
SINTRAN Il

Utilities Manual

ND-60.151.01

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1982 by Norsk Data A.S.

This manual is in loose leaf form for ease of updating. Old pages may be

removed and new pages easily inserted if the manual is revised.

The loose leaf form aiso allows you to place the manual in a ring binder (A) for

greater protection and convenience of use. Ring binders with 4 rings corre-

sponding to the holes in the manual may be ordered in two widths, 30 mm and

40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable

for manuals of less than 100 pages than for large manuals. Plastic covers may

also be ordered below.

3
- 1

: . =
Ly NCRSK DATA AS NQRSK CATA AS

™ AR = & i B
-\ [J

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department

Norsk Data A.S

P.0. Box 4, Lindeberg gérd

Oslo 10

ORDER FORM

| would like to order

Ring Binders, 30 mm, at nkr 20,- per binder

Ring Binders, 40 mm, at nkr 25,- per binder

Plastic Covers at nkr 10,- per cover

NBME ... oo i s i S R e s S PR A S Bk T 0300 B i S S SR PSS A AN TS

COMPANY 1tvrieerreresernersnseeronssreressnrssesisssssssssassarassasssonssssasnsessibat satisibstiiis st ab s s

A AT oiriesineesesesiesteseasasvssa s s saass s sasssn s sas e e s e ar g e g eea et r e e et e d gt eaR e a e smn s e reaan

PRINTING RECORD

Printing Notes

11/81 Version 01

05/82 Revision A

The fol are revised or new: vi, vii, viii, 1—1, 3—21.

Sections 6 and 7 are new,

Revision B

The followi are revised: vii.

Section 5.

SINTRAN II1 Utilities Manual

Pbl. No. ND-60.151.01 Rev.B

NORSK DATA A.S
P.O. Box 4, Lindeberg gard
Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions

consist of a complete new manual which replaces the old manual. New versions

incorporate all revisions since the previous version. Revisions consist of one or

more single pages to be merged into the manual by the user, each revised page

being listed on the new printing record sent out with the revision. The old

printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered

as described below.

The reader's comments form at the back of this manual can be used both to

report errors in the manual and to give an evaluation of the manual. Both

detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation

should be sent to the local ND office or {in Norway) to:

Documentation Department

Norsk Data A.S

P.O. Box 4, Lindeberg gard

Oslo 10

SINTRAN III/VS

ND-60.125

TNTRODUCTCRY Sintr.III
iIntr'oduot.

"SER’S MD-60.134 ND-60.,132 ND-60. 133

GUITES Ccmmunic. Timeshar./ Real Time

Guide Batch Guide Guide

5

ND-60.151 ND-60.128 ND-60.051

REFERENCE Sintr.III Sintr.III Real Time

Utilities Ref. Man. Loader

>

OPERATOR/ MD-30.001 ND-30.003 ND-60.110

SUPERVISCR NORD 10/50 Sintr.III Postmortem

Oper.Guide Sys.Sup.Gu. Investegat,

sl N L

ND-60.062 ND-60.122 ND-60.072 ND-60.081 ND-60.112

Sintr.III t'ile Sys. RT-Loader Nordnet Sintr.III

Sys.Docum. Sys.Docum. Sys.Docum. Sys.Docum. Data Fields

INTERNAL SYSTEM DOCUMENTATION

SINTRAN III/RT

ND-60.082

Sin.III/RT
Ref. Man.

vi

PREFACE

THE PRODUCTS

This manual describes products which run under the SINTRAN Il operating

systems

SINTRAN I1I/VS ND—10048

SINTRAN I[lI/VSE ND—10174

SINTRAN H1/VS-500 ND—10175

The products described are:

GPM ND—10124

PERFORM ND—10022

BACKUP—SYSTEM ND—10337

LOOK—FILE ND—10005

ND—10044

FILE EXTRACT UTILITY ND—10044

THE READER

This manual is written for users of SINTRAN Il who want to use any of the

subsystems listed above.

PREREQUISITES

Familiarity with SINTRAN 1ll is an advantage.

THE MANUAL

This manual describes some utility subsystems of SINTRAN 1Il.

RELATED MANUALS

Related manuals giving basic information about SINTRAN Il are

SINTRAN It Introduction ND—60.125

SINTRAN Il Timesharing Batch Guide ND—60.132

Other SINTRAN Il manuals are shown on the preceding diagram.

ND-60 151.01

Rev. A

vii

TABLE OF CONTENTS

+ + +

Section: Page:

1 INTRODUCTION ...ttt e eeraeeeeesnsrseesrssa s s ansinssessssans 1—1

2 THE PERFORM SYSTEMooiiiviiiimiirmnriseseneeeeresnessnsnnsiaenns 2—1

2.1] Yo [Loy (To Lo F PPN 21

2.2 PERFORM Commandscooeeviiiiiiiiiiiiiee e enanans 23

23 Example of a PERFORM Macro............occooiiiiiiiiiiiiennninns 2—4

24 Interactive Prompts During Macro Execution 2—-b

25 Output Listing File Control........ccccccceviiiviiiinann. 25

2.6 Mode File Submission Controlc.o.ooooviiiiiiiiiiniiinnann. 2—-5

2.7 Extended Parameter SUbmisSion......ccccovevivviiiiiiiiiiniienes 2—6

2.8 Limitations, Restrictions and Defaultscccciieiiiiinnn. 2—6

2.9 Standard PERFORM Macroseeeiiveiiiiiiiicnencaiinn. 2—7

3 GENERAL-PURPOSE MACRO GENERATOR — GPM 3—1

3.1 INTrOdUCTION oo e s an b san e earas 3—1

3.2 GPM Syntax and Evaluation RUlesccccceeeerieriniiiniinnnnn 3-2

3.3 System Macrosooooviiiiiiiiic i B oy — 3-—3

3.4 Macro Evaluationcoooiveeiii et 3—-5

35 Conditional Macrosco..ovviiiiiiiiiiis e p e ae i aeas 3—-7

3.6 Recursive Macroscooeiieieviiieiiiniineiiiininn. . 3-8

3.7 The GPM Librarycccooooiiiviniiiiii i, 3—9

38 GPM Under SINTRAN HI ..o 3—16

3.9 GPM Applications — Some Ideas.......c.ccovieviiiiiiviniiinnn. 3—17

3.91 GPM and Semigraphic Display ..., 3—17

39.2 System Generation Using GPMccccciiiin..3—18

3.10 Combined Use of PERFORM AND GPMoccoeiiie 3—-28

4 THE MAIL SYSTEM Loooiiiiiiiieitiiieeeriiiie e eerrasesseennsneeenneaeseennses 4—1

41 INTrOAUCTION Luueiiiiiiiier e ieeni e eeae e s re b s e s ainen e b —1

4.2 General FOrmat ..ot seie st se s naeaain e 41

4.3 SUDCOMMANAS 1eireeriireiriiiei i e e et e b e e s anene 42

5 BACK-UP SYSTEM ..o iiiiiiuiiiiiiiinisiinesesrinesssssnssasssnssersesssaaaerss 5—1

5.1 INErOAUCTION L.oeeiiiii e s 5—1

5.2 Simple Use of the BACKUP-SYSTEM ..o 5—3

5.3 COMMANASoovviiiiie e s 5-3

5.4 Commands — Detailed Descriptioncccoiciiiiinnn 5-—-7

55 Label Formats on Magnetic Tape VOLUMES5—15

6 LOOK-FILE. iviiisnssransssnrssisasssarsersssonsmmsssssmssmnisiomiimns v iiniin 6—1

6.1 INTrodUCTION oo e e e e rran e e ees 6—1

6.2 Commands — SUMMAIYcoooooiiiiviineireerieneiie e eiereeseines 6—1

6.3 Commands — General Rulescoooeivvviriiiiiiiiiciiiannens 6—2

6.4 Commands — Detailed Descriptioncccoiiimimiiiinnn 6—3

ND-60.151.01

Rev. B

Section:

7

71

7.1.1

7.2

7.21

7211

7212

7213

7214

7.22

71.2.21

7222

7223

723

7.2.31

7.23.2

7233

7234

7.235

7.2.3.6

7.23.7

7238

7239

724

7.241

7242

7243

7244

7245

7.246

7.24.7

7.24.8

7249

7.2.4.10

7.24.11

7.24.12

72413

72414

7.3

viii

NORD FILE EXTRACT UTILITY COMMAND ciess

INtrodUCtiON it it s T e

PUrpOSe. siimarmiiisins i A S s i mas

Command SErUCUTEiaucibisesiieseeisaios ookl

INPUL FIl@ ,yumnsrmeesmereeysossassasassoiinisiossisvstonsissiaiviove fibninie

Mode File Save Optionc..oooiiiiiiiiiiiiean,

Limited Automatic Command Input..............coveee

Fixed Record Length Input File Option

indexed Access via KEY Fileccccciciiinnnnns

OULPUL File .oiiiiiiiieeeiiiiieee it

Output File Append Optioncooooiiiiiiininns

File Split Optionccovvviiiiiiiiiiieieeee i

Output File Organization Change (X Option)

Extract Selection specificationscccccviciiiniiiiininan

Numeric Field Evaluationoivininininn.n.

Text Field Evaluationc.ooooiiiii..

Text String Searchc.oooiiviiiiiiiiicieneee,

Limited Text String Searchcccociiiiiiiiiiinnnn..

Logical Operandscccccooviiniiiniinnrirssensennn

Parentheses Nestingccc.cocvvvvrimiiviiinniiiinnninienns

Input File Record Intervalsccoiiiiiiiiniinnn.

Show First Input File Record Optionc.ccc......

Command Line Continuation Optionccccceen.

Output Specificationscccvvviiiiiniinivnneisremeearinnes

Input Record Subsets Specification

Output Record Constantsc.ccccvvieeiiininnnn,

Input Record Number Inclusion

Output Record Number Inclusionc..

Random Key Inclusion Option ...

Terminal Output Wait Option ..o,

Line Printer/Terminal Output Heading Option......

Line Printer/Terminal Page Numbering Option

Predefined Heading as Extract Command Line ...

Predefined Heading as Position Mask

Split File Copy Option........cccccooiiiiiiiiie s

Show First input File Record Option

Command Line Continuation Option

Skip Output Record Trailing Spaces

Run-Time Status MesSagescvviirimveimimiiierininninn.

ND-60.151 .0}

Rev. A

INTRODUCTION

This manual collects together information previously published in the GPM

manual ND-60.109 and SINTRAN Il Reference Manua! ND-60.128 and some new

material.

The subsystems described are not necessary for simple use of SINTRAN Il but

may be of considerable use for particular tasks. The manual contains the

information users need to efficiently use the particular subsystem relevant to

their task.

ND-60.151.01

REV A

2.1

THE PERFORM SYSTEM

INTRODUCTION

During the development of any software system, it is often necessary to re-

compile the programs, load and test them. This repetitive work can be done

more easily by using MODE files. However, MODE files have two limitations:

1) each MODE file requires a separate file

2) the parameters are fixed within the MODE file.

This program takes parameters from the command line and inserts them into a

copy of the specified file and then runs it as a MODE file. This file contains

"copies’” of MODE file "images’’ that would have been on individual files.

Thus, the PERFORM program both saves file space and offers the user a great

deal of flexibility as to the type of data that can be modified. It is NOT intended

to replace the functions offered by the standard EDITORS.

PERFORM is called thus:

@PERFORM /macro file/, /macro name/, /optional paras/, P1, ... Pn

macro file = file :MCRO as described below

default: PERFORM-LIB:MCRO

macro name = 1-16 character macro identification.

default: FTN

optional paras = < output file.

default: TERMINAL.

a file name may be specified in quotes but the < must precede the first

guote sign. Default type is :SYMB.

= > Mode file submission control para,

>C, = create don’t run,

>R, create run,

>Bn, = create submit to BATCH,

>default = > R

* MODE file name,

If a MODE file other than the default mode file MACRO'n:MODE is to be used,
this file name may be given as an optional parameter preceded by a * (asterisk).

The type of this MODE file will be :MODE.

P1,,,, Pn = user macro replacement parameter(s). n = 1-20.

The macro file consists of a number of macro descriptions separated by B, E

delimiters. The PERFORM program scans the macro file for the requested macro

name, and if found creates a MODE file with the replacement or default

parameters.

ND-60.151.01

If a MODE file other than the default mode file MACRO'n:MODE is to be used,
this file name may be given as an optional parameter preceded by a * (asterisk]).
The type of this MODE file will be :MODE.

P1,.. Pn = user macro replacement parameter(s). n = 1-20.

The macro file consists of a number of macro descriptions separated by B, E
delimiters. The PERFORM program scans the macro file for the requested macro
name, and if found creates a MODE file with the replacement or default
parameters.

ND-60.151.01

2.2 PERFORM COMMANDS

Macro is defined by the following simple syntax:

~

B, macro name:

--- macro prompt and default commands ---

--- SINTRAN commands and data lines ---

~

E.

Macro prompt and default commands:

~

B, macro name; to indicate the beginning of a new macro definition.

~

P.n, prompt string; to specify the prompts to be given where the parameter is

not supplied.

A

F.n, prompt string; as for AP, however user response is assumed to be a

SINTRAN mass storage file name and PEFORM will attempt expansion of

abbreviated name.

AD,n,default string; to specify the default value to be used if no value given to a

promt (n).

AL, information string; string is displayed on Terminal.

~

C. comment string; string is ignored.

A,' to delimit the declarations from the MODE file data.

AE; to indicate the END of a macro definition.

macro name = a 1 to 16 character identifier.

n = a numeric value 1-20 signifying a positional parameter expected on the

@PERFORM command.

The ~ sign shown above can be any character other than A-Z, 0-9 or blank. The

up arrow {) is recommended as this follows the NOTIS and GPM syntax. The

character is taken from the first character on the :MCRO file, and must be the

same character throughout the file.

Macro parameter submission placement is indicated by the use of the backlash

(\) followed by n {1-20).

The semicolon (;) is required to terminate macro commands.

ND-60.151.01

2.3

24

EXAMPLE OF USING A PERFORM MACRO

For example, to compile, load and dump a FORTRAN program, type the following
command:

®PERFORM FTN FTNDUMP ABC 30000

Where:

FTNDUMP is the macro name that will be searched for on the file FTN:MCRO.
ABC is the FTN source program (ND editor file).

30000 is the desired UPPER LIMIT parameter for the loader.

FTN:MCRO (note the file type) is a file created by an ND editor as follows:

"B, PREVMACRO;
T etc. ----- other parameters as required

B. FTNDUMP; Begin macro definition
L, Macro to compile and dump a FTN

. brogram;

AP. 1, source file name?;

P. 2, Upper limit?;

B, 2, 177777;

; end parameter specifications
@DELETE-FILE \1:PROG

@FTN
COM \1,, TEMP
EX
@NRL
UPPER-LIMIT \2
L TEMP
OUMP " " \1""

EX
AE: End macro definition
B, NEXTMACRO;
R etc. ----- other macro definitions {no limit)

e

Example of use of default upper limit:

@PERFORM FTN FTNDUMP ABC, ,

Resulting MACRON:MODE file:

®DELETE-FILE ABC:PROG

®FTN

COM ABC, , TEMP

EX

®NRL

UPPER-LIMIT 177777

L TEMP

DUMP " " ABC" *

EX

ND-60.151.01

24

2.5

2.6

INTERACTIVE PROMPTS DURING MACRO EXECUTION

PERFORM may be called by @ PERFORM. Often the user wishes to know if the

PERFORM-LIB:MCRO file being used actually contains the particular macro re-

quested. Therefore, under "AUTO PROMPT" mode the user may respond to the

"macro name:”’ prompt with a “'?"" character. PERFORM will then list all the

macros defined on the currently attached :MCRO file.

Example:

:MCRO file name :FREDS-MACROS

Macro name :?

Macros available in file FREDS-MACROS

FTN

COBRUN

Macro name :COBRUN

OUTPUT LISTING FILE CONTROL

By default, the output from the execution of the mode file goes to the terminal,

in the same way as in the @ MODE command. Optionally, it may be sent to a file

by specifying the file name, preceded by "less than” (<). This must appear after

the macro name and before any parameters for the procedure.

Example:

®PERFORM FTN FTNDUMP <SINK ABC,,

MODE FILE SUBMISSION CONTROL

The @ PERFORM user may direct the usage of the created :MODE file by using

the optional "'greater than’’ (>) directive:

> CREATE, = create MODE file but do not execute.

>RUN, = create MODE file and execute.

>BATCHn, = create MODE file and submit to BATCH number n (n = 1-9).

These directives may be abbreviated as only the first character after the > is

checked, also the last in the case of the > BATCHn directive.

Default is > RUN.

PERFORM writes the actual mode file to be executed to a file called

MACROi:MODE, where i is 1 to 9. The file is created if not already in existence. If

the file is in use at another terminal or in a batch job, another file with a greater

value of i is used automatically. It will be created if necessary. Note that if a

> CREATE mode file is built it is the user’s responsibility to make sure that later

calls to @ PERFORM does not destroy that file.

ND-60.151.01

2.7

2.8

EXTENDED PARAMETER SUBMISSION

Any parameter (Pn) may be replaced by a file name, preceded by a square
bracked([). The file should be a normal QED or PED file and should contain a list
of values for the parameter, one per line. The procedure will then be executed
repeatedly, taking successive values for the parameter from the file, if the file
LIST contains:

ABC

DEF

GHI

and one gives the command

®PERFORM FTN FTNDUMP [LIST,,

the files ABC, DEF and GHI will be compiled in turn.

LIMITATIONS, RESTRICTIONS AND DEFAULTS

The macro name must be unique, in any case the first occurrence is taken.

The macro name should not be abbreviated, but if abbreviated that abbreviation

will be searched for.

The macro cannot be nested, nor invoke other macros.

The first two parameters must be present either as actual parameters or empty

parameters separated by commas.

The optional parameters (< and >) may also be entered if the macro name is

being prompted for by PERFORM.

Use the F command rather than the P command if SINTRAN files are to be cre-

ated by your Macro. The F command will attempt to find the full SINTRAN file

name. If successful that name will be submitted to your macro. Default type is

SYMB.

ND-60.151.01

2.9

2—-7

STANDARD PERFORM MACRO’S

The following macro’s are supplied as standard with SINTRAN [II operating
system:

Name

FTN

FTNRUN

COBOL

COBRUN

COBDEBUG

PLANC

PLRUN

PASCAL

PASRUN

FTNRUN

BASIC

BASRUN

CREDIR

Function

compile a Fortran program.

compile, load and execute a Fortran program.

compile a Cobol program.

compile, load and execute a Cobol program.
compile, load and execute a Cobol program under control
of the Symbolic Debugger.

compile a Planc program.

compile, load and execute a Planc program.

compile a PASCAL program.

compile, load and execute a Pascal program.

compile, load and execute a Fortran program.

compile a Basic program.

compile, load and execute a Basic program.
create a directory and a user on a formatted diskette.

ND-60.151.01

3.1

GENERAL-PURPOSE MACRO GENERATOR - GPM

INTRODUCTION

In the Computer Journal, October 1965, C. Strachey described a macrogenerator

called GPM (General-Purpose Macrogenerator). GPM was originally planned to

help write a compiler for the language CPL. The idea was to write the whole

compiler as a set of macro calls.

In this way, one got a machine-independent compiler. By redefining the macros,

a compiler for another machine could be produced, and by rewriting GPM, one

could generate the compiler on another machine other than the target machine.

GPM is referenced in most of the Iliterature dealing with macro-

processors.

Input to GPM is a character string, in which macro calls may occur. GPM copies

the input character unmodified to the ouput string, with the exception of the

macro-calls which yield their values instead.

GPM pays no attention to what type of symbolic input it receives, as long as no

confusion arises concerning the GPM control characters. The GPM-version on

the NORD computers expects (and produces) characters with even parity. It may

be called as a SINTRAN Ill subsystem. Program size is 1,5k, while the rest of the

virtual memory is used for run-time stack.

Most persons reading this manual for the first time know macros only from

simple assembler macro-options. They should immediately be aware of the fact

that in GPM macro-calls may not only occur in the source-code string, but also in

a macro-call’'s name-string, parameter-strings and in the value-strings found in

the macro definition-list. They should also keep in mind that the effect of a

macro call may be of two kinds:

1) Substitution. A character string is substituted for the call.

2) Macro-(re)definition. New macros may be defined and old ones redefined.

ND-60.151.01

GPM SYNTAX AND EVALUATION RULES

A GPM macro call looks like this:

t NAME, PAR1, PAR2, ----- PARn;

It consists of a macro name and a list of the actual parameters, each separated

by a comma. The macro-call starts with { and ends with a semicolon. The name-

and parameter- strings may themselves contain macro calls.

Six characters have special meaning in GPM:

1 Precedes macro calls

i Ends macro calls

, Separates parameters in a macro call

\ Denotes formal parameter, and is followed by the parameter number

in the set 0-9, A-Z. Occurs in macro definitions and the resulting

macro bodies

< Start quote. Should always match a >. Evaluation of a character-

string enclosed in < > yields the same string without < >. Thus, by

quoting, strings are prevented from being changed by GPM- evalua-

tion

> End quote. (An unmatched > outside macro calls terminates GPM)

The input string is scanned from left to right and copied to the output string until

a macro call is encountered. The macro call is evaluated as follows:

a) The macro name and its arguments are evaluated from left to right.

They are all evaluated once. This process may involve evaluation of

other macro calls so that the whole process of evaluating is a recursi-

ve one. Macro-definitions made during this process are so-called

temporary definitions.

b) When the argument list is complete { : when the name- and parame-

ter strings have been evaluated)} the macro-definition list is searched

for a match with the evaluated name-string. The scanning stops with

the first entry with the correct name, so that the most recent defini-

tion is used.

c) The string corresponding to the macro name {macro’s value, "body"’)

is now scanned in the same way as the original input string, except

that occurrences of \1, \2 --- etc. are replaced by exact copies of the

corresponding actual parameter (the corresponding evaluated

parameter-string). \ 0 means the macro name. If an argument asked

for is not supplied, the string NIL is taken as actual parameter.

d) On reaching the end of the defining string, the argument list (macro

name- and actual arguments) are lost. Any macro-definitions added
to the definition- list in course of macro name- and parameter eva-

luation are lost {temporary definitions).

e) Scanning of the input string is resumed.

ND-60.151.01

3.3 SYSTEM MACROS

GPM contains a number of system macros. These are, in reality, calls of system

procedures, but the syntax of these calls is the same as that of the macro-calls

and so are the evaluation rules. The system macros are:

DEF

VAL

defines user's macros. It takes two arguments: The name and

the value ("body”) of the new macro. Formal parameters

occurring in the "body” must always be quoted. The latest

definition of a macro is the valid one.

Format: 1 DEF, macro-name, macro-body;

Example:

tDEF, A, <B\1>; defines macro A

to have B\1 (B and the first parameter) as its value. For

instance, {A5; yields the value B5.

Consider the definition of A in the following two examples:

1) {DEF,B,C; tDEF,A, 1B;; {DEF,B,D; {A;

2) 1DEF,B,C; {DEF, A, <{B;>; 1DEF,B,D; tA;

Each example consists of three definitions and a call of macro

A. What is the result in these two cases? The only difference

between 1) and 2) is the quotes in the definition of A.

1) defines A equal to the value of B, which is C.

Hence: 1A; yields C.

2) defines A equal to 1B;. 1A, is therefore equivalent to 1B;

which yields D. (Latest definition of B is valid!)

Hence: tA; yields D.

Definitions made during parameter-evaluation are temporary

definitions. These definitions are lost when the macro

possessing the parameters has been evaluated. Earlier

definitions of the same macros will then be reinstated.

Example:

{DEF, A, B; 1A, {DEF, A, C; ; 1A;

Temporary definition.

This string yields CB. Explanation:

1DEF,A,B; defines A to have value B.

1A, 1DEF, A, C;; calls macro A,
defining A temporarily to have value C. The call of A, therefore

yields C, and the temporary definition is lost.

1A, therefore yields B since the old definition has been

reinstated.

gives the value (""body’’) of the macro given as parameter. By

means of VAL, macro-definitions may be inspected.

Format: tVAL, macro-name;

Example:

Suppose macro A has been defined by 1DEF.A, <B\1>;

Then 1VAL,A; yields B\1.

ND-60.151.01

UPDATE

BAR

DECBIN

BINDEC

OCTBIN

BINOCT

HD

TL

34

updates macro definitions. Works in the same way as DEF. The

new value must not be longer than the old value.

Format: {UPDATE, macro-name, macro-body;

Example:

Suppose A has been defined equal to B\1.

The call fUPDATE,A, <C\1>;

defines A equal to C\1.

performs binary arithmetic. Takes three arguments. The first

must be +,—,",/ or R, which means add, subtract, multiply,

divide and remainder, respectively. The second and third

arguments are two binary numbers.

Format: {BAR, operator, binary number, binary number;

performs decimal-to-binary conversion.

Format: {DECBIN, decimal number;

performs binary-to-decimal conversion.

Format: {BINDEC, binary number;

Example:

tDEF, SUM, <tBINDEC, tBAR, +, tDECBIN, \1,;, tDECBIN,\2;;,>;

defines a macro SUM which yields the decimal sum of its two

parameters. For instance, 1SUM,5,3; yields 8.

performs octal-to-binary conversion.

Format: tOCTBIN, octal number;

Example:t0DEF, CTR, <{BAR, —, \1, {OCTBIN, 100; ; >,

defines a macro that yields control cahracters.

For instance, {CTR,A; yields A°.

performs binary-to-octal conversion.

Format: {BINOCT, binary number;

gives the first character of its argument ("head”).

Format: 1HD, string;

Example: tHD, ABC; yields A.

gives all but the first character of its argument ("'tail”’).

Format: { TL, string;

Example: {TL, ABC; yields BC.

In the present GPM version, two additional system-macros have been made:

ICRMOD

CRMOD

which makes GPM ignore the characters ""carriage return’” and

"line feed” in its input string. They may, however be used

internally and be output.

turns off the mode set by ICRMOD.

ND-60.151.01

3.4 MACRO EVALUATION

According to rules a-e in Section 3.2, GPM works as follows:

Initially GPM is in copying mode.

When a macro-call TN,P1,Pz,---,PK; is encountered, GPM enters the

parameter-evaluation mode.

The string N is evaluated to po.

The string P1 is evaluated to ps.

The string P2 is evaluated to pa.

The string P is evaluated to py,.

GPM now searches for the latest definition of po in its macro-definition list.

When found, GPM enters the macro-expansion mode {(or the macro-

definition mode, if po is equal to DEF or UPDATE). GPM now reads and

evaluates the macro body of pe. When encountering a formal parameter

marker \m, GPM enters the parameter-substitution mode and replaces \m

by Py The resulting string (the evaluated body with the actual parameters

substituted for the formal ones) replaces the call {N,P1,Pz, ---, P_; in the

output string.
K

The macro-evaluation procedure is illustrated by this example:

Suppose the following macros are defined.

1DEF, $, <ENE\1>;
1DEF, " DIRTY _DICK ', 1;
{DEF, %, <\2<LIC_>1$, \1; ., \0\3>;

We want to find the value of:

T#, MY, <PUB>, 1" ' DIRTY DICK ';;

We start to evaluate the name and parameters.

evaluates to # which is the macro-name.

MY evaluates to MY which is the parameter no. 1

<PUB > evaluates to PUB which is the parameter no. 2

1""DIRTY _,DICK"; evaluates to 1 which is the parameter no. 3

The latest definition of #is \2<LIC._,>1$,\1;\0\3

\2 evaluates to PUB

<LIC_, > evaluates to LIC_,

1$.\1; is equivalent to 1$, MY; which evaluates to ENEMY

—evaluates to_,

\0 evaluates to the evaluated macro-name #

\3 evaluates to 1

So the value of our macro-call is the string

ND-60.151.01

3 6

PUBLIC_ ENEMY __#1

A further example:

A well-known GPM example is the successor macro. When called with a number
0-9 it gives the next number. For instance, {SUC,3;+ 4 1SUC,4;-5 etc. Of course
this can be achieved in arithmetical ways, but the SUC-macro accomplishes it in
a way that makes it theoretically interesting.

SUC is defined as follows:

tDEF, SUC, <11,2,3,4,5,6,7,8,9,10, {DEF, 1, <\>\1; ;>;

We see that a call of SUC is equivalent to a call of a macro whose name is 1.

The macro 1 is called with its first parameter=2, the second parameter=3, the

third parameter=4, etc. A temporary definition of 1 defines it to have a value

equal to one of its actual parameters. The parameter-number is equal to the

actual parameter of SUC. Therefore, a call 1SUC,3; defines macro 1 to be equal

to its third actual parameter which is 4. Macro 1 is called, and yields 4 which is
also the value of 1 SUC,3;

ND-60.151.01

3.5 CONDITIONAL MACROS

This chapter and the next one which deals with recursive macros, will describe
the rather complicated methods used for defining such macros. They may be
bypassed by readers who are not especially interested.

The definition of a conditional macro is given below:

1DEF, COND, <t\1, 1DEF, \1, C; {DEF, A, B; ; >;

The macro COND gives B or C, depending on its argument. The only
argument that gives B, is A, i.e.

fCOND, A; yields B

1COND, anything else; yields C

Explanation:

Suppose COND is called with argument=A. The macro-body with
argument =A inserted, will look like 1A, 1DEF,A,C;1DEF,AB;;
This is a call of macro A which is defined twice in its own argument.
(These are temporary definitions.) Since these definitions are made before
searching the definition-list for the value of macro A, this works perfectly
well. Since the last definition of A defines it equal to B, the call of A yields
B which is also the value of COND. Therefore:

{COND, A; -B.

Suppose COND is called with argument=X. The macro-body with
argument X inserted, gives:

tX, 10EF, X, C; 1DEF,A,B; ;

This shows a call of macro X, which is defined once in its own parameter.
The value is C, which is also the value of COND. Therefore:

1COND, X; -C.

Note that the temporary definitions cannot be confused with any other

definitions of X or A since the temporary definitions will be lost when

COND has been evaluated.

Proper understanding of this conditional macro is necessary in order to under-

stand how recursive macros with finite call-sequences work.

ND-60.151.01

3.6 RECURSIVE MACROS

1DEF, A, <B1A; >;

This is the simplest example of a recursive macro. One call of A yields an infinite
stream of B-characters. (The evaluation will of course cease when GPM runs
short of stack-space).

More interesting, however, are the recursive macros that allow a finite number of
recursive calls. Before discussing them, we take a short review of the conditional
macro COND, discussed in Chapter 4.

1BEF, COND, < \1.‘iDEF, \1,C;ITDEF,A, B.;>

Covers the Covers the

"general case’” "'special case"

Tells whether

""general case’’ or "'special case’’

Suppose we want to write a recursive macro with finite call-sequence. There

must obviously be some kind of “condition” involved, in order to stop the
recursive evaluation.

The "general case' results in an operation between a value and a recursive call,

while the “special case’” involves no recursive call since we now want to stop.

What tells us the current "case’’? Usually a counter, since we often want to give

the number of recursive calls.

A recursive macro RECUR may, therefore, have a structure like this:

1DEF, RECUR,

<fcounter, 1DEF, counter, <value X op tRECUR, counter-1;>; 1DEF, 0, value Y; ;>;
\ 7 A —

"Current case’’ "General case"’ "Special case"’

Where op denotes any operation wanted.

Suppose we want to construct a recursive macro FAC which computes the n'th

factorial.

tFAC,n; + The value of 1.2.3... n =n!

Suppose that macros computing products and differences have been defined

earlier and that their names are PROD and DIF. (For instance: { PROD,2,3; +6

and 1DIF,8,3;+5).

We first concentrate on the '"general case”.

We observe that n! = n.{n-1)!

or, in macro language, where n is the 1st parameter of FAC:

tPROD, \1, tFAC, 1DIF, \1,1;;;

This leads us to the temporary definition that covers the "'general case’’:

tDEF, \1, <{PROB, >\ 1<, {FAC, 1DIF,>\1<, 1;; ;>

ND-60.151.01

3.7

Note that the 1st parameter must be ""unquoted’’ since it is a parameter of FAC,
not of the counter.

The "special case’ is very simple.

Since tFAC,0; » 0! = 1 the temporary definition that covers the special case
simply is 1DEF,0,1;

Now we may write the complete defintion of FAC:

1DEF, FAC, <t\1, 1DEF, \1, <tPROD, >\ 1<, 1FAC, 1DIF, >\1<, 1; ; ; >; 1DEF, 0, 1,,:>; C O 5 LS
n "General case’’ "“Special case’’

expressing that nl=n.{n-1)! expressing that 0l =1

Here is another example which is important, since it allows us to generalize the
“recursive call’’ property.

We want to make a recursive macro DO so that 1DO,A,n; is equivalent to n calls
of the parameterless macro A.

DO may be defined as follows:

fDEF, DO, <1\2, 1DEF, \2<1>\ 1<; 100, >\ 1<, 10IF, >\2<, 1; ;>; 1 DEF, 1, <>; ;>;

{DO,A/5; gives the same value as tA;1A;1A; 1A TA;
That a macro is parameterless does not necessarily mean that its value is
constant, since it may call and redefine other macros.

THE GPM LIBRARY

This GPM library consists mainly of definitions of macros performing arithmetical
or logical functions. It also contains generalized, recursive macros and
conditional macros. The arithmetical functions may either be decimal or octal,
When necessary to distinguish between them, the macro-name for the octal
operation begins with &.

Example:

The macro SUM yields the decimal sum of its two parameters, while &SUM
yields the octal sum. The arithmetical macros may further be divided into two
classes, the “verbs” and the "'nouns’. A “verb” has only side-effects. That
means it affects the macro-definitions, but leaves no value. A "noun’ has no
side-effect but yields a value.

Examples:

ADD is a "verb'’, SUM is a “‘noun’’.
tADD,J.3; adds 3 to the value of "macro J” (which is updated) but the ADD-
macro leaves no value. 1 SUM,3,5; yields 8 as its value but it has no side-effects.

If you are unfamiliar with macro languages, please keep the following in mind:

The effect of a macro-call may be of two kinds:

ND-60.151.01

1) Substitution.
A character string (which may be empty) is substituted for the macro call.

2) Definition

Macros may be defined or redefined. Nothing is substituted due to
definition alone.

Both kinds of effects may arise from one macro-call.

tVARIABLE, name, initial value (optional);
Six digits are allocated (for the value) and the variable is updated to its
initial value (to 0 if no value specified).
Example:

{VARIABLE, PER; tPER; 6-+0

fVARIABLE, OLA, 14; 1{OLA; »14
Since six digits are allocated, octal or decimal integer values may be
assigned to a variable by an UPDATE-call.

TINCREMENT, variable:

Increments the specified variable and is equivalent to tADD, variable, 1;
Example:

tVARIABLE, PER, 5;

1PER; -»b

T INCREMENT, PER;

1PER; +6

t &INCREMENT, variable:

Octal increment of the specified variable and is equivalent to 1&ADD
variable, 1:

’

tDECREMENT, variable;

Decimal decrement of the variabie.

Equivalent to {SUB, variable, 1;

1 &DECREMENT, variabie;

Octal decrement of the variable.

Equivalent to { &SUB, variable, 1;

1ADD, variable, number:;

Decimal addition. Adds the number to the variable, but yields no value.

1&ADD, variable, number;

Octal addition.

{SUB, variable, number;

Decimal subtraction.

t&SUB, variable, number:

Octal subtraction.

tMPY, variable, number:

Decimal multiplication.

1&MPY, variable, number:

Octal multiplication.

ND-60.151.01

311

tDIV, variable, number;

Decimal division.

t&DIV, variable, number;

Octal division.

1SUM, number, number;

Yields the decimal sum of the two numbers.

$&SUM, number, number;
Yields the octal sum of the two numbers.

1DIFFERENCE, number, number;
Yields the decimal difference between the two numbers.

1 &DIFFERENCE, number, number;

Yields the octal difference between the two numbers.

tPRODUCT, number, number;

Yields the decimal product of the two numbers.

t &PRODUCT, number, number;

Yields the octal product of the two numbers.

fQUOTIENT, number, number;

Yields the decimal quotient of the two numbers.

1 "IENT, number, number;
Yields the octal quotient of the two numbers.

tREMAINDER, number, number;

Yields the decimal remainder of the two numbers (concerning division).

t &AREMAINDER, number, number;
Yields the octal remainder.

tPOWER, number, exponent;

Yields a" where a is the first parameter and n the second. n=>0.

1SIGN, number;
Yields the sign (+ or —) of the decimal number.

1 &SIGN, number;
Yields the sign (+ or —) of the octal number.

1DEC, number;

Converts from octal to decimal number.

1OCT, number;
Converts from decimal to octal number.

1CTR, letter;

Yields the corresponding control-character.

(1CTR, A; » A°),

ND-60.151.01

tCHARACTER, octal, number;

Yields the corresponding character.

Example:

tCHARACTER, 76; > >

1ESC;

Yields an escape-character (33s).

1CRLF;
Yields "'carriage return’’/”line-feed”’.

TEQUAL, String 1, String 2, String 3, String 4;

If String 1 is equal to String 2, the result is String 3. If unequal, the result is

String 4.

tLESS-THAN, Number 1, Number 2, String 1, String 2;

If Number 1 is less than Number 2, the resuit is String 1. If not, the result is

String 2.

1 &LESS-THAN, Number 1, Number 2, String 1, String 2;

LESS-THAN macro for octal numbers.

tOR, String 1, String 2, String 3, String 4;

If 1st or 2nd parameter or both are non-empty, the value will be the 3rd

parameter. Else the 4th parameter.

tAND, String 1, String 2, String 3, String 4;

If both 1st and 2nd parameter are non-empty, the value will be the 3rd

parameter. Else the 4th parameter.

1XOR, String 1, String 2, String 3, String 4;

If 1st or 2nd parameter, but not both, is non-empty, the value will be the

3rd parameter. Else the 4th parameter.

tNUMCH, String;
Yields the decimal number of characters in the string. The string should

contain no GPM control characters.

1ERRAB, cause;

Yields the following:

@CC ., *"** SYSTEM_,GENERATION_, ABORTED ***

@CC_,CAUSE: _,Cause

Esc Esc

1%, comment;
Yields nothing. May be used for comments.

tMAKEZ2, number; ‘
Yields the number by giving at least two digits.

Example:

tMAKE2,5; yields 05

1BITMASK, number;
Yields the bitmask corresponding to the decimal bitnumber [0-15].

{Exampte: {BITMASK, 8;-400)

ND-60.151.01

3-13

tMASK, length, bitnumber;

Yields the bitmask. The length is given by the first decimal parameter, and

the rightmost bit is given by the second, decimal parameter [0-15].

(Example: tMASK, 2, 1;-6)

tLSHIFT, octal number, octal number of shifts;

Yields an octal number which is the first parameter left-shifted the number

of times given by the second parameter. The number of shifts must be in

the interval [0-17s].

tRSHIFT, octal number, octal number of shifts;

Yields the octal number right-shifted with sign extension.,

tRZSHIFT, octal number, octal number of shifts;

Yields the octal number right-shifted with zero end-input.

1SEQUENCE, pretext, posttext, number of el., block-size, start-no., delim., line-

head;

This macro gives a sequence of the following form:

b

P A

[pretext | n| posttaxt [d] pretext | n+t| posttext [~ovmenes ‘/D

CRLF

[line-head [pretext Jn+b+1[posttext ld lpretext |n+b+2 Iposttext ';)

CRLF

Lline-head l pretext l n+2b+ l posttext l d l pretextl n+2b+2| posttext J

where n is start-no., b is block-size and d is delimiter.

ND-60.151.01

Example:

*)9EXT._. 1 SEQUENCE, RT,P, 11,4, 2, _,, *)9EXT_,;

yields

*JOEXT _AT2P _,RT3P_.RT4P _RT5P

*)9EXT _RT6P_-RT7P_,RT8P _RTIP

*)9EXT _RT10P_RT11P_RT12P

Another example:

INTEGER ARRAY:=(1SEQUENCE, A, , 7, 3,0, <<<,>>>, 1CTR, I;;);

yields

INTEGER ARRAY ARR: =(AO, A1,A2,

A3, A4, A5,

A6} ;

Note that the comma must be triple-quoted in the macro call.

1DO, macro-name, number;

This macro results in a number of calls of the parameteriess macro given

by the first parameter.

The number of calls is given by the second, decimal parameter which must

be >0.

(Example: 1DO,A,3; is equivalent to 1A;1A;1A;)

1DO-LOOP, variable, start-value, step-length, limit, <body> :

This macro temporarily defines a parameterless macro which has body plus

the proper updating of variable as its value. The macro is called the

specified number of times. Default step-length is 1. The call of DO-LOOP

leaves the variable incremented beyond the limit. The DO-LOOPs may be

nested. GPM control-characters within body should be quoted.

Example:

1VARIABLE, I;

1VARIABLE, RESULT, O;

{D0-LOOP, I, 1,, 10, <ADD, RESULT, 11;;>;
Computes the sum of the integers [1, 10].

The call fRESULT; now yields 55.

Example:

{VARIABLE, I;
VARIABLE, J;
{D0-LOOP, I, 1,,3,<
tI;. _1D0-LOOP, J, 2, 3,8, <{J;>; 1CRLF;
>;

yields the following result:

1...268

2..,258

3...258

ND-60.151.01

3-15

Example:

{VARIABLE, NUMBER._,OF _, PROGRAMS, 3;
{VARIABLE, SEGNO, 157;
tVARIABLE, I;
1D0-LOOP, I, 1,, tNUMBER.,OF _, PROGRAMS;, <
CL-SEGM_, {SEGNO; {CRLF;
Y{CRLF;
N-SEGM., {SEGNO; , , ,,, 1CRLF;
SET-L-A_ 1SEGNO;, 1000001CRLF;
LOAD_MAIN {1;:BRF,,,, {CRLF;
END CRLF;
1&INCREMENT, SEGNO;>;

yields the following result:

CL-SEGM_, 1567

Y

N-SEGW. 157, , ..,

SET-L-A_,157, 100000

LOAD_,MAIN1:BRF,,,,
END

CL-SEGM_, 160

Y

N-SEGM_, 160

SET-L-A_,160, 100000

LOAD _MAINZ2:BRF,,,,

END

CL-SEGM_, 161

Y

N-SEGM_., 161

SET-L-A_,161, 100000

LOAD _,MAIN3: BRF, ,,

END

ND-60.151.01

3.8 GPM UNDER SINTRAN III

The GPM subsystem under SINTRAN {ll operating system is called by writing
GPM.

Example:

{Computer output underlined)

SGPM

CR/LF TO BE IGNORED ON INPUT? Y

OQUTPUT FILE NAME: OFILE

INPUT FILE NAME: GPM-LIBRARY

INPUT FILE NAME: TERMINAL
>

END OF GPM
@

The mode set by the "CR/LF TO BE IGNORED ON INPUT?" - question may be
changed by the use of the ICRMOD/CRMOD-Macros.

The GPM library must always be read in "‘ignore CR/LF" - mode.

The question INPUT FILE NAME: is written whenever the previous input file is
exhausted (or none has been specified) or the EOF-byte (275 =W¢) has been
read. An unmatched > outside macro calls terminates GPM.

NOTE: It is strongly recommended that the file "GPM-LIBRARY' should be
limited to "READ-ACCESS" only, by using the SET-FILE-ACCESS com-
mand. This will protect the file from accidently being specified as
"OUTPUT-FILE” and consequently losing its contents completely.

ND-60.151.01

3.9

3.9.1

GPM APPLICATIONS - SOME IDEAS

GPM may of course be applied in a variety of ways ranging from semigraphic

picture definitions to software system generation. It may also be used as a pre-

processor of symbolic source code, applied prior to compiling/assembling. it is

especially well suited for FORTRAN programs since no confusion arises

concerning the GPM control characters {, < and >. For many programming

languages, however, confusion may arise, and one way to avoid it is this:

Substitute <{> for all 1 that do not denote macro calls. Substitute

tCHARACTER, 74; for <and {CHARACTER, 76; for > if they are not meant as

"quotes”. Now GPM may process this source-code stream if the GPM-LIBRARY

has been read (in order to define the CHARACTER-macro).

GPM and Semigraphic Display

GPM is an interesting tool for off-line building of static parts of pictures for

semigraphic display (NORDCOM NCT, for instance). Output from GPM may go

directly to the screen or to a file where the picture is saved.

The main advantages of using GPM are:

— Control information (concerning colour, for instance) is referenced by
name.

- Line segments of variable length may be defined as macros. For instance, a

horizontal line of length 46 starting in position (5,7) may be denoted
1HL,5,7,46;

— Special symbols may be called by name. For instance, {TRAF0,12,9; means

a transformator symbol in position (12,9).

- Some standard figures such as squares, triangles, etc. may be defined as

macros. For instance, 1SQUARE,10,2,8,16; may vield a square of height 8,

length 16, with topmost, leftmost corner in (10,2).

- The user may define and name his own picture parts. The screen position

may be parameter in the call.

For further details, see the manual NORD PROCESS 1/0, Software Guide,
Section 10.2.3.

ND-60.151.01

3.9.2 SYSTEM GENERATION USING GPM

GPM is well suited for production of mode or batch jobs for system generation
and installation.

GPM then mainly operates as follows:

First GPM reads the “system definition” file, which consists mainly of DEF-
macros defining the system parameters. Then GPM reads the "generalized
batch-job” file which contains a mixture of ordinary batch commands and
macros. From these files, GPM produces that particular batch-job that
generates/installs the system given by the "system definition" file,

SYSTEM GENERALIZED

DEFINITION BATCH-JOB

FILE

GPM

BATCH-JOB
FILE FOR

SYS. GEN./
INSTALLATION

The most important properties offered by GPM for system generation are listed

below:

1) Constants may be given symbolic names.

Example: Macro calls for segment-numbers in a MODE-file calling the

RT-loader:

CL-SEGM_, tSEGNO;

Y

N-SEGM_, {SEGNO;,,,,

SET-L-A_,SEGNO;, tLOAD-ADDR;

LOAD_ MAINtPROGNO, : BRF, , .,

END

2) Such constants may be modified during system generation. Suppose, in

the example given above, that SEGNO and PROGNO have been declared

by VARIABLE-macros. The END-command might then be replaced by:

END{&INCREMENT, SEGNO; | INCREMENT, PROGNO;

thus performing octal increment of the segment number and modification

of the input file name.

ND-60.151.01

3-19

3) One macro-call may result in @ number of calls in different contexts. It is

self-evident that this is possible, since one macro-call may cause

(re}definition of a group of other macros. For instance, a call {BRF-

SYSTEM; may cause assembling in BRF-mode to a BRF-file and a call of

the loader, instead of assembling directly into memory.

4) The system parameters may be checked before system-generation if some

relations must be fulfilled.

Example:

Suppose that a variable A always has to be greater or equal to variable B if

the system is to be consistent.

This macro will check that condition:

LESS-THAN, tA;, 18B;,
®CC A LESS THAN B! {CRLF;
®CC ***SYSTEM GENERATION ABORTED*** 1CRLF;
1ESC; 1ESC;

The error message aborts the MODE-file only if A<B,

5) Do-loops. A group of commands or statements may be repeated with

different parameters. Many examples of this have been given previously in

this manual.

As a conclusion of this manual, an example showing generalized source code is

given.

Suppose you have made a reentrant subroutine SROUT which you want to call

from a variable number of RT-programs. Each RT-program is allotted a data-field

of 10s locations for its local variables. In addition subroutine SROUT is called

with the A-register pointing to the data-field and with the T-register holding the

RT-program number.

For two RT-programs, the NPL source code for calling SROUT looks like this:

*" " BRF

*)9BEG

*)9EXT SROUT RT1 RT2

SYMBOL PRI=30

INTEGER ARRAY IA1(10)

INTEGER ARRAY IA2(10)

SUBR RPROG

*)J9RT RT1 PRI

""IA1""; T:=1; CALL SROUT; *MONO;)FILL

*)ORT RTZ PRI

"TIA2"'; T:=2; CALL SROUT; "MONO;)FILL
RBUS

*" " BRF

*)SEND

*)SEOF

*)LINE

@EOF

ND-60.151.01

However, this source code may be generalized by calling some GPM-library
macros.

The generalized source-code file looks fike this:

1CRMOD; ** ' BRF

*)9BEG

*)9EXT SROUT {SEQUENCE,RT,, {NUPROG;,8, 1, .., *)9EXT;

SYMBOL PRI=30

tVARIABLE, I; 100-L00P, I, 1,, tNUPROG; , <INTEGER ARRAY IA1I; (10)

>: SUBR RPROG

tD0-LOOP, I, 1,, tNUPROG; , <*}9RT RT1I; PRI

""IAtIL;""<;> T:=10CT, 1I;;<;> CALL SROUT<;> *MON O<;>)FILL

>; RBUS

*"BRF

*)9END

*)9EOF

*)LINE

@EQF

>

Suppose you call this file GENERAL-SOURCE, and that you let a file called

SYSGEN-PARAM hold the definition of the only system parameter, NUPROG, the

number of RT-programs. (The definition of NUPROG may of course instead be

inserted on top of the GENERAL-SOURCE file). Thus GPM may produce a source

code system according to the definition of NUPROG:

@GPM

CR/LF TO BE IGNORED ON INPUT? Y

OUTPUT FILE NAME: SOURCE-CODE

INPUT FILE NAME: GPM-LIBRARY

INPUT FILE NAME: SYSGEN-PARAM

INPUT FILE NAME: GENERAL-SOURCE

END OF GPM
@

ND-60.151.01

3-21

Suppose SYSGEN-PARAM contains {DEF,NUPROG5;

The following SOURCE-CODE file wili then be produced:

*' "BRF

*)9BEG

*)}9EXT SROUT RT1 RT2 RT3 RT4 RT5

SYMBOL PRI=30

INTEGER ARRAY IA1(10)

INTEGER ARRAY IA2(10)

INTEGER ARRAY IA3(10)

INTEGER ARRAY IA4(10)

INTEGER ARRAY IA5(10)

SUBR RPROG

*)ORT RT1 PRI

""IA1"’; T:=1; CALL SROUT; *"MON O,)FILL

*)9RT RT2 PRI

""IA2""; T:=2; CALL SROUT; *MON O;)FILL

*}9RT RT3 PRI

"TIA3 ;T

*)9RT RT4 PRI

"TIA4 ;T

*)9RT RT5 PRI

"TIAR ;T

RBUS

*’ ' BRF

*Y9END

*)SEOF

*JLINE

®EQF

| 3, CALL SROUT; *MON O;)FILL

4; CALL SROUT; *MON O;)FILL

i 5, CALL SROUT; *MON O;)FILL

This source-file yields a system for five RT-programs calling SROUT.

ND-60 151 01
Rew A

Suppose you define NUPROG equal to 100 and run the system generation

procedure. The result is:

*"BRF
*) 9BEG
*)9EXT SROUT RT1 RTZ RT3 RT4 RTS RTS RTr RT3
*)9EXT RT2 RT18 RTil RT12 RTI3E RT!4 RTIS RTI6
*IIEXT RTI7 RT18 RT19 RT2A RT21 RT22 RT2Z RTZ4

*)IEKT RT25 RT2E RTZ7F RT28 RT29 RTIY RT31 RTI2
*)QERXT RT3I3 RT34 RT3S RTI6 RTI7 RT3IS RTI2 RT48

KISEXT RT4l RT42 RT43 RTdd RT45 RT4S RT4r RT48
®)9EXT RT43 RTS@ RTS1 RTS2 RTS3 RTO4 RTSS RTS6

*)IEXT RTS57 RT3 RTS3 RT6E RT61 RTe2 RTS3 RTR4

®)SEXT RTES RTE6 RT67 RT68 RTES RTF@ RTr1 RT72
K)SEXT RTF3 RTF4 RTFS RTT6 RTF7? RTr3 RTF3 RTIA
KIIEKT RTS!1 RTIY2 RTB3 RTS4 RTBS PTG RT37 RT33

#3FEXT RTES RT3 RTI1 RTI2 RTIZ RTI4 RTIS RTIE

YIFEXT RTI? RTI8 RT93 RTI8O
*II

S'YMBOL PRI=38
INTEGER ARRAY IA1(1@)
INTEGER ARRAY IAZ2(18)

INTEZER ARFAY IA3(14)

[MTEGER ARRAY IA4C1B2

INTEGER ARRAY [ASCIB)
IMTEGER ARRAY IRG(183

[NTEGER ARRAY IAFL10)
INTEGER ARRAY [(A3(1@)

INTEGER HRRAY IAS(13)
INTEGER ARRAY [RA19C1ED

INTEGER ARRAY IALL{LEM)
INTEGER ARRARY I1R120112)
INTEGER ARRAY IA13016)
INTEGER RARRAY I[A14018)

INTEGER ARRRY IAL15(13)

INTEGER RRRAY [A15(18)

INTEGER ARRAY IAL7(13)

INTEGER ARRAY I[A18(18)

INTEGER ARRAY I1R12(18)
INTEGER ARRAY 1R28(187

INTEGER ARRAY IA21(18)

INTEGER ARRAY I1R/Z22(1@)
INTEGER ARRAY IA23(1&)
INTEGER ARRAY IAR24(18)

INTEGER ARRAY [R25014)

INTEGER ARRAY IR25(103

INTEGER ARRAY I1w27 (18]
INTEGER ARRRAY [428(143

INTEGER ARRAY 1A259012)
INTEGER ARRAY IA3BC18)

INTEGER ARRAY IR31C1)

[NTEGER ARRAY IAS2(1@J
IMTEGER ARRAY IA33C18)

IMTEGER ARPAY [A34013)
INTEGER ARRRY [A35¢ 147

INTEGER RRRAY ‘
INTEGER APRRY I

ND-60.151.01

INTEGER

INTEGER

INTEGER

IMTEGER

INTEGER

INTEGER

INTEGER

INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER
INTEGER

INTEGER
IMTEGER
INTEGER

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER
INTEGER

INTEGER

INTEGE

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER

IMTEGER
INTEGER

INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

IMTEGER
INTEGER

IMTEGER
INTEGER

ARRAY
ARRAY

RRRAY

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY
ARRAY

RARRAY
ARRAY

ARRAY
ARRAY
ARRAY

ARRAY
ARRAY

ARRAY
ARRAY

ARRAY

ARRAY
ARRAY
ARRAY

ARRAY

RRRAY
ARRAY

ARRAY

ARRAY
ARRAY

ARRAY
ARRRY

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY
ARRAY

HRRAY

ARRAY
ARRAY

ARRAY
ARRAY

RRRAY

ARRAY
ARRAY

ARRAY

ARRAY
ARRAY

ARRAY
ARRAY

ARRAY

ARRAY
ARRAY

SRPRY
ARRRY

IA38 1R

[A359 013

IA4R C1d)

IR41 1@

IR42018)

IA43¢13)

[R44(18)

IR45C18)

IAde (187

IA47 (18)
IR481718)
IA49 (18}
[ASB 18]
IAS1(18)

IR32(18)

IAS3¢1@)
IRS4013)

IAS5 (13

IASe (1)
[AS7 (1B

I1AS8(18)
IAS9 (18

1858 (18)
IA61C18)
IRe2C13)

I1AG3 (18

IAB4C18)
[RES 12}
lree (1)

[RE7 (1)

IRGBC1D)

[RG3 (18

IR7B (19

IR71C18)

[R72013)
IA73(18)

IR74(18)

[A7S(13)
IAT6 (1)

[R77 (18]
IA73C18)

IR7S (1N

IR (1M

IR81(18)
1RB2(18)

1483¢18)
IRB4(1]

[ABS(18)

IRBE (13
IR87 (1832

[RB8 (18}

IAS3 1A
IR2801A)

IR31 (1)

323

ND-60.151.01

INTEGER ARRAY

INTEGER ARRAY

INTEGER RARRRA™

INTEGER ARRRAY

INTEGER ARRAY
INTEGER AREAY
INTEGER RRRAY
INTEGER ARRAY

INTEGER ARRAY

SUBR RPROG
*I9RT

*IGRT

#ISRT

HISRT

#*)9RT

K*IORT

*)3RT

*IORT

*)SRT

*)IRT

*YIRT

*IORT

#*IIRT

*)SRT

*ISRT

*)9RT

*)SRT

¥I3RT

XIGRT

*)9RT

®IART

*)SRT‘

RT1 PRI
"IAL

RT2 PRI
" IQQ H h

RT3 PRI
"1A3";

RT4 PRI
"IR4":

RTS PRI
"IAS"

RT6 PRI
"IA6":

RT? PRI
"1A7":

RT8 PRI
"1AB";

RT9 PRI
"1A3";

RT13 PRI
RGICIE

RT11 PRI
“IALL":

RT1Z PRI
"IA12";

RT13 PRI
“IA13";

RT14 PRI
"IA14";

IRR201@

IR9S (1

IR34(18)

IR3S(18)
IA3618)

IRSF (182

[R281 i)
IR33(18)

141808103

1=3; CALL

1=5: CALL

1=6: CALL

<+
4

4
4

A4
4

o
N D

.

t=7; CALL

1; CALL

; CALL

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

3-24

T:=218; CALL SROUT:

T:=11: CALL SROUT:

N
 Ti=12;

T:=13:; w

T:=14;

T:=15:

T:=16:

RT13 PRI
"IA1S":

RTiE PRI
"IAle":

RTI7 PRI
"TAL?P":

RTLI3 PRI
"IR18":

RTIS PRI
"IA13":

RT28 PRI

"IR28":

RT21 PRI

"IR21":

RTZ2 PRI

"[R22";

caLL

caLL

CALL

CAaLL

cAaLL

CALL

cALL

s CARLL

: CALL

: CALL

3 CALL

; CALL

; CALL

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

*MON 8;

*MON @

*MON B3

XMON 8:

*MON B2

*MON B:

*MON 8:

JFILL

JFILL

JFILL

JFILL

JETLL

JFILL

JFILL

AMON B8: DFILL

*MON B2 JFILL

#HMON

kMOM

*MOM

*MON

*MOM

*MON

*MON

*MON

ND-60.151.01

B: IFILL

3: IFILL

B: JFILL

B: JFILL

8: YFILL

B: JFILL

2: IFILL

A: YFILL

3: IFILL

3: YFILL

8: JFILL

8: IFILL

@: JFILL

F¥IART

) 9RT

%) IRT

#10RT

®IART

HISRT

*¥I3IRT

KIORT

#)IRT

w1ART

#IART

PT2Z PRI
"IA23";

RT24 PRI
"1AzZ4":

RT2S PRI
"IA25 "

RT26 PRI
"IRZE":

RT2T PRI
"1A27";

RT28 PRI
"IRZE":

RT23 PRI
"1AZ3";

RT38 PRI
"IAZB";

RT31 PRI
"IAZ1":

RTZ2 PRI
"IR32";

RT33 PRI
"IAZ3":

RT34 PRI
"1AZ4"

RT3S PRI
"IA35";

RT36 PRI
"IAZE";

RT37 PRI
"IA3T

RT3A PRI
" 1A38":

RT33 PRI
"IA33";

RT48 PRI
1A ;

RT41 PRI
"IA41";

RT42 PRI
"1A42"

RT43 PRI
"IA43":

RT44 PRI
"1Ad4" ;

RT45 PRI
"IA4S

RT4c FRI
"IAdE " :

PT47 PRI
BGEE

RT4R BRI
"IACE"

RT43 PRI
"1RA43";

3-25

CALL

¢ CALL

: CALL

cAaLL

: CALL

: CALL

CALL

CALL

: CALL

CALL

CALL

CALL

CALL

CALL

CALL

caLL

CALL

caLL

; CALL

cAaLL

CALL

: CALL

ND-60.151.01

7! CALL SR

SROUT:

SROUT:

SREOUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

5ROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SEOUT:

SRAUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROLT:

SROUT:

HMON

KMAM

HMON

*MON

#MON

*MON

®MON

*MOM

#MON

*MOM

*MOMN

#MON

*+MON

*MON

M Iy
in C

*KkMOM

¥MOM

KT

*MOM

*MOM

*MOM

#MAN

*MAON

#MON

#MON

FMON

MO 2

JEILL

JFILL

JFILL

IFILL

JFILL

JFILL

JEILL

TFILL

JFILL

JFILL

JFILL

JFILL

JEILL

YFILL

YFILL

JFILL

JFILL

YFILL

TFILL

JFILL

YFILL

JFILL

4) 9RT

¥3IRT

*)3RT

*¥YIRT

F*)ART

FIBRT

*IIRT

*IBRT

*¥19RT

#IGRT

*®ISGRT

K*IRT

WISRT

KIIRT

#ISRT

KIART

#ITRT

KIDRT

RTSA PRI
"1ASA":

PTSL PRI
iIII'l_"'Slll:

RTSZ PRI
"1AS2"

RTS3 PRI
"1ASZ":

RTS4 PRI
"1AS4";

" RTSS PRI
"1AS5";

RTSE PR
RGECTE

RTS? PRI
n IQSP " :

RTSE PRI
"IAS3"

RTSS PRI
"1AS9"

RTEB PRI
"1A6B" ;

RTE1 PRI
"IAG1Y:

RTE2 PRI
"IAG2":

RTEZ PRI
"IAE3";

RTE4 FRI
"1AG4"

RTES PRI
"IABS";

RTS6 PRI
"IABE":

RTE? PRI
"IAET":

RTER PRI
"IFEB";

RTES PRI
"IA63";

RT78 PRI
"1A70";

RTF1 PRI
"TAT1":

T RTv 2 PRI
"IAT2";

RTF3 PRI
"IR73":

RT74 PRI
“IAT4";

RTPS PRI
"IATS";

RTPS PRI
"IATE"

"
—-

o

1=184:

:=185:

:=186:

3—-26

CALL

Catl

: CARLL

CALL

CALL

CALL

caLt

s CALL

; CALL

CALL

cALL

CALL

caLL

CALL

CALL

CALL

cALL

CALL

CAaLL

CALL

CALL

caLL

CALL

SROUT:

SEQUT:

SPCUT:

ROUT: 1p
]

SROUT:

SRQUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SROUT:

SEOUT:

SROUT:

SROUT:

SFOUT:

SROUT:

SEOUT:

SROUT:

SROUT:

SROUT:

SEQUT:

SROUT:

SROUT:

ND-60.151.01

: kMO

HOH

#MOM

HMON

HMAOR

*MOM

AKMOM

kMM

KON

*MON

*MON

HMOM

¥MON

*MOM

*MON

*MON

*MON

*MON

KON

*MOM

*MON

#*MOM

#MON

¥ MOM

*MON

*MOM

A*MON

Bz

as

a:

YFILL

JFILL

JFILL

YFILL

JFILL

JEILL

JFILL

JFILL

JFILL

JFILL

JFILL

YFILL

JFILL

JFILL

JFILL

JFILL

YFILL

JRILL

JEILL

3-27

¥I3RT RTYY PRI

CleTEY: Tr=115: CALL SROUT: #*MOM B YFILL

¥39RT RT7R PRI

CTRETSY: Tr=116; CALL SROUT: MMM B: JFILL

¥I9RT ETVS FRI

"IETAT: Ti=117: CALL SFOUT: *MOM B: YFILL

AIYIRT RTE2A PRI

“TagAY: T:=120: CALL SRAOUT: MM A2 JFILL

RIART RTB1 PRI

"IARL*: Te=121: CALL SROUT: *kMOMN B2 JFILL

¥IIRT BT822 FRI

"IReZ": T:=122:; CALL SEOUT: #*MON B: JFILL

®IIRT RPT33 PRI

"IEa3": T:=1235 CALL SROUT: #*MON @: JFILL

*¥I9RT BT84 PRI

"TAS4": T:=124: CALL SROUT: xMON B: JFILL

#J3RT FTBS FRI

"1ABS s Ti:=125: CALL SFEOUT: *xMON B: JFILL

X¥19RT RT8R PRI

fTRRsY: Ti=126; CALL SROUT: «MON @: YFILL

*19RT RTE?Y FRI

FIARYM:

¥IFRT PTER PRI

YTREE

*¥)E9RT RTE9 PRI

"TAGR2":

¥IIRT RTIA PRI

YIR9@Y: T:=132:; CALL SROUT: =*MOM A: JFILL

#3ART PTS1 PRI

TIA91":

KIAPT RT32 PRI

"IR92": T:=134: CALL SROUT: MOM A: JFILL

AIBRT RT3 PRI

"IAS3Y; T:=135: CALL SROUT: #MOMN A: XFILL

¥IBRT RT94 PRI

"Ip94: T:=136: CALL SROUT: xMOM A: JFILL

KIIRT RTSS PRI

"ITASSY; T:=137: CALL SROUT: =*MON @: FILL

K®IFRT ET28 FRI

TTR95Y: Ti=14@: CALL SROUT: =*MCOW @: JYFILL

¥IGRT RTY? FRI

"TAATY: Tei=141: CALL SEOUT: kMOM @ DFILL

KIORT RT93 PRI

"TR9SY: Ti=142: CALL SROUT: MIN @: JFILL

X)9IRT RTIS PRI

’ TIA95Y: Tr=143: CALL SROUT: +«MON @: JFILL

#)9RT RT1GA PRI

CIAIAE Y Tr=144: CALL SROUT: =MOM B; JFILL

=127z CALL SPOUT: «MOM B JFILL

CALL SROUT: =*MON ®: JFILL

4
4
 o

I al

o

:=131: CALL SFOUT: =M0M 8 JFILL

—
 i —

Od

in
t

e CALL SROUT: =MOM B@: MFILL

RBUS

*®"BRF

#13END

43 QBEQF

Al

H#ILINE

ND-60.151.01

3.10

3-28

COMBINED USE OF PERFORM AND GPM

While GPM is very flexible, allowing the competent user a great variety of trans-
formations, it has the following restrictions:

— It is not possible to enter parameter values interactively into GPM.

— When editing a GPM macro file, there is some risk of errors such as miss-
pelling macro names or making macro calls with incorrect syntax.

— Such errors can cause a considerable number of error messages making it
difficult to find the real problem.

The PERFORM subsystem on the other hand is a simple facility for substituing
'MODE file’ variables into general purpose MODE files, eg. names of files for
compilation or loading. While PERFORM does not have very extensive macro
facilities, it is very convenient to be able to enter parameter values interactively.

The combined use of PERFORM and GPM takes adventage of the strengths of
both systems, namely interactive input of parameters and accurate substitution
into a GPM macro with its powerful transformation facilities. However, the user
should be careful when mixing the macros of the two systems; in particular it is
advised that a character different from the up arrow character (A) is used for the
PERFORM macro’s in order not to confuse them with GPM macros.

The following is an example of the combined use of PERFORM and GPM.
The steps of this job are:

1. Get parameter values interactively or substitute default values.

2, Use the editor to write some GPM macros to a file.

3. Call GPM to create several Fortran Source files.

4. Call GPM to create MODE files to compile, then load the programs ready
for execution.

5. Execute the MODE files which have just been created.

ND-60.151.01

3--29

The PERFORM macro to do this job is:

%B,SERVICE;
%L, Macro to tailor the remote service system, device numbers;

%P,1,Logical device number of the internal device to be used;

%D,1,200B;
%P,2,Logical device number of the async modem;

%D,2,42;

%P,3,RT-program pair number;

%D,3,1;
%P,4,Segment number for input/output programs;

%D,4,167;

%;

@QED

|

1DEF,INTDEV1,01;

1DEF,ASYNC,02;

1DEF,PROCNR,03;

tDEF,SEGNR,04;
LC

W SLASK
F

@GPM

YSERVICE-REMOTE:SYMB

SLASK:SYMB

SERVICE-REMOTE:GPM

@GPM

YSERVICE-INPUT:SYMB

SLASK:SYMB

SERVICE-INPUT:GPM

@GPM

YSERVICE-OUTPUT:SYMB

SLASK:SYMB

SERVICE-OUTPUT:GPM

@GPM

YSERVICE-COMPILE:MODE

SLASK:SYMB

SERVICE-COMPILE:GPM

@GPM

YSERVICE-RTLOAD:MODE

SLASK:SYMB

SERVICE-RTLOAD:GPM

@MODE SERVICE-COMPILE:MODE,,

@MODE SERVICE-RTLOAD:MODE,,

%E;

edit some GPM macros

control L

create first Fortran program

create second Fortran program

create third Fortran program

create a mode file which will

compile all the programs

create a mode file which will

load all the programs ready for

execution

execute the compilations

execute the program loading

end of PERFORM macro !

The percent character (%) has been used to begin macro commands instead of

the usual up arrow character (), to avoid confusion with the similar function

required in the GPM macros.

ND-60.151.01

3-30

In order to illustrate the use of GPM in this job the input to GPM to produce the

source of the third Fortran program is:

“CRMOD;

C
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C FOR REMOTE MAINTENANCE
C

O

9000

9100

9200

EOF

PROGRAM OUTPUT"PROCNR; , 34
TNTEGER IST,RESRV,ICH,ERRCODE,ASYNC,TERMNO, IERR
EXTERNAL INPUT”PROCNR;

ASYNC = “ASYNC;
ID1 = “INTDEVI;

IST = RESRV (ID1, O, 0)
IF(IST .NE. 0) GO TO 9000
TERMNO = INCH (ID1)

IST = RESRV (TERMNO, 1, O)
IF(IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, 0, O)
IF(IST .NE. 0) GO TO 9000

IST = IOSET (ASYNC, O, 0, -1)
IF(IST .NE. 0) GO TO 9000

CALL ECHOM (ASYNC, -1,
CALL BRKM (ASWNC, O, O

O

~—

CALL RT (INPUT"PROCNR;
CALL RELES (ID1, 0)

~—
r

DO WHILE (.TRUE.)
ICH = INCH (ASYNC)
IF(ERRCODE .NE. 0) GO TO 9000
CALL OUTCH (TERMNO, ICH)
IF(ERRCODE .NE. 0) GO TO 9000

END DO

CONTINUE
IF(ERRCODE .NE. 0) THEN

TIERR = ERRCODE
WRITE (TERMNO,9100) IERR
FORMAT(° ERROR IN OUTPUT PROGRAM, ERRCODE: ",I6)

ELSE IF (IST .NE. 0) THEN
IERR = IST
WRITE (TERMNO,9200) IERR
FORMAT(~ ERROR IN OUTPUT PROGRAM, STATUS: ,I6)

END IF

END

ND-60.151.01

3-31

if the above macro is used and the following values are input:

INTDEV - 201B

ASYNC - 42 (default)
PRONR -2

SEQNR - 201
then the Fortran scurce output from GPM is :

> FOR REMOTE MAINTENANCE

Cc
C PROGRAM TO READ FROM ASYNC MODEM AND WRITE TO TERMINAL
C
€

9000

9100

9200

C

ECF

PROGRAM QUTPUT2,34
INTEGER IST,RESRV,ICH,ERRCODE ,ASYNC,TERMNO,IERR
EXTERNAL INPUT2

42
2018

ASYNC
D1

IST = RESRV (ID1l, 0, 0)
IF (IST .NE. 0) GO TO 9000
TERMNO = INCH (ID1)

IST = RESRV (TERMNO, 1, 0)
IF(IST .NE. 0) GO TO 9000
IST = RESRV (ASYNC, 0, 0)
IF(IST .NE. 0) GO TO 9000

IST = ICSET (ASYNC, 0, 0, -1)
IF (IST .NE. 0) GO TO 9000

CALL ECHOM (ASYNC, -1, 0)
CAILL BRKM (ASYNC, 0, 0)

CALL RT (INPUT2)
CALL RELES (ID1, 0)

DO WHILE (.TRUE.)
ICH = INCH (ASYNC)
IF (ERRCODE .NE. 0) GO TO 9000

CALL OUTCH (TERMNO, ICH)

IF (ERRCODE .NE. 0) GO TO 9000
END DO

CONTINUE
IF (ERRCODE .NE. 0) THEN

IERR = ERRCODE
WRITE (TERMNO,9100) IEFR
FORMAT (' ERROR IN OUTPUT PROGRAM, ERRCCDE:',I6)

ELSE IF (IST .NE. 0) THEN
IERR = IST
WRITE (TERMNO,9200) IERR
FORMAT (' ERROR IN OUTPUT PROGRAM, STATUS:',I6)

END IF

END

ND-60.151.01

4.1

4.2

THE MAIL SYSTEM

INTRODUCTION

The MAIL system is a facility for sending messages to any interactive user

working under your operating system. It operates like a mailbox for users not

currently logged on and will attempt to 'deliver’ the messages accumulated at

LOGON or LOGOFF. Messages may aiso be sent directly to a terminal device.

Some MAIL commands are only available to the user SYSTEM for broadcast,

start and stop of the entire MAIL system.

GENERAL FORMAT

@MAIL <output file>

Parameters:

< output file >

destination of the mail from the terminal user’s mailbox. Only requested if

the user has mail (DEF = TERMINAL).

Rules:

1. Permitted for all users but some subcommands are restricted as shown

below.

2. Messages can be sent in two ways:

a) to a mailbox — the recipient is notified when logging in or out and

collects mail by entering @ MAIL.

b) as direct mail — the message is sent immediately.

3. A broadcast is mail to all users, through the mailbox or as direct mail. It

can only be sent by user SYSTEM.

4. The mail system can only be used by one user at a time.

ND-60.151.01

4.3

4--2

SUBCOMMANDS

1. For all users the following subcommands are available:

*EXIT — exit from the mail system.

*HELP — list all available subcomands.

*SEND-DIRECT-MESSAGE <logical device no.> — type message

terminated by CTRL/L. The message is sent to the terminal with this

<logical device no.>.

*SEND-MESSAGE <user name> — type message terminated by CTRL/L.

The message is sent to the user’'s mailbox. $ and ' are handled as for

*BROADCAST below.

For user SYSTEM the following additional subcommands are available in

addition to the ones above:

*BROADCAST — type message terminated by CTRL/L. It is put in the

mailbox of all users. $ is translated to CR, LF. Apostrophe (') is permitted.

*DELETE-BROADCAST <broadcast index> — the message is removed

from all mailboxes. <broadcast index> can be found by

*LIST-BROADCASTS.

*DELETE-MESSAGE <message no.> — the message is removed from the

mailbox. The number can be found by *LIST-MESSAGES.

*DIRECT-BROADCAST — type message terminated by CTRL/L. The

message is sent immediately to all terminals. $ and ' are handled as for

*BROADCAST.

*INITIALIZE <max. no. of messages> — this command must be given by

user SYSTEM before the mail system can be used. It can be used to reset

the mail system. The mail is coliected in the file (SYSTEM)MAILBOX:DATA.

The maximum length of a message is 512 characters.

*LIST-BROADCASTS <output file> — all broadcasts are listed with their

broadcast number on the output file (DEF = TERMINAL).

*LIST-MESSAGES <output file> — as above, but messages are listed.

*RUN-MAIL-SYSTEM — restarts the mail system after SINTRAN start or

after a *STOP-MAIL-SYSTEM command. The contents of the mailbox file

are retained.

*STOP-MAIL-SYSTEM — the mail system is made unavailable; no mail is

lost.

ND-60.151.01

5.1

51

BACKUP SYSTEM

INTRODUCTION

The BACKUP-SYSTEM offers a variety of facilities for copying files, using the

COPY-USERS-FILES command, to and from disc and tape media. The files may
be copied for archive, backup or other purposes. To enable communication with

other installations ANSI standard label format is available for magnetic tapes.

The old SINTRAN commands COPY-USERS-FILES, CREATE-VOLUME and
LIST-VOLUME are now available as commands under the BACKUP-SYSTEM,

with some extended and altered facilites. While there are new options available,

every effort has been made to ensure compatibility and the ability to handle files
produced under older versions of the SINTRAN Il operating system (prior to the
SINTRAN IlI/F version).

The following documentation is intended to give first an overview of the
commands available in the BACKUP-SYSTEM and some of their more important
options. The BACKUP-SYSTEM has also a detailed description of all its

commands and their options, available interactively while using the system. The
‘help’ and question mark character (?) functions are available in all levels of
dialogue to give descriptions of parameters for the command being used or

information about the other commands which may be used.

The following is a list of all the commands and their parameters:

DESCRIBE-ALL-COMMANDS

<QUTPUT-FILE>

COPY-USERS~FILES

DESTINATION TYPE:

DIRECTORY

<DEST. DIRECTORY-NAME>

<DEST. USER-NAME>

VOLUME

<DEST. VOLUME-NAME>
<DEST. DEVICE-NAME>

<DEST. UNIT-NUMBER>

<DEST. FILE-GENERATION>

ND-60.151.01

Rev. B

SOURCE TYPE:

DIRECTORY
<SOURCE DIRECTORY-NAME>

<SOURCE USER-NAME>

<SQURCE FILE-NAME>

<MANUAL CHECK>

VOLUME

<SOURCE VOLUME-NAME>

<SOURCE DEVICE-NAME>

<SOURCE DEVICE-UNIT>

<SOURCE FILE-GENERATION>

<SOURCE FILE-NAME>

<MANUAL CHECK>

PARAMETER-FILE

<PARAMETER~-FILE-NAME>

<MANUAL CHECK>

CREATE-VOLUME
<VOLUME-NAME>

<DEVICE-NAME>

<DEVICE-UNIT>

LIST-VOLUME

<DEVICE-NAME>

<DEVICE-UNIT>

<FILE-NAME>

<OUTPUT-FILE>

SERVICE-PROGRAM-CUF

DUMP-BACKUP-SYSTEM

<BPUN-USER-NAME>

MASTER-LOG-MODE

<MASTER-LOG-FILE>
<APPEND-ACCESS>

MODE-STANDARD-VOLUME

MANUAL-STANDARD-VOLUME

MODE-BACKUP-SYSTEM-VOLUME

USER-COPY-LOG-MODE

<LOG-FILE>

<APPEND-ACCESS>

SET-ALLOCATE~CREATE-DEFAULT

<DEFAULT ANSWER>

SET-SINGLE-SEARCH

RESET-SINGLF-SEARCH

EXIT

EXIT

ND-60.151.01

Rev. B

5.2

5.3

SIMPLE USE OF THE BACKUP-SYSTEM

The BACKUP-SYSTEM may carry out simple tasks by using the

COPY-USERS-FILES command to copy some files. If magnetic tape is to be

used, the CREATE-VOLUME command should be used first and the user

executing this command becomes the owner of the VOLUME. VOLUME's will be

written in the BACKUP-SYSTEM's default format. VOLUME’s produced by the

old COPY-USERS-FILES command (before SINTRAN HiI/F) can also be read. All

available different magnetic tape formats, produced by the BACKUP-SYSTEM or

SINTRAN COPY-USERS-FILES, are automatically detected.

COMMANDS

The system can be entered by using the command:

@BACKUP-SYSTEM

Once the BACKUP-SYSTEM has been entered the following commands are

available:

DESCRIBE-ALL-COMMANDS

will give detailed descriptions of each command available and its options and

parameters. Listing this command on a hard-copy device is recommended for an

inexperienced user.

EXIT

leave the BACKUP-SYSTEM and return to the SINTRAN Il operating system.

CREATE-VOLUME

creates a "VOLUME’' on magnetic tape. Only one VOLUME may exist on a tape. A

VOLUME may, following the use of the Create command, be written in different

formats, STANDARD-VOLUME and BACKUP-SYSTEM-VOLUME, see options

under SERVICE-PROGRAM-CUF. A VOLUME can contain files from many users,

but it is owned by the user who created the VOLUME, and can only be accessed

by the owner or by the user SYSTEM.

LIST-VOLUME

will list the contents of a VOLUME on magnetic tape.

ND-60.151.01

Rev. B

54

COPY-USERS-FILES

will copy one or more files from a user on one medium to a user on the same

medium or a different medium. For media selection, there are options available

in the SERVICE-program-CUF to assist with more complex copying requirements.

File accessing is by the normal SINTRAN Il rules. However, user SYSTEM can

access any user’s files with the same access rights as the file owner, allowing

files to be copied on behalf of a user.

If copying from or to a VOLUME, a user can only access his own tapes. User

SYSTEM can, however, have both read and write access to tapes other than his

own,

Note: that while DIRECTORY, VOLUME and PARAMETER-FILE are referred as

sub-commands, they describe the destination and source types respectively.

If copying between directories, the DESTINATION user may be different from

the SOURCE user. If the SOURCE medium is a VOLUME, the parameter DEST.

USER-NAME will choose between the original owner of the file or a new

user-name. If a new user-name is specified, you will be asked if you want to

copy to this new user.

If copying between directories, and if DESTINATION-file already exists, the

source and destination date for last opened for write is checked. If the

destination is written to later than source, you will be asked if you copy the right

direction.

The user must ensure enough space is available for all files to be copied. The

BACKUP-SYSTEM will create all the necessary file names.

The BACKUP-SYSTEM will only access the DEFAULT directory of a user when no

explicit name is given for the DIRECTORY-NAME. Any directory may be accessed

by giving its name explicitly.

Use of the COPY-USERS-FILES command will also result in the contents of the

fields FILE-ACCESS, LAST-DATE OPENED FOR READ, LAST-DATE OPENED FOR

WRITE, CREATION-DATE and MAX BYTE POINTER being copied from the source

file to the destination file.

If you are user SYSTEM or have DIRECTORY-ACCESS to the source, the last

date OPENED FOR READ and number of times OPENED wiil not be updated.

ND-60.151.01

Rev. B

SERVICE-PROGRAM-CUF

can be wused to select from the various options relating to the

COPY-USERS-FILES command.

The foliowing commands are available under the SERVICE-PROGRAM-CUF;

EXIT

leaves the SERVICE-PROGRAM-CUF and returns to the BACKUP-SYSTEM.

DUMP-BACKUP-SYSTEM

dumps the BACKUP-SYSTEM on the fite 'BACKUP-SYSTEM:BPUN'.

MODE-STANDARD-VOLUME, MANUAL-STANDARD-VOLUME,

MODE-BACKUP-SYSTEM-VOLUME

These options are only significant for output to magnetic tape.

VOLUMES's exist on magnetic tape only. The information on a VOLUME

may be in the following formats:

— STANDARD-VOLUMES - are similar to ANSI defined format, compatible to

SINTRAN III/E and earlier versions of SINTRAN.

- BACKUP-SYSTEM-VOLUME — are similar to ANSI defined format plus

some SINTRAN -lII file system information.

Note that one VOLUME may contain files written in a mixture of these formats,

The device MAG-TAPE-1 unit 0 must have the name MAG-TAPE-1-0, unit 1 must

have the name MAG-TAPE-1-1, etc. This can be set by using the command

SET-PERIPHERAL-FILE.

ND-60.151.01

Rev. B

56

SET-ALLOCATE-CREATE-DEFAULT

During file copying, the BACKUP-SYSTEM will require operator input if it cannot

Allocate or Create contiguous files, as they are described by the file system

information on the original directory or VOLUME. If this situation arises and the

operator inputs 'yes’, then the following rules apply:

1. Allocated source files will be created as contiguous files if possible or else

they will be Created as Indexed files.

2. Contiguous files will be Created as Indexed files.

If the operator inputs 'no’, then such files will not be copied. This option may be

set to give a default answer to all such questions. This option applies to

BACKUP-SYSTEM files only.

This facility is an aid for copying many files interactively and should be used for

MODE and Batch jobs.

SET-SINGLE-SEARCH, RESET-SINGLE-SEARCH

SINGLE-SEARCH operates in the same way as the normal search until one file or

a group of consecutive files have been copied. The search begins from wherever

the tape is positioned, and no tape rewinds are done while in SINGLE-SEARCH

mode. Copying terminates at the first non-matching file-name., SINGLE-SEARCH

makes it possible to copy a number of files with one pass through a tape. In

order to achieve this, the files must be selected in the same order as they appear

on the tape. Care must be taken when copying files to tape if SINGLE-SEARCH

is to successfully gather all files which a user wishes to retrieve.

MASTER-LOG-MODE, USER-COPY-LOG-MODE

there are two LOG-MODE’s, MASTER-LOG for user SYSTEM only, and USER-

LOG for public users only. These ‘modes’ cause copy command information to

be written into a LOG file.

ND-60.151.01

Rev. B

5.4 COMMANDS — DETAILED DESCRIPTION

The following is the complete output that can be obtained by using the

DESCRIBE-ALL-COMMANDS for all the available commands:

MAIN COMMANDS BACKUP-SYSTEM

COMMAND NUMBER: 1 LEAD TEXT: BA-SY

DESCRIBE-ALL-COMMANDS
<LIST FILE>

.

. DESCRIBES ALL BACKUP-SYSTEM COMMANDS
««. WITH THEIR CORRESPONDING PARAMETERS.

e -~~~ GENERAL INFORMATION ---

. IF A PARAMETER HAS DEFAULT VALUE, IT WILL BE DISPLAYED BETWEEN SLASHES
+es {/ ... /) FOLLOWING THE PARAMETER NAME.
«+. "EMPTY DEFAULT" MAY OCCUR, INDICATING THAT AN ANSWER IS NOT REQUIRED.

... THREE BUILT-IN FUNCTIONS ARE AVAILABLE IN COMMAND INPUT: HELP,(?),(ESC).
HELP : FUNCTION FOR LISTING COMMANDS OR A SUBSET OF COMMANDS.

e s HELP HAS COMMAND-NAME AS PARAMETER. IF HELP IS TYPED
cee o AS PARAMETER TO HELP THE COMMANDS WILL BE LISTED WITH
ses » THEIR CORRESPONDING EXPLANATIONS.
“se s ? :t A (?) FOLLOWING AN AMBIGUOUS COMMAND ACTS AS HELP WITH

oo o THE COMMAND-NAME AS PARAMETER. IF THE COMMAND IS UNIQUE
vee s IT GIVES AN EXPLANATION OF THIS COMMAND. A (?) GIVEN
vee e IN PLACE OF A PARAMETER WILL EXPLAIN THIS PARAMETER.
“es s (ESC): ESCAPE CAN BE USED TO ABORT PARAMETER COLLECTING IN
res A COMMAND.
e

+«. IF (ESC) IS ANSWERED TO A QUESTION FROM AN EXECUTING COMMAND, THE COMMAND
++« 1S ABORTED.
«++ IF (ESC) IS GIVEN BETWEEN COMMUNICATION-STATES, IT CAUSES EXIT
++« OR USER-BREAK.
++« THE BACKUP-SYSTEM WILL ACCEPT SEVERAL COMMANDS WRITTEN ON THE SAME LINE.
+++ WHEN THESE COMMANDS ARE PROCESSED, THE BACKUP-SYSTEM WILL TRACE THEM BY
+++ OUTPUTTING THE LEAD-TEXT,COMMAND-NAMES AND PARAMETERS COLLECTED.

PARAMETER NUMBER: 1 LIST FILE
..+ SPECIFY NAME OF LIST FILE (MAX. 16 CHARACTERS)

(DEFAULT VALUE: OWN TERMINAL)

COMMAND NUMBER: 2 LEAD TEXT: BA-SY

COPY-USERS-FILES

COPIES A FILE OR A SET OF FILES.
SQURCE AND DESTINATION CAN BE ONE OF THE FOLLOWING TYPES:

! DIRECTORY: - ANY FILE-SYSTEM DIRECTORY WHICH HAS USERS.

! VOLUME: - ANSI LABELED MAGNETIC TAPE.
! PARAMETER-FILE: - VALID FOR SOURCE TYPE ONLY.
! IT CONTAINS THE NAMES OF FILES TO BE COPIED.
! THESE FILES MUST RESIDE ON A DIREGTORY.

DIRECTORY,VOLUME ,PARAMETER~-FILE ARE SUB-COMMANDS AVAILABLE ONLY
UNDER THE COPY-USERS-FILES COMMAND.

.. IF AN ERROR OCCURS IN COPYING A FILE, THE DESTINATION-FILE IS
. NORMALLY DELETED.

ND-60.151.01

Rev. B

DESTINATION TYPE - SUB-COMMANDS:

COMMAND NUMBER: 1 LEAD TEXT: DESTINATION TYPE

DIRECTORY
<DEST. DIRECTORY-NAME>

<DEST. USER-NAME>

.+« DIRECTORY INDICATES THAT THE DESTINATION DEVICE IS A DIRECTORY.

PARAMETER NUMBER: 1 DEST. DIRECTORY-NAME

... SPECIFY NAME OF DESTINATION DIRECTORY. (MAX. 16 CHARACTERS)

... (DEFAULT VALUE: DEFAULT DIRECTORY)

PARAMETER NUMBER: 2 DEST. USER-NAME
... SPECIFY DESTINATION USER NAME. (MAX. 16 CHARACTERS)
... (DEFAULT VALUE: OWN USER NAME)
+«. WHEN SOURCE IS VOLUME, YOU CAN CHOOSE BETWEEN THIS USER-NAME AND
... THE USER-NAMES INCLUDED IN THE FILE NAMES ON THE VOLUME, OR
... YOU CAN GIVE A NEW USER-NAME WHEN IT IS CHANGED IN THE VOLUME.

COMMAND NUMBER: 2 LEAD TEXT: DESTINATION TYPE

VOLUME
<DEST. VOLUME-NAME>
<DEST. DEVICE-NAME>
<DEST. UNIT-NUMBER>
<DEST. FILE-GENERATION>

... VOLUME INDICATES THAT DESTINATION DEVICE IS A MAG-TAPE VOLUME.

... IF ONE FILE IS TOO BIG FOR THE VOLUME, YOU MAY CONTINUE ON THE NEXT.

PARAMETER NUMBER: 1 DEST. VOLUME-NAME

«+s SPECIFY NAME OF DESTINATION VOLUME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 DEST. DEVICE-NAME

... SPECIFY NAME OF DEVICE (MAG-TAPE-1 OR MAG-TAPE-2).

PARAMETER NUMBER: 3 DEST. UNIT-NUMBER
... SPECIFY UNIT NUMBER WHERE VOLUME IS MOUNTED.
... (MAX. UNIT NUMBER: 3)

PARAMETER NUMBER: 4 DEST. FILE-GENERATION :
++s SPECIFY FILE GENERATION WANTED FOR FILES. (MAX. 4 CHARACTERS)

ND-60.151.01

Rev. B

SOURCE TYPE - SUB-COMMANDS:

COMMAND NUMBER: 1 LEAD TEXT: SOURCE TYPE

DIRECTORY
<SOURCE DIRECTORY-NAME>

<SOURCE USER-NAME>

<SOURCE FILE-NAME>

<MANUAL CHECK>

«+. DIRECTORY INDICATES THAT SOURCE DEVICE IS A DIRECTORY.

PARAMETER NUMBER: 1 SOURCE DIRECTORY-NAME

+++ SPECIFY NAME OF DIRECTORY CONTAINING SOURCE-FILES.
... (MAX. 16 CHARACTERS) (DEFAULT: DEFAULT DIRECTORY.)

PARAMETER NUMBER: 2 SOURCE USER-NAME
+.. SPECIFY USER NAME OF OWNER OF SOURCE-FILES.

... (MAX. 16 CHARACTERS) (DEFAULT VALUE: OWN USER)

PARAMETER NUMBER: 3 SOURCE FILE-NAME

««« SPECIFY FILE-NAME OF FILES TO BE COPIED.
... (MAX. 21 CHARACTERS) (DEFAULT: ALL USERS FILES)

PARAMETER NUMBER: 4 MANUAL CHECK
«o. YES,NO,L ¢ YES, MEANS STOP BEFORE EACH FILE IS COPIED.
eee ! NO, MEANS NO CHECK WITH OPERATOR.
ees ! L , MEANS ALL FILES COPIED WILL THEN BE LISTED.

COMMAND NUMBER: 2 LEAD TEXT: SOURCE TYPE

VOLUME

<SOURCE VOLUME-NAME>

<SOURCE DEVICE-NAME>

<SOURCE DEVICE~UNIT>

<SOURCE FILE-GENERATION>

<SOURCE FILE-NAME>
<MANUAL CHECK>

«.. VOLUME INDICATES THAT SOURCE DEVICE IS A MAG-TAPE VOLUME.
.+« IF THERE IS AN ERROR IN A SOURCE-FILE, YOU WILL GET DIFFERENT
«.. QUESTIONS IF YOU WILL TRY TO RECOVER OR SKIP THE FILE.

PARAMETER NUMBER: 1 SOURCE VOLUME-NAME
... SPECIFY NAME OF MAG-TAPE VOLUME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 SOURCE DEVICE-NAME
+++ SPECIFY DEVICE-NAME OF MAG-TAPE. (MAG-TAPE-1 OR MAG-TAPE-2)

PARAMETER MUMBER: 3 SOURCE DEVICE-UNIT
«+. SPECIFY UNIT NUMBER OF MAG-TAPE. (MAX. UNIT NUMBER: 3)

PARAMETER NUMBER: 4 SOURCE FILE-GENERATION
... SPECIFY FILE GENERATION OF MAG-TAPE SOURCE-FILES.

.o+ (MAX., Y4 CHARACTERS) (DEFAULT: ALL GENERATIONS)

PARAMETER NUMBER: 5 SOURCE FILE-NAME
++s SPECIFY FILE-NAME OF SOURCE-FILES. (MAX. 39 CHARACTERS)
«+. (DEFAULT: ALL FILES OF SPECIFIED FILE GENERATION)

PARAMETER NUMBER: 6 MANUAL CHECK
... YES,NO,L : YES, MEANS STOP BEFORE EACH FILE IS COPIED.

! ces 1 NO, MEANS NO CHECK WITH OPERATOR.
vee ! L , MEANS ALL FILES COPIED WILL THEN BE LISTED.

ND-60.151.01

Rev. B

5-10

COMMAND NUMBER: 3 LEAD TEXT: SOURCE TYPE

PARAMETER-FILE
<PARAMETER-FILE-NAME>
<MANUAL CHECK>

«++ PARAMETER-FILE SPECIFIES THAT SOURCE-FILE SELECTION
«++ IS CONTROLLED BY COMMANDS FROM A FILE WHICH CONTAINS
+e« A LIST OF FILE-NAMES.
+++ USING SUCH A PARAMETER-FILE HAS THE SAME EFFECT AS USING
«++« A COPY COMMAND FOR EACH FILE-NAME IN THE PARAMETER-FILE.
+++ ALL FILES WILL BE COPIED TO THE SAME DESTINATION.
+++ ALL SOURCE FILES MUST RESIDE ON A DIRECTORY.

.+« A LEFT PARENTHESIS "(" APPEARING ANYWHERE IN A LINE,
+++« DEFINES THE BEGINNING OF A FILE NAME. THE FIRST FOLLOWING
.+« SPACE WILL TERMINATE EACH FILE-NAME.
««+ LINES WITH DIFFERENT LAYOUT WILL BE IGNORED.
«++ GENERAL LAYOUT: (DIRECTORY:USER)FILE-NAME
«++ DIRECTORY NAME MAY BE OMITTED IN THE FILE NAME.

PARAMETER NUMBER: 1 PARAMETER-FILE-NAME

..+ SPECIFY PARAMETER-FILE NAME. (MAX. 21 CHARACTERS)

PARAMETER NUMBER: 2 MANUAL CHECK

... YES,NO,L : YES, MEANS STOP BEFORE EACH FILE IS COPIED.
ees ! NO, MEANS NO CHECK WITH OPERATOR.
see ! L , MEANS ALL FILES COPIED WILL THEN BE LISTED.

ND-60.151.01

Rev. B

5-1

COMMAND NUMBER: 3 LEAD TEXT: BA-SY

CREATE-VOLUME

<VOLUME-NAME>

<DEVICE-NAME>

<DEVICE-UNIT>

++« CREATES A VOLUME ON A MAGNETIC TAPE. AFTER THIS COMMAND
+«« THE OLD INFORMATION ON THIS TAPE WILL BE UNAVAILABLE.

PARAMETER NUMBER: 1 VOLUME-NAME

.. SPECIFY VOLUME NAME. (MAX. 6 CHARACTERS)

PARAMETER NUMBER: 2 DEVICE-NAME
.+. SPECIFY DEVICE NAME WHERE THE TAPE IS MOUNTED.
«+. (MAG-TAPE-1 OR MAG-TAPE-2)

PARAMETER NUMBER: 3 DEVICE-UNIT
++. SPECIFY THE UNIT NUMBER WHERE THE TAPE IS MOUNTED. (0-3)

COMMAND NUMBER: 4 LEAD TEXT: BA-SY

LIST-VOLUME
<DEVICE-NAME>

<DEVICE-UNIT>

<FILE-NAME>

<QUTPUT-FILE>

++s COMMAND TO LIST THE CONTENTS OF A VOLUME.

PARAMETER NUMBER: 1 DEVICE-NAME
.+ SPECIFY DEVICE NAME ON WHICH THE VOLUME IS TO BE FOUND.
.. (MAG-TAPE-1 OR MAG-TAPE-2)

PARAMETER NUMBER: 2 DEVICE-UNIT
... SPECIFY UNIT NUMBER ON WHICH THE VOLUME IS TO BE FOUND (0-3)

PARAMETER NUMBER: 3 FILE-NAME
... NAME OF FILES TO BE LISTED FROM VOLUME (STATED AS IN

. LIST-FILE IN SINTRAN NOT INCLUDING DIRECTORY AND USER NAME.)

PARAMETER NUMBER: 4 OUTPUT-FILE
. OUTPUT-FILE NAME FOR LISTING

ND-60.151.01

Rev. B

5-12

COMMAND NUMBER: 5 LEAD TEXT: BA-SY

SERVICE-PROGRAM-CUF

.+»+ ENTERS A SERVICE PROGRAM FOR COPY-USERS-FILES.
«+s IT COMPRISES A SET OF COMMANDS FOR CHANGING DEFAULT VALUES
+++ AND MODES FOR COPY-USERS-FILES. SOME COMMANDS ARE RESTRICTED
..+ TO USER SYSTEM AND THEY WILL HAVE AN ASTERISK (*) IN THE
++« COMMAND NAME.

.+» TO LEAVE THE SERVICE PROGRAM USE COMMAND: EXIT

CUF-SERV - SUB-COMMANDS:

COMMAND NUMBER: 1 LEAD TEXT: CUF-SERV

DUMP-BACKUP-SYSTEM

<BPUN~USER-NAME>

... DUMPS THE BACKUP-SYSTEM ON THE FILE:
sen ! BACKUP-SYSTEM-C :BPUN
... THIS FILE MUST EXIST BEFORE A DUMP COMMAND CAN BE EXECUTED
..« AND IT CAN BELONG TO ANY SPECIFIED USER.
... THE COMMAND IS INTENDED TO BE USED WHEN DEFAULT VALUES AND
... MODES HAVE BEEN CHANGED. THIS COMMAND IS RESTRICTED TO
+++« USER SYSTEM.

PARAMETER NUMBER: 1 BPUN-USER-NAME
..+ SPECIFY USER-NAME OF USER WHERE YOU KEEP YOUR BPUN-FILES
.». DEFAULT USER IN THE BACKUP-SYSTEM IS USER SYSTEM.

COMMAND NUMBER: 2 LEAD TEXT: CUF-SERV

MASTER-LOG-MODE
<MASTER-LOG-FILE>
<APPEND-ACCESS>

‘... RESTRICTED TO USER SYSTEM.
.+« IF LOG-FILE IS DEFINED, THEN DESTINATION, SOURCE, DATE
... OF COPYING AND NAME OF FILES COPIED WILL BE LOGGED.
... IF THE DUMP COMMAND IS USED AFTER THIS COMMAND, THE LOG-
«.. FILE MUST ALWAYS BE PRESENT WHEN COPYING AS USER SYSTEM.

PARAMETER NUMBER: 1 MASTER-LOG-FILE

... SPECIFY FILE-NAME OF WANTED LOG-FILE OR (CR) TO RESET

... MASTER-LOG-MODE.

PARAMETER NUMBER: 2 APPEND-ACCESS

... YES-NO : YES, MEANS APPEND TO THE LOG-FILE,

vao ! NO, MEANS WRITE FROM START (NO HISTORY)

ND-60.151.01

Rev. B

513

COMMAND NUMBER: 3 LEAD TEXT: CUF-SERV

MODE-STANDARD-VOLUME

««s WHEN THE BACKUP-SYSTEM IS USED IN THIS MODE, THE VOLUMES
«+» PRODUCED WILL BE COMPATIBLE WITH S-III COPY-USERS-FILES
... VOLUMES, AND CAN BE USED WITH ALL VERSIONS OF SINTRAN-III

++s (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: 4 LEAD TEXT: CUF-SERV

MANUAL-STANDARD-VOLUME

..+ PLACES THE BACKUP-SYSTEM IN THE SAME MODE AS THE

.+. MODE-STANDARD-VOLUME COMMAND.

... THE EXCEPTION IS FILES WITH "HOLES". THE SYSTEM WILL

.e. ASK IF SUCH FILES SHOULD BE COPIED OR SKIPPED.
«os (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: 5 LEAD TEXT: CUF-SERV

MODE-BACKUP-SYSTEM-VOLUME

«++ THIS MODE CAN ONLY BE USED WHEN THE VOLUME IS TO BE USED SOLELY
«+» BY THE BACKUP SYSTEM. THE VOLUMES CANNOT BE INTERCHANGED
++« WITH SINTRAN-III COPY-USERS-FILES.
++. THE DIFFERENCES IN THE VOLUMES CONCERNS FILES WITH "HOLES",
... WHERE IN THIS MODE, HOLES ARE MARKED ON THE TAPE BY A SPECIAL
... LABEL, ENABLING THE BACKUP-SYSTEM TO "REMEMBER" THE LOGICAL

+«+ LAYOUT OF A FILE.
..+ THE BACKUP-SYSTEM IS IN THIS MODE BY DEFAULT.
.+« (THIS COMMAND WILL ONLY AFFECT OUTPUT TO TAPE)

COMMAND NUMBER: 6 LEAD TEXT: CUF-SERV

USER-COPY-LOG-MODE
<LOG-FILE>

<APPEND-ACCESS>

«s+ IF LOG-FILE IS DEFINED, THEN DESTINATION, SOURCE, DATE

... OF COPYING AND NAME OF FILES COPIED WILL BE LOGGED.
++. THIS COMMAND IS RESTRICTED TO PUBLIC USERS, AND WILL HAVE
... NO EFFECT IF USED UNDER USER SYSTEM. USER SYSTEM <HOULD
.+, USE THE MASTER-LOG-MODE COMMAND.

PARAMETER NUMBER: 1 LOG-FILE

... SPECIFY FILE NAME OF LOG-FILE OR (CR) TO RESET USER-LOG-MODE

PARAMETER NUMBER: 2 APPEND-ACCESS

.+. YES-NO : YES, MEANS APPEND TO FILE

ene ! NO, MEANS WRITE FROM START (NO HISTORY)

ND-60.151.01

Rev. B

5-14

COMMAND NUMBER: 7 LEAD TEXT: CUF-SERV

SET-ALLOCATE-CREATE-DEFAULT
<DEFAULT ANSWER>

-+« THE BACKUP-SYSTEM WILL TRY TO ALLOCATE OR CREATE
«++ A DESTINATION-FILE EQUIVALENT TO THE SOURCE-FILE. THIS MAY NOT
... ALWAYS BE POSSIBLE FOR ALLOCATED OR CONTIGUOUS FILES. IF
«++ THE FILE CANNOT BE CREATED AS DEFINED BY THE SOURCE FILE,
+++ THE OPERATOR WILL BE ASKED FOR INSTRUCTIONS ABOUT THIS FILE.
««« OPTIONS ARE SKIP FILE OR TRY TO MAKE THE FILE CONTIGUOUS
«+« OR INDEXED. THE QUESTION REQUIRES A YES-NO ANSWER,
..+ WHERE YES MEANS TRY, NO MEANS SKIP.

+«. THIS COMMAND CAN SPECIFY A DEFAULT ANSWER FOR ACTIONS TO BE
+++ TAKEN WHEN REQUIRED BY THE BACKUP-SYSTEM.
.+« THE FILES WILL THEN BE TREATED ACCORDING TO THIS ANSWER.
+++ THE BACKUP-SYSTEM HAS INITIALLY NO DEFAULT ANSWER, QUESTIONS
««+ MUST BE ANSWERED FROM THE TERMINAL. TO RESET THE BACKUP-SYSTEM
«+«+ TO THIS STATE, SIMPLY TYPE CARRIAGE-RETURN WHEN ASKED FOR
«++ DEFAULT-ANSWER IN THIS COMMAND.

PARAMETER NUMBER: 1 DEFAULT ANSWER
... ANSWER SHOULD BE YES, NO, OR CARRIAGE RETURN.

COMMAND NUMBER: 8 LEAD TEXT: CUF-SERV

SET-SINGLE-SEARCH

+..» THE NORMAL SEARCH ALGORITHM ON TAPE IS FROM BEGINNING OF

««+ VOLUME TO END OF VOLUME IN ORDER TO FIND ALL FILES MATCHING
«++ A GIVEN FILE-NAME.
«++ SINGLE-SEARCH OPERATES IN THE SAME WAY UNTIL ONE MATCHING
.+« FILE OR GROUP OF FILES HAVE BEEN COPIED. COPYING TERMINATES
+«« AT THE FIRST NON-MATCHING FILE-NAME.
+«« THE TAPE REMAINS POSITIONED AFTER THE LAST COPIED FILE.
+++ SINGLE-SEARCH MAKES IT POSSIBLE TO COPY A NUMBER OF DIFFERENT
+++ FILES, WITH ONE PASS THROUGH THE TAPE. IN ORDER TO ACHIEVE THIS
+++ THE FILES MUST BE SELECTED IN THE SAME ORDER AS THEY APPEAR ON
... THE TAPE.
«++ (THIS COMMAND ONLY AFFECTS INPUT FROM TAPE.)

COMMAND NUMBER: 9 LEAD TEXT: CUF-SERV

RESET-SINGLE-SEARCH

«+» RESETS TO THE NORMAL SEARCH ALGORITHM.

+«+ (THIS IS THE NORMAL AND DEFAULT MODE FOR THE BACKUP-SYSTEM)

COMMAND NUMBER: 10 LEAD TEXT: CUF-SERV

EXIT

++. RETURN TO THE BACKUP-SYSTEM.

COMMAND NUMBER: 6 LEAD TEXT: BA-SY

EXIT

«+« LEAVES THE BACKUP-SYSTEM AND RETURNS TO SINTRAN-III.

ND-60.151.01

Rev. B

5.5

5-15

LABEL FORMATS ON MAGNETIC TAPE VOLUMES

Implementation of magnetic tape VOLUME's in the SINTRAN-III

BACKUP-SYSTEM is based upon:

American National Standard Magnetic Tape Labels for Information Interchange

X3.27-1969.

However, some deviations from the standard have been made. Deviations are

marked by a dollar sign ($) in the explanation.

General rules:

— the general tape layout is as follows

EOF1

VOL1 HDR1 HDR2 UHL1*-file1- *EOF1*HDR1 HOR2 UHL1* -file2- *JOR [**

EOV1

where VOL1,HDR1,HDR2,UHL1, EOF1 and EOV1 are tape labels, and

asterisks are tape marks.

— All labels are 80 character blocks.

— Al information in the labels are recorded as ASCIlI characters with the

parity bit cleared.

All unused character positions will contain spaces.

$$$ The user option field (3) in the label UHL1 contains binary information.

— File data is recorded as 2048 character blocks.

These blocks may contain any character. (0-255 dec.)

$$$$Deviation From Standard

— Only the first file on a volume may be a multivolume-file.

- A non standard label, HOLE, has been introduced.

This label can be inserted between the file data blocks.

The important information in this label is a 32-bit binary number contained

in characters 77-80 of the label. The backup-system uses this number in the

following way:

- Each 2048 character block on the tape corresponds to a 1024 16-bit word

block on the disk referred to as a page. The pages are numbered 0, 1, 2, 3,

etc. to establish a logical sequence of pages. If the logical sequences is not

continguous, then a 'HOLE label’ defines where the next block on the tape

logically belongs in the disk file. In order to represent a 'logical HOLE' on

the tape, the HOLE label will be inserted in front of the next block, stating

this block’s logical number. Blocks of 2048 characters without a HOLE label

are expected to belong to a contiguous logical area and will cause the

logical block number to be incremented by one.

ND-60.151.01

Rev. B

5-16

Example:

log. block no: 0 5 6 7 100 101 120

data HOLE data data data HOLE data data HOLE data

(5) (100) (120)

where data represents file data blocks (2048 characters) and HOLE is a HOLE

label, contents of HOLE label in {).

VOLUME HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 VOL

4 2 label number 1 1

5-10 3 volume serial number 6 (volume name) $

11 4 accessibility 1 (space)

12-31 b (not used) 20 (spaces)

32-37 6 (not used) 6 (spaces)

38-51 7 owner identification 14 (name of owner) $

52-79 8 (not used) 28 (spaces)

80 9 label standard level 1 (spaces)

$ field 3and 7

— These fields contain any alphanumeric characters. If the field is not fully

filled with characters, the last character in the string is a apostrophe. This

character is used to mark the end of string and is not part of the name.

The unused part of such a field is filled with spaces.

ND-60.151.01

Rev. B

517

FIRST FILE HEADER LABEL

FOSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 HDR

4 2 label number 1 1

5-21 3 file identifier 17 (file name) $

22-27 4 set identification 6 (file type) $

28-31 5 file section number 4 (0001-0002-nnnn)

32-35 6 file sequence number 4 (0001-0002-nnnn)

36-39 7 generation number 4 (file generation) §$

40-41 8 generation version number 2 (version number) $

42-47 9 creation date 6 (ANSI Standard date)

48-53 10 expiration date 6 (spaces) $

54 11 accessibility 1 (space)

55-60 12 block count 6 000000

61-73 13 system code 13 (spaces)

74-80 14 (not used) 7 (spaces)

$ field 3:

— Apostrophe is used to mark end of string. This character is not part of the

name. Unused part of field is filled with spaces.

$ field 4:

— Only the four first characters are used in this field. If shorter than four

characters, apostrophe is used to mark end of string.

$ field 7:

= Any alphanumeric characters. Field is left justified and apostrophe is used

to mark end of string. The character code in this field identifies a backup

generation of files.

$ field 8:

= This field contains numbers from 1 to 99. Characters are left justified and

one digit numbers will have a apostrophe in the right character. This

number identifies different versions of files with identical file identifiers and
set identifications (fields 3 and 4) and each version must be treated as an
individual file.

$ field 9 and 10:

Creation and experiation date are not used and will contain spaces.

ND-60.151.01

Rev. B

5-18

SECOND FILE HEADER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 HOR

4 2 label number 1 2

b 3 record format 1 u

6-10 4 block length b (no of characters)

11-1b6 b record length b (spaces)

16-50 6 res. for operating systems 35 (name of owner $

& MAX BYTE POINTER)

51-b2 7 (not used) 2 (spaces)

53-80 8 {not used) 28 (spaces)

$ field 6:

s Up to 16 alphanumeric characters starting from position 16 identifying

owner of this file.

If name is shorter than 16 characters, apostrophe is used to mark end of

name.

— 32-41 max byte pointer of file.

END OF FILE LABEL

POSITION FIELD NAME LENGTH CONTENTS

1- 3 1 label identifier 3 EOF

4 2 label number 1 1

5-54 3-11 {same as HDR1} 50 (corresponds HDR1)

55-60 12 block count 6 (number of blocks)

61-80 13-14 {not used) 20 {spaces)

ND-60.151.01

Rev. B

5-19

END OF VOLUME LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 EOV

4-80 2-14 same as EQF1 77 (corresponds EOF1)

USER LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 UHL

4 2 label number 1 1

5-80 3 user option 76 (file information) $

Explanation of field 3

$$ This field differs from the ANSI label standard. The field contains binary

information for the ND subsystem: BACKUP-SYSTEM SINTRAN Il.

Field 3:

POSITION CONTENTS

WITHIN FIELD WITHIN LABEL

1-2 5-6 version number of this file (1-255 dec.)

3-4 7-8 total number of versions (1-255 dec.)

5-8 9-12 filesystem-standard creation-date

13-76 17-80 S-III filesystem object entry

ND-60.151.01

Rev. B

5-20

NON STANDARD "HOLE" LABEL

POSITION FIELD NAME LENGTH CONTENTS

1-3 1 label identifier 3 HOL

4 2 label number 1 E

5-80 3 user option 76 (information) $

Explanation of field 3:

Field 3:

POSITION CONTENTS

WITHIN FIELD WITHIN LABEL

1-72 5-76 THIS BLOCK IS NOT PART OF THE DATA!

CHARACTERS 77-80 CONTAIN A NUMBER.

73-76 77-80 (32-bit binary number stating the logical

block number of the following data

block).

ND-60.151.01

Rev. B

6.1

6.2

LOOK-FILE

INTRODUCTION

LOOK-FILE is a utility system which enables a user to print data, modify data and

browse through the data contained in a file. The DUMP commands allow a

variety of format for output on a terminal or a printing device.

COMMANDS — SUMMARY

The available commands with their required parameters are:

HELP <command-name or CR>

EXIT '
CALCULATE

DUMP-WORDS <block number><word number><length>

DUMP BYTES <block number><word number><length>

DUMP-ALL <block number><word number><length>

PATCH <block number><word number>

OPEN-FILE <file name><block size>

ZEROQ <block number>

MOVE-BLOCK <from file name><number of blocks>

<from block number><to block number>

CLOSE-FILE

BACK

FORWARD

COMPARE BLOCK <compare file name><number of blocks> <from block number>

LIST-FILE <listing file name>

ON-LIST

OFF-LIST

SEARCH <from block number><number of blocks>

ND-80 151 01
REV. A

6.3 COMMANDS — GENERAL RULES

The system may be entered by typing

@LO0K-FILE

All the commands may be abbreviated in the same way allowed by SINTRAN. All

parameters may be entered on the same line as the command, or they may be

omitted and the system will prompt the user for each command in the required or-

der.

Parameters which require a numeric value may be entered as decimal numbers,

eg. 123, or as octal values which must be followed by the letter B, eg. 123B.

The OPEN-FILE command must be used to open a file before it is referred to by

any of the other commands.

The format used for printing information includes:

1)

2)

3)

4)

5)

The word number in decimal.

The word number in octatl.

A single character indicating the mode being used for the current line, ie. B

for Byte and W for Word.

5 18-bit words output in the mode being used.

The b words output as ASCII characters.

Note: any characters whose octal value is less than 40B will be output as an

amperand (&). The DUMP-ALL command will also output the ASCIl

character for values less than 40B.

ND-60.151.01
REV. A

6.4 COMMANDS — DETAILED DESCRIPTION

HELP

List one or all command(s) with the required parameters.

EXIT

Leave the system and return to SINTRAN. Note that all files will be closed.

OPEN-FILE

Opens a 'global’ file which will be used for further operations by other commands.

Other commands will be opened/closed automatically by the specific command

being used. The default block size is 512 16-bit words. The maximum allowed block

size 2048 16-bit words.

Note: The current global file is closed before the OPEN-FILE command is

executed. The file is opened for WRITE access.

CLOSE

Close all currently open files.

CALCULATE

Simpie calculations may be performed on decimal or octal values. The resulting va-

lue will be displayed. The operators available are:

+ for addition

- for subtraction

* for multiplication

/ for division

DUMP-WORDS, DUMP-BYTES, DUMP-ALL

Display a block of data from the currently opened global file on the user terminal

or, optionally on a LIST-FILE. The display format depends on which command is

being used. The length of data requested must not be longer than the value given

in the OPEN-FILE command for this file.

If the length requested is less than the file’s block size, then any DUMP command

will display only the number of words requested. If a subsequent

FORWARD/BACK command is used, then it will move the number of words in the

file’s block, and thus some of the block referred by the DUMP command will not

be displayed.

Note: 1. The block numbers begin at 0.

2. The word numbers begin at 1.

BACK, FORWARD

These commands should be used together with the DUMP commands to move

forwards or backwards from the current block number in the current file. These

commands change the current block number.

ND 60.151)1

Rev A

PATCH

This command allows modification of any word in the current block of data. Patch

will modify successive words in the block of data until a full stop character (.} is

typed. New value can be given as decimal integer (f.ex. 1) or octal integer (f.ex.

1777778B) or a character string (f.ex. 'EX’)

Note: All bits in a word are modified, including the left-most bit which is

sometimes used for parity.

ZERO

Clear to binary zeroes the complete block specified on the current global file. The

block size given in the OPEN-FILE command for this file is used.

MOVE-BLOCK

Move the first one or more blocks from the named file to the current global file.

The block size of the current global file will be used.

COMPARE-BLOCK

Compare the entire named file with the current global file. Any data blocks which

are not identical on both files are printed. The compare file is opened/closed

automatically.

LIST-FILE

The named file is opened for printed output from any DUMP, COMPARE-BLOCK

or SEARCH commands. This file will remain open untit a CLOSE or EXIT command

is used. The ON-LIST/OFF-LIST commands may be used to optionally print some

data blocks.

ON-LIST

Switch print for the LIST-FILE on.

OFF -LIST

Switch print for the LIST-FILE off.

SEARCH

This command will search for the first occurrence of a string of words in a number

of data blocks. IF the string being searched for is found, then the data block con-

taining it is displayed, and printed if a LIST-FILE is switched on. After the data

block has been displayed, typing 'NO’ will stop further searching. Otherwise, the

search will continue looking for the next occurrence.

N R TR I

Rov A

7.1

NORD FILE EXTRACT UTILITY COMMAND

INTRODUCTION

File extract is a general purpose UTILITY program which can extract records

from one file and write onto another file or output device

In addition, by using the split option, records not satisfying given extract

selection criteria can be placed in a second output file, thus providing a com-

plete file split possibility.

The program provides for complex record selections invoked by simple

parameters. The user may define his output record layout in several ways. Also, a

wide range of output environment choices are available.

These facilities make the program useful in various data processing situations.

It's use may range from very simple runs to rather sophisticated processing

FILE-EXTRACT is written in FORTRAN. It handles standard SINTRAN Il text files,

including variable record length files. Maximum record size is set to 1024 bytes.

ND-60 15101

Rev A

7.1.1 Purpose

FILE—EXTRACT is a utility enabling ND users to process files without writing

specific programs. This sort of file processing may be relevant during program

development, testing or simply validation and correction of data files.

FILE—-EXTRACT contains facilities such as:

the extraction of subsets from files based on record numbering

the extraction of subsets from the files based on individual record contents

the rearranging of files

the appending of files or subsets of files to other files

file splitting by one run

reformatting of files according to record layout, length and organization

providing output records containing input record number

providing output records containing the master record’s physical address

(see Section 7.2.4.4)

conversion of transactions from various systems to a common layout

generation of readable reports containing heading and page numbering

routed to a terminal or a line printer

saving of parameter input in MODE files for later automatic processing (see

Section 7.2.1.1)

building or procedures to be processed with limited run-time parameter

input (see Section 7.2.1.2)

These facilities may be combined in various ways thus meeting new demands as

they occur.

ND 60 151 (11

Rev A

7.2

7.2.1

COMMAND STRUCTURE

FILE—EXTRACT may be called from a terminal when in SINTRAN Il command

mode.

Command Structure:

@FILE EXTRACT

__ NORD FILE EXTRACT UTILITY COMMAND, VER. DD MM YY —

INPUT FILE: <$MODE> <$AUTO> <$KEY> < Fnnn>

OUTPUT FILE: < X> < A> <>

< SPLIT OPTION QUTPUT FILE 2: <,A>>

EXTRACT SPECIFICATIONS:

< <SHOW > < extract selection criteria> <> >

< >

OUTPUT RECORD LAYQUT SPECIFICATIONS:

< <SHOW> <Wnn> <L> <LO> <Hnn> <PAGE[="xxxx"]> <R> <E>

<P> <C> <T> <record layout> <:> >

< >

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 l====>----"----|

The program will request input from the user as shown above.

All input fields, except for INPUT-FILE, accept default values. Thus, a “default

run’’ will cause the input file to be listed on the terminal.

The default value is indicated by typing CARRIAGE RETURN in the specific input

field.

However, the command structure is made in such a way that the required

options may be activated by use of simple parameters. Any other functions are

automatically avoided.

Input File

The input file may be specified as any randomly accessable SINTRAN Il text file.

A default file type <:SYMB> is assumed when type is not specified. The file is

immediately checked for legal access. If not obtained, an error message will be

written to the terminal before program termination.

ND 60 1H1.01

Rev A

7.2.11

7.2.1.2

Mode File Save Option

The mode file save option may be invoked by typing <$MODE> in response to

the input file question. The following text will be written on the terminal:

MODE SAVE FILE;

In the file specified in answer to this question, all COMMAND INPUT will be

saved as a SINTRAN Ill MODE file. In this way, specifications given for an

extract run may be saved for later automatic processing, thus enabling the user

to generate procedures under the guidance of the program.

Limited Automatic Command Input

The LIMITED AUTOMATIC COMMAND INPUT option may be invoked by typing

<$AUTO> in response to INPUT FILE. The program will immediately ask for:

AUTO RUN-TIME COMMAND FILE:

and then read the command input lines from the file specified here. This facility

is quite similar to the execution of FILE-EXTRACT from a MODE file. The differ-

ence is that a command line in the AUTO RUN-TIME COMMAND FILE may

contain the text $TERM, meaning that this line is to be prompted from the

terminal.

This option is very useful for complex predefined procedures, where some

features are to be requested at run-time. An example could be a pregenerated

report procedure where the user is to specify, at run-time, the output device as

terminal or line printer, or perhaps some additional extract selection criteria to be

read in. All other parameters and the report layout will automatically be read

from the command file.

Such a command file may be generated by the MODE FILE SAVE OPTION (see

Section 7.2.1.1) and then edited by QED or PED. Remember to remove tabs when

in QED {command M TO(0)).

ND-60.151.01

Rev A

1213

7214

Fixed Record Length Input File Option

To process a fixed record length input file not containing record delimiting

characters (octal 015, 012, i.e., CR, LF), the F option must be used. The

parameter should follow input file name and be specified as follows:

<,Fnnnn >

where nnnn specifies input file record length in bytes {(maximum 1024 bytes).

Note that the output file, as a rule, will receive/have the same organization as

the input file.

The following conditions will, however, make a sequential output file out of a

"fixed'" input file:

— output file organization change option specified (see Section 7.2.2.3)

— terminal output wait option specified {(see Section 7.2.4.6)

— line printer/terminal heading option specified (see Sections 7.2.4.7, 7.2.4.8,

7.2.4.9 and 7.2.4.10)

Indexed Access via KEY file

Indexed access via KEY file is initiated by typing <$KEY> in response to the

input file question. The program will then ask for:

KEY FILE NAME:

The KEY file is only supposed to indicate which records of the input file are to be

read and in which order. The KEY file must be a symbolic file, each record

starting with a pointer to a corresponding record within the main input file. Any

trailing contents of a KEY file record will be ignored by FILE-EXTRACT. A KEY file

will normally be output of a FILE-EXTRACT run using the ""Random Key Inclusion

Option”” and must follow the format used here (see Section 7.2.4.5). The file

could then be sorted or processed in any way before being utilized as KEY file.

For situations which could benefit from this option, see examples mentioned in

Section 7.2.4.5.

ND-60.151.01

Rev A

7.2.2

71.2.2.1

7.2.2.2

Output File

Output file may be any existing/nonexistent SINTRAN Il disk file or an output

device such as line printer or terminal.

The file name is specified due to the standard SINTRAN syntax. That is,

nonexistent files must be enclosed by double quotes, etc.

Note that random write is always used unless output file TERM (terminal) is

selected or the WAIT option (see Section 7.2.4.6) is switched on. So, when

writing to any other sequential only output device, a dummy WAIT option must

be used.

Default output file is the terminal.

Output File Append Option

The parameter < ,A> following output file name, invokes the output file append

option. This means that the output will be appended at the end of the given file.

Note that this option requires an existing output file and is not valid for such

output devices as terminal or line printer.

File Split Option

A <:> at the end of the output file input line invokes the file split option. The

following test will be written to the terminal:

SPLIT OPTION QUTPUT FILE:

Records read, but not qualifying to be written to the main output file according

to the extract selection criteria given (see Section 7.2.3) will now be written to

the SPLIT OPTION OUTPUT FILE. If this option is not specified, those records will

simply be bypassed by FILE-EXTRACT.

The append option <,A> is also available for the split file (see Section 7.2.2.1)

MND-60 151.01

Rev A

7.2.2.3 Output File Organization Change (X Option)

The X option is used to switch the output file organization, thus making a

sequential file containing end of record characters out of a random, fixed length

record file and vice versa.

Consider a sequential, variable record length input file. By using the X option, a

random, fixed length record output file will be produced. The output record

length will automatically be computed from the output record layout specifi-

cations given (see Section 7.2.4). Note that X option switch to random file

organization will be ignored when used together with certain other options (see

Section 7.2.1.3).

Sequential records, delimited by End of Record characters will be produced

when the X option is specified in conjunction with the fixed record length input

file option (see Section 7.2.1.3).

Qutput file organization change may be useful in several situations. Consider a

fixed length random data file needing some special editing. The X option can

produce a QED or PED recognisable version of the file, which could then be edit-

ed and finally reconverted to its orginal organization using the X option once

again.

ND-60 151.01

Rev A

7.2.3 Extract Selection Specifications

One or two input lines are available for extract selection specifications. The

commands given here determine which records are to be written to the output

file.

There are four types of selections available:

— specification of input file record intervals in question (see Section 7.2.3.7)

— specification of input record field values to be satisfied/not satisfied (see

Sections 7.2.3.1 and 7.2.3.2)

- specification at text strings which are to occur/not occur within a record

(see Section 7.2.3.3)

— specification of a text string which is to occur/not occur within a specified

subset of a record (see Section 7.2.3.4)

The selection criteria specified may be connected by the logical operands

<.AND.> and <.0OR.> (see Section 7.2.3.5).

Finally, parentheses nesting on groups of selection criteria are allowed (see

Section 7.2.3.6).

Together, these options provide a sophisticated data selection tool that may be

used for the diverse tasks.

Note that extract criteria, logical operands, values and parentheses must not be

separated by spaces. Spaces are treated as command line terminators.

ND 60 1561.01

Rev A

7.2.3.1 Numeric Field Evaluation

A numeric field evaluation criterion is to be specified in the following manner:

<STARTPOS > [—ENDPOS] <operation code> <MIN VALUE>

[—MAX VALUE |

where

STARTPOS

is the start byte number of numeric field within input record.

ENDPOS

End byte number of numeric field within input record. May be omitted for 1

digit fields.

OPERATION CODE

One of the following operation codes must be specified:

equal to

=+ not equal to

> greater than

< less than

MIN VALUE

is the numeric value for operation codes =, + or the value to compare

with the codes < and >.

MAX VALUE

is the maximum value that may be specified for operation codes = or +. It

then specifies the upper numenc limit for a range specification, thus

providing the additional operation codes “inbetween” and not

inbetween’’.

’

Example:

15 — 18 = 1590 — 1862

This means that if this particular extract selection criterion is to be satisfied, byte

15 through 18, within an input record, must contain a numeric value within the

range 1590 to 8262,

ND 60 151.01

Rev A

7-10

7.2.3.2 Text Field Evaluation

A text field evaluation criterion is specified as follows:

<STARTPOS > [—ENDPOS] <operation code> <''text string” >

where:

STARTPOS

is the start byte number within input record to be evaluated.

ENDPOS

is the end byte number within input record to be evaluated. May be

omitted far one byte field.

OPERATION CODE

The twao following operation codes are allowed:

. equal to

* unequal to

TEXT STRING

The text string may contain any character and must be surrounded by

double quotes.

Note that the length of the text string must be the same as the field length

specified by the STARTPOS/ENDPOS elements.

If shorter, a limited text string search will be assumed (refer to Section

7.2.3.4).

If longer, the specification will not be accepted and the program termin-

ated with an error message.

Example:

45 — 50 = "OSLO 5"

ND-60.151 01
Rev. A

7-11

7.2.3.3 Text String Search

A text string search specification will cause the entire input record to be scanned

for the existence of the given text string.

A text string search is specified as follows:

TEXT <operation code> <''text string” >

where:

TEXT

specifies search within the entire record.

OPERATION CODE

The two following operation codes are allowed:

= equal to

&+ unequal to

TEXT STRING

Any text enclosed by double quotes may be specified

Example:

TEXT = "COMMUNICATION"”

ND-60.151 01
Rev. A

71.2.3.4 Limited Text String Search

A limited text string search will cause the specified subset of the input record to

be scanned for the existance of the given text string.

Syntax:

<STARTPOS > < —ENDPOS> <operation code> <''text string’'>

where:

STARTPOS

is the start byte number within input record where the text search is to be
done.

ENDPOS

is the end byte number limiting search area within input record.

operation code

The two following operation codes are allowed:

= equal to

+ unequal to

text string

The search text string may contain any characters (except double quote)
and must be enclosed by double guotes.

Note: the length of the text string must be less than the record subset

specified by startpos/endpos.

Example:

45 — 90 = "BOX”

This may extract those customer records having a P.O. Box address within the

address fields subset of the record

ND-60 151 91

Rev. A

7.2.35

7-13

Logical Operands

A logical operand is used to connect two extract selection criteria of any kind.

Together with the parentheses nesting (see Section 7.2.3.6) this facility enables

complex extract selections to be made.

Syntax:

<extract criterion A> <logical operand> <extract criterion B>

where:

extract criterion A and B

is the same as Sections 7.2.3.1, 7.2.3.2, 7.2.3.3 or 7.2.3.4 except for the

input file record interval option as in Section 7.2.3.7.

logical operand

The two following operands are allowed:

AND. both criterion A and criterion B must be fulfilled

.OR. either criterion A or B must be fulfilled

Example:

15 — 18 = 1590 — 8260 .OR. 45 — 50 = "OSLO b”

ND-60.151.01
Rev. A

7.2.3.6 Parentheses Nesting

Parentheses nesting is available for expressing more complex selections.

Extract criteria/groups of extract criteria connected with logical operands may be

surrounded by parentheses/levels of parentheses.

Example:

(01 —2="T1" OR. 1 — 2 = "T2") AND. 10 = 2) AND. {15 — 22 > 90000

.OR. 23 = ""*")

This could mean something like "'select those records of type T1 or T2 having

status code 2 and either have a balance over 90,000 or are marked with a start in

position 23"".

Rules:

A start parenthesis must be placed before an extract criterion or together with

another start parenthesis.

An end parenthesis must be placed after an extract criterion or together with

another end parenthesis.

ND-60 151 .01

Rev. A

71.23.7

7-15

Input File Record Intervals

By specifying input file record intervals, one may select subsets of the input file

to be evaluated.

Also, this option provides a file rearranging possibility due to the fact that the

program will process input file records in the same order as indicated in the

command line.

If a record interval is followed by another one specifying records already

bypassed, the input file will be rewound before those records are processed.

Syntax:

< start record no.> — <end record no.>,

where:

record no.

Record no. is specified with 1 to 9 digits

is start/end delimitor

is interval terminator. May be followed by parentheses or any other extract

selection criterion including another input file record interval specification.

Note:

When record intervals are used to rearrange a file and the file split option is

active (see Section 7.2.2.2) split file records will be duplicated every time the

input file is rewound.

ND-60.151.01
Rev A

7.2.3.8

71.2.3.9

7-16

Show First Input File Record Option

Typing "SHOW" and the RETURN button at the beginning of the command line,

the first input file record will be written to the terminal together with a position

mask line such as:

123456789.123456789.123456789.123466789.1234. ..

7205PETTERSEN,PER OSLO 5 223652 800GO

This information is meant to be of assistance to the operator to see the position

number for the different fields to be made extract selections from and has

nothing to do with the actual output from the run.

The program will immediately accept input of extract selection specifications.

Note:

By typing another SHOW, the next record will be shown, thus providing selection

of a record type layout representative record.

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for

extract selection input.

Note:

Used together with the limited automatic command input (see Section 7.2.1.2)

the first line may be specified beforehand, while the second may be used for

additional operator selections at run-time.

ND-60.151.01

Rev A

7.2.4

7-17

Output Specifications

One or two input lines are available for various output specifications. A number

of parameters are available to specify how records selected by the extract

specifications are to be written {refer also to Section 7.2.3).

There are two main types of specifications available:

1. Specification of output record layout as one or more of the following

elements:

— a copy of input record

— subsets of input record

— imbedded constants

— input record number

— output record number

— input record random address

2. Specification of output environment such as:

— terminal output wait at full screen option

— line printer/terminal heading specification

— line printer/terminal predefined headings

— page numbering

— split file record as a copy of input record in spite of output specifica-

tions

Default (CR) makes the output record a copy of input record.

ND-60 151.01
Rev. A

7.2.4.1 Input Record Subsets Specification

Subsets of input record can be specified to build the output record or to be a

part of it.

Syntax:

< start position> [—end position] [,]

where:

start position

starts the position within input record to be copied to the output record.

end position

ends the position within input record to be copied. May be omitted when

only one character is to be copied.

is specification delimitor in case of more specifications.

Example:

50 — 6b, 1 — 20

This will produce an output record containing position 50 through 55 and finally

the first 20 characters of the input record.

Note:

When the output record is specified to contain subsets of the input record, input

records shorter than the subsets specified will result in an output record filled

with spaces as a substitution for the missing input characters.

As a result, this facility can provide a file reformatting possibility, e.g., produce a

fixed record length file out of a variable length one.

ND-60.151.01

Rev. A

7.24.2

7243

7-19

Output Record Constants

Constants may be imbedded in any position of output record.

Syntax:

"text” [,]

where:

text

may be any character except for double quotes.

[l

is used as delimitor in case of more specifications.

Example:

50 — 55, "ABC", 1 — 26

This will insert the string "ABC"" within the input record subsets specified.

Input Record Number Inclusion

The input record number may be specified to be the first element of the output

record.

Syntax:

<L>[.]

The command will result in a 5 digit line number indicating source record number

of input file.

Note: It cannot be used together with the <LO> or <R> options.

ND-60.151.01
Rev. A

71.2.4.6

7-22

Terminal Output Wait Option

The WAIT option is intended to be used with the terminal as output file. It simply

makes the program wait for an input character for every given number of lines

written to the terminal, thus enabling the user to study one screen of information

before filling the next one.

The user may, at this point, interrupt the extract run by typing an X (exit). Any

other character, including carriage return, will make the process continue.

Syntax:

W [nn] [}

where:

nn

is a number of lines to be written before waiting for carriage return. De-

fault value is 24 for standard VDU screens.

is specification delimitor in case of more parameters.

ND-60.151.01
Rev. A

7247

7-23

Line Printer/Terminal Output Heading Option

The heading option enables the output from FILE-EXTRACT to be generated as

simple reports with a one line heading, optionally together with page number

(see also Section 7.2.4.8).

Syntax:

H [nn] {]

where:

nn

is the number of lines per page. Default value is 24 (VDU terminal).

is parameter delimitor.

Note:

A common line counter is used for the heading and wait options. Therefore, if in

doubt, the last line numbering specified in the command line will be used.

When all output specifications are given and the heading option is specified, the

program will write a heading mask to the terminal and wait for user input:

HEADING MASK:

123456 123456 123456789.123456789

KUNDENR. KONTONR. NAVN

The first two lines above are produced by the computer. It simply represents a

position mask of the output record, dimensioning the input record subsets

chosen in the output specifications, corrected with constants if any. This mask

indicates where to type the leading text in order to produce a readable report.

Used together with the show option {see Section 7.2.4.12), the heading should

have all changes to be correctly specified.

ND 60.151.01

Rev A

71.2.4.8

7--24

Line Printer/Terminal Page Numbering Option

The page numbering option will provide a page number to be written before each

heading. The parameter will have no effect when the heading option is not

specified.

Syntax:

PAGE [="page text"] [,]

where:

PAGE

This text which will invoke the option.

page text

The user may define his own 6 character long page text in his own lan-

guage. Default text is ""PAGE".

Example:

PAGE = "SIDE:"”

This will, when used together with the heading option for each page, produce a

heading such as:

SIDE: 9999

HEADING LINE

DETAIL OUTPUT LINE 1

DETAIL OUTPUT LINE 2

ND-60.151.01
Rev. A

7.24.9

7.2.4.10

7.2.4.11

7-25

Predefined Heading as Extract Command Line

In some cases, it may be useful to have the extract selection specifications

written together with the output. This is provided by the E option, which will

automatically produce the extract command line as the heading line.

Syntax:

E{nn] []

The option works exactly like the H option {see Section 7.2.4.7) except it doesn't

ask for heading input. Besides, the page numbering option (see Section 7.2.4.8)

will automatically be invoked.

Predefined Heading as Position Mask

The P option produces a position mask as a predefined heading. This may be

useful when record contents are to be studied in their original compressed

format.

Syntax:

P nn] []

This option is similar to the E option (see Section 7.2.4.9).

Split File Copy Option

Normally, the split file output (see Section 7.2.2.2) will contain record layout

similar to the main output (no page numbering and no headings). In some cases,

it may be useful to provide a split file containing records as a copy of the input

records. Thus, the C option will turn off any other output record layout

specifications on split file writes.

Syntax:

CL]

ND-60 151.01

~Rev A

7.2.412

7.2.413

7.2.4.14

7-26

Show First Input File Record Option

The ""SHOW' option is also provided as a first command to this output

specifications input line. It works exactly in the same way as described above

(see Section 7.2.3.8). In this case it is meant as a tool to produce an output re-

cord from the right subsets of the input record and also to help design the head-

ing line.

Syntax:

SHOW

Command Line Continuation Option

Terminating the first command line with a <:> will provide another line for

output specification input.

Note:

Used together with the limited automatic command input (see Section 7.2.1.2),

the first line may be specified previously while the second one may be used for

additional operator’s choice at run-time.

Skip Output Record Trailing Spaces

in order to reduce disk space and increase processing speed, skipping trailing

spaces may be desired. The option is supposed to be used in conjunction with

variable record length output files.

Syntax:

T(]

ND 60.151.01

Rev. A

1.3

7-27

RUN-TIME STATUS MESSAGES

In order to enable the user to keep track of the program’s progress, a run-time

status message line is implemented:

INPUT RECORDS: 99999, OUTPUT RECORDS: 99999 | === >----"----- I

For every 100 input records processed, this line will be written to the terminal.

The right side graph indicates the percentage (in bytes) of the input file being

processed, thus enabling the user to estimate when the process will be finished.

ND-60.151.01
Rev A

7-28

*xxnnnrn+x SENDUS YOUR COMMENTS!!! % % % % % % % % % *

? ? Are you frustrated because of unclear information
. () . in this manual? Do you have trouble finding

things? Why don’t you join the Reader’s Club and

v send us a note? You will receive a membership
? Q 2 card - and an answer to your comments.

» e

Please let us know if you

* find errors \ /
* cannot understand information

* cannot find information —_—

* find needless information

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!! / \

%% % %% %%+ HELP YOURSELF BY HELPING US!! % # % * % % % «

Manual name: SINTAN III Utilities Manual Manual number: Np- 60.151.01

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manuai?

Your name: Date:

Company: . Position:

Address:

What are you using this manual for?

Sendto: Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard —_—
Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by

Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

Date

