

|
|
\

®
EO0CDRBERV0R DS
00200V HDRINCH D L

R e g o

SINTRAN [

Utilities Manual

ND-60.151.02
Rev. A

NOTICE

The information in this document is subject to change without notice. Norsk Data

A.S assumes no responsibility for any errors that may appear in this document.

Norsk Data A.S assumes no responsibility for the use or reliability of its software

on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1984 by Norsk Data A.S

-
Printing

PRINTING RECORD

Notes

11/81 Version 01

05/82 Revision A

The following pages are revised or new: vi, vii, viii, 1—1, 3—=21.

Sections 6 and 7.

12/82 Revision B

The following pages are revised: vii.

Section 5.

06/84 Version 02

02/85 Revision A

The following sections are new: Sections 3 and 4.

SINTRAN Il Utilities Manual

Publ.No. ND--60.151.02A

-

=
2

.
M

t:l"orsk" Data

Norsk Data A.S
Graphic Center
P.0.Box 25, Bogerud
0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a8 complete new manual which replaces the old manual. New versions

incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old prirting record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSl) and can be ordered as described below.

The reader’'s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department

Norsk Data A.S

P.0. Box 25, Bogerud
0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway)
to:

Graphic Center
Norsk Data A.S
P.0. Box 25, Bogerud
0621 Oslo 6, Norway

Introductory

Manuals

Programmers'/ Users'

Manuals

SINTRAN It

Belated Manuals =l

SINTRAN 111

Introduction

ND—-60.125

SINTHRAN ITI

Timesharing/
Batch Guide
ND—-60.132

SINTRAN HI
Reference
—_— Referance Manual

Manuals

ND—60.128

SINTRAN II1

Utilities Manual

ND-—-60.151

SINTRAN Il

Real Time

Loader

ND-—60.051

ND--500

Loader/Monitor

ND-—-

SINTRAN i1

Real Time

Guide

ND-60.133

60.136

Tttt T T s s - T Ir --------- e === =cl==-
i ' Communicati | Operators/Supervisors : I;| ==2mmunreation : SINTRAN T 11

| | | | Communication :
| | . Guide |

SINTRAN 11 ! [|| No-60.134 |
System Supervisor 1 ! I :

'
ND—30.003 i ! ' | 1 | ! COSMOS ! COSMOS | 1 I'| Programmerss |1 User s Guide | I ! Guide +— ND-60.163

i : l ND—60.164 :

1 1 | 1

SINTRANTIT | Nordret
System Documentation System | System

Documentation : Documentation
ND-60.062 | ND—60.081

|
1

e e e e e oo e o e e i T

SINTRAN (Il SINTRAN [I1

Data Fields RT Loader
System Doc.

ND-60.112 ND—60.072

vii

PREFACE

THE PRODUCTS

This manual describes subsystems which run under the SINTRAN Il operating

system. These subsystems and their product numbers are:

GPM ND—10124

PERFORM ND-—-10022

BACKUP—SYSTEM ND—10337

LOOK—FILE ND —10005

FILE EXTRACT UTILITY ND —10044

JEC ND—10005

MAIL (Integrated part of SINTRAN Ilf)

VTM-COMPOUND ND—10599

MAIL is used to send messages to other users. PERFORM is a simple macro

processing system to create mode and batch files. GPM is a general purpose

macro generator. The BACKUP-SYSTEM is used to copy files efficiently.

LOOK-FILE is used to inspect and modify files. FILE-EXTRACT can be used to

extract records from files. JEC is used to control execution of batch and mode

jobs. VTM-COMPOUND is used to compound new terminal type descriptions into

one terminal type table used by the VIRTUAL TERMINAL MANAGER (VTM).

THE READER

This manual is written for users of SINTRAN Ill who want to use any of the

subsystems listed above.

PREREQUISITE KNOWLEDGE

Familiarity with SINTRAN Il at the public user level is necessary.

THE MANUAL

This manual describes some subsystems under SINTRAN Ill. The subsystems are

not necessary for simple use of SINTRAN Ill, but may be of considerable use for

particular tasks. The manual is mainly a reference manual.

ND-60.151.02

viii

RELATED MANUALS

Related manuals giving basic information about SINTRAN Il are:

SINTRAN [l Introduction ND—60.125

SINTRAN [Il Timesharing Batch Guide ND—60.132

Other SINTRAN Ill manuals are shown on the preceding diagram.

The ND GLOSSARY (ND-40.005) will explain common computer terms and what

they mean in ND manuals. ND abbreviations and acronyms are also listed. The

glossary should be of interest to anyone using ND equipment.

NOTATION USED IN THE MANUAL

In the examples, user input is underlined. Examples are given in UPPERCASE

letters, but lowercase letters are also accepted. When used as parameters, octal

numbers are given in the form 377B, where the B denotes octal. In command

parameter descriptions, the parameters are enclosed in angular brackets, eg.,

< parameter>.

Parameters which have default values are enclosed in parentheses, eg.,

(< parameter>). The default value is used if a null parameter is supplied.

Selections in parameter descriptions are separated by slashes, eg., YES/NO.

CHANGES FROM PREVIOUS VERSION

JEC and VTM-COMPOUND are new products. The structure of the chapters

which describe PERFORM, BACKUP-SYSTEM, LOOK-FILE and MAIL has been

changed. New features in the subsystems are marked with a vertical line.

ND-60.151.02

Section:

1.1

1.2

1.3

1.4

2.1

2.2

23

24

25

2.6

2.7

2.8

3.1

311

3.2

3.3

3.3.1

33.2

3.3.3

3.34

3.35

3.3.6

3.3.7

34

3.4.1

34.2

3.43

3.4.4

3.45

3.5

3.6

3.7

TABLE OF CONTENTS
+ + o+

General DescCriptionccccuvveeriiieeriienrieerieeeee e

Commands Available to All Users........cc..ccooeeviniiiiiniennn.

Commands Available to User System.........cccccovvviieiinns

Sending Messages from Mode and Batch Jobs.............

Creating Macros..................... e ST T
Starting Perform ...

Example of Using Perform...............cciciiimiiiniinieninnnniiinin.

Listing Defined Macros...........ccccvveeriiiiiiiiiiiiiinn.

Optional Control Parametersc..ccccovvieveeiiiniinneiininnnn

Extended Parameter Submission..........ccccviciiiiiiiiiiinineen.

Limitations, Restrictions and Defaultsc.ccccceiiiinnne.

Predefined Macros.......ccccccooviiiiiiiiiicciiiicscec e

Page:

1—1

1-2

1-3

1—4

N
 A

M
R

R
N

i
id
e

Jh
N |

(
N

O

o
o
~

s

W
w
—

N [

JEC - JOB EXECUTION CONTROL..ccocovviviiciiiinnnirnieriiensinnd—1

Interactive JEC and Error Codesccoevieiiiiniicininnis 3-2

Why Use the Error Codes?.........ccoooiiiiiiiiiiniinicica, 3—4

An Introductory Example of a JEC Mode File................. 3-5

The JEC CommMaNndsccoeeevvriiiiieiieeicceciiiiae e raeenaeanaes 3-6

BEGIN, END, and TERMINATEcoevvevereeeennieneeenn. 3-—-17

CLEAR-COMPLETION-CODE.........cccovveivieiiiriaeeeiieeenn. 3—8

DEFINE and INQUIREccooiiiiiiirenisinnrienaennreeennes 3—9

GO TO; IF, FOR and PERFORMcoovvmveiniiieeeeeeens 33—

PRINT Commandsouiiiiieieeeeccviiiie e 3—15

Terminal and Mode Input/Outputcccocvvviiimnnnnnnnnen. 3—15

Comments Start with % ..., 3—17

Examples of JEC Mode and Batch Filesccve0eee:.3—17

An Example Using SORT-MERGE.........c..cccccviiiiiinn 3—-17

Compiling, Loading, and Executing a COBOL

Program ..., 3-18

A Batch File Examplecccoooomiiiiiiicceiiiiiinas 3—19

A Flexible Compile and Load Mode File 3—20

Use of Arithmetic to Create a Continuous File.......... 3-22

The JEC Library........... guisimisnadsaaisimimam sy 3—-23

Some Technical Details ,......c.ccccvvevmivmvuevriiiniiciicciiininenn. 3—24

JEC SYNtaX oot 3-24

ND-60.151.02

Section: Page:

4 BACKUP-SYSTEM ...uiiiiiiiiiiiiiiiiiciciiisciiieee i eiieena e —1

4.1 INtrodUCHIONot 4—1

4.2 Command SUMMArYcccocemiiieiiee e 4—4

43 Simple Use of the BACKUP-SYSTEMcoooeouvvevneenn 4—B

4.4 Detailed Description of Commandscccccvevererenen . —10

441 Interactive Help Informationcccccoeeviviiiiinnennnn, 4—10

442 Handling Volumes on Magnetic Tapes and Floppy

DiskS ..o s 4—11

443 Copying a User’s Files.............coccevvvieeiieeiiciviiee e, 4—12

444 Copying Several Users’ Files.............cc.cccoveevciveennnne. 4—-18

445 Selecting Special Copying Modescccu........ 4—19

446 Recreating Files and Userscccccvveeieeiciee i, 4-24

45 Some Important Changes in the BACKUP-SYSTEM 4-25

4.6 Label Formats on Magnetic Tape Volumes..................... 425

5.1 Command SUMMArYc.oooieiiiicciciiie et 5—1

5.2 General RUleS...........ccoviiiiiiiiicccccciccie i 5—2

5.3 Detailed Description of Commandsccocecvvvevinnennn, 53

6 FILE-EXTRACT ..ottt i e eeiis e B —1

6.1 PUIPOSE GGG asisssis nissrasiimema 6—2
6.2 Command STrUCTUrecocuveeeieccceeeceeeciee e 6—3

6.2.1 INPUL File .ottt 6—3

6.2.1.1 Mode File Save Optionc..ccecoeeeiiiieeiiiiiiiinnnns 6—4
6.2.1.2 Limited Automatic Command Input...................... 6—4

6.2.1.3 Fixed Record Length Input File Option.................6—5
6.2.1.4 Indexed Access via KEY File............ccccevveerviennnne. 6—5

6.2.2 OULPUL File ..ociiiriieeeicr e ciine s eeanecsbee s B —B

6.2.2.1 Output File Append Option...........c....ccoceveriiivenn, 6—6
6.2.2.2 File Split Optionccoccoviiiiiccc e 6—6
6.2.2.3 Output File Organization Change (X Option) 6—7

6.2.3 Extract Selection Specificationss..........ccvceviiivieniiinn, 6—8

6.2.3.1 Numeric Field Evaluationcccocvieeeennnn, 6—9
6.2.3.2 Text Field Evaluation.............ccoc.oooooiiiivvvieene e, 6—10
6.2.3.3 Text String Searchccoocc i, 6—11
6.2.3.4 Limited Text String Search................coeevvverieennn.. 6—12
6.2.35 Logical Operandscccccviieriiiiiiiiiicirieenn, 6—13

6.2.3.6 Parentheses Nestingcocoviveiviiicciiiiniinninnn. 6—14
6.2.3.7 Input File Record Intervals.................cccovcvvvennnn, 6—15
6.2.3.8 Show First Input File Record Option..................... 6—16
6.2.3.9 Command Line Continuation Option 6—16

ND-60.151.02

Xi

Section: Page:

6.2.4 Output Specifications...........ccccceevciiiviiiriciiinrernnnn.6—17

6.2.4.1 Input Record Subsets Specification.................... 6—18

6.24.2 Output Record Constantscoceevieveennnn, 6—19

6.2.4.3 Input Record Number Inclusion...............cccc......... 6—19

6.24.4 Output Record Number Inclusion........................ 6—20

6.2.4.5 Random Key Inclusion Optioncoecoeveennn.. 6—20

6.246 Terminal Qutput Wait Optioncccceeeeeiennen.ne, 6—22

6.2.4.7 Line Printer/Terminal Output Heading Option...... 6—23

6.24.8 Line Printer or Terminal Page Numbering Option 6—24

6.2.4.9 Predefined Heading as Extract Command Line....6—25

6.2.4.10 Predefined Heading as Position Mask.................. 6—25

6.2.4.11 Split File Copy Option.......ccccovvovvieieieecieeeee . 6—25

6.2.4.12 Show First Input File Record Option..................... 6—26

6.2.4.13 Command Line Continuation Option 6—26

6.2.4.14 Skip Output Record Trailing Spaces 6—26

6.3 Run-Time Status Messages..............covcvvvieeiiiiiiniiiiinninnn.6—27

7 GENERAL-PURPOSE MACRO GENERATOR - GPM............. 7—1

71 GPM Syntax and Evaluation Rulesccccccevvvnneeennn.n, 7—2
7.2 System MaCIOSccvvviiiiiiciee e 7—4
7.3 Macro Evaluationoccoeoeiiiiic o, 71—7
74 Conditional MacroSoooeeueiiiieiee e 7—9
1.5 Recursive Macrosccccoovieeiiieciiecicciei e 7—10
7.6 The GPM Libraryccoooeeiiieieiee e 7—12
7.7 GPM under SINTRAN [lc..ocoooiiiieereecreeeree e see e 7—19
1.8 GPM Applications - Some 1deascccocevveeciveecceenennn. 7—20

7.8.1 GPM and Semigraphic Displaycovvrereemrennnnn. 7—20
7.8.2 System Generation using GPM............cccccovveenn.. . 7—21

79 Combined Use of Perform and GPM................cccccoven... 7T—31

8 VTM-COMPOUNDcooiimiiiiniiiniiciieiinicinnciiesesseeeisesnaeieeneen8—1

8.1 Starting VTM-COMPOUNDc..coveiieiiririreiiecirsinininns 8—1
8.2 The Operations Available in the Menusc..c.ccovvne.. 8—2

8.21 Generate a New File.........cccoooveriiiiiiiiiicc e, .8-3
822 Add Terminal TYPeS........coeevveieiiiiiieeeeeeeee e 8—3
8.2.3 Delete Terminal Types......ccccoovvveeeiiiicicciccceecvee, 8—-3
824 Generate a New File with BRF or NRF Format.......... 8—4
8.25 List Terminal TYPes.......ccccoeerieieeeeecr e 8—5
8.2.6 List CPU Type, CPU Number and File Version

NUMDb@T ... 8—5
8.2.7 Change CPU Type, CPU Number and File Version

NUMDET ... 8—5
8.2.8 Edit the Contents of the File DDB999:VTM 8—6
8.29 EXIt oottt s 8—6

8.3 VTM Versions, File Versions and Terminal Types........... 8—7
84 An Example of Including a New Terminal Type.............. 8—8
8.5 Error Messagescccovoerieiienieii e, 8—9

ND-60.151.02

xii

1.1

1-1

MAIL

MAIL is a subsystem for sending messages to other users. Messages can be sent

directly to the terminal of any user who is logged in. The message displayed will

not interfere with the work being done at that terminal.

The subsystem operates like a mailbox for users who are not logged in. They will

be told that they have mail when they log in. They can read the message sent to

them by entering MAIL.

User SYSTEM is allowed to send the same messages to all users or terminals.

This is called broadcasting. Some of the MAIL commands are only available to

user SYSTEM.

GENERAL DESCRIPTION

MAIL must be entered both to send messages and to receive messsages that are

stored in the mailbox. The subsystem is entered by

@MAIL (<output file>)

The parameter <output file> describes where you want the contents of your

mailbox to be written. It will only be requested if you have mail. The defauit

<output file> is your terminal.

MAIL prints an asterisk (*) when it is waiting for you to give a command. The

HELP command will display the available commands. You return to SINTRAN IlI

by the EXIT command. MAIL commands can be entered and abbreviated as

SINTRAN Il commands. If you omit parameters, they will be prompted. Only one

user at a time may use MAIL.

ND-60.151.02

1.2

1-2

COMMANDS AVAILABLE TO ALL USERS

This section describes the commands available to all users. When sending

messages or broadcasts, the message must be terminated by CTRL L. A dollar

sign ($) in a message will start a new output line. Messages will be output

together with the name of the sender. The maximum message length is 512

characters. All messages will be converted to upper case letters.

EXIT

This command leaves the MAIL subsystem and returns you to SINTRAN 111,

HELP

This command lists the available commands.

SEND-DIRECT-MESSAGE <to terminal number>

This command is used to send a message that will be displayed immediately on

the terminal specified. The SINTRAN Il command @WHO-IS-ON will list the

terminal numbers of the users who are logged in. You will be asked to type your

message.

SEND-MESSAGE <to user>

This command is used to send a message that will be stored in the mailbox. It

can be sent to any user regardless of whether the user is logged in or not. The

user will be told that she/he has mail the next time she/he logs in or out. The

parameter <to user> is the user name of the receiver. You will be asked to type

your message.

LIST-MESSAGE (<output file>)

This command will list the messages in the mailbox on the specified

<output file>. The default <output file> is your terminal. The mail index

number is used if you want to delete a message.

DELETE-MESSAGE < mail index>

The command will delete a message in the mailbox. The command

LIST-MESSAGE can be used to find the <mail index>. Only user SYSTEM is

allowed to delete messages sent by other users.

FINISH

This command returns you to SINTRAN Il in the same way as EXIT,

ND-60.151.02

1.3

1-3

COMMANDS AVAILABLE TO USER SYSTEM

This section describes the commands only available to user SYSTEM. The

protected commands are used to broadcast messages and to start and stop

MAIL.

DIRECT-BROADCAST

You will be asked to type your message. The message will be displayed

immediately on all terminals.

BROADCAST

You will be asked to type your message. The message will be sent to the mailbox

of all users.

LIST-BROADCASTS (< output file>)

The command will output all broadcasts and their mail index numbers. The

default <output file> is your terminal.

DELETE-BROADCAST <mail index >

The command will delete a broadcast in the mailbox. The <mail index> is

found by the commmand LIST-BROADCASTS.

INITIALIZE <maximum number of messages >

The command must be given before MAIL can be used. It defines the maximum

number of messages that can be stored in the mailbox. The command can also

be used to delete the contents of the mailbox. The mail is stored on the file

(SYSTEM)MAILBOX:DATA.

RUN-MAIL-SYSTEM

The command starts MAIL after starting SINTRAN Il or after stopping MAIL by

the command STOP-MAIL-SYSTEM. The contents of the mailbox are retained.

STOP-MAIL-SYSTEM

The command makes MAIL unavailable. The contents of the mailbox will not be

lost. The mail is stored on the file (SYSTEM)MAILBOX:DATA.

ND-60.151.02

1.4

14

SENDING MESSAGES FROM MODE AND BATCH

JOBS

When MAIL is used in mode and batch jobs, the commands should be preceded

by a @ A command and its parameters should be entered on one line.

Messages should be entered on a separate line. They have to be terminated by

CTRL C CTRL L.

The following mode file uses MAIL:

@MAIL

@SEND-MESSAGE P-HANSEN

THIS IS A TEST <CTRL O> <CTRL L>

@EXIT

The CTRL O CTRL L will normally be displayed as an ampersand (&).

ND-60.151.02

2.1

2-1

PERFORM

Mode or batch files are used to execute sequences of commands that are used

repeatedly. The advantage of PERFORM is the flexibility of parameter

substitution in such mode and batch files.

For example, mode files can be used to compile, load, and execute programs

during development. However, each program needs a separate mode file.

PERFORM will instead allow you to enter the program name as a parameter and

generate the required mode file with this program name in the appropriate

places.

To use PERFORM, you have to create a macro instead of a mode file. The macro

allows you to specify which parameters are to be entered from the terminal at

each execution. PERFORM will merge the macro with the terminal input, and

create a mode file.

Macros are created using an ordinary editor, and many macros can be stored on

a file. A predefined library of macros is stored on the file PERFORM-LIB:MCRO.

CREATING MACROS

A few simple directives, starting with a circumflex ("), are used to define a

macro. All directives terminate by a semicolon (;). A macro will have a macro

head and a macro body as shown below:

~B, <macro name>;

(Macro head defining parameters to be entered from the terminal, their

prompts, and their default values.)

(SINTRAN Il commands, input to programs, and dummy parameters in

the required positions. The dummy parameters will be replaced with

actual parameters entered from the terminal.)
I\EI

The directive "B, <macro name>; starts a new macro. The <macro name>

may consist of up to 16 upper case letters, digits, or hyphen (-). The directive “E;

ends the macro. All user defined macros are normally stored consecutively on

one file.

ND-60.151.02

22

The directive ”; separates the the macro head from the macro body. The other

directives to be used in the macro head, are shown below:

DIRECTIVE MEANING

"P,n, < prompt string> ; Defines a parameter to be entered from the

terminal. The parameter will be assigned the

number n. The parameter will be prompted by the

specified <prompt string>.

“F,n, < prompt string>; Same as above, except that terminal input is

assumed to be a SINTRAN Il mass storage file.

PERFORM will expand abbreviated file names. The

default file type is :SYMB.

"D,n, < default string > ; Default value to be used for parameter n if no

terminal input is given.

"L, <information>; The infomation will be displayed on the terminal

when processed by PERFORM.

“C, <comment string > ; Comment. It will be ignored by PERFORM.
The numbers n must be consecutive and in the range 1 - 20. These numbers are

used after a reversing slant {|) in the macro body wherever a parameter from the

terminal should be inserted. Here is a simple example:

"B, FTN:

“F,1,1,PROGRAM TO BE COMPILED: ;

®@FORTRAN-100

COMPILE 11, TEMP:BRF

EXIT
~

E;

When PERFORM processes this macro, it will ask for the name of the program

specified by |1. The answer given at the terminal will be inserted in the

command COMPILE |1, TEMP:BRF in the mode file produced by PERFORM.

In general, PERFORM can be used to insert any text strings. For example, a text

string could be a part of a parameter, or it could be a complete SINTRAN Il

command. If two consecutive reversing slants are encountered, they are treated

as one reversing slant. No parameter will be substituted.

The character used to indicate the beginning of a directive can be any character

other than A - Z, 0 - 9, or a space. PERFORM uses the first character it finds in

the macro file as the directive character. It must be the same character

throughout the file. In this manual the the circumflex (") is used.

ND-60.151.02

2.2

2-3

STARTING PERFORM

PERFORM will create a mode file by merging a macro with terminal input. The

mode job will normally be started immediately with the terminal as the mode

output file. You start PERFORM by writing:

@PERFORM (< macro file>),(<macro name>),

(<macro parameter 1),(<macro parameter 2),...

Omitted parameters will be prompted. The <macro file> is the file containing

the macro with the specified <macro name>. The default <macro file> is

PERFORM-LIB:MCRO and the default file type is :MCRO. The first macro on the

specified file is the default <macro name> .

The parameters <macro parameter 1>, <macro parameter 2> .. are input

parameters to the given macro. If omitted, these will be prompted as specified in

the macro.

PERFORM will create a mode file calied MACRON:MODE and execute it. The "'n"

in the file name is a number from 1 - 9. When the mode job has been executed,

you will return to SINTRAN II1.

Assume the FTN macro in the previous section is stored on a file PMLIB:MCRO.

A FORTRAN program QUICKSORT can then be compiled by entering:

@PERFORM PMLIB:MCRO, FTN, QUICKSORT

All parameters can be prompted for.

ND-60.151.02

2.3

2-4

EXAMPLE OF USING PERFORM

The following example shows how PERFORM can be used to compile, load,

execute, and print FORTRAN programs. The following macro is first written to a

macro file using an ordinary editor:

{Other macros on the same file)

“B,FTNRUN;

"LLMACRO TO COMPILE, LOAD, AND EXECUTE FORTRAN A PROGRAM;

"P,1,PROGRAM TO BE COMPILED: ;

“F,2,RUNTIME LIBRARY: ;

“D,2,FORTRAN- 1BANK;

“C,FORTRAN-1BANK USED AS DEFAULT RUNTIME LIBRARY:;

“P,3,NUMBER OF PRINT COPIES: ;

@DELETE-FILE 11:BRF

@FORTRAN-100

COMPILE 11:SYMB,,” | 1:BRF”

EXIT

@DELETE-FILE 11:PROG

@NRL

PROG-FILE ""11:PROG"”

LOAD [1:BRF, 12

EXIT

@ 11:PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, [1:SYMB, 13,’,,

@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL
~E:

Three macro parameters are defined: the program to be compiled (i1),

the runtime library to be loaded (12}, and the number of copies to be printed

(1 3). The default runtime library is FORTRAN- 1BANK.

Assume that the macro is stored on the file PERFORM-LIB:MCRO. A program

QUICKSORT is compiled, loaded, executed, and printed as shown below:

@PERFORM PERFORM-LIB, FTNRUN

MACRO TO COMPILE, LOAD, AND EXECUTE A FORTRAN PROGRAM

PROGRAM TO BE COMPILED: QUICKSORT

RUNTIME LIBRARY:

NUMBER OF PRINT COPIES: 1_

@MODE MACRO1:MODE, TERMINAL

(Output from the execution of the created mode file)

ND-60.151.02

2-5

The mode file MACRO1:MODE, is created and executed immediately. It is shown

below. The terminal is selected as the mode output file.

@DELETE-FILE QUICKSORT:BRF

@FORTRAN-100

COMPILE QUICKSORT:SYMB,,”QUICKSORT:BRF"

EXIT

®DELETE-FILE QUICKSORT:PROG

@NRL

PROG-FILE "QUICKSORT:PROG" LOAD QUICKSORT:BRF, FORTRAN-1BANK
EXIT

@QUICKSORT:PROG

@APPEND-SPOOLING-FILE LINE-PRINTER, QUICKSORT:SYMB, 1,’,,
@CC NUMBER OF PRINT COPIES GIVEN AT THE TERMINAL

The mode file MACRO1:MODE will be stored on your user area until it is
overwritten by another execution of PERFORM.

ND-60.151.02

2.4

26

LISTING DEFINED MACROS

The macros defined on a particular macro file can easily be listed. Start

PERFORM and let the <macro name> parameter be prompted. Then type a "?",

and all macros on the given <macro file> will be listed as shown below:

®PERFORM

:MCRO file name: PMLIB:MCRO

MACRO NAME: ?_

Macros available in file PMLIB:MCRO

(List of macros on PMLIB:MCRO)

MACRO NAME:

Afterwards PERFORM will once more prompt the <macro name> to be used.

ND-60.151.02

2.5

27

OPTIONAL CONTROL PARAMETERS

PERFORM accepts some optional parameters. These can be used to specify

special mode or batch output files, to control execution, or to select alternative

names of the mode file produced. The complete PERFORM call is:

@PERFORM ({ <macro file>),(<macro name > },(<optional parameters >),

(<macro parameter 1>),(<macro parameter 2>},.....

The <optional parameters> may be used to specify a mode output file other

than the terminal. The file name must be preceded by a " <"'. A new file may be

created by enclosing the file name in quotes. The default file type is :SYMB. The

< optional parameters> may also include:

>RUN, Create a mode file and execute it (default)

> CREATE, Create a mode file, but do not execute it

>BATCHn, Create a mode file and append to batch number n

The parameters > RUN, > CREATE, and > BATCHn may be abbreviated to >R, >C,

and >Bn. PERFORM will by default use the mode file MACROn:MODE. The

< optional parameters > may specify another mode file by:

*MODE <file name>,

The default file type is :MODE. This is necessary if the mode job will be waiting in

a batch queue the next time PERFORM is called. Otherwise MACROn:MODE will

be overwritten. The following are some examples of PERFORM calls:

@PERFORM PMLIB, FTN, <LISTFILE:SYMB

@PERFORM PMLIB, FTN, > CREATE

@PERFORM PMLIB, FTN, <OUTBATCH > BATCH2

@PERFORM PMLIB, FTN, “MODE TESTMACRO:MCRO

@PERFORM PMLIB, FTN, <LISTFILE> CREATE,"“MODE TESTMACRO

The macro named FTN on the macro file PMLIB:MCRO is used. The examples show

how the <optional parameters> can be used. The macro parameters may follow

the < optional parameters>.

ND-60.151.02

2.6

2.7

2-8

EXTENDED PARAMETER SUBMISSION

Any <macro parameter> in the PERFORM call can be replaced by a file name,

preceded by an opening bracket ({). The file should contain a list of values for

the parameter, one per line.

Mode files will be created and executed repeatedly, taking successive values for

the parameter from the file. For example, assume the file PARAMLIST contains:

SORT:SYMB

TEST:SYMB

QUICKSORT:SYMB

The PERFORM call

@PERFORM PMLIB, FTNCOMPILE, [PARAMLIST

will compile SORT:SYMB, then TEST:SYMB, and then QUICKSORT:SYMB.

LIMITATIONS, RESTRICTIONS AND DEFAULTS

The macro name must be unique. If it is defined more than once, the first

occurrence is taken. The macro name should not be abbreviated. If it is

abbreviated, the first matching occurrence will be taken. The macro cannot be

nested, nor invoke other macros.

The optional parameters (indicated by <,>, and *"MODE) may ailso be entered if

the <macro name> is being prompted by PERFORM.

Use the AF directive rather than the AP directive in the macro if SINTRAN Il file

names are to be inserted. The F directive will attempt to find the full SINTRAN Ii|

file name. If successful, that name will be inserted in the mode file. The default

file type is :SYMB.

The reversing slant {1} does not exist on some terminals. The character to use is

ASCII 134B. The circumflex (-} is the ASCII character 136B.

PERFORM can be used together with JEC (JOB EXECUTION CONTROL) for

further flexibility. JEC is described in this manual.

ND-60.151.02

29

2.8 PREDEFINED MACROS

PERFORM has the following standard macros stored on the file

PERFORMLIB:MCRO. The first macro on the file, FTN, is the default

<macro name>.

[wAcrRO NAME | FUNCTION

FTN COMPILE A FORTRAN PROGRAM
FTNRUN COMPILE, LOAD AND EXECUTE A FORTRAN PROGRAM
COBOL COMPILE A COBOL PROGRAM
COBRUN COMPILE, LOAD AND EXECUTE A COBOL PROGRAM
COBDEBUG COMPILE, LOAD AND DEBUG A COBOL PROGRAM
PLANC COMPILE A PLANC PROGRAM
PLRUN COMPILE, LOAD AND EXECUTE A PLANC PROGRAM
PASCAL COMPILE A PASCAL PROGRAM
PASRUN COMPILE, LOAD AND EXECUTE A PASCAL PROGRAM
BASIC COMPILE A BASIC PROGRAM
BASRUN COMPILE, LOAD AND EXECUTE A BASIC PROGRAM
CREDIR CREATE AND ENTER A DIRECTORY WITH A USER AREA
Detailed information about each macro is found by inspecting the file by using an editor.

ND-60.1561.02

2-10

3-1

3 JEC - JOB EXECUTION CONTROL

JEC (JOB EXECUTION CONTROL) is a program which lets you control the

execution of a batch or mode file by including a few control commands.
Intelligent actions can be taken when special situations occur in
commands, subsystems, and your programs.

Here are some of the things you can do:

Terminate execution at any point, for example, where errors
are detected. (See page 7.)

You may execute nested mode files that have a return status
showing whether they executed successfully or not. (See page
7.)

You may use arithmetic. (See page 9.)

You can create your own numeric and string variables. For

instance, you can prompt for the name of the program and the
language it is to be compiled in. Thus you can make a single
mode file that can compile and load any program. See the
example on page 20. You may use your own variables in SINTRAN
commands, as parameters to your own programs, as loop
counters, or in arithmetic expressions. (See page 9.)

Answer “questions" that the mode file poses. (See page 10.)

You may make conditional tests, based on the values of the
completion code, the SSI code, or the status code. (See page

©12.)

You may make conditional tests, based on the day, date, or
month you execute your mode file. (See page 12.)

Jump forward and backward to numeric labels defined in your
batch or mode file. (See page 11.)

Create loops so that things can be done a certain number of
times. (See page 14.)

Give input from your terminal to programs you execute in mode
jobs. (See page 15, Section 3.3.6.)

You may turn communication with your terminal on and off in a
mode job. (See page 15.)

You may send output to your terminal, an output file, or
both. (See page 15.)

You may execute mode files on remote systems. The JEC
completion code shows whether they executed successfully or
not.

ND-60.151.02a

3-2

- You have the possibility of executing only certain parts of
your input file. See the example on page 18.

Before we look at JEC mode files, we will look at what happens when
you call JEC interactively from SINTRAN, because that allows us to
explain the error codes that JEC uses.

A TIP:

If you type your mode files

in NOTIS-WP, make sure they
are in 7- or 8-bit format,

not in 16-bit format!

3.1 Interactive JEC and Error Codes

Type @JEC in SINTRAN and you should see something like this:

QJEC

== Jec

== Jec == Value of completion code is: 0 0):]
== Jec == Value of SSI code is : 72 110B
== JeC == Last runningf{subsystem was : Notis WP / PED
== Jec]

The last subsystenm The error

you used. code.

The numbers you get will most likely not be the same.

The completion code is stored in a 16-bit word:

Bit no. 15(14(13[12(11(10| 9| 8| 7| 6|| 5| 4| 3| 2] 1] 0

L I |

This part contains the This part is the

SSI code if the status status code.
code is not zero.

Since each digit in an octal number represents three bits, the status
code is always the two rightmost digits of the completion code

The Standard Subsystem Identification code (SSI code) indicates the
last subsystem that was running, and the status code indicates what
error occurred.

For example, an SSI code of 1 means that the error occurred in the
SINTRAN file system (see the following table). If the completion code
is 137, you can look in the SINTRAN Reference Manual, ND-60.128, and
find that the file system error code 137 means “No spooling for this
device."

ND-60.151.02a

3-3

Here are some SSI codes and the software product(s) they represent. If

you are using an older version of one of the products below, it will

not produce SSI codes.

SSI code Product
Decimal Octal

0-3 0-3B SINTRAN-III File system (version I)

4-5 4-5B FORTRAN (version B, library)
6-7 6-7B COBOL (version F, compiler and library)

20-21 24-25B PLANC (compiler)

40 50B SORT-MERGE (version D)

42-43 52-53B Linkage-Loader (version F)
47 57B NRL (version J)

72-73 110-111B NOTIS-WP and PED
96-97 140-141B NOTIS-TF 500 (version K)

96-97 140-141B NOTIS-TF 100 (version L)
112 160B User Environment

117 165B JEC (version B)

148-159 224-237B SIB-DML (version E)
216 330B FILE-HANDLER (version A)

224-225 340-341B BACKUP-SYSTEM (version F)

260~-262 404-406B COSMOS (version B)

263 407B TRANSFER-FILE (version B)
265 411B XMLib

Here are two examples of errors and the codes they produce for JEC.
Type the following at your terminal:

@DELETE-FILE ASDFG:HIKL
eJEC -

When you try to delete the nonexistent file ASDFG:HJRL, you will get
the message “No such file name®. Writing JEC will print the following:

 == JecC
== Jec == Value of completion code is: 46 56B
== Jec == Value of SSI code is : 0 0B
== Jec == Last running subsystem was : SINTRAN
== Jec == Error message: No such file name
== JecC

The SSI code of O means that this is a SINTRAN File System error. If
you look in the SINTRAN Reference Manual, ND-60.128, you will see that
error 46 is "No such file name".

ND-60.151.02A

If you have COSMOS and JEC on your system, and a file called
MY-FILE:SYMB, type the following:

OIRANSFER-FILE NOSUCH.XYZ MY-FILE +!
eJEC

You should get this message:

 == Jec
== Jec == Value of completion code is: 16993 41141B

== Jec == Value of SSI code is : 263 4078

== Jec == Last running subsystem was : COSMOS File Transfer
== Jec == Error message: Unknown remote system name
== Jec == Error in : XMSG

== Jec

If you are wondering why the completion code does not start with 407

as the first three octal digits, here is the answer. The last
subsystem that was running (407B, which is Transfer File) called
subsystem 411, which is XMLib, and error 4% of XMLib occurred.

3.1.1 Why Use the Error Codes?

When you type @QJEC BEGIN in a JEC mode file, the completion code will
be zero. It will remain unchanged until an error occurs. You can thus

specify what should happen when a specific error occurs by using its
error code in a @JEC IF statement. For instance, you could type a

statement like this in a JEC mode file:

QJEC IF completion-code > O TERMINATE

That would stop the mode file execution if an error occurs.

Note that for some systems it may be better to type:

QJEC IF status-code > 27B TERMINATE

This is because some ND subsystems use the following system of status
codes:

0 = 0K
1-17B = Informative messages

20-27B = Most likely to be informative messages
30-47B = Most likely to be error conditions
50-76B = Error conditions

77B = Fatal error

Look in the manual for the subsystem you are interested in to see what
codes are error messages.

ND-60.151.02A

Here are some things that may happen during a mode job that require
special action:

You cannot access a file because it is already open or does
not exist.

The first of many compilations does not succeed so there is
no reason to continue.

- A remote system in your COSMOS system may not be available at
the moment you run your mode job.

~ A program you try to start may not be available.

The JEC mode file will not abort when these things happen, so you
could start an alternative program, create the file you need, or jump
over other commands that are no longer needed.

3.2 An Introductory Example of a JEC Mode File

Here is a small example of a JEC mode file that lets you compile as
many or few COBOL programs as you want:

@JEC BEGIN

@JEC MESSAGE 'Mode file to compile COBOL-500 program modules'
@JEC DEFINE <number), <{name)

@JEC DEFINE <counter)=1

@JEC INQUIRE <number) ‘'How many files do you want to compile?'

BCC e e e e %
@JEC FOR <countexr> IN <counter):<number> DO % THE MODE
@JEC INQUIRE <name) 'What is the program name?' % FILE LOOPS

@JEC ND COBOL-500 % HERE, BUT
COMPILE <name>,0,<name) % HAS A

EXIT % CONTROLLED

@JEC WHILE COMPLETION-CODE = 0 % EXIT IF Cc-C

QJEC END-FOR % IS NOT O.
QCC mmmmm e e %

QJEC IF COMPLETION-CODE > O GO TO 1000

@JEC MESSAGE 'Compiling went flne
@JEC END

@JEC. 1000
@JEC MESSAGE 'Compiling failed, error in <name)'
@JEC PRINT-COMPLETION-CODE

@JEC END

When you run the above mode file, you will be asked how many files you
want to compile, and then you will be asked for each file name. The
mode job ends early if any compilation <fails due to the WHILE
COMPLETION-CODE = O statement.

Of course, the mode file needs a few more tests, for instance, to see
if the object file already exists. It could also be expanded to let
you choose between COBOL-100 and COBOL-500, or even other languages.

ND-60.151.02A

3.3 The JEC Commands

Here are the JEC mode and batch file commands, with short
explanations:

@JEC BEGIN %Starts a mode job
@JEC END %Ends a mode job execution

@JEC TERMINATE %Ends a mode file execution
QJEC CLEAR-COMPLETION-CODE %Resets completion code

% and SSI code

QJEC DEFINE <variable-name> %Declares variable(s)
QJEC DEFINE <variable-name) = <value) %Declares & initializes
@QJEC
@JEC

@JEC

@JEC
@QJEC
@JEC
@JEC
@JEC
@JEC

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
QJEC
@JEC

@QJEC
@JEC

@JEC
@JEC
@JEC
@JEC
@JEC

INQUIRE <variable-name> {'message'> %Lets user input value

(command-or-program) %Use this when parameters

%are variables
RECOVER <{program> %Use this when parameters are variables

GO TO <{numeric-label) %Unconditional jump
IF <(JEC-test> GO TO <numeric-label) %Conditional jump

IF <JEC-test> <command~or-program) %Conditional command
IF <(JEC-test) TERMINATE %*Conditional termination
IF <(JEC-test> PERFORM <num.-label>

IF <JEC-test> PERFORM <num.-label) THROUGH <num.-label)

<numeric-label)> %Label definition
ON-ERROR TERMINATE %Conditional termination
ON-ERROR GO TO <numeric-label> %*Conditional jump
FOR <variable-name) IN <range) DO %Begins a loop

WHILE <condition> %Use to exit early from loops
END-FOR %Ends a loop
PERFORM <numeric-label)

PERFORM <numeric-label)> THROUGH <numeric-label)

PRINT-DATE %Outputs the current date
PRINT-COMPLETION-CODE %Outputs the completion code

MODE-INPUT %Gets input from mode file
MODE-OUTPUT %Sends output to mode file
TERMINAL-INPUT %Gets input from terminal
TERMINAL-OUTPUT %Sends output to terminal
WAIT-FOR-CR %Wait for user to press the key

Let us take a closer look at these commands.

ND-60.151.02A

3-7

3.3.1 BEGIN, END, and TERMINATE

@JEC BEGIN and QJEC END both initialize the completion code to zero.

@JEC BEGIN should always start a mode or batch job and @JEC END should
end it:

QJEC BEGIN

@JEC % JEC and SINTRAN commands
@JEC END

Once @JEC END is encountered, the execution of your mode or batch job
ends. If you do not end a mode job with @JEC END, you may have
problems with the next mode file you run if it does not use QJEC.

A mode file to be run as a batch job should look like this:

@ENTER user-name, password, project-password,max-time
QJEC BEGIN

@JEC % JEC and SINTRAN commands

QJEC % Do not use TERMINAL-INPUT or TERMINAL-OUTPUT,
@JEC - % INQUIRE, WAIT-FOR-CR or MESSAGE.
€JEC END

@JEC TERMINATE ends the execution of the batch or modé fjle it is in.
It will not reset the completion code to zero. You use @QJEC TERMINATE
in mode files called from other mode files.

If you use nested mode.files, @JEC BEGIN and @JEC END should only
appear once in the entire mode job. @JEC TERMINATE can be used in the
nested files. Here is an example:

File: LOAD~MODE:MODE

@ENTER SYSTEM XXXXX,,10,,
@JEC BEGIN
@cc various other commands File: XMSG-START:MODE
@JEC MODE (UTIL)XMSG-START:MODE,,

@CC The XMSG file should NOT contain @JEC ON-ERROR TERMINATE
@CC JEC BEGIN and JEC END. @JEC SINTRAN-SERVICE

@JEC MODE (UTIL)SET-TERM-TYPE:MODE,, @STOP-XMSG

@CC The SET-TERM file should NOT QEXIT

@CC contain JEC BEGIN and JEC END. @CC other commands
Qacc various other commands @CC other commands
QJEC END @CC end of file

If an error occurs in the file XMSG-START:MODE, the rest of the file
will not be executed, but none of the variables JEC uses in the LOAD-
MODE:MODE file will be affected. It would be a big mistake to start
XMSG file with @JEC BEGIN. It would also be wrong to end it with @JEC
END.

ND-60.151.02A

Here 1is one way to alter the LOAD-MODE file above to see whether the
nested mode file XMSG-START executed properly:

@JEC CLEAR-COMPLETION-CODE

@JEC MODE (UTIL)XMSG-START:MODE,,

@JEC IF COMPLETION-CODE = 0 GO TO 500

@QJEC MESSAGE 'An error occurred in XMSG-START:MODE file'

@JEC PRINT-COMPLETION-CODE

@JEC 500

In the nested files, you may use TERMINATE in an IF statement, for
example:

@JEC IF COMPLETION-CODE > 27B TERMINATE

See also page 12.

3.3.2 CLEAR-COMPLETION-CODE

CLEAR-COMPLETION-CODE will set the completion code and the SSI code to
zero. Here is an example:

@JEC DELETE-FILE <VAR1>:NRF

@JEC IF COMPLETION-CODE = 46 GO TO 200 % No such file name.

@JEC' IF COMPLETION-CODE > O GO TO 1000 % Exit if error.

QJEC 200

@JEC CLEAR~COMPLETION-CODE

@QJEC ND COBOL-500

DEBUG-MODE .

COMPILE <VAR1)>:SYMB,O0, "<VAR1>*®

EXIT

@JEC IF COMPLETION-CODE > O GO TO 1000

@cc %Here you could load the :BRF file, for example.

@JEC 1000 %Here you could type QJEC END, for example.

ND-60.151.02a

39

3.3.3 DEFINE and INQUIRE

By using DEFINE, you can create your own variables that you use in IF

and FOR statements, or as macros in command parameters. You may give

them values when you define them, or when you execute your mode file
by using INQUIRE.

Here are a number of different examples:

Defi an itialj Strings;

QJEC DEFINE <file-1>='old-prog'
@JEC DEFINE <file-2)>=delete-me
@JEC DEFINE (suffix>='data’
@JEC DELETE-FILE <file-1>:<suffix>

QJEC DELETE-FILE <file-2):<suffix)

Note two things. Strings need only be enclosed in single quotes
(‘name' not “name®, for example) when they start with a digit. Aall
variable names must start with a less than sign (<) and end with a
greater than sign (>). Variable names may not contain spaces.

Defi 1 Initiali ic Variables:

@JEC DEFINE <var1) = 10
@JEC <var2> = (var1)

If a variable is already defined, you can omit DEFINE when you assign
it a value:

21

{var2> * <var2>

(<vart> * 10) + 2 + <(var3d>

@JEC <(payday>
QJEC <var2>

@JEC (vard>

As you can see, arithmetical expressions are allowed. Use +, -, *, and
/ to add, subtract, multiply, and divide. NOTE - Always precede and
follow the signs +, -, * or / by a blank. It looks nicer and it is the
only thing we allow! Extra blanks are allowed.

Do not multiply or divide by JEC variables such as DAY. DAY is
explained on page 12. If you need to multiply DAY by a variable, do it
like this:

QJEC <var1>
@JEC (var2>

DAY

{var1> * (x>

ND-60.151.02A

Define and Ask User to Give the Value:

Here is an example of INQUIRE. Note the use of @JEC PASCAL when the
compiler is called:

@JEC BEGIN

@QJEC DEFINE <file-to-compile)
@JEC DEFINE <list>

@JEC INQUIRE <file-to-compile>

@JEC INQUIRE <list> 'Give list file name and type:'
@QJEC PASCAL % You must type @JEC here so that PASCAL ;

% gets the values stored in the variables

COMPILE <file-to-compile),<list),<file-to-compile>
EXIT

@JEC END

As you can see, INQUIRE can be followed by a message if you so choose.
In the above example, this will appear on the screen when you execute
your JEC mode file:

Give list file name and type:_

If there is no text after @JEC INQUIRE, you get this when you execute:

VALUE FOR <file-to-compile)?_

If you want to compile COB-DB:SYMB, you simply answer COB-DB or 'COB-
DB'. But if the file name begins with a number, you must enclose it in
single quotes.

Getting Values from a File

At times, you may want to give so many values that you do not want to
do it interactively or in your mode file. You may, for example, want
to change the file access to all 50 files you have. You do that as
follows:

@LIST-FILES, ,FILE-LIST:DATA

The file FILE-LIST will look like this:

FILE 1 : (PACK-ONE:UTILITY)EX:SYMB;1
.. files 2 to 49 .

FILE 50 : (PACK-ONE:UTILITY)FORMAT:TEXT;1

Edit it so that everything to the left of the first parenthesis is
gone:

(PACK-ONE: UTILITY)EX:SYMB; 1
... files 2 to 49 ...

(PACK-ONE:UTILITY)FORMAT:TEXT;1

ND-60.151.02a

3-1

Then create a mode file like this:

@JEC BEGIN

@JEC DEFINE <public>,<friend>,<own>,<{file>,<1), <number)
QJEC MESSAGE 'Specify the three access types you want'

@JEC INQUIRE <public>

@JEC INQUIRE <(friend>

QJEC INQUIRE <own>

@JEC INQUIRE <number> 'How many files do you have?'’

@JEC FOR <i> IN 1 : <number> DO

@QJEC <file>=FILE-LIST:DATA(<i>)
ace <(FILE> will be equal to record <i> in FILE-LIST:DATA

QJEC SET-FILE-ACCESS <file) <(public> <(friend} <own)

@JEC END-FOR

QJEC END

If you do not know how many files you have, the loop can look like
this:

@JEC FOR <I> IN 1 : 1000 DO
@JEC <file>=FILE-LIST:DATA(<i>)
@cc <{FILE> will be equal to record <i> in FILE-LIST:DATA
@JEC WHILE COMPLETION-CODE = O

acc You will safely exit the loop when you reach

Qecc the end of the file FILE-LIST:DATA

@JEC SET-FILE-ACCESS <file> <public) <friend> <own)

@JEC END-FOR

Editi . RE

When you are inputting values to an INQUIRE command, you may make

typing mistakes. In that case, use the 4 key to erase the error. JEC
accepts the same control characters for editing as SINTRAN.

3.3.4 GO TO, IF, FOR and PERFORM

Jiti] (|

You can jump unconditionally to another part of the mode file:

@JEC GO TO 100
‘e % Other JEC statements

@JEC 100 % This is a numeric label

ND-60.151.02A

3-12

If you want to use easier to understand labels, do it like this:

@JEC DEFINE <compile> = 500
QJEC GO TO <(compile>

ces % Other JEC statements

@JEC <{compile): % This is also a numeric label

The colon (:) tells JEC that <compile> is a label and not the name of
a program to be executed. See the example on page 20. You only need to
use a colon when you use a variable as a label.

Conditional Jumps (IF)

There are four types of conditional jumps using IF:

Remember that
@JEC IF (JEC-test> GO TO <numeric-label) the semicolon
@JEC IF <(JEC-test> <(command-or-program) continues the
QJEC IF <JEC-test) TERMINATE line.
@QJEC IF <JEC-test) ; +

PERFORM <numeric-label) THROUGH <numeric-label}

andjtiQna] tests (IF {JEC-test))

The <JEC-test)> may use the following operators in JEC tests:

= < > OR AND NOT () <

The following JEC variables may be used in JEC tests:

NAME EXPLANATION

COMPLETION-CODE

STATUS~CODE

SSI-CODE

DATE

DAY

MONTH

RUN-MODE

Exror code.

The last two octal digits in the
completion code.
Subsystem code.

A string with 8 letters, for

example, 84.09.18 means September
18th, 1984.
An integer from 1 to 31 or

a string from "MONDAY" to “SUNDAY".
An integer from 1 to 12.

Either 'B' or 'M', depending on

whether it is a Batch or Mode job.

You may also test any variables you define. Remember not to mix data
types. Do not type @JEC IF DATE = DAY GO TO 1000, for example!

ND-60.151.02A

3-13

Examples of IF (JEC-test> Statements

Complex expressions must be enclosed in parentheses. The following
examples show legal JEC tests:

@JEC IF COMPLETION-CODE > OB TERMINATE

@JEC IF (SSI-CODE = 6B AND STATUS-CODE < 20B) GO TO 100

@JEC IF (DAY < 8 AND DAY = 'MONDAY') GO TO 100

@JEC IF (DAY = 20 AND (NOT DATE = 84.01.20)) GO TO 100

@JEC IF <answer> = 2 GO TO 2000
@JEC IF <(answer> NOT > O GO TO 3000
@JEC IF COMPLETION-CODE = O BRF-LINKER

@JEC DEFINE <payday> = 21 % Omit DEFINE if <(payday>
acc % is already defined.
@QJEC IF <payday> NOT DAY THEN TERMINATE

@JEC IF RUN-MODE = 'B' GO TO <batch)

QJEC GO TO <mode)

JEC uses decimal numbers by default. Octal numbers must be followed by
a B. A numeric label such as 100 in GO TO 100 must be defined
somewhere in the mode or batch file by the command @JEC 100. Both
forward and backward jumps are legal. Only incurable hackers should

use octal numbers in labels.

You may use SINTRAN III commands, subsystems, or your own programs as
(command or program>.

 Note that a semicolon

SINTRAN must be used at the end Subsystem

command of an incomplete line.*;]

@JEC IF MONTH NOT = <{prevm>;

COPY LINE-PRINTER MONTH-STAT:DATA

@JEC IF COMPLETION-CODE = O ND LINKAGE-LOADER

@JEC IF <answer)> = 1 MY-PROG IN:DATA OUT:DATA

[—- Your own program

ND-60.151.02A

3-14

Conditional Jump (ON-ERROR)

There are two types of conditional jumps using ON-ERROR:

1) QJEC ON-ERROR TERMINATE

2) @JEC ON-ERROR GO TO <numeric-label)

The statement after ON-ERROR is performed if the completion code is
not equal to zero. Note that you cannot use <command or program> or
PERFORM <label> THROUGH <label> after ON-ERROR. Use instead:

@JEC IF COMPLETION-CODE > O <program or SINTRAN command)
@JEC IF COMPLETION-CODE > O;

PERFORM <numeric-label> THROUGH <numeric-label)

If you wuse QJEC ON-ERROR, and an error occurs, the following rules
apply:

1) The error can occur anywhere in the file.

2) The action TERMINATE or GO TO will be performed
when the next @JEC statement is encountered.

You should only use @JEC ON-ERROR once in a file!

Here are two examples:

1) @JEC ON-ERROR GO TO 5000

2) QJEC ON-ERROR GO TO <finish)

@JEC <finish):

FOR_Loops

You can create loops as follows:

@JEC FOR <variable-name) IN <range) DO " %Begins a loop
@JEC END-FOR %*Ends a loop

This will execute the same program ten times:

@JEC DEFINE <i>, <{program-name)
@JEC INQUIRE <(program-name> 'Which program do you want to run?'
@JEC FOR <i> IN 1:10 DO

@JEC RECOVER <(program-name)
@JEC END-FOR

ND-60.151.02a

Here is a

3-16

complete mode file that a system supervisor might use to log
out all the users on Terminal Access Devices (TADs):

@JEC
@JEC
@JEC
@JEC
@QJEC
@JEC
@QJEC
@JEC
@JEC
@JEC

BEGIN
DEFINE <i>, <x>

1000

INQUIRE <x> 'How many TADs does your system have?'
DEFINE <lasttad>= 767 + (x>

IF <lasttad> ¢ 767 GO TO 1000 % No TADs have LDN < 767

FOR ¢i> IN 767:<¢lasttad> DO

STOP-TERMINAL <i)

END-FOR

END

Another example of a FOR loop is given on page 5.

3.3.5 PRINT Commands

The command @JEC PRINT-DATE writes the current date to the batch or

mode output file.

@JEC PRINT-DATE

== Jec :
Year Month Day Time

1984 12 13 11.32.19

December Thursday

== Jec

@QJEC PRIN&-COMPLETION-CODE outputs the completion code.

You can print the value of any variable you define. If your variable

is called

@JEC
@JEC

{name), type:

MESSAGE ‘<name)' or:
MESSAGE 'Name is <name)'

3.3.6 Terminal and Mode Inpyt/Output

You can

terminal.

commands.

are:

QJEC
@JEC
@JEC
@JEC

Note that

enter parameters to programs within a mode job from your

Input cannot be entered to batch jobs or SINTRAN 1III

The commands to switch terminal input and output on and off

TERMINAL-INPUT %Input to programs from terminal
TERMINAL-OUTPUT %0utput from programs to terminal

MODE-INPUT %Turn terminal input off

MODE-QUTPUT %Turn terminal output off

@JEC END turns terminal input and output off.

ND-60.151.02A

3-16

The command @JEC TERMINAL-INPUT will let you input parameters from

your terminal. Make sure you remove input parameters - from your mode

file. Let us say you have a program called AVERAGE:PROG that expects

three numbers to be input. You could execute it five times like this:

@JEC BEGIN
@JEC DEFINE <i>
@QJEC TERMINAL-INPUT
@JEC FOR <i> IN 1:5 DO

- @RECOVER AVERAGE
@JEC END-FOR
@JEC END

If you can write a short program that expects input, try running the

above mode file using your terminal as the output file. Then try it

again using another file as the output file. You can still give input

from your terminal, but your program prompts will not appear; they are

sent to the output file!

Add a line with “@JEC TERMINAL-OUTPUT" to the mode file above and then

all prompts from your program AVERAGE will appear on your terminal.

@JEC TERMINAL-OUTPUT will output prompts to your terminal when your

terminal is not the output file. Things written to a file will not be

sent to your terminal.

@JEC MODE-INPUT turns TERMINAL-INPUT off again, and @JEC MODE-OUTPUT

turns TERMINAL-OUTPUT off. Note that terminal I/0 is off when you type

@JEC BEGIN. Note that if you do not terminate your mode job with @JEC

END and terminal input was on, it will still be on when you run the

next mode file from your terminal. Remember @JEC BEGIN and END!

It can often be useful to pause while executing a mode file. By

writing:

@JEC WAIT-FOR-CR 'Insert floppy no. <i>'

you let the mode file "pause” until the user pushes the o key. The o

key is also called the CR (Carriage Return) key. You may have any

message, or none at all, after WAIT-FOR-CR.

Here is an example from a mode file used to copy many files to or from

floppy diskettes:

@JEC RELEASE-DIR <{dir>

@JEC MESSAGE 'Remove diskette <number>'
@JEC DEFINE <number> = <(number> + 1

@JEC MESSAGE 'Insert diskette <(number)'

QJEC WAIT-FOR-CR

@JEC ENTER-DIR <dir> <(dev> <unit>,,,

acc Copy files to or from the diskette.

ND-60.151.02A

3-17

3.3.7 Comments Start with %

The percentage sign (%) indicates that the rest of the line only
contains comments. If a JEC command consists of more than one line,

any incomplete lines must end with a semicolon (;), for example:

@QJEC IF (COMPLETION-CODE ¢ 400B AND COMPLETION-CODE > 500B);

GO TO 100 %Example of split line

3.4 Examples of JEC Mode and Batch Files

This section shows examples of JEC commands used within batch and mode

files.

3.4.1 An Example Using SORT-MERGE

The following mode file will only print the output file from the ND

SORT-MERGE program if no errors occur.

@JEC BEGIN
QJEC DEFINE <INPUT)>,<OUTPUT>

@JEC INQUIRE <INPUT>;

‘Give the file name and type of the file you want to sort:

@JEC INQUIRE <OUTPUT>;

‘Wwhich output file? Enclose name in *"*® if file is new;'
@JEC SORT-MERGE

RECORD-DESCRIPTION 80, 1, TEXT
KEY-DESCRIPTION 1, 10, ASCENDING, ASCII

SORT <INPUT>, <OUTPUT>

EXIT

@JEC PRINT-COMPLETION-CODE
@JEC IF COMPLETION-CODE > O TERMINATE

QCOPY-FILE PHILIPS, <QUTPUT>

@DELETE-FILE <OUTPUT>

@JEC END

ND-60.151.02A

3.4.2 coppiling, Loading, and Executing a COBOL Program

The next example shows how a COBOL program is compiled, loaded, and
executed. Special actions are taken if compilation errors occur.
TEST:PROG will communicate directly with the terminal during

execution.

@JEC BEGIN
QJEC PRINT-DATE %Outputs today's date.

@COPY-FILE TEST:SYMB, (PACK-TWO:P-HANSEN)TEST:SYMB

@COBOL-100

COMPILE TEST:SYMB, TEST:ERR, TEST:BRF

EXIT ’

QJEC IF (COMPLETION-CODE > OB AND SSI-CODE = 6B) GO TO 111

@CC Go to compiler error part. COBOL-100 has SSI code 6B.

@BRF-LINKER
PROG-FILE TEST:PROG

LOAD TEST:BRF, COBOL-1BANK:BRF

EXIT

@JEC IF STATUS-CODE > 27B TERMINATE

@cc %

Qcc % Codes from O to 26 are most likely to be
@ce % only informational messages in many products.

@cc %
@QJEC TERMINAL-INPUT %Input to TEST:PROG from terminal.

QTEST: PROG

@JEC MODE-INPUT
@JEC TERMINATE

QJEC 111 %Compilation error handling part.

@COPY-FILE LINE-PRINTER, TEST:ERR

@DELETE-FILE TEST:ERR

@JEC END

ND-60.151.02A

3-19

3.4.3 A Batch File Example

This is a batch file which is to be executed the 20th of every month.

Note that @ENTER and double escape are placed outside the @JEC BEGIN
and QJEC END commands.

QENTER P-HANSEN,HANS,,,
@JEC BEGIN
@JEC IF DAY = 20 SALARY:PROG
@JEC IF DATE = 83.12.20 ADDSALARY:PROG
@COPY-FILE ND-SAT-II.LINE-PRINTER, OUTSALARY:DATA
@CC PRINTING ON THE REMOTE COMPUTER ND-SAT-II
@JEC IF (STATUS-CODE > OB AND SSI-CODE < 4B);
DELETE-FILE OUTSALARY:DATA %Split JEC command
@CC SSI code < 4B INDICATES FILE SYSTEM ERROR
@JEC END
{CTRL 0> <ESCAPE> <CTRL 0> <ESCAPE>

ND-60.151.02A

3-20

3.4.4 A Flexible Compile and Load Mode File

Here is quite a lengthy example. This mode file will compile and load

any COBOL, FORTRAN-100, or FORTRAN-500 program. Note how 1labels are

used.

@JEC
@JEC
@JEC
@JEC
QJEC
@QJEC
@JEC
@JEC
@JEC
@JEC
@JEC
acc
@JEC
@JEC
@JEC
@JEC
acc
@JEC
@JEC
@JEC
@JEC
@cc
@JEC
@JEC
@JEC
@JEC
@cc
@JEC
@JEC
@JEC
@JEC

BEGIN

DEFINE <Fort-500>=500, <Fort-100>=100

DEFINE <Cobol»=200, <compile>=900

DEFINE <load-100>=1000, <failure>=8000, <{success)>=300

MESSAGE 'Mode file to compile and load a program'

DEFINE <lang),<name),<{compiler>,<library>

MESSAGE 'Which compiler do you want to use?'

MESSAGE 'FORTRAN-100 = 1 FORTRAN-500 = §'

MESSAGE 'COBOL = 2!

INQUIRE <lang> ‘'Answer with 1, 2 or 5:'
INQUIRE <name)> 'What is the name of your program ?'

0 TO <(Fort-500>

0 TO <Fort-100>

0 TO <Cobol>

IF <lang> = 5

IF <lang> = 1
IF <(lang> = 2

END

Q
o

(Fort-100> % --- FORTRAN-100 -----

{compiler) = FORTRAN-100
{library)> = FORTRAN-1BANK

GO TO <compile>

(compiler> = COBOL

(library> = COBOL-1BANK

GO TO <compile>

{compile): % Compile and load an ND-100 program.

DELETE-FILE <(name>:BRF
CLEAR-COMPLETION-CODE % In case file did not exist.
(compiler>

COMPILE <name>,0, “<{name>"

EXIT
@JEC
@cc

IF (COMPLETION-CODE > 0) GO TO <failure>

(continued on next page)

ND-60.151.02A

3-21

(continued from previous page)

@JEC <load-100>: % This label is only for information.
@JEC DELETE-FILE <name>:PROG
@JEC CLEAR-COMPLETION-CODE

@JEC BRF-LINKER

PROG-FILE “<name>"

LOAD <name>,<library>

EXIT
@JEC IF COMPLETION-CODE > 0 GO TO <(failure>

@JEC GO TO <{success>

QCC == e o e s s ot e e . o e e 2

@JEC <(Fort-500>:
@QJEC CREATE-FILE <name):NRF O .

@JEC CLEAR-COMPLETION-CODE % In case the file already existed.
@JEC FORTRAN-500

COMPILE <name>,0,<name>

EXIT
@JEC IF COMPLETION-CODE » O GO TO <failure>

QJEC ND LINKAGE-LOADER

ABORT-BATCH OFF

DELETE-DOMAIN <name>

SET-DOMAIN "“<name>"
OPEN “<name>",,, .,

LOAD <name>

LOAD (SYSTEM)FORTRAN-LIB

EXIT
QJEC IF COMPLETION-CODE > O GO TO <failure>

@JEC GO TO {success>

QCC mmmmmmmmmmmmm e mmemee e eccmmc———aee

@QJEC <success):

@JEC MESSAGE 'Compiling and loading went fine'
@QJEC END

@QJEC <(failure>:
@JEC MESSAGE 'Compiling or loading failed'
@JEC PRINT-COMPLETION-CODE

@JEC END

ND-60.151.02A

3-22

3.4.5 Use of Arithmetic to Create a Copntinuous File

This mod
remaining

@JEC
@JEC
con

@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
AJEC
acc
@JEC
@JEC
QJEC
@JEC
@JEC
@JEC
@JEC
@cc
@JEC
@JEC
@JEC
@JEC
@JEC
@JEC
écc
@JEC
@JEC
@JEC
@JEC
@JEC
@cc

e file creates a continuous file that wuses all of your
free pages if possible.

BEGIN

MESSAGE 'Mode file to create the largest possible;
tinuous file.'
DEFINE <file-name), <max>=0,<size>=0, {change>=1000
INQUIRE <file-name>

100 % The program returns here every time
{max> = ¢(size>) % we successfully create the file.

DELETE-FILE <file-name>
DELETE-FILE <file-name):DATA

CLEAR-COMPLETION-CODE
IF <change> < 2 GO TO 5000 % Create a file of size <(max>.
{size> = (size> + <change>

{change> = <change> / 2

2000
CREATE-FILE <(file-name) <size>
IF COMPLETION-CODE=0 GO TO 100 % Success!

IF COMPLETION-CODE=67B OR COMPLETION-CODE=75B GO TO 3000

PRINT-COMPLETION-CODE

MESSAGE '<(file-name> has not been created '
END

3000 % (size> was too big

CLEAR-COMPLETION-CODE

IF <{change)> < 2 GO TO 5000 % Create a file of size <(max>

{size> = (size> - {change)

<{change? = {(change) / 2

GO TO 2000

5000 % The maximum size has been found
CREATE-FILE <file-name> <max> g

MESSAGE '(file-name> is (max)> pages big '

FILE-STATISTICS <file-name>,,,,,

END

ND-60.151.02A

3-23

3.5 The JEC Library

Programs you write may also read or update the completion code. The
JEC library contains two subroutines for this purpose:

UEISECCODE(SSI-CODE, COMPL-CODE, STAT) (write operations)
UEIFECCODE (SSI-CODE, COMPL-CODE, STAT) (read operations)

Each parameter is an integer stored in 2 bytes. The parameter STAT is
the status from the monitor call performing the read and write

operations. For example, your program EXAMPLE-PROG may contain the
subroutine call to update the status code and the SSI code:

IF NUMBER = O THEN UEISECCODE(710B,71050B, STAT)

A JEC command in the mode file can then test the status code and the

SS5I code after executing your program. The following commands in the
mode file can be used:

@EXAMPLE-PROG
@JEC (IF SSI-CODE = 710B) OR (COMPL-CODE = 50B) TERMINATE

The JEC library for one-bank programs is called JEC-LIB-1B:BRF, and
for two-bank programs JEC-LIB-2B:BRF.

We suggest you use SSI-CODEs from 700B to 777B, since they will not be
used by any Norsk Data products.

ND-60.151.02A

3-24

3.6 Some Technical Details

When you type @JEC BEGIN, JEC creates two scratch files:

1) JEC-xxxxx:DATA contains all the defined variables and their

values, as well as various global information if FOR loops or
PERFORM are used.

2) JEC-xxxxx:MODE is constructed when you use your own variables in

SINTRAN commands, as program parameters, or as program names. The
variables you define are replaced with their values on this file,
and the file is started by JEC.

The 5 x's (xxxxx) stand for the address of the RT description of your
background:- program, batch processor, or TAD (Terminal Access Device).

This means that the file name will always be unique, even if you run
several mode or batch jobs simultaneously.

Both files are deleted by the statement @JEC END.

3.7 JEC Syntax

Here is a complete syntax of JEC.

You only need to use the underlined syntax. Note that THROUGH or THRU
can be used. Likewise, both GO TO and GOTO are allowed.

BEGIN

CLEAR-COMPLETION-CODE

DEFINE <identifier) % up to 40 ASCII characters long

DEFINE <identifier>=numeric literal

¢identifier)=<identifier>

END

ND-60.151.02a

3-25

¢identifier> <(identifier> FOR <identifi : o

integer intéger

[WHILE <condition)]

D-FO

GO0 TO [numeric label]

GO TO [numeric label]

TERMINATE

IF <condition> THEN THRU
PERFORM pumeric label |THROUGH| numeric label

program name / SINTRAN III command

INQUIRE <identifier> ['string of ASCII characters

and/or <identifier>']

MESSAGE ‘'ASCII string and/or <identifjer)'

MODE-INPUT

MODE-QUTPUT

TERMINATE
ON-ERROR

GO TO numeric label

ND-60.151.02a

3-26

THRU

PERFORM [numeric label [[THROUGH] numeric label]]

% Comments in the mode/batch file

ND-60.151.02A

3-27

Index

arithmetic iiiitriinrnerr s onnarassrannas 9, 22.

batch job
APPEATANCEvvveesssssanssnsssnssnnnsanssnssns 7.
how it differs from mode jobccvuuuus 7.
Starting/ending .. e cea st seli e e s e ae e 7.

BEGIN .. it it iin it s tnssnnesernsssassasssassasasanas 7.

CLEAR-COMPLETION-CODEcicnucescesnnannsnnanans 8.

COMMANGA ciw v sidvm nine aevs SeEFa e o e 6 T A S TR e R e e e 12, 13.

comment linesciiieieiiiiititearanannaannns 17.
COMPL-CODE in programs calling JECccuuvuus 23.

COMPLETION-CODE JEC variableciviinninnnnnn 12, 17.
completion codeciiiviiinnnnnnennnnannenns 2, 7, 23.

conditional testc.itirieniiaieii it nan 12.
conditional jump

I it e eief e v e aie o oo e n e e s o oS e R et SR P e 12.
ON-ERROR ' 4isi 4ol 2 erda slioia oisiaaie 40k o el 058 % e £ 8 Sa ae o o 14.

CR (Carriage REtUIR)cevievceecencnnanoannnnns 16.
data tYPeS .icaiisiseiinaiieiaaeddee s iieenesiin e 12.

DATE JEC variablec.oiivereinrennencnnnnnnnanas 12, 19.

DAY ’

JEC numeric variableciieiiiinnnainnns 12, 19.

JEC string variablet iiiiiiiirinnnnnns 12.
DEFINEiiiiiineennosoesnastonnssssnonnnssnnsnsss 9, 10, 14, 24.
difference between mode and batch 7.

DO ittt ettt e ae e e e e e AR 15, 25.
editing text in INQUIREc.virrevrrerennennannns 1

END e sisie sOmes e 3060 3G misaraiohe e st si a'ii v iaeiaseie s iials 7
END=FOR s wai e a oo s wa o el 6ae s s/ alulie o8] 60600600 8095 #0w 700 14, 15, 25.
BQUALIONS ... ittt ittt ittt e 15.
file

difference between mode and batch 7.

JEC-XXXXX:DATA ;i onneiineie i ansidssaeilis srwines 24.

JEC-XXXXX: MODE .ooiviiisia ivviavim s ais viv slelielsis sl seaine 24.
nested MOAecvvvvrrninnrnrnmanernronnnnsss 7.

reading data fromc. it ierienaens 1.
values stored incciiviiinninnararraanen 10.

210 14, 15, 25.
forbidden commands in batch jobs0.... 7.
FOR LOOPS iieis sreis sainiioie ooee i wons e s iesmaiarass o o 14.

GOTO (See GO TO) A) M ML L N, e B 6 8 12.

GO TOshisesss o mcaoe irene e wnalsieeliees 12, 15, 25.
15 13, 15, 25.
IN 0 070055 Sie mistn momsm mimsn oo mrm o Br{S, 1 878 25.
INQUIREcuareueseress s el o s s s s s 65 sla i 7 9, 10, 14, 25.
JEC :

1ibrary .. .e50 awi sive siia sananeilve e s Ee ey 23.
LS oaavi annic i vt avava e dTss e e W e SRR R R e 12.

VaZ1ablettt i et 12.
JEC-LIB-1B:BRF (JEC library file)cconun.. 23.
JEC-LIB-2B:BRF (JEC library file)ccvivivnernn 23.

JEC 100 (See also label)cvovvvivnnnrnnnnns 12.

jump
conditional (IF)viivennnencennnnnnnsnnnnns 12.

ND-60.151.02A

3-28

conditional (ON-ERROR)'ivvvmnmmroronnnnnnnnns
unconditional (GO TO)vvvvvvnneennnnss Sl wEE

label e e e e 6 o i

followed by a colon T
line that is t00 10Ngvviiiiiinnnnnnnss SRR
message o i e e A e w80 e
MODE-INPUT D i T GRS R Rk R A

MODE-QUTPUT i iveia it v wisttedy glaitn wives al'sla Veld oy o eia o o5 P eTRE

MONTH JEC variablec.viniierinnnnnnnennnnnns

nested mode file TR ERG ST v e

numeric label S e SRR R
ON-ERROR WA A AN T N B B B R M aeie

ON-ERROR GO TO <numeric-label>

ON-ERROR TERMINATEc0itiiiirerinronnnensnnnanns

operators (in JEC tests)cccvvuvvunn. Ceaes
percentage sign (for comments) e AR
PERFORM it iiiinnnnnns G R a T

Print e Y
PRINT-COMPLETION-CODE el e e e A

PRINT-DATEiiiiiitrinannnnnns R T e

PIOGTAI i sviechiaers oie soae it ilale aie &) dis o issor s e e s A
records in filesiiiiiiiiniieinienaes S5
RECOVER (SINTRAN command) VIS AN #1913
RUN-MODE JEC variablecoivirnnuunnnn I

BEMICOLOM . ivittinivvnnn v teeene e s e e s
SSI-CODE

in programs calling JECovvvrennnnnnnnns

JEC variable R T W R TR AR R P

start mode or batch jobcvviiiiinnnnnnnn e
STAT in programs calling JECocvuernnrnnss

STATUS-CODE JEC variablecvvvun... A B A

subroutine call to JECcovvunnn e

syntax s ewsaeh deE e Wee s v s R B ik
TERMINAL-INPUOT LGSR N e Y i

TERMINAL-QUTPUT e as e w18 R W W

TERMINATE o erusm oy m oo a8k @ s e S G e s

test conditional eti e A e A

THEN .iseinsimesi R O R R AR R e, i coegcm S - N -

THROUGH F e T e R Y R AN e e e e e e e s

THRU (See THROUGH) N B S B R

UEIFECCODEiivevmnnnnnnnnannns s s et

UEBISECCODE cavwwaeemmates euseie e s annailsies

unconditional jump GO TOcco.... 6T R
VALUE in JEC PrOmMPE ..o ivntee e e e e ensnnsnnnn

values stored in files G e e N R R S

variable e
NURETTC wcmmeammaimveis v e w vig o vie e s dele scaie Seaate
string O ———.

WAL T=FOR-CR ...ttt insiresnrennnnnneseeesensenssns

WHILE RV R R RS R A S TR

ND-60.151.02a

12

13

16.
16.

14 ¢ 25,

13.

7' Bl

12.
25.
12,

12214, 17.

14.

41

4 BACKUP-SYSTEM

4.1 Introduction

The BACKUP-SYSTEM offexrs a variety of facilities for copying files to
and from disks, floppy disks, and magnetic tapes. Files stored on
remote computer systems may also be copied.

The files may be copied for archiving, backup, or other purposes. To

enable communication with other computer installations, the ANSI
standard label format is available for magnetic tapes.

Entering commands to the BACKUP-SYSTEM is easy, but slightly different
from SINTRAN III. Some commands have subcommands, i.e., the parameter

sequence is not solely determined by the first command entered. Online
help information is available for every prompted command, subcommand

or parameter at all levels of communication.

The old SINTRAN III commands @COPY-USERS-FILES, QCREATE-VOLUME and

QLIST-VOLUME are now available under the BACKUP-SYSTEM. The commands
have some extended and altered facilities.

The BACKUP-SYSTEM can handle files produced under older versions of
SINTRAN III.

ND-60.151.02a

4-2

Here is a pictorial overview of the BACRUP-SYSTEM:

@BACKUP-SYSTEM ——— Ba-sy:

EXJT ————— SINTRAN
DESCRIBE-ALL-COMMANDS

— RECREATE-FILES-AND-USERS
CREATE~VOLUME
LIST-VOLUME
DELETE~VOLUME-FILES

 SERVICE-COMMAND-CUF

MULTIUSER-COPY

COPY-USERS-FILES

[|

Destination type: Destination type:

DIRECTORY |VOLUME DIRECTORY |VOLUME

dir-name | vol-name dir-name | vol-name
dev-name user-nam | dev-name
dev-unit dev-unit
file-gen file-gen

Source type: Source type:

DIRECTORY |VOLUME PARAM-FILE DIRECTORY |VOLUME PARAM-FILE

dir-name | vol-name | fil-name dir-name | vol-name | fil-name
user-nam | dev-name user-nam | dev-name

dev-unit fil-name | dev-unit
file-gen file-gen
fil-name fil-name

Manual user check:

YES
Manual selection: NO

LIST

SELECT Cc

ND-60.151.02A

4-3

 Cuf-Serv:

DUMP-BACKUP-SYSTEM <(PROG user name>

MASTER-LOG-MODE <Master log file> <(Append access?>

SET-VOLUME-ACCESS <General public access?®
DESTINATION-EXPANSION-MODE <(Automatic expansion?)

COPY-MODE <Special mode»
MODE-STANDARD-VOLUME

MANUAL-STANDARD-VOLUME

MODE-BACKUP-SYSTEM-VOLUME

USER-COPY-LOG-MODE <(Log file> <Append access?>

SET-ALLOCATE-CREATE-DEFAULT <Default answer)

SET-SINGLE-SEARCH

RESET-SINGLE-SEARCH

SET-MATCHING-MODE <Exact matching cases>
SHRINKING-MODE <(Shrinking?>

 EXIT

Selection:

FILE-NAME (File name)>
MODIFIED-SINCE-LAST-BACKUP
DESTINATION-FILE-EXISTS
FILE-ATTRIBUTE <(Attribute>
WRITTEN-DATE-INTERVAL <(First date) <Last date>
READ-DATE-INTERVAL <First date> <(Last date>
FILE-INDEX-INTERVAL <Low index> <High index>
GENERATION-INTERVAL <Low gener.> <High gener.>

AND
OR
NOT

)
(
LIST-FILES-SELECTED <Output file>
LIST-SELECTION
DELETE-LAST-KEY

 EXECUTE Manual file check Y/N

ND-60.151.02A

4-4

4.2 Compand Summary

This section gives an overview of the commands available. Three of the
commands, COPY-USERS-FILES, MULTIUSER-COPY and SERVICE-PROGRAM-CUF,

have their own set of subcommands. One of the subcommands available
under COPY-USERS-FILES and MULTIUSER-COPY has one further level of

subcommands.

A detailed description of all commands, subcommands, and parameters is
available interactively by entering the command DESCRIBE-ALL-COMMANDS.
You may also answer prompted commands or subcommands by typing HELP
(<command name>) to have information displayed.

Information about legal parameters is available by answering a prompt
with a question mark (?). Information about a particular command or

subcommand is available by terminating a command name with a question

mark, for example, COPY-USERS-FILES?.

Below is a list of all the commands and their parameters:

HELP (<{command name))
DESCRIBE-ALL-COMMANDS (<output file))

COPY-USERS-FILES (Destination type: Subcommand),
(Source type: Subcommand)

(Manual selection: Subcommand)

MULTIUSER-COPY (Destinatiqn type: Subcommand)

(Source type: Subcommand)

({Manual user check?>)

(Manual selection: Subcommand)

CREATE-VOLUME <volume name), {device name?, (<{device unit)).

DELETE-VOLUME-FILES <(volume name),<{device name),

(<¢device unit>),
(<generation of first file to delete)),
(<file name>)

LIST-VOLUME <device name>, (<device unit>),(<file name>),
(<output file>)

SERVICE-PROGRAM-CUF (CUF-SERV: Subcommands)

EXIT

The COPY-USERS-FILES command has subcommands to describe the source
and destination of the files to be copied. In this case, parentheses
do not indicate parameters with default values, but subcommands. The

subcommands will be prompted by Destination type:, Source type: and

Manual selection:. A volume is a set of files stored sequentially, for
example, on magnetic tape.

ND-60.151.02A

4-5

Destination type subcommands in the COPY-USERS-FILES command are:

DIRECTORY (<destination directory name)),
(¢destination user name))

VOLUME <destination volume name),<destination device name),

{<{destination device unit>),
(<destination file generation>)

Source type subcommands in the COPY-USERS-FILES command are:

DIRECTORY (<source directory name)), ({source user name)),

(<source file name))
VOLUME (source volume name),<source device name),

(¢source device unit)), (¢(source file generation>),

(<{source file name>)
PARAMETER-FILE <parameter file name>

Manual selection subcommands in the COPY-USERS-FILES command are:

YES

NO

LIST
SELECT (Selection: Subcommands),<manual file check?>

Selection subcommands in the SELECT alternative in manual selection

are:

FILE-NAME (<file name))
MODIFIED-SINCE-LAST-BACKUP

DESTINATION-FILES-EXIST

FILE-ATTRIBUTE (<attribute))

WRITTEN-DATE-INTERVAL (<first date>), (<last. date>)

FILE-INDEX-INTERVAL (<low file index>),(<high file index))

GENERATION-INTERVAL (<low file generation>),
(<high file generation))

AND

OR
NOT

(
)
LIST-FILES-SELECTED (<output file>)

LIST-SELECTION

DELETE-CURRENT~SELECTION

DELETE-LAST-KEY

EXECUTE

ND-60.151.02A

4-6

The MULTIUSER-COPY command is suitable for copying more than one
user's files in one operation. All user names matching the entered
source user name will be copied. Below is a list of the subcommands:

Destination type subcommands in the MULTIUSER-COPY command are:

DIRECTORY (<destination directory name))
VOLUME <destination volume name),<{destination device name),

(<destination device unit>),
(<destination file generation))

Source type subcommands in the MULTIUSER-COPY command are:

DIRECTORY (<source directory name)), ({source user name))
VOLUME <(source volume name), {(source device name),

(¢source device unit>), ({source file generation>),
<{source file name))

PARAMETER-FILE <{parameter file name>

The MULTIUSER-COPY command then has a parameter <manual user check?>

before the manual selection subcommands. These subcommands are

identical to the manual selection subcommands in the COPY-USERS-FILES

command. The default <manual user check?> is to list all matching user
names.

Special copying modes for the COPY-USERS-FILES and MULTIUSER-COPY

commands are selected by using the SERVICE-PROGRAM-CUF. The SERVICE-

PROGRAM-CUF uses the prompt Cuf-serv:. The following subcommands are
available:

HELP (<command name))
DUMP-BACKUP-SYSTEM (<bpun user name>)

MASTER-LOG-MODE (<master log file>), (<append access?>)
SET-VOLUME-ACCESS (<general public access?))

DESTINATION-EXPANSION (<automatic expansion?))
COPY-MODE <(special mode>

MODE-STANDARD-VOLUME

MANUAL-STANDARD-VOLUME

MODE-BACKUP-SYSTEM-VOLUME

USER-COPY-LOG-MODE (<log file>), (<append access?))

SET-ALLOCATE-CREATE-DEFAULT (<default answer?>)
SET-SINGLE-SEARCH

RESET-SINGLE-SEARCH

SET-MATCHING-MODE (<exact matching cases?))

SHRINKING-MODE (<shrinking?>)

EXIT

Some of these subcommands are restricted to user SYSTEM.

4.3 Simple Use of the BACKUP-SYSTEM

One or more files may be copied between disks, floppy disks, or
magnetic tape by the COPY-USERS-FILES command. On sequential storage

media 1like magnetic tapes, a volume must be created instead of a
directory. The user giving the CREATE-VOLUME command will be the owner
of the volume.

ND-60.151.02A

4.7

A floppy disk may also be used as a sequential storage medium. In that
case, a volume must be created on it. The first file of a volume may

extend over several volumes. You will be asked to enter a new volume
when large files make this necessary, or when there are more files to

be copied when using the COPY-USERS-FILES command.

The following is an example of how files can be copied from a disk to
a volume on a floppy disk. The two files CHAPTER-ONE:TEXT and CHAPTER-

TWO:TEXT are copied to the volume EXVOL. User P-HANSEN has default

directory PACK-TWO. The prompts include the default values between
slashes ('....").

OBACKUP-SYSTEM «~
Ba-sy: CREATE-VOLUME

Volume name: EXVOL

Device name: EL%?BX:DIfiE:l o

Device unit: Q

Ba-sy: COPY-USERS-FILES +J
Destination type: VOLUME A

Destination volume name: EXVOL *J

Destination device name: = -1
Destination device unit: Q

Destination file generation'i': 1 +J

Source type: DIRECTORY

Source directory name 'PACK-TWO': .

Source user name 'P-HANSEN':

Souxce file name 'l:*iIEXI *J

Manual selection: YES

FILE 4: (PACK-TWO:P-HANSEN)CHAPTER-ONE:TEXT; 1

INDEXED FILE 3 PAGES MODIFIED 29/08-83 (YES/NO?) YES *J

FILE 5: (PACK-TWO:P-HANSEN)CHAPTER-TWO:TEXT; !

INDEXED FILE 7 PAGES MODIFIED 14/10-83 (YES/NO?) YES J

FILE 9: (PACK-TWO:P-HANSEN)MEMO:TEXT; 1

INDEXED FILE 1 PAGE. MODIFIED 17/03-83 (YES/NO?) NO .

Ba-sy: EXIT +J

The copied files will have the same names on the volume as on the

source directory. The copied files.can be copied back to the disk by

using EXVOL as source and PACK-TWO as destination.

If new backup copies of the same files will be stored on the volume

later, you can use the <destination file generation) parameter. For
example, the file generations can be numbered consecutively. This will

help you distinguish between different generations of the same file
later on. Alternatively, you could use a date identification, for
example, 1125 meaning November 25th.

ND-60.151.02A

4-8

The SINTRAN III standard device names are FLOPPY-DISC-1, FLOPPY-DISC-

2, MAG-TAPE-1, MAG-TAPE-2, MAG-TAPE-3, and MAG-TAPE-4. The device MAG-

TAPE-1 unit O must have the peripheral file name MAG-TAPE-O, unit 1

must have the name MAG-TAPE-1, etc. To use a volume on a floppy disk,

the FLOPPY-DISC-1, unit O, must have the name FLOPPY-1, unit 1 the

name FLOPPY-2, etc.

Another example shows how files can be copied from a disk to a floppy
disk. A directory is first created and entered. Then a user with a 616

page user area is created on the directory. Note that some floppy disk
systems only allow 148 pages to be used.

CREATE-DIRECTORY PACKUP-84-52, FLOPRY-DISC-1,0, + acREMIE k- i
SWM-MHME AL SR R BUNARN i i o
@BACKUP-SYSTEM

Ba-sy: COPY-USERS-FILES «)
Destination type: DIRECTORY *J

Destination directory name'PACK-TWO': BACKUP-84-52 *J

Destination user name'P-HANSEN':

Source type: DIRECTORY
Source directory name PACK-TWO': *J

Source file name":‘-]-J

Manual selection: NQ

Ba-sy: EXIT
@RELEASE-DIRECTORY BACKUP-84-52 +!

A1l files belonging to user P-HANSEN will be copied to the floppy
disk. When the files are to be retrieved from the backup copy later,

only the command @ENTER-DIRECTORY should be given before the BACKUP-

SYSTEM is entered. Note that the source and destination should be
interchanged.

Version E of the BACKUP-SYSTEM lets you make a sophisticated selection
of source files, and it allows you to copy several users in _one

command.

You may, for instance, select those files which have been written to
in the last week. You may also define logical combinations of simple
selections.

ND-60.151.023

49

For instance, the selection

@BACKUP-SYSTEM I
Ba-sy: COPY-USERS-FILES +

Manual selection: SELECT o

Selection: WRITTEN:DATE;INTERVAL .
First date: ?5.]2,3

Last date:
Selection: AND NOT FYLE-NAME :BRF o
Selection: EXECUTE

will cause all the files written to since December 3, 1984 to be
copied, excluding all :BRF files. Since no last date was specified,
the last date is today (actually, it is to infinity).

This may be a useful selection when one user is taking a backup of

his/her files.

Note that if any files have suffixes starting with :BRF, such as
:BRFA, :BRFB, :BRFZ; :BRF1, etc., they too will not be copied. You can
be sure that only exact matches are copied/not copied as follows:

Ba-sy: SERVICE-PROGRAM-CUE +J
Cuf-serv: SEI-MATCHING-MODE |

Exact matching cases: ALL .
Cuf-serv: EXIT J

Ba-sy: COPY-USERS-FILES
(continue as above)

This will copy files with the suffix :BRFA, :BRFB, etc., but not :BRF.

The first time a user takes a personal backup of his/her files, s/he

should avoid selecting WRITTEN-DATE-INTERVAL. Instead, s/he should

copy all the files. Subsequent backups need only copy files that have

been written to since the last backup.

ND-60.151.02A

4-10

4.4 Detailed Description of Commands

The BACKUP-SYSTEM can be entered by typing @BACKUP-SYSTEM. You return
to SINTRAN III by giving the EXIT command. The BACKUP-SYSTEM uses the

prompt BA-SY:.

Files may be copied to and from remote computer systems, provided
COSMOS and SINTRAN III version I or later are available. You use

information about the remote system as a prefix to the name of a file,
directory, or mass storage device. Remote system information consists

of the following parts:

<{SYSTEM> ({DIRECTORY>: <USER> (<PASSWORD > : {PROJECTPASSWORD))) .

Below is an example of complete remote system information:

RONALD (PACK-~ONE : MARY (XYZ : ACCOUNTS)) .

Most parts of the identification have default values. For example a
floppy disk device on a remote computer system RONALD is identified by
RONALD.FLOPPY-DISC-1. Further information is found in the manual

COSMOS User Guide (ND-60.163).

Several commands may be written on the same line. When these commands

are processed, the BACKUP-SYSTEM will trace them by outputting the

prompts, commands, and parameters.

4.4.1 Interactive Help Information

Detailed information about all commands, subcommands, and parameters
is available interactively by the command:

DESCRIBE-ALL-COMMANDS (<output file))

The default <output file> is your terminal. The output is quite long,
and you may want to use a mass storage file or a printer as the

C¢output file>.

Entering HELP, a question mark (?), or <ESCAPE> is useful in many
situations. HELP (<command name)) is used to list commands or a subset

of commands. HELP does the same for prompted subcommands also.

A question mark (?) given as the answer to a prompted command,
subcommand, or parameter will display information. A question mark

following an ambiquous command will list the commands matching the

given command abbreviation. Information about a particular command or

subcommand is displayed by entering the command name followed by a

question mark.

when information requested by HELP or ? has been displayed, you will
once more be prompted for the command, subcommand, or parameter.

(ESCAPE> can be used to cancel a command or subcommand. If not given

as an answer to a prompted subcommand or parameter, <ESCAPE)> will

return you to SINTRAN III.

ND-60.151.02A

4-11

4.4.2 Handling Volumes on Magnetic Tapes and Floppy Disks

A volume must be created on a sequential storage medium before files
can be stored on it. Files stored on a volume may also be 1listed or
deleted. The command to create a new volume is:

CREATE-VOLUME <{volume name),<{device name), (<device unit))

The <(volume name)> has a maximum of 3ix characters. The <(device name)
and <device unit> specify where the floppy disk is inserted, or where
the magnetic tape is mounted. The (device name) may be on a remote
system, for example, RONALD(FLOPPY-USER) FLOPPY-DISC-1. The <(device

units> are numbered from 0-3. If only one device unit exists, it is

number O.

After this command, files already on the floppy disk or magnetic tape
specified will be unavailable. Only one volume may exist on a floppy

disk or magnetic tape. A volume can contain files from many users. The
first file on a volume may extend over several volumes.

Volumes will be written in the BACKUP-SYSTEM's default format unless
the SERVICE-PROGRAM-CUF is used. All available volume formats produced

by the BACKUP-SYSTEM will automatically be detected and handled
properly when read. This also applies to volumes produced by the

@COPY~USERS-FILES command in SINTRAN III version F and older versions.

The file names on a volume can be output by the command:

LIST~VOLUME <(device name), (<device unit>), (<(file name>),
(<output file>)

All file names matching the <(file name) parameter will be output. No
directory name can be used in the file name. The default <output file)
is your terminal. The <(device name> and <(device unit> mnust describe
where the volume is.

Files stored on a volume can be deleted. The command below will delete
the specified file and the files following it.

DELETE-VOLUME-FILES <{volume name),<{device name),
(<¢device unit)),

(<generation of first file to delete)),

(¢file name>)

Files cannot be deleted randomly, because a volume is a sequential set
of files. The default value of <generation of first file to delete) is

all file generations. Manual check is mandatory, i.e., you have to

confirm that you want to delete the files by entering YES or NO from
your terminal.

ND-60.151.02a

4.4.3 Copving a User's Files

One or more files can be copied from one mass storage medium to
another. The command to copy one user's files is:

COPY-USERS-FILES (Destination type: Subcommand),

(Source type: Subcommand),

(Manual selection: Subcommand)

The destination type may be specified as DIRECTORY or VOLUME. The
source type may be specified as DIRECTORY, VOLUME, or PARAMETER-FILE.
The manual selection may be specified as YES, NO, LIST or SELECT. To

copy files to a directory on a disk or floppy disk, you should use the
subcommand:

DIRECTORY (<destination directory name>),
(<destination user name))

The <(destination directory name> and <destination user name)> must
exist on a disk or floppy disk. The default values are your own user

name and your default directory. A remote directory name, for example,

RONALD.PACK-TWO, may be specified. The default user entered on the
remote system is the destination user.

To copy files to a volume on a floppy disk or magnetic tape, you can
use the destination type subcommand:

VOLUME <destination volume name),(destination device name>,

{destination device unit), (<{destination file generation))

The <destination device name> and <destination device unit) describe
where the magnetic tape is mounted or where the floppy disk is
inserted. The <(destination device name> may be remote. The
<destination file generation> can be used to give the copied files a
generation name of up to four characters. The file generation allows a
set of files to be stored on the same volume more than once.

To copy files from a directory to any of the described destinations,
you can use the source type subcommand:

DIRECTORY (<source directory name)), ({source user name)),
(<source file name))

The <source directory name> may be remote. The default user entered on
the remote system is the source user. The <{source user name) cannot be
ambiguous. More than one user's files can be copied in one operation
by another command, called MULTIUSER-COPY.

ND-60.151.024

4-13

To copy files to a volume, you can use the source type subcommand:

VOLUME <source volume name),<source device name),

<{source device unit), (¢(source file generation)),
(<source file name>)

The <(source device name> may be remote. The default (<{source file
generation)) is all generations.

A third source type subcommand can be used if the names of the files
to be copied are stored on a file. This makes it possible to copy

different users' files in one operation. The subcommand to use is:

PARAMETER-FILE <parameter file name)

The <parameter file name)» must contain a list of file names or user
names. The default file type is :SYMB. Only words in the parameter

file which contain a left parenthesis, “(", are treated as file names.

The other words are ignored, i.e., the output from the SINTRAN III

command @LIST-FILES will be accepted. The files listed must reside on

directories. The command has the same function as the COPY-USERS-FILES
command with directory as source type.

If the parameter file includes user names, all files belonging to

these users will be copied. The formats of strings accepted as user
names are the ones identical to the output from the SINTRAN III

command QLIST-USERS. That is, the strings starting with space, colon,
space, directory name:user name, for example:

: PACK-TWO:FLOPPY-USER

The COPY-USERS-FILES command accesses files by the normal SINTRAN III
rules. However, user SYSTEM may access any user's files with the same

access rights as the file owner, allowing files to be copied on behalf
of the userx.

You can select the files to be copied. To make the system list each
file and wait for you to confirm copying, do this:

Ba-sy: COPY-USERS-FILES «!
. Destination and source type ...

Manual Selection? YES

Then you have to enter YES or NO for each file name 1listed on your
terminal.

ND-60.151.02A

414

To copy all files without listing or manual confirmation, do the
following:

Ba-sy: COPY-USERS-FILES +l
. Destination and source type ...

Manual Selection? NO

To copy all files and 1list their names, but without manual
confirmation, do this:

Manual Selection? LIST N

You can make advanced selections as follows:

Ba-sy: COPY-USERS-FILES +/
. Destination and source type ...

Manual Selection? SELECT J
Selection: (You make your selections) .

Selection: EXECUTE «J
Manual file check? _

Various subcommands are available for making advanced selection of
files in addition to the selections specified under source type. For
example, you may copy all not allocated files modified since the last
backup copy was taken.

The selection prompts allow you to specify various selection keys, and
to use the logical operators AND, OR, NOT, and parentheses between the
selection keys. The selection prompts allow you to specify a file name
as a selection key by the command:

FILE-NAME (<file name))

All files matching both the source type specification and the given
¢file name> are selected. No directory name is accepted.

To select only the files modified since the last backup was taken,
user SYSTEM can use the command:

MODIFIED-SINCE-LAST-BACKUP

The command should be used with a log file to keep track of the backup
copies. Log files are described in the SERVICE-PROGRAM-CUF's
subcommand MASTER-LOG-MODE. The source type should be directory.

You can select a copying mode that only copies files if the
destination file exists in advance. The destination type should be
directory. The command to use is:

DESTINATION-FILES-EXIST

ND-60.151.02a

4-15

File attributes are indexed, continuous, allqcated, peripheral,
spooling, terminal, or temporary. You may select files by attributes.
The default attribute is indexed. Use the command:

FILE-ATTRIBUTE (<attribute))

You may select files modified in a specified time frame. If the source
type is directory, a log file is required. If the source type is
volume, the parameter <last date> is the date the file was copied to
the volume. The command to use is:

WRITTEN-DATE-INTERVAL (<first date>), (<(last date))

The dates are entered as yy.mm.dd, for example, 84.12.31. The default

is from the beginning of time to the end of time. The interval
includes the specified dates.

You may select files that have been read in a specified time frame:

READ-DATE-INTERVAL (<{(first date>), (<last date)>)

See WRITTEN-DATE-INTERVAL above.

Each file belonging to a user on a directory has an index number. The
file index number is the number output in front of each file name in
the SINTRAN III command QLIST-FILES. To select files by file index
numbers, you can use the command:

FILE-INDEX-INTERVAL (<low file index>),(<high file index>)

The default <low file index> is 0, and the default <high file index)
is the maximum index number used.

The interval includes the specified index numbers. On a volume, the
sequence number of the file will be used as the file index.

File generations can be created on volumes. To copy an interval of
source file generations, you can use the command:

GENERATION-INTERVAL (<low file generation>),
(<high file generation))

The parameters have a maximum of four characters. The first parameter
has no limit as its default value. The second parameter has no limit

as its default value if the file generations are numeric. Otherwise,
the low file generation is the default value. The interval includes

the specified file generations.

ND-60.151.02A

4-16

The selections provided by the described commands can be combined by
using the logical operators AND, OR, NOT, and parentheses. A couple of
examples show how to use the logical operators:

Selection: EILEi?““B—iD“I“ A

Selection: AND

Selection: [il

Selection: EILE-ATTRIBUTE INDEXED .
Selection: QR

Selection: EIE}:AIIRIBHIE.QQNIINHQH& o
Selection:)

Each line is terminated by carriage return, and "Selection:® will
appear again. Selections may also be combined on one line, for
example:

Selection: NQT (FILE-NAME ;TEXT AND FILE-INDEX-NUMBER 0,10) ~

If you give two logical operators adjacent to each other in a
meaningless sequence, for example, AND OR, the last will overrule the
first. ANDs will be evaluated before ORs:

Selection: FILE-NAME A OR FILE-NAME B-AND FILE-NAME C .

means

Selection: FILE-NAME A OR (FILE-NAME B AND FILE-NAME C) .

and not

Selection: (EILE-NAME A OR FILE-NAME B) AND FILE-NAME C .

When you have specified selections, you can get a list of all the
files affected. Your terminal is the default <output file>. The
command to use is:

LIST-FILES-SELECTED (<output file))

You may also have all current selection keys listed on the terminal.
The command to use is:

LIST-SELECTION

You may delete the complete selection or the last specified selection
only. The commands to use are:

DELETE-CURRENT-SELECTION
DELETE-LAST-KEY

ND-60.151.022

4-17

When you have completed the selection, you can stop the "Selection:*

prompts by typing the command:

EXECUTE

You will then be prompted for <manual file check?> before the selected

files are copied.

The parameter <manual file check?> must be answered by YES, NO or
LIST. YES will cause a manual check of all files. NO and LIST will
copy all files without asking for confirmation. LIST will output the
names of all files copied.

The BACKUP-SYSTEM tries to set maximum access rights to the

destination files before copying if the destination is not remote.

That is, you cannot protect destination files against yourself or user
SYSTEM by setting no write access.

Public users can only access their own volumes, or volumes owned by
FLOPPY-USER. User SYSTEM, however, has both read and write access to

all volumes. The BACKUP-SYSTEM may also be dumped in a copying mode
where all users have access to any other user's volumes.

The <(destination user name) may differ from the <source user name’
when copying between directories. If the <destination user name>)
differs from the original owner of the file on a source volume, you

will be asked which user should receive the copy. A new user name may

also be specified. '

When copying between directories, the <destination file name)> may
already exist. In that case, the source and destination dates for LAST

OPENED FOR WRITE are checked. If the destination was written to later
than the source, you will be asked whether you are copying in the

right direction.

The user must ensure that enough space is available for all files to
be copied. User SYSTEM may select a copying mode where the destination

user's space will be expanded if necessary. All of the necessary file

names will be created automatically. Only the default directory of a

user will be accessed when no explicit directory name is given. Any
directory may be accessed by stating its name explicitly.

The COPY-USER-FILES command will also copy the contents of the fields
FILE ACCESS, LAST DATE OPENED FOR READ, LAST DATE OPENED FOR WRITE,

CREATION DATE, and MAX BYTE POINTER. For user SYSTEM and for users
with directory access to the source, the LAST DATE OPENED FOR READ and
number of times OPENED will not be updated on the source file.

ND-60.151.02A

4-18

4.4.4 Copving Seyeral Users' Files

The command COPY-USERS-FILES copies several users' files in one
operation by specifying each file name or user name in a parameter
file. More advanced copying facilities are offered by the command:

MULTIUSER-COPY (Destination type: Subcommands)
(Source type: Subcommands)

(<Manual user check?>)

(Manual selection: ‘Subcommands)

The subcommands are quite similar to those of the COPY-USERS-FILES
commands, but lack the parameters related to destination user names.
This section will only explain subcommands and parameters which differ
from those of the COPY-USERS~FILES command.

The destination type subcommands in the MULTIUSER-COPY command are
DIRECTORY or VOLUME. The subcommand DIRECTORY has only <destination
directory name> as a parameter. The subcommand is restricted to user
SYSTEM.

The users specified as source may not always exist on the destination
directory. If you use the DESTINATION-EXPANSION command in the
SERVICE-PROGRAM-CUF, the users will be created automatically. VOLUME
is identical to that of COPY-USERS-FILES.

The source type subcommands in the MULTIUSER-COPY command are
DIRECTORY, VOLUME or PARAMETER-FILE. The subcommand DIRECTORY has
{source directory name) and <{source user name) as its only parameters.
The subcommand PARAMETER-FILE should contain file names or user names
preceded by the string *:*, i.e., space, colon, space, and possibly
directory names. For example, the following will be recognized as a
user name:

XX : PACK-TWO:P-HANSEN

The output from the SINTRAN III command QLIST-USERS will be accepted
a4s a parameter file. To check which user's files will be copied, you
have the parameter <manual user check?>. Possible answers are YES, NO
and LIST. LIST is the default value.

The other subcommands and parameters in MULTIUSER-COPY are identical
to those of COPY-USERS-FILES.

Note:

Only user SYSTEM may restore the source object entries unmodified.
S/he does that by using the selection MODIFIED-SINCE-LAST-BACKUP, that
is taking incremental backup. Otherwise, the open count and the date
last read will be updated on the source.

ND-60.151.02a

4-19

4.4.5 Selecting Special Copying Modes

Various options for the commands COPY-USERS-FILES and MULTIUSER-COPY
can be selected. To do this you must first enter:

SERVICE-PROGRAM-CUF (Cuf-serv: Subcommands)

A set of subcommands is available. The prompt used is CUF-SERV:. You
return to the BACKUP-SYSTEM by the EXIT command. HELP, ?, and <ESCAPE)

are available as before.

You change how the BACKUP-SYSTEM works by using different subcommands
to be described later. User SYSTEM can make permanent modifications in

the BACKUP-SYSTEM. The subcommand to use is:

DUMP-BACKUP-SYSTEM (<prog user name))

The BACKUP-SYSTEM will be dumped on the file BACKUP-X:PROG which must

exist in advance. ®X" stands for the version. The (prog user name)

must specify the user name where system :PROG files are normally
stored. The user may be a remote user. Default is user SYSTEM. The

@DUMP-PROGRAM-REENTRANT command ought to be given afterwards.

The information on a volume may be in different formats. A volume may

also contain files in a mixture of formats. The three following
commands will select copying formats. They will only affect output to

magnetic tape. Some SINTRAN III file system information is copied
together with the files in all formats.

MODE-STANDARD-VOLUME
MANUAL-STANDARD-VOLUME
MODE-BACKUP-SYSTEM-VOLUME

The subcommand MODE-STANDARD-VOLUME selects the ANSI defined format. A

hole in a file is a page not written to and not allocated space. Holes
will be copied as empty pages. If MANUAL-STANDARD-VOLUME is used,
copying of files with holes must be confirmed from your terminal.

The BACRUP-SYSTEM-VOLUME format will mark holes by a label instead of

copying empty pages. This format can only be used with files to be
handled by the BACKUP-SYSTEM. The BACKUP-SYSTEM is initially in this

mode.

User SYSTEM may allow public users other than the owner to access a
volume. This is done by the subcommand below, followed by the dumping

of the BACKUP-SYSTEM to make the modification permanent. The parameter
should be YES or NO. The default is NO.

SET-VOLUME-ACCESS (<general public access?>)

ND-60.151.02A

4-20

Continuous and allocated files may cause problems when copied. Such

files cannot always be allocated in the way they are described by the
file system information on the source directory or volume. In that

case, you will be asked if the files should be stored in another way.
If you answer YES, the following rules apply:

1) Allocated source files will be created as continuous files if
possible, or else they will be created as indexed files.

2) continuous files will be created as indexed files.

If you answer NO, files will not be copied. To set a default answer to

all such questions, you can use the subcommand:

SET-ALLOCATE-CREATE-DEFAULT (<default answer>)

The original terminal answer mode can be reset by using this command
with <(RETURNY> as <(default answer>. This facility is useful when

copying many files in mode and batch jobs.

The normal search algorithm on a volume goes from beginning to end.
All files matching the given <(source file name) are copied. A special
single search mode for volumes on maghetic tape may be switched on and

off by the commands:

SET-SINGLE-SEARCH

RESET-SINGLE-SEARCH

The single search mode operates in the same way as the normal search,
until one file or a group of consecutive files has been copied.
Copying terminates at '‘the first nonmatching file name. The search
begins from wherever the magnetic tape is positioned. The tape is not

rewound while in single search mode.

The single search mode makes it possible to copy a number of files
with one pass through a tape. In order to achieve this, the files must

be selected in the same order as they appear on the volume. Care must

be taken when copying files to tape, if a single search is to

successfully gather all the files a user wishes to retrieve.

For example, you may use the subsystem FILE-MANAGER. The FILE-MANAGER
can produce a parameter file where the file names are sorted in

different orders, for example, alphabetic. Files will then be stored
on the volume in this order.

Information for all files copied by the BACKUP-SYSTEM can be stored on
a log file. The information includes source, destination, date of

copying, and which files are copied. The subcommands to use are:

MASTER-LOG-MODE <master log file), (<append access?))

USER~COPY~-LOG-MODE <log file), (<append access?>)

The master log mode is for user SYSTEM only. The user log mode is for

public users only. Both commands must specify a log file where the
information should be stored. The log modes are reset by giving

{RETURN> as the log file.

ND-60.151.02A

4-21

The <append access?> question is answered by YES or NO. YES will cause
the log information to be appended to the log file, instead of
overwriting the old information on the file. YES is default. If the
BACKUP-SYSTEM is dumped in the master log mode, the <master log file>
must always be present when copying as user SYSTEM.

A <(source file name> will normally mean all matching file names. A
subcommand can be used to restrict this to identical file names only.
The subcommand to demand exact matching in different cases is:

SET-MATCHING-MODE (<exact matching cases?>)

The legal values for (exact matching cases> are ALL, PAR, or NO. PAR

will only demand exact matching of file names in parameter files. The
default is .exact matching in NO cases. If an empty file name or file

type is searched for, all files will be accepted as in the normal

matching mode.

The destination user area may sSometimes be too small to hold the
copied files. User SYSTEM may use a command to expand the user areas

automatically:

DESTINATION-EXPANSION-MODE (<automatic expansion?>)

The answers are YES or NO. NO is default. This command affects output
to directories only. When you use the MULTIUSER-COPY command, the

destination users may not exist in advance. If the automatic expansion
is selected, the user names will be created. The BACKUP-SYSTEM can be

dumped to make this modification permanent.

A file may occupy more pages than needed to contain its data, for
example, after text editing. Indexed files in destination directories
may be shrank so that they do not exceed the MAX BYTE POINTER of the

source file. The subcommand to use is:

SHRINKING~MODE (<shrinking?>)

The answer to the parameter should be YES or NO. The default is NO.

Care should be exercised, since the MAX BYTE POINTER does not always
give the last valuable byte of a source file.

ND-60.151.02A

4-22

There is a new subcommand under the SERVICE-PROGRAM-CUF command:

COPY-MODE <Special mode>)

It lets you set one of the following special modes:

COPY:

ARCHIVE:

OVERWRITE- INCREMENTAL:

NO-OVERWRITE:

CONTINUOUS-DESTINATION:

INDEXED-DESTINATION:

The object entries of the files, that
is, opened dates, access rights, etc.,
are not copied.

The source files or their pages are
deleted after copying.

The existing versions of the
destination files should be
overwritten.

Even if versions of the destination
files exist, new file versions will be
created.

The destination files will be
continuous even if the source files

are not.

The destination files will be indexed
even if the source files are not.

A more detailed description is obtained by pressing ? when you receive
the prompt "Special mode: *.

ND-60.151.02A

4-23

An important development in version F is the possibility of archiving

files that have not been used for a long time. Archiving means copying
the source files to the backup disk, and deleting them or their pages
on the source disk. That will save space on the source disk.

For instance, if you wish to archive files not used since 83.12.31,
you may use the new subcommand COPY-MODE under the SERVICE-PROGRAM-CUF
command to set the BACRUP-SYSTEM in the ARCHIVE mode.

@BACKUP-SYSTEM
Ba-sy: SERVICE-PROGRAM-CUF +

Cuf-serv: USER-COPY-LOG-MODE .
Log file '' ARCHI!EDZEILES‘LIEI
Append access 'YES'

Cuf-serv: QQEI_MQDE

Special mode '' : ARCHIVE o
HAVE YOU SUFFICIENT BACKUP OF THE FILES TO ARCHIVE? YES *J

Cuf-serv: EXIT

Ba-sy: COPY-USERS-FILES .

Manual selection: SELECT il

Selection: HBIIIEN_DAIB_INEEBMAL
First date '’

Last date ''

Selection: AHD_READEFAIE:IHIEBMAL J
First date J

Last date '' QEIJZJQJ
Selection:

* Note that the first date limit for read is O when not specified.

That will select the proper files to archive. All files last written

to in the years 1975 to 1983 and read before 1984 (or never read) will
be archived.

When you use the COPY-USERS-FILES command, as in this example, the
source files will be deleted.

To have delete access to the files, one should normally be logged in
as the source user. To have write access to the destination files, one

should normally be entered as the destination user. Thus, the source

and destination users should be the same. They should be on different

directories, or the destination type should be VOLUME if the
destination is a floppy disk or tape.

When user SYSTEM uses the MULTIUSER-COPY command to archive, the pages
of the source files will be completely deleted, but the file names

will remain. Thus the owner of the files will be able to see when the
files where archived by using the @FILE-STATISTICS command.

ND-60.151.02a

424

4.4.6 Recreating Files and Users

There is a new command:

RECREATE-FILES-AND-USERS <destination directory name),
(parameter file name>, <manual user check?>,

(manual file check>

You can use it to create files and users listed in a parameter file.

Public users may not create users. A parameter file cannot be used
when copying from a volume. You may instead create all the destination

files on empty users, and copy the volume by selecting DESTINATION-

FILES-EXIST. Only those files for which the destination files already

exist will then be copied.

Suppose you have a 1list of files to be copied from a volume to an
empty user. This list is placed on a file called RECOVER-FILES:LIST.
Then the BACKUP-SYSTEM is used as follows:

Ba-sy: RECREATE-FILES-AND-USERS .

Parameter file name: RECOVER-FILES:LIST .

Ba-sy: COPY-USERS-FILES
Destination type: DIR .

Source type: VOLUME .

Manual selection: SELECT .

Selection: DESTINATION-FILES-EXIST .
Selection: EXECUTE

ND-60.151.02A

4-25

4.5 Some Important Changes in the PACKUP-SYSTEM

The default destination directory is now the directory of the

destination user given. Likewise, the default source directory is now
the default directory of the source user given.

Check all old mode files so that this new version of the BACKUP~SYSTEM
will not access the wrong directories!

4.6 Label Formats on Magnetic Tape Volumes

Implementation of magnetic tape volumes is based upon the American

National Standard Magnetic Tape Labels for Information Interchange
X3.27-1969.

However, some deviations from the standard have been made. Deviations
are marked by a dollar sign ($) in the explanation.

General rules:

- The general tape layout is as follows:

VOL1 HDR1 HDR2 UHL1*-filel-*EOF1

EOF1
HDR1 HDR2 UHL1-file2- * | OR | **

Eov1

where VOL1,HDR1,HDR2,UHL1, EOF1, and EOV1 are tape labels,
and asterisks are tape marks.

- All labels are 0 character blocks.

- All information in the labels is recorded as ASCII characters
with the parity bit cleared. All unused character positions
will contain spaces.

$ The user option field (3) in the label UHL1 contains binary

information.

- File data 1is recorded as 204 character blocks. These blocks
may contain any character (0-255).

ND-60.151.02A

4-26

$$$$ Deviation From Standard

- Only the first file on a volume may be extended to other

Example:

volumes.

A nonstandard label, HOLE, has been introduced. This 1label
can be inserted between the file data blocks. The important

information in this label is a 32-bit binary number contained
in characters 77-80 of the label. The BACRUP-SYSTEM uses this

number in the following way:

Each 2048 character block on the tape corresponds to a 1024
16-bit word block on the disk, referred to as a page. The

pages are numbered O, 1, 2, 3, etc., to establish a logical

sequence of pages. If +the 1logical sequences are not
continuous, then a HOLE label defines where the next block on
the magnetic tape logically belongs in the disk file. In

order to represent a logical HOLE on the magnetic tape, the

HOLE 1label will be inserted in front of the next block,
stating this block's logical number. Blocks of 2048

characters without a HOLE label are expected to belong to a

continuous logical area, and will cause the 1logical block

number to be incremented by one.

log. block no: O 5 6 7 100 101 120

data HOLE data data data HOLE data data HOLE data

(5) (100) (120)

where data represents file data blocks of 204 characters, and HOLEs

are labels. The contents of the HOLE labels are shown in parentheses.

ND-60.151.02a

4-27

VOLUME HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3
4
5-10
1
12-31
32-37
38-51
52-79
80

label identifier
label number
volume serial number

accessibility
(not used)
(not used)

owner identification
(not used)
label standard level C

O
A
R
N
N

B

W

=

A
O

2
N

W

14

VoL
1 .

(volume name) $

(space)
(spaces)

(spaces)
(name of owner) $
(spaces)

(spaces)

$ field 3 and 7

- These fields may contain any alphanumeric characters. If the
field is not fully filled with characters, the last character

in the string is an apostrophe. This character is used to .
mark the end of the string and is not part of the name.
unused part of such a field is filled with spaces.

ND-60.151.02A

4-28

FIRST FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 HDR
4 2 label number 1 1

5-21 3 file identifier 17 (file name) $
22-27 4 set identification 6 (file type) $
28-31 5 file section number 4 (0001-0002-nnnn)
32-35 6 file sequence number 4 (0001-0002-nnnn)

36-39 7 generation number 4 (file generation) $

40-41 8 generation version number 2 (version number) $

42-47 9 creation date 6 (ANSI standard date) $

48-53 10 expiration date 6 (spaces) $
54 11 accessibility 1 (space)
55-60 12 block count 6 000000
61-73 13 system code 13 (spaces)

74-80 14 (not used) 7 (spaces)

$ field 3:

- An apostrophe is used to mark the end of the string. This
character is not a part of the name. The unused part of a
field is filled with spaces.

$ field 4:

-~ Only the first four characters are used in this field. If it
is shorter than four characters, an apostrophe is used to
mark the end of the string.

$ field 7:

- Any alphanumeric characters. The field is left justified, and
an apostrophe is used to mark the end of the string. The

character code in this field identifies a backup generation
of files.

$ field 8:

- This field contains numbers from 1 to 99. The characters are
left justified, and one digit numbers will have an apostrophe

in the right character position. This number identifies
different versions of files with identical file names (fields .

3 and 4), and each version must be treated as an individual
file.

$ fields 9 and 10:

- Creation and expiration dates are not used, and the fields
will contain spaces.

ND-60.151.02A

4-29

SECOND FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 HDR

4 2 label numbexr 1 2
5 3 record format 1 U

6-10 4 block length 5 (no. of characters)
11-15 5 record length 5 (spaces)
16-50 6 reserved (name of owner) $

for operating systems 35 & MAX BYTE POINTER)
51-52 7 (not used) 2 (spaces)
53-80 8 (not used) 2 (spaces)

$ field o:

- Up to 16 alphanumeric characters, starting from position 16,
identifying the owner of this file. If the name is shorter
than

name.
16 characters, an apostrophe is used to mark the end of

- 32-41 contains the MAX BYTE POINTER of the file.

END OF FILE LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 EOF
4" 2 label number 1 1
5-54 3-11 (same as HDR1) 50 (corresponds to HDR1)

55-60 12 block count 6 (number of blocks)
61-80 13-14 (not used) 20 (spaces)

END OF VOLUME LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 EOV
4-80 2-14 same as EOF1 77 (corresponds to EOF1)

ND-60.151.02A

4-30

USER LABEL

POSITION FIELD - NAME LENGTH CONTENTS

1-3 1 label identifier 3 UHL

4 2 label number 1 1

5-80 3 user option 76 (file information) $

Explanation of field 3

- $ This field differs from the ANSI label standard. The field
contains binary information for the ND BACKUP-SYSTEM and

SINTRAN III file system.

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1-2 5-6 version number of this file (1-255)
3-4 7-8 total number of versions (1-255)
5-8 9-12 file system standard creation date
9-12 13-16 not used

13-76 17-80 SINTRAN III file system object entry

NONSTANDARD 'HOLE' LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 HOL
4 2 label number 1 E

5-80 3 user option 76 (information) $

Explanation of field 3:

Field 3:

POSITION CONTENTS
WITHIN FIELD WITHIN LABEL

1-72 5-76 THIS BLOCK IS NOT PART OF THE DATA!
CHARACTERS 77-80 CONTAIN A NUMBER.

73-76 77-80 (32-bit binary number stating the logical
block number of the following data block)

ND-60.151.02A

5.1

5-1

LOOK-FILE

LOOK-FILE is a subsystem which enables a user to print data, modify data, and

browse through the data contained in a file. The contents of different files may

also be compared. The data contained in a file may be output as bytes, words or

ASCIl characters. Bytes and word may be output as octal, decimal, or

hexadecimal values.

COMMAND SUMMARY

The available commands with their parameters are:

EXPLAIN-COMMAND <command >

HELP { <command >)

OPEN <file name> ,(<block size >), <access>)

CLOSE

DUMP (<block number>},(<from word number>),(<number of words >
BYTE-DUMP (<block number>),(<from word number>),

{ <number of words>)

NEXT

PREVIOUS

SET-BLOCK-CONTENTS (<block number>), <value >

ZERO (<block number>)

COMPARE <file name> (<first block number>),{ <number of blocks>)

DEFINE-PRINT-FILE <file name>

ON-OFF-PRINTER (< 1=o0n/0=o0ff>)

MOVE <from file name>, <number of blocks to move >,

<first block in source file >, <first block in dest. file>

SET-PRINT-FORMAT (< B =octal/H =hexadecimal/D = decimal >

PATCH (<block number >),{ <word number>)

SEARCH (<first block number>),(<number of blocks >)

CALCULATE <operand>, <operator>,<operand >

PROGRAM-INFORMATION
PROGRAM-STATUS
EXIT

The OPEN command must be used to open a file before it is referred to by most

of the other commands.

ND-60.151.02

5.2 GENERAL RULES

The subsystem may be entered by:

@LOOK-FILE

The available commands can be entered in the same way as SINTRAN Il

commands. Parameters which require a numeric value may be entered as

decimal numbers, eg., 129D, or octal numbers, eg., 156B.

The subcommands will output the contents of a file. Each output iine will include

the following:

1.

2.

3.

The word number in decimal.

The word number in octal.

A single character indicating the mode being used for the current line, ie.,

B for byte and W for word.

5 words output in the mode being used.

The 5 words as 10 ASCII characters.

A word is 16 bits. Any character whose ASCIl value is less than 40B will be

output as an ampersand (&).

ND-60.151.02

5.3 DETAILED DESCRIPTION OF COMMANDS

This section describes the LOOK-FILE commands in detail. SINTRAN il

commands can be executed by typing @ and the SINTRAN Ili command with

parameters on one line.

EXPLAIN-COMMAND < command >

This command displays information about a command and its parameters. The

<command> cannot be ambiguous.

HELP (< command >)

This lists all commands matching <command>. If no parameter is given, all

commands will be listed.

PROGRAM-INFORMATION

This command displays general information about LOOK-FILE on the terminal,

eg., its purpose, its command editing facilities, and its abbreviation rules.

OPEN <file name>,(<block size>),(<access>)

The command opens a file which will be used for further operations by other

LOOK-FILE commands. The default block size is 512 words. The maximum

allowed block size is 4096 words. Access can be R for read or W for write. The

default is W.

CLOSE

The file specified in the OPEN command will be closed. An open print file will not

be closed.

DUMP (<block number>),(< from word number>),{ <number of words>)

The command displays the specified words from the open file. Use

SET-PRINT-FILE to send the display to a file or to a printer. The optional output

file is called a print file. The words will normally be displayed as octal numbers.

This can be changed by the command SET-PRINT-FORMAT. The default <block

number> is 0, the default value for <from word number> is 1, and the default

value for <number of words> is 140. That amount of data fits most terminal

screens.

BYTE-DUMP (<block number>),(< from word number>),{ <number of words >)

This displays the specified words in the open file. The command SET-PRINT-FILE

can be used to save a copy of the output on a file or write it to a printer. Each

word will be displayed as two octal bytes. This can be changed by the command

SET-PRINT-FORMAT. The default <block size> is 0, the default value for <from

word number> is 1, and the default value for <number of words> is 120. That

amount of data fits most terminal screens.

ND-60.151.02

5-4

NEXT

The command displays information from the next block of the open file. The

information may also be output to a print file. The amount of information output

is determined by the <number of words> parameter in the DUMP or

BYTE-DUMP command.

PREVIOUS

The command displays the previous block of the open file on the terminal. The

information is optionally also output to a print file.

DELETE-PRINT-FILE < print file >

The specified <print file> will receive copies of the information output to the
terminal by the commands DUMP, BYTE-DUMP, NEXT, SEARCH, etc. New files

can be created by enclosing the file name in quotes ("...”). The output to the

print file is switched on and off by the command ON-OFF-PRINTER.

ON-OFF-PRINTER (<1=o0n/0=off>)

This command switches output to the print file on and off. The default is off.

ZERO (<block number>) %/'//
All words in the specified block of the open file will be filled with binary':éerros.
The default block number is 0.

COMPARE <file name > ,(<first block number>),(<number of blocks>)

This command compares the specified part of the <file name> with the open
file. The block size given in the OPEN-FILE command is used. All differences will
be output on the terminal, and optionally on a print file. The default <first block
number> is 0, and the default number of blocks is 1.

MOVE <from file name >, < number of blocks to move >,

<first block in source file >, < first block in destination file >

This command moves the given number of blocks from the <from file name> to
the open file.

SET-PRINT-FORMAT (< B =octal/H=hexadecimal/D = decimal >)

This command selects the output from the commands DUMP, BYTE-DUMP,
NEXT and PREVIOUS to be octal, decimal, or hexadecimal. The default and initial

printing format is octal.

ND-60.151.02

5-5

PATCH (<block number>),(<word number>)

This command examines or modifies the open file. The address and the old value

of the specified word are displayed. The value can be modified by entering a new

value followed by <carriage return>. Just <carriage return> causes no

change. The input value may be given as octal (B), decimal (D), or two

characters ('AB’). The default is octal. The next words will be displayed until a

period (.) is given. The default <block number> is 0, and the default

<word number> is 1.

Some examples of how to give input when patching:

000001 (1)/000000 : 1 Return causes no change

000002 | 2)/000000 : "AA’ 2 Change to AA (0405501B)

000003 | 3)/000000 : 123 2 Change to 000123B

000004 (4)/000000 : 123D 1 Change to 000173B

000005 { 5)/000000 : .2 Stop patching and write the

block back.

The symbol 1 means carriage return,

SEARCH (<first block number>), <number of blocks>)

The command searches for specified information in the open file. The

information to be found may consist of up to 50 words. Each word may be given

as octal (B), decimal (D), or as two characters ('AB’). The default is octal. Enter

the information you want to search for as in the PATCH command. If the

information is found in the open file, it will be output. You will then be asked if

you want to continue searching. Answer by YES or NO. The default <first block

number> is 0, and the default <number of blocks> is 1.

SET-BLOCK-CONTENTS (<block number>), <value >

All words in the specified block of the open file will be filled with the given value.

The value must be prompted, ie., it cannot be given on the same line as the rest

of the command. The value is given as octal (B), decimal (D}, or two characters

('AB’). The default is octal.

CALCULATE <operand>, <operator>, <operand >

The command is used to perform simple calculations on octal or decimal

operands. The default is decimal values. Legal <operators> are +, -, *, and /.

The result is displayed in decimal and octal format.

PROGRAM-STATUS

The command displays information about the open file, the current block size,

file access, and printing format.

EXIT

The command returns you to SINTRAN Ill. The open file will be closed.

ND-60.151.02

5-6

6-1

FILE-EXTRACT

FILE-EXTRACT is a general purpose subsystem which can extract records from

one file and write onto another file or output device.

In addition, by using the split option, records not satisfying given extract

selection criteria can be placed in a second output file, thus providing a

complete file split possibility.

The program provides for complex record selections invoked by simple

parameters. You may define your output record layout in several ways. Also, a

wide range of output environment choices are available.

FILE-EXTRACT handles standard SINTRAN lll text files, including variable record

length files. Maximum record size is set to 1024 bytes.

ND-60.151.02

6.1

6-2

PURPOSE

FILE-EXTRACT is a subsystem enabling users to process files without writing

specific programs. This sort of file processing may be relevant during program

development, testing or simply validation and correction of data files.

FILE-EXTRACT contains facilities such as:

— The extraction of subsets from files based on record numbering

— The extraction of subsets from the files based on individual record contents

— The rearranging of files

— The appending of files or subsets of files to other files

— File splitting by one run

— Reformatting of files according to record layout, length and organization

— Providing output records containing input record number

— Providing output records containing the master record’s physical address

(see section 6.2.4.4)

— Conversion of transactions from various systems to a common layout

— Generation of readable reports containing heading and page numbering

routed to a terminal or a line printer

— Saving of parameter input in mode files for later automatic processing (see

section 6.2.1.1)

— Building or procedures to be processed with limited run time parameter

input {see section 6.2.1.2)

These facilities may be combined in various ways thus meeting new demands as

they occur.

ND-60.151.02

6.2

6.2.1

6-3

COMMAND STRUCTURE

FILE-EXTRACT may be called from a terminal by:

@FILE-EXTRACT

— NORD FILE EXTRACT UTILITY COMMAND, VER. DD MM YY —

INPUT FILE: <$mode> <$AUTO> <$KEY> <,Fnnn>

OUTPUT FILE: < X> <,A> <:>

< SPLIT OPTION OUTPUT FILE 2: <,A>>

EXTRACT SPECIFICATIONS:

< <SHOW> <extract selection criteria> <:i>>

< >

OUTPUT RECORD LAYOUT SPECIFICATIONS:

<<SHOW> <Wnn> <L> <lLO> <Hnn> <PAGE[="xxxx"]> <R> <E>

<P><C> <T> <record layout> <:>>

< >

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 l====>----"*---]|

The program will request input from the user as shown above.

All input fields, except for INPUT FILE, accept default values. Thus, a "default

run” will cause the input file to be listed on the terminal.

The default value is indicated by typing carriage return in the specific input field.

However, the command structure is made in such a way that the required

options may be activated by use of simple parameters. Any other functions are

automatically avoided.

Input File

The input file may be specified as any randomly accessable SINTRAN Il text file.

The default file type is :SYMB. The file is immediately checked for legal access.

If not obtained, an error message will be written to the terminal before program

termination.

ND-60.151.02

6.2.1.1

6.2.1.2

64

Mode File Save Option

The mode file save option may be invoked by typing < $MODE> in response to

the input file question. The following text will be written on the terminal:

MODE SAVE FILE:

In the file specified in answer to this question, all command input will be saved

as a SINTRAN Il mode file. In this way, specifications given for an extract run

may be saved for later automatic processing, thus enabling the user to generate

procedures under the guidance of the program.

Limited Automatic Command Input

The LIMITED AUTOMATIC COMMAND INPUT option may be invoked by typing

<$AUTO > in response to INPUT FILE. The program will immediately ask for:

AUTO RUN TIME COMMAND FILE:

and then read the command input lines from the file specified here. This facility

is quite similar to the execution of FILE-EXTRACT from a mode file. The

difference is that a command line in the AUTO RUN-TIME COMMAND FILE may

contain the text $TERM, meaning that this line is to be prompted from the

terminal.

This option is very useful for complex predefined procedures, where some

features are to be requested at run time. An example could be a pregenerated

report procedure where the user is to specify, at run time, the output device as

terminal or line printer, or perhaps some additional extract selection criteria to be

read in. All other parameters and the report layout will automatically be read

from the command file.

Such a command file may be generated by the MODE FILE SAVE OPTION (see

section 6.2.1.1) and then edited by QED or PED. Remember to remove tabs when

in QED (command M TO(0)).

ND-60.161.02

6.2.1.3

6.2.1.4

6-6

Fixed Record Length Input File Option

To process a fixed record length input file not containing record delimiting

characters (octal 015, 012, i.e.,, CR, LF), the F option must be used. The

parameter should follow input file name and be specified as follows:

<,Fnnnn>

where nnnn specifies input file record length in bytes (maximum 1024 bytes).

Note that the output file, as a rule, will receive/have the same organization as

the input file.

The following conditions will, however, make a sequential output file out of a

"fixed” input file:

— output file organization change option specified (see section 6.2.2.3)

— terminal output wait option specified (see section 6.2.4.6)

— line printer/terminal heading option specified (see sections 6.2.4.7, 6.2.4.8,

6.2.4.9 and 6.2.4.10)

Indexed Access via KEY file

Indexed access via KEY file is initiated by typing <$KEY> in response to the

input file question. The program will then ask for:

KEY FILE NAME:

The KEY file is only supposed to indicate which records of the input file are to be

read and in which order. The KEY file must be a symbolic file, each record

starting with a pointer to a corresponding record within the main input file. Any

trailing contents of a KEY file record will be ignored by FILE-EXTRACT. A KEY file

will normally be output of a FILE-EXTRACT run using the "Random Key Inclusion

Option”” and must follow the format used here (see section 6.2.4.5). The file

could then be sorted or processed in any way before being utilized as KEY file.

For situations which could benefit from this option, see examples mentioned in

section 6.2.4.5. :

ND-60.151.02

6.2.2

6.2.2.1

6.2.2.2

6-6

Output File

Output file may be any existing/nonexistent SINTRAN 1lI disk file or an output

device such as line printer or terminal.

The file name is specified due to the standard SINTRAN syntax. That is,

nonexistent files must be enclosed by double quotes, etc.

Note that random write is always used unless output file TERM (terminal) is

selected or the WAIT option (see section 6.2.4.6) is switched on. So, when

writing to any other sequential only output device, a dummy WAIT option must

be used.

Default output file is the terminal.

Output File Append Option

The parameter <,A> following output file name, invokes the output file append

option. This means that the output will be appended at the end of the given file.

Note that this option requires an existing output file and is not valid for such

output devices as terminal or line printer.

File Split Option

A <:> at the end of the output file input line invokes the file split option. The

following test will be written to the terminal:

SPLIT OPTION OUTPUT FILE:

Records read, but not qualifying to be written to the main output file according

to the extract selection criteria given (see section 6.2.3) will now be written to

the SPLIT OPTION OUTPUT FILE. If this option is not specified, those records will

simply be bypassed by FILE-EXTRACT.

The append option <,A> is also available for the spilit file (see section 6.2.2.1).

ND-60.151.02

6.2.2.3

6-7

Output File Organization Change (X Option)

The X option is used to switch the output file organization, thus making a

sequential file containing end of record characters out of a random, fixed length

record file and vice versa.

Consider a sequential, variable record length input file. By using the X option, a

random, fixed length record output file will be produced. The output record

length will automatically be computed from the output record layout

specifications given (see section 6.2.4). Note that X option switch to random file

organization will be ignored when used together with certain other options (see

section 6.2.1.3).

Sequential records, delimited by End of Record characters will be produced

when the X option is specified in conjunction with the fixed record length input

file option (see section 6.2.1.3).

Output file organization change may be useful in several situations. Consider a

fixed length random data file needing some special editing. The X option can

produce a QED or PED recognizable version of the file, which could then be

edited and finally reconverted to its orginal organization using the X option once

again.

ND-60.151.02

6.2.3

6-8

Extract Selection Specifications

One or two input lines are available for extract selection specifications. The

commands given here determine which records are to be written to the output

file.

There are four types of selections available:

— Specification of input file record intervals in question (see section 6.2.3.7)

— Specification of input record field values to be satisfied/not satisfied (see

sections 6.2.3.1 and 6.2.3.2)

— Specification at text strings which are to occur/not occur within a record

(see section 6.2.3.3)

— Specification of a text string which is to occur/not occur within a specified

subset of a record {see section 6.2.3.4)

The selection criteria specified may be connected by the logical operands

<.AND.> and <.OR.> (see section 6.2.3.5).

Finally, parentheses nesting on groups of selection criteria are allowed (see

section 6.2.3.6).

Together, these options provide a sophisticated data selection tool that may be

used for the diverse tasks.

Note that extract criteria, logical operands, values and parentheses must not be

separated by spaces. Spaces are treated as command line terminators.

ND-60.151.02

6.2.3.1

6-9

Numeric Field Evaluation

A numeric field evaluation criterion is to be specified in the following manner:

<STARTPOS > [—ENDPOS] <operation code> <MIN VALUE>
[—MAX VALUE]

where

STARTPOS

is the start byte number of numeric field within input record.

ENDPOS

End byte number of numeric field within input record. May be omitted for 1

digit fields.

OPERATION CODE

One of the following operation codes must be specified:

equal to

* not equal to

> greater than

< less than

MIN VALUE

is the numeric value for operation codes =, + or the value to compare

with the codes < and >.

MAX VALUE

is the maximum value that may be specified for operation codes = or +. It

then specifies the upper numeric limit for a range specification, thus

providing the additional operation codes ’in between” and ‘'not in

between".

Example:

15 — 18 = 15690 — 1862

This means that if this particular extract selection criterion is to be satisfied, byte

15 through 18, within an input record, must contain a numeric value within the

range 1590 to 8262.

ND-60.151.02

6.2.3.2

6-10

Text Field Evaluation

A text field evaluation criterion is specified as follows:

<STARTPOS > [—ENDPOS] <operation code> <'’text string’’ >

where:

STARTPOS

is the start byte number within input record to be evaluated.

ENDPOS

is the end byte number within input record to be evaluated. May be

omitted for one byte field.

OPERATION CODE

The two following operation codes are allowed:

B equal to

+ unequal to

TEXT STRING

The text string may contain any character and must be surrounded by

double quotes.

Note that the length of the text string must be the same as the field length

specified by the STARTPOS/ENDPOS elements.

If shorter, a limited text string search will be assumed (refer to section

6.2.3.4). \

If longer, the specification will not be accepted and the program

terminated with an error message.

Example:

45 — 50 = "OSLO 5"

ND-60.151.02

6.2.3.3

6-11

Text String Search

A text string search specification will cause the entire input record to be scanned

for the existence of the given text string.

A text string search is specified as follows:

TEXT <operation code> <''text string’' >

where:

TEXT

specifies search within the entire record.

OPERATION CODE

The two following operation codes are allowed:

= equal to

+ unequal to

TEXT STRING

Any text enciosed by double quotes may be specified.

Example:

TEXT = "COMMUNICATION"

ND-60.151.02

6.2.3.4

6-12

Limited Text String Search

A limited text string search will cause the specified subset of the input record to

be scanned for the existance of the given text string.

Syntax:

<STARTPOS> < —ENDPOS> <operation code> <''text string’ >

where:

STARTPOS

is the start byte number within input record where the text search is to be

done.

ENDPOS

is the end byte number limiting search area within input record.

operation code

The two following operation codes are allowed:

= equal to

+ unequal to

text string

The search text string may contain any characters {except double quote)

and must be enclosed by double quotes.

Note: the length of the text string must be less than the record subset

specified by startpos/endpos.

Example:

45 — 90 = "BOX"”

This may extract those customer records having a P.0. Box address within the

address fields subset of the record.

ND-60.151.02

6.2.3.5 Logical Operands

A logical operand is used to connect two extract selection criteria of any kind.

Together with the parentheses nesting (see section 6.2.3.6) this facility enables

complex extract selections to be made.

Syntax:

<extract criterion A> <logical operand> <extract criterion B>

Where:

extract criterion A and B

is the same as sections 6.2.3.1, 6.2.3.2, 6.2.3.3 or 6.2.3.4 except for the input

file record interval option as in section 6.2.3.7.

logical operand

The two following operands are allowed:

.AND. both criterion A and criterion B must be fulfilled

.OR. either criterion A or B must be fulfilled

Example:

15 — 18 = 1590 — 8260 .OR. 45 — 50 = ""OSLO 5"

ND-60.151.02

6.2.3.6

6-14

Parentheses Nesting

Parentheses nesting is available for expressing more complex selections.

Extract criteria/groups of extract criteria connected with logical operands may be

surrounded by parentheses/levels of parentheses.

Example:

(1 —2="T1" .OR. 1 — 2 = "T2") .AND. 10 = 2) .AND. (15 — 22 > 90000

.OR. 23 = "*")

&

This could mean something like “'select those records of type T1 or T2 having

status code 2 and either have a balance over 90,000 or are marked with a start in

position 23",

Rules:

A start parenthesis must be placed before an extract criterion or together with

another start parenthesis.

An end parenthesis must be placed after an extract criterion or together with

another end parenthesis.

ND-60.151.02

6.2.3.7

6-15

Input File Record Intervals

By specifying input file record intervals, one may select subsets of the input file

to be evaluated.

Also, this option provides a file rearranging possibility due to the fact that the

program will process input file records in the same order as indicated in the

command line.

If a record interval is followed by another one specifying records already

bypassed, the input file will be rewound before those records are processed.

Syntax:

< start record no.> — <end record no.>,

where:

record no.

Record no. is specified with 1 to 9 digits

is start/end delimitor

is interval terminator. May be followed by parentheses or any other extract

selection criterion including another input file record interval specification.

Note:

When record intervals are used to rearrange a file and the file split option is

active (see section 6.2.2.2) split file records will be duplicated every time the

input file is rewound.

ND-60.151.02

6.2.3.8

6.2.3.9

6-16

Show First Input File Record Option

Typing "SHOW'" and the RETURN button at the beginning of the command line,

the first input file record will be written to the terminal together with a position

mask line such as:

123456789.123456789.123456789.123456789.1234....

7205PETTERSEN,PER OSLO 5 223652 80000

This information is meant to be of assistance to the operator to see the position

number for the different fields to be made extract selections from and has

nothing to do with the actual output from the run.

The program will immediately accept input of extract selection specifications.

Note:

By typing another SHOW, the next record will be shown, thus providing selection

of a record type layout representative record.

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for

extract selection input.

Note:

Used together with the limited automatic command input (see section 6.2.1.2)

the first line may be specified beforehand, while the second may be used for

additional operator selections at run time.

ND-60.151.02

6.2.4

6-17

Output Specifications

One or two input lines are available for various output specifications. A number

of parameters are available to specify how records selected by the extract

specifications are to be written (refer also to section 6.2.3).

There are two main types of specifications available:

1. Specification of output record layout as one or more of the following

elements:

a copy of input record

subsets of input record

imbedded constants

input record number

output record number

input record random address

Specification of output environment such as:

terminal output wait at full screen option

line printer/terminal heading specification

line printer/terminal predefined headings

page numbering

split file record as a copy of input record in spite of output specifica-

tions

Defauit makes the output record a copy of input record.

ND-60.151.02

6.2.4.1

6-18

Input Record Subsets Specification

Subsets of input record can be specified to build the output record or to be a

part of it.

Syntax:

< start position> [—end position] [,]

where:

start position

starts the position within input record to be copied to the output record.

end position

ends the position within input record to be copied. May be omitted when

only one character is to be copied.

is specification delimiter in case of more specifications.

Example:

50 — 65,1 — 20

This will produce an output record containing position 50 through 55 and finally

the first 20 characters of the input record.

Note:

When the output record is specified to contain subsets of the input record, input

records shorter than the subsets specified will result in an output record filled

with spaces as a substitution for the missing input characters.

As a result, this facility can provide a file reformatting possibility, eg., produce a

fixed record length file out of a variable length one.

ND-60.151.02

6.2.4.2

6.2.4.3

6-19

Output Record Constants

Constants may be imbedded in any position of output record.

Syntax:

"text” [,]

where:

text

may be any character except for double quotes.

[]

is used as delimiter in case of more specifications.

Example:

50 — 55, "ABC"", 1 — 26

This will insert the string "ABC’’ within the input record subsets specified.

Input Record Number Inclusion

The input record number may be specified to be the first element of the output

record.

Syntax:

<L>[]

The command will result in a 5 digit line number indicating source record number

of input file.

Note: It cannot be used together with the <LO> or <R> options.

ND-60.151.02

6.2.4.4

6.2.4.5

6-20

Output Record Number Inclusion

The output record number inclusion option will produce an output record

containing a successive 5 digit record numbering as it's first element.

Syntax:

<LO>{]

Note: It cannot be used together with the <L> or <R> options.

Random Key Inclusion Option

The random key inclusion option will cause the input record’s random address to

be included as the first element of the output record.

Syntax:

R[]

The random address consists of the following two elements:

1. Block number, a 5 digit block number at least containing the first character

of the input record. Block size used is 512 words.

2, Byte number, a 4 digit number pointing to the beginning of the actual

record within a given block.

This option may be useful for several purposes. It can be used to show where a

record (group of records) exist within a file. Also, it may be used for more well

defined functions. For example, FILE-EXTRACT may be run to produce an output

file containing this random address together with subsets from input records to

be used as SORT key. Then, this KEY file may be sorted. The resulting file may

then be used as an INDEX file in order to process the input file in quite a

different order, without actually having sorted the input file previously. Such an

index file may be utilized by FILE-EXTRACT itself through the KEY file option

(refer also to section 6.2.1.4).

ND-60.151.02

6-21

This facility may have several advantages:

1. There may not be enough disk space to sort a bit input file itself.

2. A of a big input file may be very time consuming.

3. When an input file has to be accessed in many ways, this option will avoid

the problems with keeping many copies of the same file.

Also, this option makes a limited input file sort possible by using the extract

selection possiblity to output only those records interesting and then use the

SORT utility to produce a suitable index file.

ND-60.151.02

6-22

6.2.4.6 Terminal Output Wait Option

The WAIT option is intended to be used with the terminal as output file. It simply

makes the program wait for an input character for every given number of lines

written to the terminal, thus enabling the user to study one screen of information

before filling the next one.

The user may, at this point, interrupt the extract run by typing an X (exit). Any

other character, including carriage return, will make the process continue.

Syntax:

W [nn] []

where:

nn

is a number of lines to be written before waiting for carriage return. The

default value is 24 for standard terminal screens.

is the specification delimiter in case of more parameters.

ND-60.151.02

6.2.4.7

6-23

Line Printer or Terminal Output Heading Option

The heading option enables the output from FILE-EXTRACT to be generated as

simple reports with a one line heading, optionally together with page number

(see also section 6.2.4.8).

Syntax:

H [nn] []

where:

nn

is the number of lines per page. The default value is 24 which fits most

terminal screens.

is the parameter delimiter.

Note:

A common line counter is used for the heading and wait options. Therefore, if in

doubt, the last line numbering specified in the command line will be used.

When all output specifications are given and the heading option is specified, the

program will write a heading mask to the terminal and wait for user input:

HEADING MASK:

123456 123456 123456789.123456789.

CUSTOMER ACCOUNT NAME

The first two lines above are produced by the computer. It simply represents a

position mask of the output record, dimensioning the input record subsets

chosen in the output specifications, corrected with constants if any. This mask

indicates where to type the leading text in order to produce a readable report.

Used together with the show option (see section 6.2.4.12), the heading should

have all changes to be correctly specified.

ND-60.151.02

6.2.4.8

6-24

Line Printer or Terminal Page Numbering Option

The page numbering option will provide a page number to be written before each

heading. The parameter will have no effect when the heading option is not
specified.

Syntax:

PAGE [="page text"] [,]

where:

PAGE

This text which will invoke the option.

page text

The user may define his own 6 character long page text in his own
language. The default text is "PAGE".

Example:

PAGE = "'SHEET:"”

This will, when used together with the heading option for each page, produce a
heading such as:

SHEET: 9999

HEADING LINE

DETAIL OUTPUT LINE1

DETAIL OUTPUT LINE2

ND-60.151.02

6.2.4.9

6.2.4.10

6.2.4.11

6-25

. Predefined Heading as Extract Command Line

In some cases, it may be useful to have the extract selection specifications

written together with the output. This is provided by the E option, which will

automatically produce the extract command line as the heading line.

Syntax:

E [nn] []

The option works exactly like the H option (see section 6.2.4.7) except it doesn't

ask for heading input. Besides, the page numbering option (see section 6.2.4.8)

will automatically be invoked.

Predefined Heading as Position Mask

The P option produces a position mask as a predefined heading. This may be

useful when record contents are to be studied in their original compressed

format.

Syntax:

P {nn] []

This option is similar to the E option (see section 6.2.4.9).

Split File Copy Option

Normally, the split file output (see section 6.2.2.2) will contain record layout

similar to the main output (no page numbering and no headings). In some cases,

it may be useful to provide a split file containing records as a copy of the input

records. Thus, the C option will turn off any other output record layout

specifications on split file writes.

Syntax:

CL]

ND-60.151.02

6.2.4.12

6.2.4.13

6.2.4.14

6-26

Show First Input File Record Option

The "SHOW” option is also provided as a first command to this output

specifications input line. It works exactly in the same way as described above

(see section 6.2.3.8). In this case it is meant as a tool to produce an output

record from the right subsets of the input record and also to help design the

heading line.

Syntax:

SHOW

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for

output specification input.

Note:

Used together with the limited automatic command input (see section 6.2.1.2),

the first line may be specified previously while the second one may be used for

additional operator’s choice at run time.

Skip Output Record Trailing Spaces

In order to reduce disk space and increase processing speed, skipping trailing

spaces may be desired. The option is supposed to be used in conjunction with

variable record length output files.

Syntax:

T[]

ND-60.151.02

6.3

6-27

RUN TIME STATUS MESSAGES

In order to enable the user to keep track of the program’s progress, a run time

status message line is implemented:

INPUT RECORDS: 99999, QUTPUT RECORDS: 99999 |= == > ----"----- |

For every 100 input records processed, this line will be written to the terminal.

The right side graph indicates the percentage (in bytes) of the input file being

processed, thus enabling the user to estimate when the process will be finished.

ND-60.151.02

6-28

71

GENERAL PURPOSE MIACRO

GENERATOR - GPM

In the Computer Journal, October 1965, C. Strachey described a macrogenerator

called GPM (General Purpose Macrogenerator). GPM was originally planned to

help write a compiler for the language CPL. The idea was to write the whole

compiler as a set of macro calls.

In this way, one got a machine-independent compiler. By redefining the macros,

a compiler for another machine could be produced, and by rewriting GPM, one

could generate the compiler on another machine other than the target machine.

GPM is referenced in most of the literature dealing with macro

processors.

Input to GPM is a character string, in which macro calls may occur. GPM copies

the input character unmodified to the ouput string, with the exception of the

macro calls which yield their values instead.

GPM pays no attention to what type of symbolic input it receives, as long as no

confusion arises concerning the GPM control characters. The GPM version on the

ND computers expects (and produces) characters with even parity. It may be

called as a SINTRAN Il subsystem. Program size is 1,5Kwords, while the rest of

the virtual memory is used for a run time stack.

Most persons reading this manual for the first time know macros only from

simple assembler macro options. They should immediately be aware of the fact

that in GPM macro calls may not only occur in the source code string, but also in

a macro call’'s name string, parameter strings and in the value-strings found in

the macro definition list. They should also keep in mind that the effect of a

macro call may be of two kinds:

1) Substitution. A character string is substituted for the call.

2) Macro (re)definition. New macros may be defined and old ones redefined.

ND-60.151.02

7.1

7-2

GPM SYNTAX AND EVALUATION RULES

A GPM macro call looks like this:

1 NAME, PAR1, PAR2, ----- , PARn;

It consists of a macro name and a list of the actual parameters, each separated

by a comma. The macro call starts with { and ends with a semicolon. The name

and parameter strings may themselves contain macro calls.

Six characters which have a special function in GPM:

1 Precedes macro calls

j Ends macio calis

v Separates parameters in a macro call

\ Denotes formai parameter, and is followed by the parameter number in the

set 0-9, A-Z. Occurs in macro definitions and the resulting macro bodies

< Start quote. Should always match a >. Evaluation of a character string

enclosed in < > yields the same string without < >. Thus, by quoting,

strings are prevented from being changed by GPM evaluation

> End quote. (An unmatched > outside macro calls terminates GPM)

The input string is scanned from left to right and copied to the output string

until a macro call is encountered. The macro call is evaluated as follows:

a) The macro name and its arguments are evaluated from left to right.

They are all evaluated once. This process may involve evaluation of

other macro calls so that the whole process of evaluating is a

recursive one. Macro definitions made during this process are

so-called temporary definitions.

b) When the argument list is complete (: when the name and

parameter strings have been evaluated) the macro definition list is

searched for a match with the evaluated name string. The scanning

stops with the first entry with the correct name, so that the most

recent definition is used.

¢} The string corresponding to the macro name (macro’s value, ""body”)

is now scanned in the same way as the original input string, except

that occurrences of \1, \2, --- etc., are replaced by exact copies of

the corresponding actual parameter (the corresponding evaluated

parameter string). \ 0 means the macro name. If an argument asked

for is not supplied, the string NIL is taken as actual parameter.

ND-60.151.02

d) On reaching the end of the defining string, the argument list (macro

name and actual arguments) are lost. Any macro definitions added to

the definition list in course of macro name and parameter evaluation

are lost (temporary definitions).

Scanning of the input string is resumed.

ND-60.151.02

1.2

74

SYSTEM MACROS

GPM contains a number of system macros. These are, in reality, calls of system

procedures, but the syntax of these calls is the same as that of the macro calls

and so are the evaluation rules. The system macros are:

DEF Defines user’s macros. It takes two arguments: The name and

the value (“body’’}) of the new macro. Formal parameters

occurring in the "“body” must always be quoted. The latest

definition of a macro is the valid one.

Format: tDEF, macro name, macro body;

Example:

1DEF, A, <B\1>; defines macro A

to have B\1 (B and the first parameter) as its value. For

instance, 1A,5; yields the value B5.

Consider the definition of A in the following two examples:

1) 1DEF,B,C; {DEF,A, 1B;; {DEF,B,D; 1A;
2) 1DEF,B,C; {DEF, A, <{B;>; {DEF,B,D; 1A;

Each example consists of three definitions and a call of macro

A. What is the result in these two cases? The only difference

between 1) and 2) is the quotes in the definition of A.

1) defines A equal to the value of B, which is C.

Hence: tA; yields C.

2) defines A equal to {B;. 1A, is therefore equivalent to 1B;

which yields D. (Latest definition of B is valid!)

Hence: 1A; yields D.

Definitions made during parameter-evaluation are temporary

definitions. These definitions are lost when the macro

possessing the parameters has been evaluated. Earlier

definitions of the same macros will then be reinstated.

Example:

tDEF, A, B; tA, tDEF,A,C; ; tA;

Temporary definition,

This string yields CB. Explanation:

1DEF,A,B; defines A to have value B.

1A, tDEF, A, C;; calls macro A,
defining A temporarily to have value C. The call of A, therefore

yields C, and the temporary definition is lost.

tA; therefore yields B since the old definition has been

reinstated.

ND-60.1561.02

VAL

UPDATE

BAR

DECBIN

BINDEC

OCTBIN

BINOCT

HD

75

Gives the value ("body’’) of the macro given as parameter. By

means of VAL, macro definitions may be inspected.

Format: 1VAL, macro name;

Example:

Suppose macro A has been defined by {DEF,A, <B\1>;

Then tVAL,A; yields B\1.

Updates macro definitions. Works in the same way as DEF. The

new value must not be longer than the old value.

Format: fUPDATE, macro name, macro body;

Example:

Suppose A has been defined equal to B\1.

The call fUPDATE A, <C\1>;

defines A equal to C\1.

Performs binary arithmetic. Takes three arguments. The first

must be +,—.*,/ or R, which means add, subtract, multiply,

divide and remainder, respectively. The second and third

arguments are two binary numbers.

Format: {BAR, operator, binary number, binary number;

Performs decimal-to-binary conversion,

Format: {DECBIN, decimal number;

Performs binary-to-decimal conversion.

Format: TBINDEC, binary number;
Example:

TDEF, SUM, <{BINDEC, {BAR, +, {DECBIN, \1,, 1DECBIN, \2;;;>;

defines a macro SUM which yields the decimal sum of its two

parameters. For instance, {SUM,5,3; yields 8.

Performs octal-to-binary conversion.

Format: {OCTBIN, octal number;

Example:{DEF, CTR, <{BAR, -, \1, 10CTBIN, 100; ;>;

defines a macro that yields control characters.

For instance, {CTR,A; yields A°.

Performs binary-to-octal conversion.

Format: 1BINOCT, binary number;

Gives the first character of its argument (""head”).

Format: {HD, string;

Example: tHD, ABC; yields A.

ND-60.151.02

7-6

TL Gives all but the first character of its argument ("'tail’’).

Format: t TL, string;

Example: {TL, ABC; yields BC.

In the present GPM version, two additional system macros have been made:

ICRMOD Makes GPM ignore the characters "carriage return’’ and “line

feed” in its /nput string. They may, however be used internally

and be output.

CRMOD Turns off the mode set by ICRMOD.

ND-60.151.02

7.3 MACRO EVALUATION

According to rules a-e in Section 7.1, GPM works as follows:

Initially GPM is in copying mode.

When a macro call TN,P1,Pz,---,PK; is encountered, GPM enters the

parameter evaluation mode.

The string N is evaluated to po.

The string P1 is evaluated to p.

The string P2 is evaluated to pa.

The string P, is evaluated to pj.

GPM now searches for the latest definition of po in its macro definition list.

When found, GPM enters the macro expansion mode {or the macro

definition mode, if po is equal to DEF or UPDATE). GPM now reads and

evaluates the macro body of po. When encountering a formal parameter

marker \m, GPM enters the parameter substitution mode and replaces \m

with p . The resulting string (the evaluated body with the actual

parameters substituted for the formal ones) replaces the call {N,P1,P2, ---,

P.; in the output string.

The macro evaluation procedure is illustrated by this example:

Suppose the following macros are defined.

1DEF, $, <ENE\1>;

1DEF, ' " DIRTY_,DICK ", 1;

10EF, #, <\2<LIC_>1$, \1; L \O\3>;

We want to find the value of:

t#, MY, <PUB>, 1 ' DIRTY DICK'';;

We start to evaluate the name and parameters.

#evaluates to # which is the macro name.

MY evaluates to MY which is the parameter no. 1

<PUB> evaluates to PUB which is the parameter no. 2

1”DIRTY _DICK"'; evaluates to 1 which is the parameter no. 3

ND-60.1561.02

7-8

The latest definition of #is \2<LIC_ >1$,\1;,\0\13

\2 evaluates to PUB

<LIC_, > evaluates to LIC_,

1$,\1; is equivalent to 1$, MY; which evaluates to ENEMY

—.evaluates to,_,

\0 evaluates to the evaluated macro name #

\3 evaluates to 1

So the value of our macro call is the string

PUBLIC._ ENEMY _#1

A further example:

A well known GPM example is the successor macro. When called with a number

0-9 it gives the next number. For instance, {SUC,3;> 4 {SUC,4;+5 etc. Of course

this can be achieved in arithmetical ways, but the SUC macro accomplishes it in

a way that makes it theoretically interesting.

SUC is defined as follows:

tDEF, SUC, <11,2,3,4,5,6,7,8,9,10, 1DEF, 1, <\>\1;;>;

We see that a call of SUC is equivalent to a call of a macro whose name is 1.

The macro 1 is called with its first parameter=2, the second parameter=3, the

third parameter=4, etc. A temporary definition of 1 defines it to have a value

equal to one of its actual parameters. The parameter number is equal to the

actual parameter of SUC. Therefore, a call $1SUC,3; defines macro 1 to be equal

to its third actual parameter which is 4. Macro 1 is called, and yields 4 which is

also the value of 1 SUC,3;

ND-60.151.02

7.4

79

CONDITIONAL MACROS

This chapter and the next one which deals with recursive macros, will describe

the rather complicated methods used for defining such macros. They may be

bypassed by readers who are not especially interested.

The definition of a conditional macro is given below:

1DEF, COND, <f\1, 1DEF, \1, C; {DEF,A,B; ;>;

The macro COND gives B or C, depending on its argument. The only

argument that gives B, is A, ie.,

1COND, A; yields B

$COND, anything else; yields C

Explanation:

Suppose COND is called with argument=A. The macro body with

argument=A inserted, will look like tA,{DEF,A,C;tDEF,A,B;;

This is a call of macro A which is defined twice in its own argument.

(These are temporary definitions.) Since these definitions are made before

searching the definition list for the value of macro A, this works perfectly

well. Since the last definition of A defines it equal to B, the call of A yields

B which is also the value of COND. Therefore:

TCOND, A,' »B.

Suppose COND is called with argument=X. The macro body with

argument X inserted, gives:

1X, 1DEF, X, C; 1DEF,A,B;;

This shows a call of macro X, which is defined once in its own parameter.

The value is C, which is also the value of COND. Therefore:

1COND, X; ~C.

Note that the temporary definitions cannot be confused with any other

definitions of X or A since the temporary definitions will be lost when

COND has been evaluated.

Proper understanding of this conditional macro is necessary in order to understand

how recursive macros with finite call sequences work.

ND-60.151.02

1.5

7-10

RECURSIVE MACROS

tDEF, A, <BTA; >;

This is the simplest example of a recursive macro. One call of A yields an infinite

stream of B characters. (The evaluation will of course cease when GPM runs

short of stack space.)

More interesting, however, are the recursive macros that allow a finite number of

recursive calls. Before discussing them, we take a short review of the conditional

macro COND, discussed in Chapter 4.

1DEF, COND, <f\1, {DEF, \1,C; {DEF,A,B;;>;
—— e 7

Covers the Covers the

""general case’”” ''special case”’

Tells whether

""general case’’ or "'special case”

Suppose we want to write a recursive macro with finite call-sequence. There

must obviously be some kind of "condition” involved, in order to stop the

recursive evaluation.

The ""general case” results in an operation between a value and a recursive call,

while the "'special case’ involves no recursive call since we now want to stop.

What tells us the current "case’’? Usually a counter, since we often want to give

the number of recursive calls.

A recursive macro RECUR may, therefore, have a structure like this:

1DEF, RECUR,

<lcounter, IDEF, counter,<value X op tRECUR, counter-1;>; {DEF,0, value Y;;>;

"Current case’’ ""General case’’ ""Special case”

Where op denotes any operation wanted.

Suppose we want to construct a recursive macro FAC which computes the n'th

factorial.

1FAC, n; - The value 0f.1.2.3... n=n!

Suppose that macros computing products and differences have been defined

earlier and that their names are PROD and DIF. (For instance: { PROD,2,3; +6

and tDIF.8,3;+5.)

ND-60.151.02

7-11

We first concentrate on the '‘general case’’.

We observe that n! = n.(n-1)!

or, in macro language, where n is the 1st parameter of FAC:

fPROD, \1, {FAC, tDIF,\1,1;;;

This leads us to the temporary definition that covers the ‘general case’":

1DEF, \1, <{PROD, >\ 1<, 1FAC, 1DIF, >\1<, 1;; ;>; ’

Note that the 1st parameter must be '‘unquoted” since it is a parameter of FAC,

not of the counter.

The ""special case’’ is very simple.

Since {FAC,0; -~ 01 = 1 the temporary definition that covers the special case

simply is {DEF,0,1;

Now we may write the complete defintion of FAC:

tDEF, FAC, <t\1, 1DEF, \1, <tPROD, >\1<, {FAC, 1DIF, >\1<,1;; ;>;1DEF, 0, 1; ;>;

L = %

n ""General case’’ ""Special case’’

expressing that n!=n.(n-1)! expressing that 0!1=1

Here is another example which is important, since it allows us to generalize the

"recursive call’’ property.

We want to make a recursive macro DO so that {DO,A,n; is equivalent to n calls

of the parameterless macro A.

DO may be defined as follows:

1DEF, DO, <t\2, 1DEF, \2<1>\ 1<; DO, >\ 1<, {DIF,>\2<, 1;;>; tDEF, 1, <>; ;>;

tDO,A5; gives the same value as TA; 1A 1A TATA;

That a macro is parameterless does not necessarily mean that its value is

constant, since it may call and redefine other macros.

ND-60.151.02

7.6

712

THE GPM LIBRARY

This GPM library consists mainly of definitions of macros performing arithmetical

or logical functions. It also contains generalized, recursive macros and

conditional macros. The arithmetical functions may either be decimal or octal.

When necessary to distinguish between them, the macro name for the octal

operation begins with &.

Example :

The macro SUM yields the decimal sum of its two parameters, while &SUM

yields the octal sum. The arithmetical macros may further be divided into two

classes, the "'verbs” and the ""'nouns’”. A “‘verb’” has only side effects. That

means it affects the macro definitions, but leaves no value. A "'noun’ has no side

effect but yields a value.

Examples:

ADD is a "'verb”, SUM is a ""noun"”.

tADD,J,3; adds 3 to the value of “macro J (which is updated) but the ADD

macro leaves no value. { SUM,3,5; yields 8 as its value, but it has no side

effects.

If you are unfamiliar with macro languages, please keep the following in mind:

The effect of a macro call may be of two kinds:

1) Substitution.

A character string (which may be empty}) is substituted for the macro call.

2) Definition

Macros may be defined or redefined. Nothing is substituted due to

definition alone.

Both kinds of effects may arise from one macro call.

IVARIABLE, name, initial value {optional);

Six digits are allocated (for the value) and the variable is updated to its
initial value (to 0 if no value specified).

Example:

1VARIABLE, PER; 1PER; 6-0

{VARIABLE, OLA, 14; 1OLA; »14

Since six digits are allocated, octal or decimal integer values may be

assigned to a variable by an UPDATE call.

ND-60.151.02

713

1INCREMENT, variable;

Increments the specified variable and is equivalent to tADD, variable, 1;

Example:

1VARIABLE, PER, 5;

1PER; -5

1INCREMENT, PER; .

1PER; +6

t &INCREMENT, variable;
Octal increment of the specified variable and is equivalent to {&ADD,

variable, 1;

1DECREMENT, variable;

Decimal decrement of the variable.

Equivalent to 1SUB, variable, 1;

t &DECREMENT, variable;

Octal decrement of the variable.

Equivalent to {&SUB, variable, 1;

1ADD, variable, number;
Decimal addition. Adds the number to the variable, but yields no value.

1 &ADD, variable, number;

Octal addition.

1SUB, variable, number;

Decimal subtraction.

1 &SUB, variable, number;

Octal subtraction.

TMPY, variable, number;

Decimal multiplication.

1&MPY, variable, number;

Octal multiplication.

1DIV, variable, number;

Decimal division.

1&DIV, variable, number;

Octal division.

1SUM, number, number;

Yields the decimal sum of the two numbers.

1&SUM, number, number;

Yields the octal sum of the two numbers.

1DIFFERENCE, number, number;

Yields the decimal difference between the two numbers.

ND-60.151.02

7-14

1 &DIFFERENCE, number, number;

Yields the octal difference between the two numbers.

tPRODUCT, number, number;

Yields the decimal product of the two numbers.

1 &PRODUCT, number, number;

Yields the octal product of the two numbers.

1 QUOTIENT, number, number;

Yields the decimal quotient of the two numbers.

1 "IENT, number, number;

Yields the octal quotient of the two numbers.

1REMAINDER, number, number;

Yields the decimal remainder of the two numbers (concerning division).

1 &REMAINDER, number, number;

Yields the octal remainder.

T1POWER, number, exponent;

Yields a" where a is the first parameter and n the second. n3>0.

1SIGN, number;

Yields the sign (+ or —) of the decimal number.

1 &SIGN, number;

Yields the sign (+ or —) of the octal number.

$1DEC, number;

Converts from octal to decimal number.

1OCT, number;

Converts from decimal to octal number.

1CTR, letter;

Yields the corresponding control-character.

(1CTR,A; » A%).

1CHARACTER, octal, number;

Yields the corresponding character.

Example:

1CHARACTER, 76; - >

1ESC;

Yields an escape-character (33s).

1CRLF;

Yields "'carriage return’’/"'line-feed’’.

ND-60.151.02

7-15

T1EQUAL, String 1, String 2, String 3, String 4;

If String 1 is equal to String 2, the result is String 3. If unequal, the result is

String 4.

tLESS-THAN, Number 1, Number 2, String 1, String 2;

If Number 1 is less than Number 2, the result is String 1. If not, the result is

String 2.

1 &LESS-THAN, Number 1, Number 2, String 1, String 2;

LESS-THAN macro for octal numbers.

1OR, String 1, String 2, String 3, String 4;

If 1st or 2nd parameter or both are non-empty, the value will be the 3rd

parameter. Else the 4th parameter.

tAND, String 1, String 2, String 3, String 4;

If both 1st and 2nd parameter are non-empty, the value will be the 3rd

parameter. Else the 4th parameter.

1XOR, String 1, String 2, String 3, String 4;

If 1st or 2nd parameter, but not both, is non-empty, the value will be the

3rd parameter. Else the 4th parameter.

tNUMCH, String;

Yields the decimal number of characters in the string. The string should

contain no GPM control characters.

1ERRAB, cause;

Yields the following:

@CC _*** SYSTEM_,GENERATION. ,ABORTED *"*

@CC_,CAUSE: _ Cause

Esc Esc

1%, comment;

Yields nothing. May be used for comments.

TMAKE2, number;

Yields the number by giving at least two digits.

Example:

TMAKE2,5; yields 05

$1BITMASK, number;

Yields the bitmask corresponding to the decimal bitnumber [0-15].

(Example: {BITMASK, 8;-400)

TMASK, length, bitnumber;

Yields the bitmask. The length is given by the first decimal parameter, and

the rightmost bit is given by the second, decimal parameter [0-15].

(Example: tMASK, 2, 1;-+6)

ND-60.151.02

7-16

T1LSHIFT, octal number, octal number of shifts;

Yields an octal number which is the first parameter left-shifted the number

of times given by the second parameter. The number of shifts must be in

the interval [0-17s].

TRSHIFT, octal number, octal number of shifts;

Yields the octal number right-shifted with sign extension.

TRZSHIFT, octal number, octal number of shifts;

Yields the octal number right-shifted with zero end-input.

TSEQUENCE, pretext, posttext, number of el., block size, start no., delim., line head;

This macro gives a sequénce of the following form:

b

AL

Va

[pretext | n| posttext | d| pretext | n+1] posttext | df ----oooeo.... ‘)

Lline-head I pretext l n+20+1 | posttext [d [pretextl n+2b+2| posttext |

where n is start no., b is block size and d is delimiter.

Example:

*)9EXT _, 1SEQUENCE, RT, P, 11, 4,2, _, *)9EXT;

yields

*)9EXT _RT2P _,RT3P _RT4P _RT5P

*)9EXT _,RT6P_,RT7P _,RT8P_,RTIP

*)9EXT _ART10P _RT11P_,RT12P

Another example:

INTEGER ARRAY:=(1SEQUENCE, A, , 7, 3,0, <<<,>>>,1CTR, I ;);

yields

INTEGER ARRAY ARR: =(A0, A1, A2,

A3, A4, A5, ’

AB);

Note that the comma must be triple-quoted in the macro call.

ND-60.151.02

7-17

1DO, macro name, number;

This macro results in a number of calls of the parameteriess macro given

by the first parameter.

The number of calls is given by the second, decimal parameter which must

be =0.

(Example: 1DO,A,3; is equivalent to 1A;1A;1A;)

1DO-LOOP, variable, start value, step length, limit, <body>;

This macro temporarily defines a parameterless macro which has body plus

the proper updating of variable as its value. The macro is called the

specified number of times. Default step length is 1. The call of DO-LOOP

leaves the variable incremented beyond the limit. The DO-LOOPs may be

nested. GPM control characters within body should be quoted.

Example:

1VARIABLE, I;

1VARIABLE, RESULT, O;

D0-LOOP, I, 1,, 10, <fADD, RESULT, {1;;>;
Computes the sum of the integers [1, 10].

The call tRESULT; now yields 55.

Example:

{VARIABLE, I;
tVARIABLE, J;
100-LOOP, I, 1,,3,<
11;..100-L00P, J, 2,3, 8, <{J;>; {CRLF;
>;

yields the following result:

1...258

2...,258

3...258

ND-60.151.02

718

Example:

tVARIABLE, NUMBER._ OF _, PROGRAMS, 3;
{VARIABLE, SEGNO, 157;
{VARIABLE, I;
1D0-LOOP, I, 1,, tNUMBER_OF_, PROGRAMS;, <
CL-SEGM._.1SEGNO; {CRLF;
Y{CRLF;
N-SEGM . {SEGNO; , , , ,, {CRLF;
SET-L-A_,1SEGNO;, 1000001CRLF;
LOAD_MAIN 11; : BRF, , ,, {CRLF;
END {CRLF;
t&INCREMENT, SEGNO;>;

yields the following result:

CL-SEGM_,157

Y

N-SEGM_, 157, ,, .,

SET-L-A_,157, 100000

LOAD_MAIN1:BRF,,,,

END

CL-SEGM_,160

Y

N-SEGM_, 160

SET-L-A_,160, 100000

LOAD_,MAIN2:BRF,,,,

END

CL-SEGM._,161

Y

N-SEGM_, 161

SET-L-A_,161, 100000

LOAD_,MAIN3:BRF,,,,

END

ND-60.151.02

7-19

1.7 GPM UNDER SINTRAN Il

The GPM subsystem under SINTRAN Il is called by writing:

@GPM

CR/LF TO BE IGNORED ON INPUT? Y

OUTPUT FILE NAME: OFILE

INPUT FILE NAME: GPM-LIBRARY

INPUT FILE NAME: TERMINAL

>

"END OF GPM
@

The mode set by the "CR/LF TO BE IGNORED ON INPUT?"" - question may be

changed by the use of the ICRMOD/CRMOD macros.

The GPM library must always be read in "ignore CR/LF’ - mode.

The question INPUT FILE NAME: is written whenever the previous input file is

exhausted (or none has been specified) or the EOF-byte (27s =W°®) has been

read. An unmatched > outside macro calls terminates GPM.

NOTE: It is strongly recommended that the file "GPM-LIBRARY" should be

limited to ‘“‘read access’’ only, by using the ®@SET-FILE-ACCESS

command. This will protect the file from accidently being specified as

"output file’’ and consequently losing its contents completely.

ND-60.151.02

1.8

7.8.1

7-20

GPM APPLICATIONS - SOME IDEAS

GPM may of course be applied in a variety of ways ranging from semigraphic

picture definitions to software system generation. It may also be used as a

preprocessor of symbolic source code, applied prior to compiling/assembling. It

is especially well suited for FORTRAN programs since no confusion arises

concerning the GPM control characters {, < and >. For many programming

languages, however, confusion may arise, and one way to avoid it is this:

Substitute <t> for all { that do not denote macro calls. Substitute

TCHARACTER, 74; for <and tCHARACTER, 76; for > if they are not meant as

"quotes’”’. Now GPM may process this source-code stream if the GPM-LIBRARY

has been read (in order to define the CHARACTER macro).

GPM and Semigraphic Display

GPM is an interesting tool for off-line building of static parts of pictures for

semigraphic display (NORDCOM NCT, for instance). Output from GPM may go

directly to the screen or to a file where the picture is saved.

The main advantages of using GPM are:

— Control information (concerning colour, for instance) is referenced by

name.

- Line segments of variable length may be defined as macros. For instance, a

horizontal line of length 46 starting in position (5,7) may be denoted

THL,5,7,46;

— Special symbols may be called by name. For instance, {TRAFO,12,9; means

a transformator symbol in position (12,9).

— Some standard figures such as squares, triangles, etc. may be defined as

macros. For instance, {SQUARE,10,2,8,16; may yield a square of height 8,

length 16, with topmost, leftmost corner in (10,2).

— The user may define and name his own picture parts. The screen position

may be parameter in the call.

For further details, see the manual NORD PROCESS /0, SOFTWARE GUIDE,

(ND-60.093).

ND-60.151.02

7.8.2

7-21

System Generation Using GPM

GPM is well suited for production of mode or batch jobs for system generation

and installation.

GPM then mainly operates as follows:

First GPM reads the “system definition” file, which consists mainly of

DEF-macros defining the system parameters. Then GPM reads the ""generalized

batch-job” file which contains a mixture of ordinary batch commands and

macros. From these files, GPM produces that particular batch-job that

generates/installs the system given by the ""system definition’ file.

SYSTEM GENERALIZED
DEFINITION BATCH-JOB

FILE

GPM

BATCH-JOB
FILE FOR
SYS. GEN./

INSTALLATION

The most important properties offered by GPM for system generation are listed

below:

1) Constants may be given symbolic names.

Example: Macro calls for segment-numbers in a mode file calling the RT

LOADER:

CL-SEGM._. 1 SEGNO;

Y

N-SEGM_, tSEGNO;,,,,

SET-L-A_,SEGNO;, {LOAD-ADDR;

LOAD _, MAINTPROGNG; : BRF, , ,,

END

ND-60.151.02

3)

4)

5)

7-22

Such constants may be modified during system generation. Suppose, in

the example given above, that SEGNO and PROGNO have been declared

by VARIABLE-macros. The END-command might then be replaced by:

ENDt&INCREMENT, SEGNO; 1 INCREMENT, PROGNO;.

thus performing octal increment of the segment number and modification

of the input file name.

One macro call may result in a number of calls in different contexts. It is

self-evident that this is possible, since one macro call may cause

(re)definition of a group of other macros. For instance, a call 1

BRF-SYSTEM; may cause assembling in BRF-mode to a BRF-file and a call

of the loader, instead of assembling directly into memory.

The system parameters may be checked before system-generation if some

relations must be fulfilled.

Example:

Suppose that a variable A always has to be greater or equal to variable B if

the system is to be consistent.

This macro will check that condition:

fLESS-THAN, A;, 1B;,
®CC A LESS THAN B! 1CRLF;
©CC ***SYSTEM GENERATION ABORTED*** 1CRLF;
1ESC; 1ESC;

The error message aborts the mode file only if A<B.

Do-loops. A group of commands or statements may be repeated with

different parameters. Many examples of this have been given previously in

this manual.

As a conclusion of this manual, an example showing generalized source code is

given.

Suppose you have made a reentrant subroutine SROUT which you want to call

from a variable number of RT programs. Each RT program is allotted a data field

of 10s locations for its local variables. In addition subroutine SROUT is called

with the A-register pointing to the data field and with the T-register holding the

RT program number.

ND-60.151.02

7-23

For two RT programs, the NPL source code for calling SROUT looks like this:

*""BRF

*)9BEG

*)O9EXT SROUT RT1 RT2

SYMBOL PRI=30

INTEGER ARRAY IA1{10)

INTEGER ARRAY IA2(10)

SUBR RPROG

")9RT RT1 PRI

""IA1""; T:=1; CALL SROUT; °"MONO;)FILL

*)JORT RT2 PRI

""IA2""; T:=2; CALL SROUT; *“MONO;)FILL

RBUS

*'"BRF

*)SEND

*) 9EOF

*)LINE

®EOF

However, this source code may be generalized by calling some GPM library

macros.

The generalized source code file looks like this:

1CRMOD; *’ * BRF

*)9BEG

*)9EXT SROUT {SEQUENCE, RT,, 1NUPROG;, 8,1, .., *)9EXT;

SYMBOL PRI=30

fVARIABLE, I,; tD0O-LOOP, I, 1,, 1NUPROG; , <INTEGER ARRAY IA1I; (10)

>: SUBR RPROG

tDO-LOOP, I, 1,, tNUPROG; , <*)9RT RT1I; PRI

""IAfI;""<;>T:=10CT, 1I;;<;> CALL SROUT<;> *MON O<;>)FILL

>; RBUS

*' ' BRF

*)QEND

*)9EOF

*)LINE

®EQF

>

ND-60.151.02

7-24

Suppose you call this file GENERAL-SOURCE, and that you let a file called

SYSGEN-PARAM hold the definition of the only system parameter, NUPROG, the

number of RT programs. (The definition of NUPROG may of course instead be

inserted on top of the GENERAL-SQURCE file.) Thus GPM may produce a source

code system according to the definition of NUPROG:

®GPM

CR/LF TO BE IGNORED ON INPUT? Y

OUTPUT FILE NAME: SOURCE-CODE

INPUT FILE NAME: GPM-LIBRARY

INPUT FILE NAME: SYSGEN-PARAM

INPUT FILE NAME: GENERAL-SOURCE

END OF GPM
@

Suppose SYSGEN-PARAM contains 1DEF,NUPROG,5;

The following SOURCE-CODE file will then be produced:

*" " BRF

*)9BEG

*)SEXT SROUT RT1 RT2 RT3 RT4 RT5

SYMBOL PRI=30

INTEGER ARRAY IA1(10)

INTEGER ARRAY IA2(10)

INTEGER ARRAY IA3(10)

INTEGER ARRAY IA4(10)

INTEGER ARRAY IA5(10)

SUBR RPROG

*)ORT RT1 PRI

""IA1""; T:=1; CALL SROUT; "MON O;)FILL

*)9RT RT2 PRI

"*IA2""; T:=2; CALL SROUT; *MON O;)FILL

*)9RT RT3 PRI

"“IA3""; T:=3; CALL SROUT; *MON O;)FILL

*)9RT RT4 PRI

""IA4""; T:=4; CALL SROUT; *MON O;)FILL

*)9RT RT5 PRI

""IAB""; T:=5; CALL SROUT; *MON O;)FILL

RBUS

" " BRF

*)9END

*)SEOF

*)}LINE

@EOF

This source file yields a system for five RT programs calling SROUT.

ND-60.151.02

7-25

Suppose you get raving mad at all this GPM-stuff, and define NUPROG equal to

100 and run the system generation procedure. The inevitable result is:

*"BRF

*) 9BEG
#*)9EXT SROUT RT! RT2 RT3 RT4 RTS RTE RT7 RTS

*)SEXT RT3 RTI@ RT!l RTI2 RT1Z RTi4 RTIS RTI6

k) OEXT RT17? RT18 RTI9 RT20 RT21 RT22 RT23 RT24

#)9EXT RT25 RT2€ RT27 RT28 RT239 RTI@ RT31 RT32

%) 9EXT RT33 RT34 RT3S RTI6 RT37 RTS8 RT3 RT48

*)SEXT RTdl RT42 RT43 RT4d4d RT4S RT4E RT4r RT48

K)9EXT RT43 RTSQ RTS1 RTS2 RTS3 RTS4 RT55 RTS6

K)IEXT RTS7 RTS3 RTSS RTE® RTE! RTE2 RT3 RTe4

*)SEXT RT65 RT66 RT67 RTE8 RTES RTVD RTr1 RT72

*)SEXT RT?3 RTP4 RTFS RTr6 RTF7 RT73 RTF3 RTEA

#)3EXT RT8! RTS2 RT83 RTS4 RTSS RT3I6 RT37 RT33

*I9EXT RTES RT29 RTI1 RT92 RT33 RTYd RTIS RTI6

K*)IEXT RT97 RT98 RT99 RTiB8
*II

SYMBOL PRI=38

INTEGER ARRARY IA1(18)
INTEGER ARRAY IA2(18)

IMTEGER ARRAY I[A3(18)

INTEGER ARRAY I1RA4(18)

INTEGER ARRAY I[ARS(10)

IMTEGER ARRAY I[R6(18)

INTEGER RRRAY [A7(18)
INTEGER RRRAY [AB(13)

INTEGER ARRAY IRS(10)

INTEGER ARRAY IAR1B(18)

INTEGER ARRAY IAllC18D)

INTEGER ARRAY TR12(19)
INTEGER ARRAY I[A13¢18)

INTEGER ARRAY IA14(18)

INTEGER ARRAY IAl1S5(18)

INTEGER ARRRY IAl&6(187

INTEGER ARRAY IA17(18)

INTEGER ARRAY IA18(12)

INTEGER AERAY IA19(1@)

INTEGER ARRAY 1R2B(18)

INTEGER ARRAY IA21(18J

INTEGER ARRAY Ia22(18)

INTEGER ARRAY IAR23(1@)

INTEGER ARRAY TR24(18)
INTEGER ARRARY [R25(13)

INTEGER ARRAY IA25(18J

INTEGER ARRAY IR27(18)

INTEGER ARRRAY [A22(14)

INTEGER ARRAY IAR29(18)

INTEGER ARRAY I[R3B(181

INTEGER ARRAY IA31(18)

IMNTEGER ARRAY IAR32(18)

IMTEGZER ARRAY I[A33(18)

INTEGER ARRAY 1A34018)

INTEGER ARRAY [A35¢187

INTEGER ARRAY I&3201d)

INTEGER ARRRAY IA37 1@

ND-60.151.02

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
[MTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTERER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
IMTEGER

ARRAY
ARRAY
RARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
APRAY
ARRRAY
ARRAY
ARRAY
ARRAY

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARFAY
ARKAY
ARERY
ARRA'Y

[A38(18)
I1R39(18)
TR48C132)
[R41C18)
IR42(18)
IA43018)
[A44(18)
1R45C1@)
I1A46(18)
IR47 (18)
[R48(18)
IR49(1@)
IAS8 (18}
IRS1¢18)
IAS2(18)
[AS3{1@)
IA54(18)
IA55(18)
IRSae(13)
IAS7(18)
1AS8(18)
IAS39C 1B

1858(18)
[R61(18)
IA62(183)
[A63(18)
IA64(18)
[R6SC 18}
IAge(1d)
IA67 (183
IAB3(18)
[R63(18)
[R7E(18)
IA71(18)
[RY2(18)
IA73¢18)
IR74(18)
[A73(13)
IA76(18)
IR77 (18)
IA78 (1)
A7 (1)
IABB (18)
[RB1(18)
[RB2(18)
1A83 (180
IAB4(18)
[1AB3C18)
IAB6(18)
IAS7 (18)
[RBA (1)
IA3S (1@
A28 (18)
IR31(18)

7-26

ND-60.151.02

INTEGER ARRAY
INTEGER ARRAY
INTEGER RRRA'
INTEGER ARRAY
INTEGER ARRAY
INTEGER ARRRAY
INTEGER ARRAY
INTEGER ARRAY
INTEGER ARRAY
SUBR RPROG
*}IRT

#*)IRT

*)IRT

#*)9RT

#) RT

HISRT

*I9RT

*ISRT

*)9RT

¥ISRT

*)9RT

) 9RT

*IIRT

*)ORT

%) 9RT

%) SRT

*)ORT

*)3RT

KIORT

KIGRT

*IORT

*) 9RT

RT1 PRI
"IAL":

RT2 PRI
" 192 I B

RT3 PRI
"IR3":

RT4 PRI
0 Ig4ll"

RTS PRI
IIIQSII:

RT6 PRI
"IAG":

RT? PRI
n Ig? II;

RT8 PRI
"IR3":

RT9 PRI
n IRSII;

RT18 PRI
“TAR1B":

RT11 PRI
“IAL1":

RT12 PRI
"IR12":

RT13 PRI
"1R13":

RT14 PRI
"IA14":

RT1S PRI
"IR15":

RTl6 PRI
“1A16":

RT17 PRI
"IA1?";

RTI8 PRI
"IR18":

RT13S PRI
“IR19":

RT20 PRI
"1R20":

RT21 PRI
"IR21":

RT22 PRI
“IR22":

IRS2(18)
IR93(18)
IAS4(18)
1RSS5 (1)
IA36(18)
IAS7 (18)
[AS8(1B)
IAS9(18)

7-27

14180(19)

=12 CALL SR

:=2: CALL SR

1=3; CALL SR

:=d; CALL SR

:=6; CALL SR

:1=7: CALL SR

guT: *MON B:

OUT: xMDON @:

OUT: »MON @:

OUT: kMON B8:

QUT: xMON B:

QuT: *MON @:

OUT: *MON B:

:=219; CALL SROUT:

T

T

T

T

T:=3: CALL SR

T

T

T

T
t=11: CALL SROUT:

Ti=12:

T:=13;

T:=14;

1=18:

HEBYH

1=17:

e

e

1228

_
‘

im21;:

T- ==
. [y =

-

CALL

CALL

cAaLL

CALL

CcaLL

CALL

cAaLL

CALL

CALL

: CALL

24; CALL

: CALL

: CALL

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT;

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

ND-60.151.02

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

*MON 93

*MON 33

#*MON

kMOM

*MOM

*MON

*MOM

*MON

*MON

*MON

*MON

*MON

*MON

*MON

*MON

a:

@

8:

a:

8:

YFILL

YFILL

YFILL

YFILL

JFILL

YFILL

YFILL

JFILL

YFILL

YFILL

JFILL

YFILL

YFILL

YFILL

JFILL

¥IIRT

HKIART

*ISRT

#)IRT

#IIRT

X)SRT

#)IRT

#*)IRT

*®)I9RT

HKIGRT

*3I9RT

*IORT

X¥)IIRT

*I9RT

*®)SRT

#®ISRT

*IIRT

KIFRT

*)ISRT

*)SRT

*3SRT

K®IGRT

X¥)ORT

¥)8RT

KIGRT

#*)IRT

KIRT

RT23 PRI
"[A23";

RT24 PRI
"1R24";

RT25 PRI
"1A2S":

RT26 PRI
"1AZ6";

RT27 FRI
"1AZ7"

RT28 PRI
"1AZ3";

RT29 PRI
"1AZ9";

RT30 PRI
"IA3";

RT31 PRI
"IA31";

RT32 PRI
“IA32";

RT33 PRI
"IA33";

RT34 PRI
"1A34";

RT35 PRI
"IA35";

RT36 PRI
"1A3E":

RT37 PRI
"1A37 "

RT38 PRI
“1AZ8";

RT33 PRI
"IA33";

RT48 PRI
"1A4D" ;

RT41 PRI
"1A41";

RT42 PRI
"IA42";

RT43 PRI
"1A43";

RT44 PRI
"1A44" 3

RT45 PRI
"1A45";

RT46 FRI
"IA4E "

RT47 PRI
"1A47";

RT48 PRI
"IA48";

RT43 PRI
"IA43 "

7-28

: CALL

: CALL

; CALL

; CALL

: CALL

CALL

; CALL

; CALL

; CALL

CcAaLL

: CALL

: CALL

; CALL

2 CALL

: CALL

; CALL

; CALL

; CALL

; CALL

» CALL

: CALL

2 CALL

‘CALL

caLL

CALL

CALL

CALL

ND-60.151.02

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SRAOUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

*MON

KMON

*MON

*MON

#MON

*#MON

*MON

*MOM

*MON

*MOM

#MON

*MON

*MAON

*MOM

*MON

*MAON

*MON

KMOM

*MAOM

*MOM

HMOM

*MON

*MON

*MOM

A#MOMN

HMON

#MON

a:

a:

8:

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JEILL

JFILL

JFILL

JFILL

JFILL

IFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JFILL

JEILL

JEILL

JFILL

JFILL

JFILL

*IBRT

HIORT

#)SRT

K)SRT

#IBRT

*)3IRT

¥IIRT

*)IRT

*)IRT

*ISRT

*IORT

KIORT

*)ORT

*)ORT

*)3RT

¥3SRT

¥)ART

*IGRT

*IORT

*)SRT

*)3RT

*) GRT

K®I9RT

*)SRT

KISRT

*)ART

RTSA PRI
"IRSB":

RTS1 PRI
“IASL":

RTS2 PRI
“1IAS2":

RTS3 PRI
"IAS3":

RT54 PRI

"IAS4":

RTS5 FRI
"1ASS":

RT56 PRI
"IRSE";

RTS7 PRI
"1RAS?":

RTSS PRI

"IAS8";
RTS8 PRI
"TRS9":

RT&EG PRI
"IRED":

RTE61 PRI

"IR61":

RT62 PRI
"IRB2":

RT63 PRI
"IAB3":

RTE4 PRI
"IRG4";

RT3 PRI

"1ABS":

RTEE PRI

"IA6G";

RTE? PRI

"IRBTY";

RTE2 PRI

"IAG3";
RTES PRI
"IR69":

RTr8 PRI
"IA7B":

RTF1 PRI
"IA71":

RTF2 PRI
"TAV2":

RT?3 PRI
"IA73":

RT74 PRI

“IRT4":
RT?S PRI

“IAYS":

RTF5 PRI
"IATE":

T:=184:

T:=185:

T:=186:

T:=187:

T:=110:

Ti=111:

T:=112;

Ti=113;

T:=114:

7-29

CcAaLL

: CALL

3 CALL

; CALL

CALL

: CALL

: CALL

: CALL

: CALL

: CALL

: CALL

: CALL

: CALL

: CALL

s CALL

CALL

CALL

CALL

CALL

cALL

CcAaLL

CALL

CALL

CALL

CALL

caLL

CALL

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

ND-60.151.02

*kMON

*#MOM

HMON

*MON

*MON

*MOM

*MON

KMON

*ION

*MON

*MON

*MOM

*MON

kMOM

KMON

*MON

*MON

*MON

*MON

KMOM

*MON

*MAN

*MON

*MON

*MON

*MON

*MON

a:

8:

B

62

A

: JFILL

JFILL

JFILL

WFILL

JFILL

JEILL

JFILL

JFILL

: JFILL

JFILL

IFILL

JFILL

JFILL

YJFILL

JEILL

JFILL

JFILL

JFILL

YFILL

JFILL

JFILL

YFILL

JFILL

JFILL

JFILL

JFILL

JEILL

7-30

*¥)3RT RT77 PRI

"IATY": T:=115; CALL SROUT: sMOM B2 FILL
*I9RT RTPS PRI

"TA7Z": T:=116: CALL SROUT: *MON @: JIFILL
*I9RT RTFS PRI

"IAY3": Ti=117: CALL SFOUT: *MON B: JFILL
#*)IRT RT34 PRI

"Tagat: Te:=120: CALL SROUT: *MOMN B8 JFILL
#¥ISRT RTE1 PRI

"IAB1": T:=121: CALL SROUT: *MON B8: JFILL
*¥IZRT RT82 PRI

"IAB2": T:=122:; CALL SROUT: =*MON @: JFILL
*I3RT RTB3 PRI

"IA83": T:=123; CALL SROUT: *MON B: JFILL
*)3RT RTB4 PRI

"1AS4"; T:i=124: CALL SROUT: *MON B2 JFILL
*)9RT RT8S PRI

"IARS"; T:=125: CALL SROUT: *MON 8:)FILL

T

T

T

*)IRT RTEG PRI

"IAge": T:i=126; CALL SROUT: #MON B: JMFILL
*)IRT RTB? PRI

T

T

T

"IABF": T:=127: CALL SROUT: *MOMN @: JFILL
*)IRT RTBR PRI ;

"TAEB": T:=138:; CALL SROUT: #MON B3 JFILL
*)IRT RTB9 PRI

"IAS9": T:=131: CALL SROUT: *MON @:)FILL
*)9RT RTSB PRI

"IA9D": Ti=132; CALL SROUT: MON B: JFILL
*)9RT RT91 PRI

"IA91": T:=133: CALL SROUT: #MON 8: JFILL
#)9RT RT92 PRI

"IA92"; T:=134: CALL SROUT: *MON @: JFILL
¥)3RT RT93 PRI

"IA93"; T:=135: CALL SROUT: *MON B: JFILL
*)3RT RT94 PRI

"IA94": T:=136: CALL SROUT: *MON B: IFILL
*)9RT RT9S PRI

“IA95"; T:=137: CALL SROUT: *MON 8: JFILL
*)9RT RT96 PRI

"IA96"; T:i=14@: CALL SROUT: *MON @: JFILL
%) 9RT RT97 PRI

"IAS7"; T:i=141: CALL SROUT; *MON @: JFILL
*)3RT RT95 PRI

“IA98": T:=142; CALL SROUT: *MON B: DFILL
*)9RT RT99 PRI

' "1A93"; Ti=143: CALL SROUT: #MON B3 JFILL
*)3RT RT180 PRI

"IA1BB": Ti=144: CALL SROUT: *MOM 83 JFILL
RBUS
*"BRF
) SEND
) SEOF
*II

#ILINE

ND-60.151.02

1.9

7-31

COMBINED USE GF PERFORM AND GPM

While GPM is very flexible, allowing the competent user a great variety of

transformations, it has the following restrictions:

— It is not possible to enter parameter values interactively into GPM.

— When editing a GPM macro file, there is some risk of errors such as

misspelling macro names or making macro calls with incorrect syntax.

— Such errors can cause a considerable number of error messages making it

difficult to find the real problem.

The PERFORM subsystem on the other hand is a simple facility for substituting

mode file variables into general purpose mode files, eg. names of files for

compilation or loading. While PERFORM does not have very extensive macro

facilities, it is very convenient to be able to enter parameter values interactively.

The combined use of PERFORM and GPM takes advantage of the strengths of

both systems, namely interactive input of parameters and accurate substitution

into a GPM macro with its powerful transformation facilities. However, the user

should be careful when mixing the macros of the two systems; in particular it is

advised that a character different from the up arrow character () is used for the

PERFORM macros in order not to confuse them with GPM macros.

The following is an example of the combined use of PERFORM and GPM.

The steps of this job are:

1. Get parameter values interactively or substitute default values.

2. Use the editor to write some GPM macros to a file.

3. Call GPM to create several FORTRAN Source files.

4 Call GPM to create mode files to compile, then load the programs ready for

execution.

5. Execute the mode files which have just been created.

ND-60.151.02

7-32

The PERFORM macro to do this job is:

%B,SERVICE;

%L, Macro to tailor the remote service system, device numbers;

%P,1,Logical device number of the internal device to be used;

%D,1,2008B;

%P,2,Logical device number of the async modem;

%D,2,42;

%P,3,RT program pair number;

%D,3,1;

%P,4,Segment number for input/output programs;

%D,4,167;

%;

@QED

|

1DEF,INTDEV1,01;

tDEF,ASYNC,02;

1DEF,PROCNR,03;

1DEF,SEGNR,04;
LC

W SLASK
F

@GPM

YSERVICE-REMOTE:SYMB

SLASK:SYMB

SERVICE-REMOTE:GPM

@GPM

YSERVICE-INPUT:SYMB

SLASK:SYMB

SERVICE-INPUT:GPM

@GPM

YSERVICE-OUTPUT:SYMB

SLASK:SYMB

SERVICE-QUTPUT:GPM

@GPM

YSERVICE-COMPILE:MODE

SLASK:SYMB

SERVICE-COMPILE:GPM

@GPM

YSERVICE-RTLOAD:MODE

SLASK:SYMB

SERVICE-RTLOAD:GPM

@MODE SERVICE-COMPILE:MODE,,

@MODE SERVICE-RTLOAD:MODE,,

%E;

edit some GPM macros

create first FORTRAN program

create second FORTRAN program

create third FORTRAN program

create a mode file which will

compile all the programs

create a mode file which will

load all the programs ready for

execution

execute the compilations

execute the program loading

end of PERFORM macro !

The percent character (%) has been used to begin macro commands instead of

the usual up arrow character { 1), to avoid confusion with the similar function

required in the GPM macros.

ND-60.151.02

7-33

In order to illustrate the use of GPM in this job the input to GPM to produce the

source of the third FORTRAN program is:

“CRMOD;
c
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C FOR REMOTE MAINTENANCE
c

PROGRAM OUTPUT”PROCNR; , 34
INTEGER IST,RESRV,ICH,ERRCODE,ASYNC,TERMNO, IERR
EXTERNAL INPUT PROCNR;

ASYNC
Im

“ASYNC;
“INTDEV1;

IST = RESRV (ID1, 0, O)
IF(IST .NE. 0) GO TO 9000
TERMNO = INCH (ID1)

IST = RESRV (TERMNO, 1, O)
IF(IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, 0, 0)
IF(IST .NE. 0) GO TO 9000

IST = IOSET (ASYNC, 0, 0, -1)
IF(IST .NE. 0) GO TO 9000

CALL ECHOM (ASYNC, -1, 0)
CALL BRKM (ASYNC, O, 0)

CALL RT (INPUT"PROCNR;)
CALL RELES (ID1, O)

DO WHILE (.TRUE.)
ICH = INCH (ASYNC)
IF(ERRCODE NE. 0) GO TO 9000
CALL OUTCH (TERMNO, ICH)
IF(ERRCODE .NE. 0) GO TO 9000

END DO

9000 CONTINUE
IF(ERRCODE .NE. 0) THEN

TERR = ERRCODE
WRITE (TERMNO,9100) IERR

9100 FORMAT(” ERROR IN OUTPUT PROGRAM, ERRCODE: ",I6)
ELSE IF (IST .NE. 0) THEN

IERR = IST
WRITE (TERMNO,9200) IERR

9200 FORMAT(”~ ERROR IN OUTPUT PROGRAM, STATUS:’,I6)
END IF

END
EOF

ND-60.151.02

7-34

If the above macro is used and the following values are input:

INTDEV -~ 2018

ASYNC - 42 (default)
PROCMNR = 2
SEQNR - 201
then the Fortran source output from GPM is

C
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C FCR
C

9000

9100

9200

S

ECF

REMOTE MAINTEMANCE

PROGRAM OUTPUTZ2, 34

INTEGER IST,RESRV,ICH,ERRCUDE ,ASYNC ,TERMNO, IERR
EXTERNAL INPUTZ2

ASYNC
IDl

42
201B

IST = RESRV (IDl, 0, 0)
IF (IST .NE. 0) GO TO 9000
TERMNO = INCH (ID1)

IST = RESRV (TERMNO, 1, Q)
IF (IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, 0, 0)
IF (IST .NE. 0) GO TO 9000

IST = IOSET (ASYNC, 0, 0, =1)
IF(IST .NE. 0) GO TO 9000

CALL ECHCM (ASYNC, -1, 0)
CALL BRKM (ASYNC, 0, 0)

CALL RT (INPUT2)
CALL RELES (ID1, 0)

DO WHILE (.TRUE.)
ICH = INCH (ASYNC)
IF (ERROODE .NE. 0) GO TO 9000
CALL OUTCH (TERMNO, ICH)
IF (ERRCODE .NE. 0) GO TO 2000

END DO

QONTINUE

IF (ERROODE .NE. 0) THEN

IERR = ERRCODE

WRITE (TERMNO,9100) IERR

FORMAT (' ERROR. IN QUTFUT PROGRAM, ERRCODE:',I6)
ELSE IF (IST .NE. 0) THEN

IFPR = IST

WRITE (TERMNO,9200) IERR

FORMAT (' ERROR IN OUTPUT PROGRAM, STATUS:',I6)
END TIF

END

ND-60.151.02

8.1

8-1

VTM-COMPOUND

SINTRAN IIl has to handle different manufacturers’ terminals individually, ie.,

according to the terminal type specified in the command

@SET-TERMINAL-TYPE. Some subsystems, eg., NOTIS WP, use the VIRTUAL

TERMINAL MANAGER, abbreviated VTM, to handle the terminal screen.

VTM needs a table with descriptions of all terminal types used in the computer

system. In VTM version C and later versions, the terminal table is stored on the

file DDBTABLES-n:VTM. The character ''n” denotes the version, eg.,

DDBTABLES-D:VTM.

VTM-COMPOUND is a subsystem to add new terminal types to the terminal table

when new terminals are connected to the computer system. The subsystem may

also modify the terminal table in other ways.

All standard terminal types are initially described in the terminal table. Each

nonstandard terminal type will be described by a separate file called

DDBnnn:VTM where nnn’”’ denotes the terminal type. Such files should be

compounded into the terminal table by VTM-COMPOUND.

VTM-COMPOUND may also produce a terminal table on a relocatable format file

to be loaded together with an application program which uses VTM. The terminal

type descriptions will then be fetched from this file.

STARTING VTM-COMPOUND

VTM-COMPOUND uses menus to show the available operations on the terminal

table. You enter the first menu by giving:

@VTM-COMPOUND

You return to SINTRAN Il by selecting the EXIT alternative in the menu, ie., by

typing 9 followed by carriage return. Standard line editing characters like the

a-key (or CTRL A), the EXPAND-key (or CTRL E), and the navigation keys to

move the cursor forward and backward are available.

ND-60.151.02

8-2

8.2 THE OPERATIONS AVAILABLE IN THE MENUS

The first menu you enter is the main menu. The available operations on the

terminal table look like this:

DO YOU WANT TO:

: GENERATE A NEW FILE

ADD TERMINAL TYPES

DELETE TERMINAL TYPES

GENERATE A FILE WITH BRF OR NRF FORMAT

LIST TERMINAL TYPES

LIST CPU-TYPE, CPU-NUMBER AND FILE VERSION NUMBER

CHANGE CPU-TYPE, CPU-NUMBER AND FILE VERSION NUMBER

EDIT THE CONTENTS IN DDBS9S: VTH

¢ EXIT

ANSWER: _

e

-
e

You select an alternative from this menu by entering one of the numbers

followed by carriage return. In alternatives 1-7 you will be asked which file you

want to use. You may select one of four alternatives as shown from the menu:

WHICH FILE DO YOU WANT TO USE:

1: DDBARRAYS:VTM (VTM-B)

2: DDBTABLES-n:VTM (VTM-n)

3. User’s choice /:VTM/

4: RETURN
ANSWER: _

If you select alternative 2, "DDBTABLES-"" will be output, and you have to

fill in the correct version. The file DDBARRAYS:VTM contains the terminal

table used by VTM, version B. Alternative 3 allows you to specify any file. A

new file can be created by enclosing the file name in quotes (""...""). The

default file type, :VTM, is shown between slanted lines.

You will then be asked for further information, or information will be ouput

according to the selected alternative in the main menu. This is described in

the next sections. The 4th alternative called RETURN redisplays the main

menu.
ND-60.151.02

8.2.1

8.2.2

8.2.3

8-3

Generate a New File

Alternative 1 in the main menu will create a new file containing a terminal table.

VTM-COMPOUND will ask you to enter the CPU type, CPU number, and the file

version number. Answer these ‘questions with carriage return. These functions

are reserved for future use.

The subsystem will then ask which terminal types the user wants to compound

into the new terminal table. The terminal types can be given either one by one

separated by carriage return, or as a range, eg., 2:5. You finish by typing 777

followed by carriage return. The corresponding DDBnnn:VTM files describing the

terminal types must be available.

Add Terminal Types

Alternative 2 in the main menu will add new terminal types to the terminal table.

Terminal types can be given one by one separated by carriage return, or as a

range, eg., 2:5. You finish by typing 777. The corresponding DDBnnn:VTM files

must be available.

Delete Terminal Types

Alternative 3 in the main menu will delete terminal types from the terminal table.

Terminal types can be given one by one separated by carriage return, or as a

range, eg., 2:5. You finish by typing 777.

ND-60.151.02

8.2.4

Generate a New File with BRF or NRF Format

Alternative 4 in the main menu will create a file containing the terminal table in

relocatable format, ie., in BRF or NRF. These files can be loaded together with an

application program which uses VTM. VTM will then fetch the terminal type

descriptions from this file. The relocatable format files may be generated for

ND-100 one-bank programs, ND-100 two-bank programs, or ND-500 programs.

The alternatives will be shown as in the menu below:

WHAT TYPE DO YOU WANT TO GENERATE:

1: ND-100 (1-BANK) /:BRF/

2: ND-100 (2-BANK) /:BRF/

3: ND-500 /:NRF/

4: RETURN

ANSWFR: _

When you select an alternative, the default file name will be displayed. You may

edit this name, eg., enclose it in quotes ("...”") to create a new file, or overwrite it

with another file name. The default file names are VTM-1B-ARRAY:BRF,

VTM-2B-ARRAY:BRF, and VTM-ARRAY:NRF.

The information in the relocatable format files wili be the same as in the ordinary

terminal table. The file containing the ordinary terminal table will be used as

input.

ND-60.151.02

8.2.5

8.2.6

8.2.7

85

List Terminal Types

Alternative 5 in the main menu will display a list of the terminal types in the

terminal table. The terminal types will be output both by number and the

manufacturer’'s name, eg.,

TELETYPE-ASR-33

TANDBERG-TDV2115-STANDARD

INFOTON-200-1

INFOTON-400

1 DEC-LA36 (DECWRITER-II)

36: TANDBERG-TDV2215-EXTENDED

52: TANDBERG- TDV-2215-SDS-V2

53: TANDBERG-TDV2200/9-ND-NOTIS

57: FACIT- 4420-ND-NOTIS

83: TANDBERG-TDV2200/9-V2-ND-NOTIS

=

E
L
D

The terminal types listed above are the standard terminal types.

List CPU Type, CPU Number and File Version Number

Alternative 6 in the main menu should display a list of the CPU type, the CPU

number, and the file version number in use. These functions are reserved for

future extensions, and no values will be output.

Change CPU Type, CPU Number and File Version

Number

Alternative 7 in the main menu allows you to change the CPU type, the CPU

number, and the file version number. These functions are reserved for future use.

The default values are no changes.

ND-60.151.02

8.2.8

829

8-6

Edit the Contents of the File DDB999:VTM

The DDB999:VTM file is only used with VTM, version A. It contains the terminal

types and the manufacturers’ terminal names of all terminals in the computer

system. The DDB999:VTM file is used by some subsystems, eg., NOTIS WP, to

display the available terminal types if no terminal type is set. Section 8.3 expiains

how VTM version A functions.

The DDB999:VTM file shouid be updated when new terminal types are added to

the system. Alternative 8 in the main menu will allow you to modify the contents

of this file. The alternative operations will be shown as in the menu below:

DO YOU WANT TO:

i MAKE A NEW DDB99S FILE

ADD TERMINAL TYPE DESCRIPTIONS

DELETE TERMINAL TYPE DESCRIPTIONS

LIST THE CONTENTS IN DDB999: VTM

: o EXIT

ANSWER: _

O
B

w
W
w
N

=

The first alternative will create a new DDB999:VTM file. The second alternative

will add new terminal types to the existing DDB999:VTM file. The 3rd alternative

will delete terminal types from the file. The terminal types should be entered one

by one separated by carriage return, or as a range, eg., 2:5. You terminate the

input by typing 777.

The 4th alternative will list the terminal types in the file. The terminal type and

the manufacturer's terminal name are output, eg., 53: TANDBERG-

TDV2200/9-ND-NOTIS. The last alternative will display the new contents of the

file DDB999:VTM and return you to SINTRAN Il

Exit

Alternative 9 in the main menu will return you to SINTRAN lll. Information about

the terminal types in the terminal table will be output if the table is modified.

ND-60.151.02

8.3

8-7

VTM VERSIONS, FILE VERSIONS AND TERMINAL

TYPES

To some extent the different versions of VTM shouid be handled individually.

Version B of VTM uses the terminal table contained in the file calied

DDBARRAYS:VTM. Version C and later versions use the file DDBTABLES-n:VTM
e

where "'n"’ denotes the version. .

VTM version A, uses one DDBnnn:VTM file for every terminal type. No

compounded DDBTABLES-n:VTM or DDBARRAYS:VTM files exist.

VTM-COMPOUND serves no purpose for VTM version A, except editing the file

DDB999:VTM. This file contains a list of the terminal types in the computer

system, but no terminal type descriptions are included.

The files DDBnnn:VTM describing each nonstandard terminal type are separate

products. All terminal types are listed in appendix B in the SINTRAN il

REFERENCE MANUAL (ND-60.128). VTM- COMPOUND should only be used from

a standard termina! type.

ND-60.151.02

8.4

8-8

AN EXAMPLE OF INCLUDING A NEW TERMINAL

TYPE

In the following example, the nonstandard terminal type 78 is entered intc the

terminal table. The terminal table resides on the file DDBTABLES-D:VTM. User

input is underlined.

@VTM-COMPOUND

(main menu displayed and the choice ADD TERMINAL TYPES is selected)

ANSWER: 2.

(a new menu asks which file you want to use)

ANSWER: 2
(the string "DDBTABLES-'"" is displayed to the right of alternative 2 in the

menu)

2: DDBTABLES-n:VTM (VTM-n) DDBTABLES-D

(the menu disappears and you are asked which terminal types you want to

add)

-- WRITE TERMINAL TYPES --

CARRIAGE RETURN AFTER EACH TYPE. WHEN FINISHED: WRITE 777.

18
NEXT: 777

(you return to the main menu)

ANSWER: 9

(all terminal types are listed and you return to SINTRAN [11).

The terminal type 78 can now be set for the new terminal by the SINTRAN ili

command @SET-TERMINAL-TYPE. The file DDB078:VTM containing the terminal

type description must be available.

ND-60.1561.02

8.5

89

ERROR MESSAGES

The following error messages can be displayed by VIM-COMPOUND. Other

possible messages are SINTRAN Il error messages like "NO SUCH FILE"”,

""ambiguous file name"’, etc.

THE FILE IS EMPTY

You tried to access terminal types in an empty terminal table or an empty

DDB993:VTM file. VTM-COMPOUND will ask you to specify another file name.

TYPE > 255 IS ILLEGAL

You entered a terminal type greater than 255. VTM-COMPOUND will ask you for

another terminal type.

FILE IS TOO BIG FOR BUFFER

The number of bytes in the DDB999:VTM is to great. VTM-COMPOUND will ask

you to specify another terminal type.

ALREADY EXISTS IN THE FILE

You tried to add a terminal type that already exists in the terminal table or the

file DDB999:VTM. VTM-COMPOUND will ask you to specify another terminal

type.

DOES NOT EXIST IN THE FILE

You tried to delete a terminal type that does not exist in the file specified.

VTM-COMPOUND will ask you to specify another terminal type.

THERE ARE NO MORE TERMINAL TYPES LEFT IN THE FILE

All terminal types have been deleted from the terminal table or the file

DDB999:VTM. VTM-COMPOUND will return you to the main menu.

THE TYPE DOES NO EXIST

There is no DDBnnn:VTM file corresponding to the terminal type you chose.

VTM-COMPOUND will ask you to specify another terminal type.

NOT A RANGE!

An improper range is given, eg., 36:34 instead of 34:36.

THE FILE "VTM-ALL-TYPES:VTM" DOES NOT EXIST ON TH!S USER

No file by the name of VTM-ALL-TYPES:VTM exists. This file contains the

manufacturers’ names of all the defined terminal types in SINTRAN lil. This file

is used when terminal types are added to one of the files DDB999:VTM,

DDBARRAYS:VTM or DDBTABLES-n:VTM. The file VTM-ALL-TYPES:VTM is

supplied as part of the VITM-COMPOUND system. VITM-COMPOUND will

terminate.

ND-60.151.02

8-10

THE FIiLE ""'DDB999:VTM"* DOES NOT EXIST ON THIS USER

No file by the name of DDB999:VTM exists. VTM-COMPOUND will terminate, and

the user have to create this file before continuing.

THE FILE <file name> DOES NOT EXIST ON THIS USER

No file with the entered <file name> exists. VTM-COMPOUND will continue

and ask for another file name.

ND-60.151.02

NN NN SEND Us YOUR COMMENTS!!! A N

Are you frustrated because of unclear information in

this manual? Do you have trouble finding things?

Why don‘t you join the Reader’s Club and send us a

note? You will receive a membership card — and

an answer to your comments.

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless information

Do you think we could improve the manual by

rearranging the contents? You could also tell
us if you like the manual!

vevnsnssssax HELP YOURSELF BY HELPING US!! .ivuvvunrss

Manual name: SINTRAN III Utilities Manual Manual number:ND - 60.151.2

Rev. A

 What problems do you have? (use extra pages if needed)

 Do you have suggestions for improving this manual ?

Your name: Date:

Company: Position:

Address:

 What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S —_—

documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department

P.O. Box 25, Bogerud
0621 Oslo6, Norway

