE=13

FTN: compile (brf)common-sub 1 (brf)common-sub

ND- 100/NORD-10 ANSI 77 FORTRAN COMPILER - APRIL 24, 1986

SOURCE FILE: (BRF)COMMON- SUB1 : SYMB

1* % TAB F

2% SUBROUTINE CHANGE

et CHARACTER" 22 ANGOLA

4% INTEGER*2 ZAIRE, CONGO

5* COMMON/AFRICA/ANGOLA,ZAIRE, CONGO

6" DATA ANGOLA/' Chiefs make peace. '/

7* WRITE (1.*)

8* &' The subroutine writes the angolese string:

ag* WRITE (1.' JANGOLA

10* WRITE (1,')
11* &' - and then changes the angolese string to dashes.'

12* ANGOLA = ' ====esmemmemmmmmmm=— !

15314 ZAIRE = ZAIRE / 2

14* CONGC = CONGO - 3

15%* END

- CPU TIME USED: 0.6 SECONDS. 15 LINES COMPILED.

- NO MESSAGES

- PROGRAM SIZE=61 DATA SIZE=112 COMMON SIZE=13

Norsk Data ND-60.196.2 EN

52 The Multisegment System
FORTRAN COMMON Blocks

FTN: exit

@brf-linker

- BRF Linker - 10721B00

Brl: program-file (brf)common-main/coml100

Brl: load {(brf)common-main fort-2b

FREE: P 000703-177777 D 002225-177777

FORTRAN-2BANK-EO 48-BIT FLOATING

PLANC- 2BANK-F0OO

FREE: P 031275-177777 D 011124-177777

Brl: exit

CHANGE. . .31300 U

Here, the second segment is made

first with Link BEFORE Load

@brf-1linker

- BRF Linker -~ 10721B00O

Brl: program-file (brf)common-sub/cos100

Brl: define #dclc 14000 d

Brl: link-to (brf)]common-main

Brl: load [brf)common-sub fortran-Z2bank *————J

FREE: P 000675-177777 D 014157-177777

FORTRAN-2BANK-EQ 48-BIT FLOATING

PLANC-Z2BANK- FOO

FREE: P 031171-177777 D 020737-177777

Brl: exit

5PTAB....13563

5EXCINF. .14156

S5ESTACK. .25370

55TACK....1131

S5FI0 BL..14154

S5USFILB..16766

5CNCT....16767

5ALTREC. .23724

CHANGE. 600

AFRICA. .177777

linked from (BRF)]COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked from (BRF]COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked from (BRF]COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked to {BRF] COMMON-MAIN
linked from (BRF)COMMON-MAIN T

o
Q
o
a
o
o
a
o
g

@dump-program-reentrant coml100, (brf)common-main,com100

@load-reentrant-segment (brf)common-sub,cosl100

@com100

Main program writing the COMMON block:

Angolese tribes fight 64 19

The subroutine writes the angolese string:

Angolese tribes fight

- and then changes the angolese string to dashes.

Main program writing the COMMON block again:

——————————————————— 32 16

That was it.

@delete-reentrant coml00

@clear-reentrant-segment cosl00

Norsk Data ND-60.196.2 EN

The Multisegment System 53

FORTRAN COMMON Blocks

Next, we try Link AFTER Load

@brf-1linker

- BRF Linker - 10721B00

Brl: program-file (brf)]common-sub/cosl100

Brl: define #dclc 14000 d

Brl: load (brf)common-sub

FREE: P Q00675-177777 D 014174-177777

Brl: link-to (brf)]common-main

Brl: load fortran-Z2bank

FORTRAN- 2BANK-EO 48-BIT FLOATING

PLANC- 2BANK-FOO

FREE: P 031171-177777 D 020754-177777

Brl: exit

5PTAB....13563

S5EXCINF..14156

S5ESTACK. . 25370

5S8TACK. ...1131

5FI0 BL..14154

5USFILB..17003
5CNCT. .. .17004

S5ALTREC. .23724

CHANGE. 600

AFRICA...14157

linked from [BRF)COMMON-MAIN

linked from [(BRF)COMMON-MAIN

linked Ffrom [BRF)COMMON-MAIN

linked from {(BRF)COMMON-MAIN

linked from (BRF)COMMON-MAIN

linked trom {BRF)COMMON-MAIN

linked from [BRF)COMMON-MAIN

linked tirom (BRF)COMMON-MAIN

linked to {BRF)COMMON-MAIN

defined in both (BRF)COMMON-SUE and (BRF)COMMON-MAIN

I
Evidently, we got more than just one

COMMON-bloclk.

o
o

g
a
Q
a
o
a
o
a
g

@dump-program-reentrant coml100, (brf)common-main,com100

@load-reentrant-segment (brf)common-sub,cosl100

@com100

Main program writing the COMMON block:

Angolese tribes fight 64 19

The subroutine writes the angolese string:

Chiefs make peace.

- and then changes the angolese string to dashes.

Main program writing the COMMON block again:

Angolese tribes fight 64 19

That was it.

Norsk Data ND-60.196.2 EN

54

Norsk Data ND-60.196.2 EN

The Multisegment System
FORTRAN COMMON Blocks

ProGRAM INSPECTION CoMMANDS

Norsk Data NC-60.196.2 EN

Norsk Data ND-60.196.2 EN

Program Inspection Commands 57

0000000000000 0000000C00000000C0P0000NOO0OOPO0R00000P000POOPOOROGOROROO

4 Program Inspection Commands

Sometimes it is necessary to inspect the contents of the loaded

program. This can be done by the BRF-Linker, both on executable

program files and on a program currently being loaded.

To inspect an existing program file, use the command:

Brl: PROGRAM-FILE <file name>,W

When inspecting existing files, the only linker commands that can be

used are:

LOOK-AT-PROGRAM, LOOK-AT-DATA, RESTART, RUN and EXIT.

Multisegment program files can be inspected and modified, but no

segment names may be specified when using the ¥ option. This must be

done before they are dumped onto the segment files. Patching of

segment files after the dumping has been done is an entirely different

topic not covered by this manual.

The commands:

Brl1: LOOK-AT-PROGRAM <address>

or

Brl: LOOK-AT-PROGRAM <(symbol+displacement>

and:

Brl: LOOK-AT-DATA <address>

or

Bri: LOOK-AT-DATA <(symbol+displacement’

enable you to inspect and modify program/data locations, both on

executable program files and on the results of a loading session

before they are written onto such files. If you use the symbol with

the optional displacement, the symbol must be defined in the loader's

table on beforehand, either as a result of previous loading or through

use of the DEFINE command.

The contents of the location will be written on the terminal as a six-

digit octal number, as a decimal number and as ASCII characters. If

LOOK-AT-PROGRAM is used, the symbolic instructions will also be

printed.

New contents are entered by typing a new number. The new number may be

given in octal or decimal mode. The default is octal mode. A decimal

number may be specified by a trailing D, an octal number by a trailing

B. Signed numbers may be used.

Norsk Data ND-60.196.2 EN

58 Program Inspection Commands

CR (carriage return) advances to the next address without changing the

contents of the item. EXIT or . (period) returns control to the BRF-
Linker command processor.

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

Editing commands 61

PVOOPO0PO00C00000000000000000000000000000000000DD0000000000O0ROODODRGS

5 Editing commands

The BRF-Linker can also be used for editing files containing BRF code

(output from compilers, the MAC assembler, etc.). The BRF code format

is described in chapter 6. The BRF-Linker, used as an editor, can

perform such operations as combining files, modifying libraries, etc.

Be aware of the following points:

= The BRF-Linker will check all units for syntax errors and

checksum errors.

= The default values for the <first unit> and <last unit)>

parameters are the first and the 1last BRF units on the file

respectively.

= All files used as parameters (except the <output file)>) have the

default type :BRF.

= The units to be specified in the commands can be identified by

any of the names defined by the MAIN or ENTR codes (see chapter

6).

= ————

5.1 Basic Symbol Handling

The command:

Brl: LIST-BRF-ENTRIES <file name>,<output file>

will list all defined symbols and their addresses found in <file name>

onto the output file. The output will appear in this order: symbol

name, address and mode (program or data).

As an example, let us use LIST-BRF-ENTRIES to take a look at a FORTRAN

program which has been compiled to the file COMMON-MAIN:BRF. It

contains a main program predictably named MAIN, and a COMMON-block

named AFRICA:

@BRF-Linker

- BRF Linker - 10721B0O

Brl: list-brf-entries common-main,,

BRF unit: Size: 103 P 225 D

MAIN........ 11 P

AFRICA....... 1 C Size: 15

Norsk Data ND-60.196.2 EN

62 Editing commands
Basic Symbol Handling

Then, we can have a peek at the SUBR file containing the subroutines

SUBR3, SUBR4, SUBR5 and SUBR6 from the example on page 10:

Brl: list-brf-entries subr,,

BRF unit: Library mode . Size: 31 p 46 D

SUBR3........ o P

BRF unit: Library mode . Size: 31 P 46 D

SUBR4........ O P

BRF unit: Library mode . Size: 31 P 46 D

SUBR5........ or

BRF unit: Library mode. Size: 31 p 46 D

SUBR6........ o P

Brl: exit

Brl: APPEND-BRF <(source file)>,<(destination file>,<after unit>

The BRF units in the source file will be inserted in the destination

file after the unit identified by <after unit>. If no <after unit> is

specified, the source file will be appended to the destination file
after the last BRF unit in the destination file.

Brl: FETCH-BRF <source file>,<destination file>,<first unit>,

<last unit>

The BRF units in the source file, starting with the <{first unit)> and

including every unit up to and including the <last unit>, will be

appended to the destination file following the last BRF unit which
appears in it.

Brl: DELETE-BRF <file name>,<first unit),<last unit>

The specified BRF units will be deleted from the file. The

{first unit> will be the first unit deleted, then all the BRF units

following it, including <last unit)>, will be deleted.

-

5.2 Commands for Updating

The command:

Brl: REPLACE-BRF <(source file>,<destination file>

will replace the BRF units in the destination file with the same name

as those in the source file by the BRF units in the source file.

The BRF units in the destination file will have the same relative

position within the file after the REPLACE-BRF command as they had

before.

BRF units in the source file not found in the destination file will be

skipped and a warning message will be issued.

BRF units without symbolic names cannot be replaced.

Norsk Data ND-60.196.2 EN

Editing commands
63

Additional Symbol Commands

—*#“—___——_
___——zm

5.3 Additional Symbol Commands

The command:

Brl: PREPARE-BRF-LIBRARY-FILE <source file>

will set up a BRF unit containing an index table of all the BRF units.

The index table is the first BRF unit in the new file. Each element in

the index table consists of 5 words: 3 words for the unit name and 2

words for the byte pointer of the unit. Selective loading {search for

referenced library units) from a file with an index table will be

faster than loading the same file without the index table.

The index table is invalidated by all commands modifying the contents

of the BRF file (APPEND-BRF, FETCH-BRF, DELETE-BRF and REPLACE-BRF).

The table must be rebuilt if any of these commands are performed.

Brl: INSERT-BRF-MESSAGE <file name’>,<(before unit>,(message>

This command inserts a message in the BRF file before the specified

unit. If the file is prepared with the PREPARE-BRF-LIBRARY-FILE

command, the default position is in the front of the index table. The

specified message will be printed when the file is loaded. If the file

is a library file headed by an index table, any message inserted in

front of the index table is printed; all other messages (defined by

this command) are located outside BRF units, and are not written.

Brl: RENAME-BRF <file name>,<old symbol>,<new symbol)>

This command changes the name of a symbol in a BRF code file

identified by <file name>. The <old symbol> is the current name of the

symbol while <new symbol> specifies the new one.

W
=} >—>——7—7w———0——inrn —————1wn +bwnn0m 0 —

5.4 Other Functions

The command:

Brl: LIST-BRF-CODE <file name>,<{first unit>,<last unit>,

<output file>

will 1list the BRF information regarding the <(first unit> and all the

other units up to and including <last unit> on the specified source

file on the <output file>. The information given is as follows:

Norsk Data ND-60.196.2 EN

64 Editing commands
Other Functions

- Location counter (octal)
BRF control number (octal)
Name of the BRF control number

All symbolic names (REF, ENTR, LIBR, MAIN, ASF, ADS, etc.)

- Binary information (octal)
Disassembled (if program code)

As an example, we use the BRF-Linker command LIST-BRF-CODE to take

look at the small example program in section l.4:

@BRF-LINKER

- BRF Linker - 10721B00

Brl: LIST-BRF-CODE TESTP,,,,

1 17 BEG *** new BRF - unit ***

1 32 LONG

1 11 AFL 11

12 14 MAIN TESTP

12 24 LNF 3

12 171400 SAX O

13 135021 JPL I * 21

14 0 STZ *

15 2 LR 0

16 24 LNF 16

16 0 STZ *

17 0 STZ *

20 0 STZ *

21 605 STZ ,B - 173

22 135013 JPL I * 13

23 44013 LDA * 13

24 135013 JPL I * 13

25 44013 LDA * 13

26 135013 JPL I * 13

27 135013 JPL I * 13

30 170777 SAA - 1

31 135012 JPL I ' 12

32 124001 JMP * 1

33 135011 JPL I * 11

34 20 REF J5INIT

35 20 REF 5EXCEPT

36 2 LR 0

37 20 REF 5FIO

40 2 LR 0

41 20 REF 5DAT

42 20 REF 5CLS

43 20 REF 5XCLO

44 20 REF 5LEAV

45 24 LNF 14

45 52110 LDT ,X 110

46 44523 LDA ,B 123

47 20111 STD * 111

50 51440 LDT I ,B 40

51 40440 MIN ,B 40

52 52105 LDT ,X 105

53 51524 LDT I ,B 124

54 20120 STD * 120

55 51117 LDT I * 117

56 43522 MIN ,X I ,B 122

Norsk Data ND-60.196.2 EN

a

Editing commands
Other Functions

57

60

61 2 LR

62 1 LF

63 2 LR

64 1 LF

65 6 AFR

65 2 LR

66 2 LR

67 24 LNF

67

70

71

72 6 AFR

72 2 LR

73 2 LR

74 1 LF

75 6 AFR

75 11 AFL

103 20 REF

104 1 LF

105 20 REF

106 7 ARR

106 7 ARR

106 6 AFR

106 6 AFR

106 16 ENTR

106 21 END

Brl: EXIT

40515 MIN ,B 115

2440 STZ ,X ,B 40

45

26 STZ * 26

60

1 sz * 1

65.40

63

61

3

1 8172 * 1

2 STZ * 2

13000 STT .X I *

72,36

70

67

177606 BORA O DT

75,15

6

5FI0O BL

"0 stz *
5EXCINF

103,77

103,100

0,14

6,16

label 1.0,0

checksum : 72054

Norsk Data ND-60.196.2 EN

65

66

Norsk Data ND-60.196.2 EN

Editing commands
Other Functions

THE BinARY RELOCATABLE FoRMAT

Norsk Data ND-60.196.2 EN

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 69

6 The Binary Relocatable Format

A program is a set of instructions and data which, when executed, will

perform an algorithm. A program may be in various forms. It may be

written in FORTRAN, assembly code, machine code, etc. But the most

important aspect is whether it is bound to a specific location in

memory or not. We refer to a program that can be moved to another part

of memory as a relocatable program.

Thus, a FORTRAN program and an assembly program {(with only symbolic

addresses) are relocatable programs, while a program in binary form is

generally not relocatable. Consider the following three versions of

the same program:

Program ABC Program ABC Program ABC

written in written in written in

assembly code binary form binary form

(placed from {placed from

location 10) location 20)

ABC, JMP I *+1 125001 125001

XYZ 14 24

157 157 157

751 751 751

XYz, WAIT 151000 151000

The binary program version which is bound to location 10 cannot be

moved to 1location 20 without changes. The machine code is not in

relocatable format, since there is no information about which words

contain internal addresses that have to be modified depending on the

placement of the program.

If the language processors (compilers and assemblers) produced machine

code directly, this would cause serious problems for programmers.

Since every routine would be fixed in a specific place in memory, any

modification that would change the length of any routine would mean

that the whole program system would have to be recompiled. Using

separately compiled routines (including runtime system routines) or

combining routines written in different languages would be difficult

or impossible.

For this reason most language processors generate relocatable code.

The relocatable code format used on ND-100 computers is called BRF

(Binary Relocatable Format). In this format, information about

references between the various parts of the program system, such as

procedure calls, references to global data, etc., is coded as symbols.

These symbols are alphanumeric names assigned by the compiler to an

instruction or to a data item. The memory locations where these

Norsk Data ND-60.196.2 EN

70 The Binary Relocatable Format

instructions and data items will eventually be placed are selected by
the BRF-Linker according to how it places the various program parts in
memory.

=

6.1 The BRF Structure

BRF code is organized in eight-bit bytes and can be stored on any data
medium (magnetic tape, disk, etc.). The information contained in the
object program may be organized in the following kind of groups:

- Control information 1is held in a control byte (which forms the
control number) and is interpreted as loader commands.

~ Programmed information is held in two bytes containing a sixteen-
bit word and is termed a P-group.

= Symbolic information is held in four bytes for MAC and NPL, and
six bytes for FORTRAN, COBOL, etc. This is termed an S-group
containing a symbol of one to seven six-bit characters.

For further information see the MAC Interactive Assembly and Debugging
System User's Guide (ND-60.096).

BRF code is made up of a sequence of BRF groups. A BRF group can take
on one of the following forms:

{control byte>

{control byte><P-group><P-group>

{control byte><S-group>

{control byte><S-group><P-group>

The example program ABC will 1look 1like this when broken down
columnwise into BRF groups:

Control byte

mnemonics Control byte P-group

BEG 17

LF 1 125001

LR 2 5

LF 1 157

LF 1 751

LF 1 151000

END 21 100574

The contents of the control byte will form the control number. Control
number 17 (mnemonic BEG) marks the beginning of the program. In
FORTRAN, COBOL etc., control number 17 (BEG) is followed by control
number 32 (LONG) which indicates that all S8-groups contain six bytes
instead of four. Control number 1 (LF) is followed by a P-group which
is to be loaded unmodified, while control number 2 (LR) is followed by

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 71

The BRF Structure

a P-group which contains an address relative to the beginning of the

program, and which should therefore be modified. Control number 21

(END) is followed by a checksum.

Symbols (labels) are represented by S-groups where the six last bits

are zero. (Note that in the example above, 125001 denotes the

beginning of the program and is not a label.)

W

6.2 Relocation of Intermal Addresses

Suppose that the load address is set to location 621 (either as a

consequence of previous loading or by using the DEFINE command), and

that we are going to load the example program we have looked at.

When the BRF-Linker begins loading, it reads control number 17 (BEG).

The current location minus 1 is taken as the program's first address

(also called the 'program base"). In this case, the program base is

620. When loading, the program base is added to all P-groups which are

preceded by the control number 2 (LR). The result is shown below.

0

621 125001

625 = 620 + 5

157

751

151000

=0 in i ——— ————4—4—nnne in i ——

6.3 Program Units

A program is composed of one main program and zero or more

subprograms. A common name for main programs and subprograms is

program units.

When a compiler compiles a program, each program unit is translated

without any information about other program units. Therefore, the

program units need not be compiled at the same time. Compilation of

some program units separately from other program units 1is called

separate compilation.

The address (or addresses) of a program unit where the execution

begins is called the entry point. If the program unit is a main

program, the entry point is called the start address. A word

containing a reference to an entry point in another program unit is

termed an extermal reference.

Norsk Data ND-60.196.2 EN

72 The Binary Relocatable Format
Separate Compilation

—_— = - --- - "- - " - - - e e e

6.4 Separate Compilation

The object program consists of one or more BRF program units. The
information necessary to link these together to an executable program,
namely the entry points and the external references, is symbolic, and
is placed in the S-groups. The meaning of the S-group is determined by
the preceding control number in the following way:

Control Number Mnemonic Meaning

14 MAIN Symbeolic start address

15 LIBR Library subprogram entry point

16 ENTR Symbolic entry point

20 REF Symbolic external reference

The object program units begin with control number 17 (BEG), end with
control number 21 (END) and may contain one of the control numbers 14
(MAIN) or 16 (ENTR). A 1library subprogram has a control number 15
(LIBR) in addition to the 16 (ENTR). A library subprogram is loaded
only when the LIBR symbol has been referenced by a REF group and is
not already defined as a symbolic entry point. Library subprograms
which are not needed are checked through to the END group.

If the BRF-Linker does not receive any other information, the program
units are loaded consecutively, starting at a system-defined address.
However, the program units may be loaded elsewhere by means of the
control numbers:

10 (SFL)] Start (continue) loading at the location in the

P-group.

11 (AFL) Continue at the current location + the relative

address in the P-groups.

12 (SRL) Continue at the current program base + the

relative address in the P-group.

The main program and the subprograms may be read in an arbitrary
sequence. If the program unit A refers to another program unit B, it
does not matter which of them is loaded first. The (necessary) library
subprograms are loaded last. But if the library subprogram A refers
to another 1library subprogram B, then A must be loaded first,
otherwise B will not be loaded.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 73

Linking of Program Units

-

fi

6.5 Linking of Program Units

The BRF-Linker has a symbol table where each entry consists of three

words for the symbol (the S-group) and one word (ADR) for the address.

ADR may have two different meanings:

1) If a symbolic entry point has been read, then ADR is the memory

address of the entry point.

2) If only symbolic external references to a symbol have been read,

then the ADR is a pointer to the last location at which the

symbol was referenced. This location contains a pointer to the

preceding reference to the same symbol, and so on. The first

reference location contains the word 177777B to mark the end of

this list. One bit in the table entry is wused to discriminate

between the two interpretations of ADR.

When a symbolic entry point is defined, any previous external

references to this symbol will immediately be changed to the defined

memory address of the symbol. This is done by following the list of

references to the symbol described above.

W

6.6 FORTRAN COMMON Blocks

Some special BRF control numbers are used to ease the implementation

of FORTRAN COMMON areas and data space allocation in general.

The memory area in which the BRF-Linker puts the program is a

continuous area from a lower address up to the upper bound. The

program units therefore normally grow upwards. For one-bank programs

(but not for two-bank programs), COMMON blocks are allocated from the

upper bound downwards. Thus the COMMON Dblock address is found by

subtracting the length from the upper bound and reducing the upper

bound appropriately.

For two-bank programs, COMMON blocks are allocated from the present

data load address upwards like all other data areas.

The COMMON block address must be known before the addresses

referencing COMMON are loaded. Therefore the COMMON block address

which uniquely specifies the maximum block length is defined by the

first program unit using COMMON data. This explains the restriction

that a COMMON block cannot be expanded by the succeeding program

units.

The ASF group has the format:

<ASF>{S-group><{P-group>

Norsk Data ND-60.196.2 EN

74 The Binary Relocatable Format
FORTRAN COMMON Blocks

where the S-group contains the name of the COMMON block, and the
P-group contains the block length.

Data in COMMON is referenced by indirect addressing. Such addresses
are followed by the control number 27 (ADS) which tells the BRF-Linker
to add the COMMON block address.

The ADS-group has the format:

<ADS><S-group>

with the interpretation that the value of the S-group is added to the
previously loaded address (P-group).

_ -

6.7 Fix-up Facilities

The BRF code is designed to allow single-pass, sequential
transformation. This implies that the BRF-Linker must be able to fix
words which have already been loaded. This is done by the four control
numbers 4 (AFF), 5 (ARF), 6 (AFR), 7 (ARR) which all have two P-
groups. The second P-group contains an address, and the first P-group
has contents which will be added to that address. Both the address and
the contents of the first P-group (which may be an address) may be
relocated relative to the program base, and this therefore gives four
possibilities.

% _———————— s 0 - o

6.8 Checksum

In order to detect read errors during loading, a checksum is placed
behind each END control byte. Here, everything from the BEG control
byte to the END control byte is added together, complemented and put
in a P-group. The control bytes are regarded as eight bits, the P-
group as sixteen bits, and the S-group as two or three sixteen bit
numbers.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 75

Description of the BRF Control Numbers

W

6.9 Description of the BRF Control Numbers

The legal control numbers are consecutive numbers starting at zero and

are interpreted as commands to the BRF-Linker. They are listed in the

following table together with their mnemonics and interpretation.

The terminology needs some explanation:

CLC is the current location counter. It contains the address where

the next word is to be placed.

PB is the program base of the current program unit.

CDB is the COMMON data base (COMMON block address) .

Wl and Wn are the contents of the first to the n'th P-group,

respectively.

If "a" is an address or an address expression, then (a) is the content

of this address. The expression X — (Y) means that the value X will

replace the contents of Y, while X — ((Y)) means that the value X

will be copied to the location having the address found in Y (indirect

addressing) .

Norsk Data ND-60.196.2 EN

76 The Binary Relocatable Format
Description of the BRF Control Numbers

BRF control numbers

Control |Mnemonic| No. Interpretation

Number of

(octal) Words

0 FEED 0 Ignored

1 LF 1 Wl—((CLC)), (CLC)+1—(CLC)

2 LR 1 W1l+(PB)—((CLC)), (CLC)+1—(CLC)

3 LC 1 W1+(CDB)—s((CLC)), (CLC)+1—(CLC)

4 AFF 2 W1+ (W2)—(W2)

5 ARF 2 W1+(PB)+(W2)—(W2)

6 AFR 2 W1+(W2+(PB))—(W2+(PB))

7 ARR 2 W1+(PB)+(W2+(PB))—(W2+(PB))

10 SFL 1 W1l—(CLC)

11 AFL 1 W1+(CLC)—(CLC), fill zeros

12 SRL 1 W1l+(PB)—(CLC)

13 B Not Used

14 MAIN 2(3) | Symbol in S-group will become the main
entry

15 LIBR 2(3) | Conditional loading

16 ENTR 2(3) | symbol in the S-group is assigned value
of CLC

17 BEG 0 (CLC)—(PB) First control byte of a unit

20 REF 2(3)| Symbol in S-group is referenced in CLC

21 END 1 Wl contains the BRF-checksum

22 INHB 0 Warns that compilation errors have
occurred

23 EOF 0 End of loading

24 LNF 1+Wl | W2,W3,...,Wn—(CLC), ..., (CLC+W1-1)

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format

Description of the BRF Control Numbers

BRF control numbers - continued

Control |[Mnemonic| No. Interpretation

Number of

(octal) Words

25 RT 1 Wl contains real time priority

26 ASF 3(4)| <symbol><number> Defines common length.
Value of symbol in loader table = common

start address.

27 ADS 2(3) | <symbol>+(CLC-1)—(CLC-1) Adds common
address

30 MSG 14W1l| W1 contains length of message in words

31 = Not used

32 LONG 0 Flags a six-byte S-group

33 - Not used

34 INL 2 W2—(W1+(PB))

35 DBL 3 Wi—(W1+(PB)+i-2) (i = 2 to 3)

36 RLL 4 Wi—(W1+(PB)+i-2) (i = 2 to 4)

37 CXL 7 Wi—s(W1+(PB)+i-2) (i = 2 to 7)

40 * INC 4(5) | W5—(W4 + ADR)

41 * DBC 5(6)| Wi—(W4 + ADR + i-5) (i = 5 to 6)

42 * RLC 6(7)| Wi—(W4 + ADR + i-5) (i = 5 to 7)

43 * CXC 9(10) | Wwi—(W4 + ADR + i-5) (i = 5 to 10)

44 BYL 2 W2(bit 0-7)—(W1l+(PB))(bit 0-7) if W2
bit 15=0

W2(bit 0-7)—(W1+(PB)) (bit 8-15) if W2
bit 15=1

45 * BYC 5 W5(bit 0-7)—(W4 + ADR) (bit 0-7) if W5
bit 15=0

W5(bit 0-7)—(W4 + ADR)(bit 8-15) if W5

bit 15=1

46 NWL 1 Wl contains line number. (Not in use.)

47 DBG 0 Indicates start/stop of Debug information

Norsk Data ND-60.196.2 EN

17

78 The Binary Relocatable Format
Description of the BRF Control Numbers

BRF control numbers - continued

Control ([Mnemonic| No. Interpretation

Number of

(octal) Words

50 PMO 0 Indicates start of program bank mode

51 DMO 0 Indicates start of data bank mode

52 LRP 1 Same as LR but PB of program bank

53 LRD 1 Same as LR but PB of data bank

54 DIC = Dictionary table follows. Each element

contains name (3 words) and byte pointer

(2 words). End of table marked by -1.

* The W1, W2, and W3 contain a common block name. At load time this

symbol must be defined. Its value is referred to as ADR.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format

AVEEBUEONIDRE XA

Command Summary

Norsk Data ND-60.196.2 EN

79

80

The Binary Relocatable Format

Norsk Data ND-60.196,2 EN

The Binary Relocatable Format 81

Command Summary

In this appendix the various commands of the BRF-Linker are briefly

described.

The BRF-Linker is controlled from the terminal by the following
command words. They may be abbreviated provided no ambiguity results.

The parameters, if any, are separated by a space or a comma.

brl: APPEND-BRF <socurce file>,<destination file>,<after unit>

Insert all BRF units in the source file into the destination file

after the specified unit. If no unit is specified, append the units

from the source file at the end of the destination file.

brl: COPY-PROGFILE <source file>,<{destination file>

[,<Include Debug? YES/NO>]

[,<Include Link Information? YES/NO)>]

The <source file> is the name of the file to <copy from,

{destination file> 1is the name of the file to copy to. The default

file type is : PROG for both files. The parameter

<{Include debug? YES/NO> gives you an opportunity to include debug

information during copying. Answer YES to include it or NO to

delete it. The default answer is NO. For files using the multisegment
system, link information can be deleted while copying. The parameter

<Include Link Information?> gives you an opportunity to include

multisegment link information. The default answer is NO.

brl: DEBUG-MODE <ON/OFF>

Debug information on BRF files can be accepted or ignored. Default

parameter is ON.

brl: DEFINE <symbol>, <address/symbol:di splacement>,<P/D>

The symbol will be entered into the BRF-Linker's symbol table. Its
value and mode will be equal to what is specified either as address or

as relative to an existing symbol. Default mode is P (program mode).

brl: DEFINE <(symbol>,?,<P/D>

If defined, the value of the symbol specified will be printed on the

terminal.

brl: DEFINE <#PCLC/#DCLC)>,<address>,<P/D>

Subsequent loading in the specified bank will start from the address

specified.

Norsk Data ND-60.196.2 EN

82 The Binary Relocatable Format
Command Summary

brl: DELETE-BRF <file name»,<first unit>,<last unit>

Delete a sequence of BRF units from the specified file starting with

the <first unit> and delete the following units up to and including

the <last unit>.

Brl: END-OVERLAY <level>

Terminate loading at current overlay level and print overlay map.

brl: EXIT

Control is returned to SINTRAN III.

brl: FETCH-BRF <(source file),<destination file>,<first unit>,

<(last unit>

Fetch a sequence of BRF units from the source file, starting with the

{first unit> and taking all following units up to and including the

{last unit>, and append them at the end of the <destination fileb.

brl: HELP [<command>]

List the available loader commands matching <{command> on the terminal.

If no command name is specified, all commands will be listed.

Brl: IGNORE-ENTRY <symbol:[.<symbol>...]

The symbols in the list will not be loaded if they are found on the

next (and only the next) library file that you load after this command

has been given.

brl: INSERT-BRF-MESSAGE <file name)>, <(before unit’>,<message>

Insert a message before the specified unit on a given file. The

message will be printed on the terminal when the file is loaded.

brl: LIBRARY-MODE <ON/OFF>

Library files can be loaded in library mode or normal (non-library)
mode. The default value is ON.

brl: LINK-TO <file-1>,[<file-2>,....,<file-n>]

Perform multisegment linking between the program file (as specified in

the PROGRAM-FILE command) and the files specified in this command. The

default file type is :PROG.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 83

Command Summary

brl: LIST-BRF-CODE <(file name>,<first unit>,<last unit),

<output file>

List information from a sequence of BRF units in the specified source

file on the <output file>, starting with the <first unit> and ending

with the <last unit>.

brl: LIST-BRF-ENTRIES <file name),<output file>

List all defined symbols in all BRF units in the specified source file

on the specified output file.

brl: LIST-ENTRIES-DEFINED

All defined symbols in the BRF-Linker's symbol table (in both program

code and data banks) and the current address/value will be printed on
the terminal.

brl: LIST-ENTRIES-UNDEFINED

This command is similar to LIST-ENTRIES-DEFINED,,, except that

undefined symbols are printed.

brl: LOAD <file name>[,<file name>...]

The file(s) specified will be loaded until the end-of-file marker is

encountered. The default file type is :BRF.

brl: LOOK-AT-DATA <address/symbol+displacement>

Used to inspect and modify data locations.

brl: LOOK-AT-PROGRAM <address/symbol:di splacement>

Used to inspect and modify program locations.

brl: OUTPUT-FILE <file name>

This command is used to specify that output is to be written to the

specified file instead of the terminal. Output from the following

commands: LIST-ENTRIES-DEFINED, LIST- ENTRIES-UNDEFINED, LINK-TO,

PROGRAM- INFORMATION, LIST-BRF-CODE and LIST-BRF-ENTRIES will be

written to the file specified. The default file type is :SYMB. To

reset output to the terminal, give the command OUTPUT-FILE with no

file name.

Norsk Data ND-60.196.2 EN

84 The Binary Relocatable Format
Command Summary

brl: OVERLAY <level>,<entry name 1>[,...,<entry name nj]

This command specifies that the next overlay link is to be generated.

The <level> is the overlay level. The parameters <entry name 1> to

{entry name n> are the names of the subprograms called from the

previous level. The root 1link is 1level 0. A level must always be
specified when linking overlays.

brl: PATCH-PROGFILE-NAME <file name>,<{new name>

This command is used to change the name used in the PROGRAM-FILE

command when the program file specified by <file name> was written. If

the SINTRAN III command RENAME-FILE is used to rename a file, the

PATCH- PROGFILE-NAME command can be used to change the file name

written on the file. Note that this command will not change the

SINTRAN III file name.

brl: PREPARE-BRF-LIBRARY-FILE <source file>

Generate an index table of all BRF units in the <{source file> and

insert this index table as a new unit at the very beginning of the

file.

brl: PROGRAM-FILE <file name>([/<(segment name>][,<W>]

The output from the BRF-Linker will be loaded onto the file specified.

The default file type is :PROG. The /<segment name> parameter is used

to specify the segment name in multisegment mode, and the <W>

parameter is used to indicate that only the program inspection

commands are to be used on an existing program file.

brl: PROGRAM-INFORMATION <file name>

[.<Dump Link Information?YES/NO>,<output file>]

Information concerning the specified program file will be listed. The

default file type is :PROG. The two last parameters are only valid for

multisegment program files. The default file type for the output file

is :SYMB.

brl: REFERENCE <symbol)>,<address>,<P/D>

This command is used to insert or refer to an undefined symbol in the

BRF-Linker's symbol table. The following rules apply:

1) If the symbol is not present in the symbol table, the value -1
will be put into the specified address and this address will be

referenced in the table. The specified octal address must be an

unused memory address, otherwise the information stored there

previously will be written over. If no address is given, then the

symbol will be treated as a referenced symbol only.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 85

Command Summary

2) If the symbol is present, but already referenced (undefined), the

address specified will be linked into the reference chain.

3) If the symbol is defined, its value will be put into the address

specified.

4) The default bank is P (program bank) .

brl: REMOVE <symbol>,<P/D>

If present, this symbol will be removed from the BRF-Linker's symbol

table.

brl: RENAME <old symbol>,<new symbol>

This command is used to give the specified symbol a new name.

Subsequent references to the <old symbol> will be assumed to be

references to another symbol with the old name.

brl: RENAME-BRF <file name>,<old symbol>,<new symbol>

This command is used to change the name of a symbol (<old symbol>) in

a specified BRF file.

brl: REPLACE-BRF <source file>,<destination file>

Replace BRF units on the destination file with units from the source

file. Units found only in the destination file will not be changed,

whereas units only found in the source file will be ignored, giving a

warning message.

brl: RESTART <address>

or

brl: RESTART <symbol>

To set the restart address (the address that the program starts

executing from when you type @CONTINUE at your terminal) of the

program file specified in PROGRAM-FILE command. The <{symbol> must be a

defined entry in the program area. The default restart address will be

equal to the main start address.

brl: RUN

This command leaves the BRF-Linker and then starts executing the

program file opened with the PROGRAM-FILE command at the beginning of

the loading session.

Brl: SEGMENT-ENTRY <symbol)[,<symbol>...]

Only the symbols in the list, which must have been defined in the

preceding loading, can be linked to from other segments.

Norsk Data ND-60.196.2 EN

86 The Binary Relocatable Format
Command Summary

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format

APPENDIX B

The SINTRAN III Segment Files

Norsk Data ND-60.196.2 EN

87

88

The Binary Relocatable Format

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 89

The SINTRAN III Segment Files

This appendix gives an overview of the parts of the SINTRAN III

operating system which may be useful when you build multisegment

programs.

M
_____fi__—_—____=_____——_____—___——_————

——_——fi—'—_—-—————_—‘__—

-1.1 Introduction

The key element in the SINTRAN III virtual memory system is the seg-

ment file. This is a large, contiguous file on the system disk. The

segment file is divided into contiguous areas called segments. A pro-

gram to be executed must first be put into a segment on the segment

file. The different pages of the program will then be swapped into

main memory as they are referenced. When the computer's main memory is

full, the least recently used pages will be swapped back to their

segments.

For every terminal connected to the computer there is a special

segment, called a background segment, reserved on the segment file.

When an ordinary program is started from a terminal, it is transferred

to the terminal's background segment. From there it will be swapped

into the main memory as needed. In this way, when several users are

running the same program they will still have separate copies of it.

A program may be either one-bank or two-bank. In a one-bank program,

both program code and data are loaded into the same 64-page address

space, or bank. In a two-bank program, the program code and data are

loaded into two separate 64-page banks, making possible a total

program size of up to 128 pages. Two-bank programs are usually

compiled with the SEPARATE-DATA option in the compiler turned ON.

A background segment may be either 64 or 128 pages long. If only one-

bank programs will be run from a terminal, then a 64-page background

segment will suffice. In order to run two-bank programs, however, we

need a 128-page background segment.

Heavily used programs may be permanently installed on their own

segments in the segment file. Such programs are called reentrant

subsystems. Their pages will then be swapped in from their segments

instead of from background segments. In this case, the same memory

copy of a page will be shared between all users running the program,

as long as it is not modified. If a user tries to modify a shared

page, he will get his own private copy of the page instead, and this

private copy will be swapped to his background segment. Thus a

reentrant subsystem will, during runtime, consist of two different

kinds of pages. Some will be unmodified, shared pages from the

reentrant segment. The rest will be modified, private pages from the

user's background segment.

Norsk Data ND-60.196.2 EN

80 The Binary Relocatable Format

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format

APPENDILX €

Error Messages

Norsk Data ND-60.196.2 EN

91

92

The Binary Relocatable Format

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format 93

Error Messages

When an error occurs during a loading session, the BRF-Linker types

the text Brl message: followed by an error message on the terminal or

output device. The various error messages are listed below in

alphabetical order.

In addition to these messages, some of the file system error messages

may appear on your terminal. You can distinguish between the two

message sources if you note that the messages from the BRF-Linker are

output with lower-case letters.

ambiguous command

The last command name has been abbreviated and is not unique.

checksum error

The BRF file contents have been corrupted as a result of hardware or

software errors occurring during reading or writing.

common block exhaust available space

The common block size is too large for the remaining free area.

common block expanded

The length of a previously defined common block has been declared to

be larger in a subsequently loaded program.

compiler system error

Erroneous use of generated labels in the compiler.

data space exceeded

The current load address of the data has reached the maximum limit of

64 pages.

debug table full

The current address for debug information has reached the absolute

upper limit of the free area.

file does nmot contain brf-code

Non-interpretable information has appeared on the BRF file.

xxxxx first unit is not prior to last unit

Norsk Data ND-60.196.2 EN

94 The Binary Relocatable Format
Error Messages

The BRF unit xxxxx is not prior to the <last unit> specified.

illegal overlay level

The overlay level must not be increased by more than 1 from the last

OVERLAY command; the first time it must be O.

illegal sequence of overlays

An overlay has referenced a symbol which is not in its path, nor in

any links immediately below it.

invalid address

An address specified in the last command is not a valid address.

xxxxx invalid address or not defined symbol

The symbol or address xxxxx specified in the last command is not a

valid address or a defined symbol.

invalid command

The last command name is unknown.

insufficient brf-unit, syntax errors

Errors have occurred during the compilation process.

mixed one/two bank routines

Routines compiled with the compiler command SEPARATE-DATA OFF may not

be mixed with routines compiled with SEPARATE-DATA ON. There is an

exception in the case of routines written in MAC and NPL.

new checksum generated

Using the command RENAME to rename a symbol will cause a checksum

error. To overcome this, a new checksum is generated and written to

the BRF file. Note that this message does not necessarily indicate an

error.

no main entry

You are trying to start a program having no main program module.

Norsk Data ND-60.196.2 EN

The Binary Relocatable Format gh

Error Messages

no program-file specified

The command PROGRAM-FILE must be used before any files can be loaded.

no such file

The file name specified in the command is not a legal file name.

xxxxx not found in destination file

The BRF unit xxxxx is not a unit (entry) in the destination file.

xxxxx not found in source file

The BRF unit xxxxx is not a unit (entry) in the source file.

overlapping data in linked segments

The local data corresponding to each code segment must be loaded into

different areas in the data segment.

program space exceeded

The current load address of the program area has reached the maximum

limit of 64 pages.

program system too large

During overlay loading, the overlaid program system has become too

large for the BRF-Linker to handle.

redefinition. last applies xxXxxX Yyyy-

The symbol xxxx being defined (either by loading a file or by the

DEFINE command) has already been assigned an octal value yyyy. The

first value defined for the symbol is kept.

referenced elsewhere than current or previous level

During overlay loading, references should only be to the current or

the next level.

root-segment not initiated [overlay (1))

In overlay loading, the overlay system must be initiated by the

command OVERLAY O,,.

Norsk Data ND-60.196.2 EN

96 The Binary Relocatable Format
Error Messages

segment-routine not loaded

In multisegment loading, the routine for segment switching is not
loaded. The library must be loaded.

xxxxx symbol not found

The symbol xxxxx is not found in the symbol table.

too long name. will be truncated

The name is too long and will be truncated to a maximum of 15

characters.

undefined common label

Undefined common block in program.

undefined entries

Undefined entries in loaded program.

< I

INDEX LIST

Index term Reference

absolute program .5, 6

absolute program files . 5

address symbolic start .12

ambiguous command . . 93

angular brackets .3

APPEND-BRF command . 81

APPEND-BRFcommand . . 62

backward reference in overlay systems i . 25

binary program . . . 69

binary relocatable format . 3, 69

BRF . . 3

BRF code . 69, 70

BRF control byte . . 70

BRF control information . . 70

BRF control number . 70, 75

BRF P-group . . 70

BRF S-group . . . 70

BRF symbolic 1nformat10n . 70

BRF-Linker commands . 3, 81

BRF-Linker input . 6

BRF-Linker modes .5

Brl message . . 93

carriage return . .3

checksum . 74

checksum error . 93

comma . e .3

command abbreviation .3

command APPEND-BRF . 62, 8

command COPY-PROGFILE . . 18, 81

command DEBUG-MODE . 7, 81

command DEFINE . 15, 37, 81

command DELETE-BRF . . 62, 82

command DUMP- PROGRAM—REENTRANT . 38

command END-OVERLAY . . 27, 82

command EXIT . 7, 37, 82

command FETCH-BRF . . 62, 82

command format 3, 81

command HELP . 19, 82

command IGNORE- ENTRY .7, 82

command INSERT-BRF-MESSAGE . 63, 82

command LIBRARY-MODE . 7, 82

command LINK-TO . . . 36, 82

command LIST-BRF-CODE . . 63, 83

command LIST-BRF-ENTRIES . 61, 83

command LIST-ENTRIES-DEFINED . 14, 83

command LIST-ENTRIES-UNDEFINED . 14, 83

command LOAD4, 6, 83

command LOAD-REENTRANT-SEGMENT 38

command LOOK-AT-DATA ., 57, 83

command LOOK-AT-PROGRAM . , . . 57, 83

command multisegment PROGRAM- FILE . . 36

< IT »

Index term

command OUTPUT-FILE .

command OVERLAY . .)

command PATCH-PROGFILE- NAME 5

command PREPARE-BRF-LIBRARY-FILE

command PROGRAM-FILE 8 =

command PROGRAM-INFORMATION .

command REFERENCE . ..

command REMOVE

command RENAME

command RENAME-BRF

command REPLACE-BRF .

command RESTART .

command RUN .) .

command SEGMENT- ENTRY .

command summary . . .

commands for loading overlays .

COMMON addressing .

COMMON block address . .

common block exhaust avallable space

common block expanded .

COMMON blocks and multlsegment 11nk1ng

COMMON blocks in FORTRAN

COMMON declaration
COMMON expansion .

COMMON length .

compiler system error .

control byte in BRF .

control character .

control information in BRF

control numbers in BRF

copying program files .

COPY-PROGFILE command .

COPY-PROGFILEcommand

current location counter

current location counter data .

current location counter program

data inspection .

data modification .

data space exceeded .

debug information .

debug table full

Debugger and overlays .

debugging multisegment

DEBUG-MODE command

DEBUG-MODEcommand .

decimal number

default file type .

default LIBRARY-MODE

default load-file type

default restart address .

default values for missing parameter

DEFINE command

DEFINEcommand .

. 81

. 26

. 50

. 73

. 73

. 93

. 70

. 70

Reference

15, 37, 83
. 26, 84

18, 84
. 63, 84
. 6, 36, 57, 84

17, 84
15, 84
16, 85
16, 85

. 63, 85
62, 85

. 16, 85

. 8, 85
37, 85

74
. 75
. 93
. 93

38

73

3

70
. 18
. 81

18
. 75

15, 81
15, 81

. 57, 83

. 57, 83

. 93

. 7, 81

. 93

. 26

. 33

. 81
7

3
. 81
. 7
. 83
. 16
. 3
. 81
. 15, 37

< IIT »

Index term

defined symbols

DELETE-BRF command

DELETE-BRFcommand .

demand pagingo

dependent links in overlay systems

design of an overlay system .

dumping multisegment program

dumping overlay program .

dumping to segment

DUMP-PROGRAM-REENTRANT command

editing commands

END-QOVERLAYcommand

entry point 3

error ambiguous command .

error checksum error . .

error common block exhaust avallable space

error common block expanded .

error compiler system error .

error data space exceeded .

error debug table full) .

error file does not contain brf- code

error first unit is not prior to last unit

error illegal overlay level .
error illegal sequence of overlays

error insufficient brf-unit, syntax errors

error invalid address

error invalid address or not deflned symbol

error invalid command . . .

error mixed one/two bank routines
error new checksum generated

error no main entry . 8 .

error no program-file spec1f1ed .

error no such file .

error not found in destlnatlon f11e .

error not found in source file

error overlapping data in linked segments

error program space exceeded

error program system too large . .

error redefinition. last applies xxxx yyyy.

error

referenced elsewhere than current or previous level

error root-segment not initiated (overlay 0)

error segment-routine not loaded

error symbol not found .o .

error too long name. will be truncated

error undefined common label

error undefined entries

executable program

executable program files

executing overlay programs)

execution time for overlay systems

EXIT command

EXITcommand .

. 93
. 93
. 93

« D
. 27
. 6

Reference

14
82

. 62
. 6

24
25
34

. 27
36
38

. 61, 81
27, 82
71
93

. 93

. 93
93

93
. 94
. 94
. 94
. 94
. 94

94
94
94

. 94
94

. 95

. 95

. 95
95
95
95
95

95

. 95

. 95
96
96
96
96
96
5, 6

37, 82
7

< IV »

Index term Reference

extended path in overlay systems 24

external reference« + « « « o+ oo ow oo 11

FETCH-BRF command +« « « « « « + + « . . 82

FETCH-BRFcommand R EEEE R ECE Y
file does not contain brf- code e e e e B oW G EE G e 93

first unit is not prior to last unit 94

fix-up . T L

FORTRAN COMMON 9 ® .« o+ + .« . . 50, 73
FORTRAN COMMON and multlsegment llnklng .+ o+ 38

FORTRAN COMMON and overlays « + « + « +« . . 25

forward reference in overlay systems 25

HELP command + + + « « « « « « « & + « « . . 82

HELPcommand . . . s e e e e e e e B RO A mwew g 19

IGNORE- ENTRYcommand e e e e B G R amEw.e w1, 82

illegal overlay level 94
illegal sequence of overlays « « . « « . . 94

independent links in overlay systems 24

INSERT-BRF-MESSAGE command « 82
INSERT-BRF-MESSAGEcommand +. . « +« « . . 63
insufficient brf-unit, syntax errors 94

intermodule references +« 4+ 4+« + . . . 3

invalid address . . . e e e e e e e M

invalid address or not deflned symbol e e e e e e 9

invalid command 0 v e e e e e . 0 9

label . . e e e e e e e e e e tmogn e e e amg e 0w e & 3

library flles b - A& o e e e WY WY R G G e e s &

library object programs = E . i SR A e EE s e @ 12

library subprogram entry p01nt VeV Ve e 0 ey w i w ow 5 12

library subprograms « . . +« « « « « « o« . . 12

LIBRARY-MODE command« « +« « « .« . . B2

LIBRARY-MODEcommand + « « « &« &« « o « « o 1
link path in overlay systems 24

links dependent 4 . 4 o0 o. o« . . 24
links independent+ .« .+« 4« .+ . . . 24

LINK-TO command « « « « « « « « « « &+ « + . . B2
LINK-TOcommand . . e e e e s W e g oy 36

LIST-BRF-CODE command e s R R T E R Esw 8 ¢ 83
LIST-BRF-CODEcommand « « «. + « . . 63

LIST-BRF-ENTRIES comand 83

LIST-BRF-ENTRIEScommand « « + « « . . 61

LIST-ENTRIES-DEFINED command 83
LIST-ENTRIES-DEFINEDcommand + . +« 14
LIST-ENTRIES-UNDEFINED command B3
LIST-ENTRIES-UNDEFINEDcommand 14
load address+ . 4 44w e e e s e .. . 14

LOAD command « 4+ « « + « « + « « + + + « .« . 83

IOADcommand . « . + « ¢« « « ¢« 4 « « 2 s 4o o 0 o+ . 4,6

loading & ¢« v v ¢ « « 4 e 4w 4 4 e 4 e . . D

loading errors . . Y -

loading library flles 5 & . AR G e e B ow w w1

LOAD-REENTRANT-SEGMENT command o e o et e e g oW w @ 38
location counter, current75

LOOK-AT-DATA command . . . « .« +« « + « +« + + + « » . 83

<V

Index term Reference

LOOK-AT-DATAcommand . . 57

LOOK~AT-PROGRAM command . . 83

LOOK-AT-PROGRAMcommand . 57

missing parameter . i .3

mixed one/two bank routlnes . . 94

monitor call RFILE . 6

multilevel overlay system . . . 23

multisegment and FORTRAN COMMON . . 38

multisegment and overlay . 34

multisegment debugging . . 33

multisegmenit file information . . .17

multisegment link information str1pp1ng . . 81

multisegment linking) . 82

multisegment linking command . 36

multisegment linking, advantages of . . 34

multisegment linking, prerequisites for . } . 34

multisegment linking, SINTRAN III commands for . 36

multisegment mode . e e e e e e e e e e e . 5

multisegment program, dumping to segment file . . 34

multisegment program, prerequisites . . 34

multisegment PROGRAM-FILE command . . 36

multisegment restart address . 38

multiseqment start address . 38
named segments two-bank . . 6

new checksum generated . 94

no main entry . . . 94

no program-file spec1f1ed . . 95
no such file . 95

normal mode . . .5
not found in destlnatlon f11e . . 95

not found in source file . 95

object code files . .3

object program . 72
object program unit . . 72
octal number . 3

one-bank COMMON . . 73

OUTPUT-FILE command . . 37, 83
OUTPUT-FILEcommand : . 15

overlapping data in llnked segments . . 95

overlay . e e e e e e . 23

OVERLAY command . . 84

overlay debugging . . 26

overlay execution time . 6

overlay linking . . . 84

overlay links with extended paths . 24
overlay loading . . . 26, 84

overlay loading commands . 26
overlay mode . . 5
overlay program executlon . . 27

overlay program information . .17
overlay structure . . 23

overlay system . . 6, 23
overlay system design . . 25

< VI »

Index term Reference

overlay systems and backward reference . 25

overlay systems and dependent links . . 24

overlay systems and forward reference . . 25
overlay systems and independent links . . 24

OVERLAYcommand . . 26
overlays and FORTRAN COMMON . . 25

overlays and multisegment . . 34

overlays and Symbolic Debugger . 23

page . A . 4

parameter dellmlter) i . 3

PATCH-PROGFILE-NAME command . . 84
PATCH-PROGFILE-NAMEcommand . 18
path loading in overlay systems . . 24

P-group in BRF .o . 70

PREPARE-BRF- LIBRARY—FILE command . 84
PREPARE-BRF-LIBRARY-FILEcommand . . 63

program . . 69
program base . 71, 75

program file o . 6

program information . .17

program inspection . 57, 83

program modification . . 57, 83
program multisegment, prerequ151tes . . 34

program relocatable . . 5

program space exceeded . 95

program system too large . 95

program unit .71

PRCGRAM-FILE command . . . 84

PROGRAM-FILE command, 1nspect10n mode . . 57

PROGRAM-FILEcommand . . e e e . 6, 36, 57

PROGRAM-INFORMATION command . . 84
PROGRAM-INFORMATIONcommand .17
programmed information . . 70

RECOVER SINTRAN III command . . .7

redefinition. last applies xxxx yyyy. . 95

reentrant named segments .33

reentrant program dumping . . 38

REFERENCE command . . 84

REFERENCEcommand e e e e e e . . 15

referenced elsewhere than current or previous level . 95

relocatable program . . 5, 69

relocatable program file . 5

REMOVE command . 85

REMOVEcommand . . 16
RENAME command . 85

RENAME-BRF command . 85

RENAME-BRFcommand . . 63
RENAMEcommand 16

RENAME-FILE SINTRAN III command . . 18
renaming symbols . 16

REPLACE-BRF command . . 85
REPLACE-BRFcommand 62

restart address 16

restart address multlsegment . 38

< VIT »

Index term Reference

RESTART command . . 85

RESTARTcommand . 16

root link . ; . 23

root-segment not 1n1t1ated (overlay 0) . 95

RUN command . . 85

RUNcommand . 8

SEGMENT- ENTRYcommand . 37, 85

segment-routine not loaded . 96

segments 89

segments background . . 89

separate assembly . .71

separate compilation .71

S-group . : . 72, 73

S—-groups in BRF . 70

signed decimal number . i 3

SINTRAN III commands for multlsegment 11nk1ng : . 36

space . e e e e . 3

square brackets . 3

start address . . .71

start address multlsegment) . 38

stripping multisegment link 1nformat10n i . 81

subsystem .. w D
switching times . 6

symbol e . 3, 13, 14

symbol entering . 81

symbol entry . 3

symbol in BRF . . 69

symbol length . . 13

symbol not found . 96

symbol table 3, 13, 73

Symbolic Debugger .) .7

Symbolic Debugger and overlays . 23, 26

Symbolic Debugger limitations . 5

symbolic entry point 72, 73
symbolic external reference 72, 73

symbolic information BRF . 70
symbolic start address .72
too long name. will be truncated . 96

two-bank COMMON . 73

two-bank named segments . 6

undefined common label . 96

undefined entries . . 96

undefined symbol 14

undefined symbol entry 3

user program execution .7

word .4

AW N NN SEND Us YOUR COMMENTS!!! AW NN

Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you

* find errors

* cannot understand information

* cannot find information
* find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

sessnusnexes HELP YOURSELF BY HELPING US!! . iuvivrnnss

Manual name: BRF--LINKER User Manual Manual number: ND_—60.196.2 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:
This form is primarily for Norsk Data A.S —_—
documentation errors. Software and Documentation Department
system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

Date

Systems that put people first

(1&1 = B ot e et ot i ety ?'4"-‘“'*1’&*'*?"1"

rhy“!-1~Q00-~1-*T.Q-O¢$§44?0Q709p="*

LA dJrf b e e A A o 5O - 4@
! A | 1

