
SINTRAN 111

Communication Guide

ND-60.134.02

NOTICE

The information in this document is subject to change without notice. Norsk Data

A.S assumes no responsibility for any errors that may appear in this document.

Norsk Data A.S assumes no responsibility for the use or reliability of its software

on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk Data

A.S.

Copyright © 1981 by Norsk Data A.S.

This manual is in loose leaf form for ease of updauing. Old pages may be

removed and new pages easily inserted if the manual is revised.

The loose teaf form aiso allows you to place the manual in a ring binder (A) for

greater protection and convenience of use. Ring binders with 4 rings corre-

sponding to the holes in the manual may be ordered in two widths, 30 mm and

40 mm. Use the order form below.

The manual may also be placed in a plastic cover {B). This cover is more suitable

for manuals of less than 100 pages than for large manuals. Plastic covers may

also be ordered below.

\

P =D | . 7
N NCRSK DATA AS NQRSK DATA AS

322, IS I, = ~ B B B 8 B
8 Tk anes 8 ag g

n‘ g

A Ring Binder B Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Documentation Department

Norsk Data A.S

P.0. Box 4, Lindeberg gard

Oslo 10

ORDER FORM

| would like to order

Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

Plastic Covers at nkr 10,- per cover

NAME ... oo s evemsmamies ros s oo S Tr s o ooy R T U i 0 o A S R DR S R s

COMPANY cissiissiussssmsssonsamasentoyssssssyesgsrss Sasasssuss samnnsas 1ns s 88 12 e0148 LU AS L2002 FE1 28094 LELS PIS ARSI LTSS

AAATOSS iwiiiiss i i bide iy oo vy i i a s S s e Vo ST i s SV S SR R S H U R e 8

PRINTING RECORD

Notes

VERSION 01 (SINTRAN IIl Special I/O Guide)

Version 02

SINTRAN Il Communication Guide

ND -60.134.02

°sse ooe
se ess NORSK DATA A.S
e sse P.O. Box 4, Lindeberg gard
s sse Oslo 10, Norway

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisicns since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Builetin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or {in Norway) to:

Documentation Department

Norsk Data A.S

P.O. Box 4, Lindeberg gard

Oslo 10

c Q

86
'E

00

00
0

0
0
0
0
0
0
0
0

o
O

 Q
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

3333988° Norsk Data A.S MANUAL

SIII COMMUNICATION GUIDE

THE READER

This manual is intended for the time-sharing user who

needs a users guide to the communication functions in

SINTRAN IIT,

PREREQUISITE KNOWLEDGE

SINTRAN III TIME-SHARING-BATCH GUIDE (ND-60,132)

ND-60.134.02

vi

THE MANUAL

This manual describes commands and monitor calls used

mostly by time-sharing-batch users. The functions are

ordered by functional category as opposed to the

SINTRAN IIT REFERENCE MANUAL where most of these

functions are documented in alphabetical order. In the

computer examples, user input is underlined.

"..." denotes a single control key. For ex. "rub-out"
means pressing the "rub-out™ key. Related manuals are:

SINTRAN IIT TIME-SHARING-BATCH GUIDE (ND-60.132),
and

SINTRAN III REAL TIME GUIDE (ND-60.133)

Other related SINTRAN ITII manuals are:

SINTRAN III REFERENCE MANUAL (ND-60.128),

SINTRAN III SYSTEM SUPERVISOR (ND-60.103), and

SINTRAN III RT LOADER (ND-60.051)

This manual partially obsoletes SINTRAN III Users

Guide (ND-60.050) (see ND Bulletin no. 4, 1980).

THE PRODUCT

This manual documents the SINTRAN III VS version F.

ND-60.134.02

vii

SINTRAN ITI/VS

ot e

ND-50.125

INTRODUCTCRY Sintr.IIT
Intrcduct.

USER’S ¥YD-560.134 ND-50.132 ND-60.133

GUITES Communic. Timeshar./ p--- Real Time

Guice Batch Guide Guide

- ¢

ND-60.151 ND-60. 128 ND-60.051

REFERENCE Sintr.III Sintr.III Real Time

Utilities Ref. Man. Loader

N L
ra Y

OPERATOR/ ND-30.001 ND-30.003 ND-60.110

SUPERVISOR NORD 10/50 Sintr.III Postmortem

Oper.Guide Sys.Sup.Gu. Investegat

s N h

ND-60.062 ND-60.122 ND-60.072 ND-60.081 ND-60.112

Sintr.III File Sys. RT-Lcader Nordnet Sintr.III

Sys.Docum. Sys.Docum. Sys.Docum. Sys.Docum. Data Fields

INTERNAL SYSTEM DOCUMENTATION

SINTRAN III/RT

ND-60.082
Sin.III/RT
Ref. Man.

ix

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 2

2. NORD-NET 5

2.1. Introduction 5

2.2. The Communication Line 6

2.2.1. General 6

2.2.2. @COMMUNICATION-STATUS 8

2.2.3. @COMMUNICATION-LINE-STATUS 8

2.3. Remote Terminals 8

2.3.1. General 8

2.3.2, @REMOTE 10

2.3.3. @LOCAL 10

2.3.4, Example of @REMOTE and @LOCAL Il

2.3.5. Detailed Description of Remote Terminal Connection 13

2.4. Remote File Access 15

2.5. Data Transfer 18

2.5.1. General 18

2.5.2. WRQI (MON 163) 21

2.5.3. Example of a foreground data transfer program 22

"

3, COMMANDS FOR REMOTE JOB ENTRY (RJE) 25

3.1. General 25

3.2. @APPEND-REMOTE 27

3.3. @LIST-REMOTE-QUEUE 27

3.4, @DELETE-REMOTE-QUEUE-ENTRY 27

4, XMSG - TASK-TASK MESSAGE SYSTEM (OPTION) 29

4,1. Introduction 29

ND-60.134.02

Section Page

h.,2. Single- and Multi-machine XMSG 30 .

I ,3, User Function Specifications 31
4,3,1. Manipulating Ports 32

1.1. Opening Ports (XFOPN) 32
1.2. Closing Ports (XFCLS) 32
1.3. Port Status (XFPST) 33

1.4. General Status (XFGST) 33
1.5. Disconnect (XFDCT) 33

4,3.2. Manipulating Message Buffers 34
2.1. Reserving Message Buffers (XFGET) 34
2.2. Defining a User Buffer (XFDUB) 35
2.3. Releasing Message Buffer (XFREL) 35

2.4, Writing into Message Buffers (XFWRI) 35
2.5. Writing only the Header of a Message Buffer

(XFWHD) 36

2.6. Reading from a Message Buffer (XFREA) 36
2.7. Reading only the Header of a Message Buffer

(XFRHD) 36
2.8. Sending Message (XFSND) 37
2.9. Returning a Message (XFRTN) 39
2.10, Receiving Next Message (XFRCV) 39

2.11., Receive and Read (XFRRH) 4o
2.12., Message Status (XFMST) 4o

2.13. Set Current Message (XFSCM) Lo
4.3.3. Indirect Data Transfer 41

3.1. Define Indirect Buffer (XFDIB) 41
3.2. Read/Write Indirect Buffer (XFRIB/XFWIB) 41

4. 4. XROUT Service Specifications 42
4.4.1. XROUT Message Formats b3

1.1. Integer Ly
1.2. ASCII Strings Ly

4., 4,2, Services in Detail Ly
2.1. Name a Port (XSNAM) Ly
2.2. Create Connection Port (XSCRS) by
2.3. Increment Free Connection Count (XSNSP) 45
2.4, Send Letter (XSLET) y5
2.5, Return a null status message (XSNUL) L6
2.6. Get Name from Magic Number (XSGNM) 46
2.7. Get Name of Port from Port Number (XSGNI) 46
2.8. Clear name (XSCNM) 46
2.9, Find Remote Name (XSREM) y7

2.10. Get Magic Number (XSGMG) 7
2.11. Clear Magic Number (XSCMG) 47
2.12. Define Remote Name (XSDRN) 48
2.13. Define Machine Routing (XSDMC) u8
2.14, Get Routing Information for a Machine (XSGMC) 4q
2.15. Starting up / Stopping a Multi-Machine Link -

XSLKI 50

2.16. Trace Initialise - XSTIN 50
2.17. Trace Close - XSTCL 50

2.18. Define Trace Conditions - XSDTC 50

ND-60.134.02

Section

xi

u.6.

4.4,3. NPL Routines for Message Formatting

3.1. XBINI - Initialise Buffer

3.2. XBAST XBARC - Append String Append Record

3.3. XBAIN, XBADB - Append Integer

3.4, XBLOC - Locate Parameter

System Function Specifications

4,5.1. XFPRV - Make Calling Task Privileged

4,5,2. XFSIN - Initialise for System Functions
4,5,3. XFABR - Absolute Read from POF
h,5.4, XFABW - Absolute Write to POF
4,5,5., XFMLK - Message System Lock
4.5.6., XFMUL - Message System UnLock
4,5,7. XFM2P - Convert Magic Number to Port and Machine

Number

4.,5.8., XFP2M - Convert Port Number to Magic Number
4,5.9, XFCRD -~ Create Driver
4.5,10. XFSTD - Start Driver

The XMSG-COMMAND Background Program

4.6.1. Output Formatting
LIST-FORMATS

FETCH-FORMAT

EDIT-FORMAT

SAVE-FORMAT

.MWJWMB

Commands that List XMSG Tables:

List-Tasks

List-Ports

List—Messages

List-Names

List-Routing—Info

List-Links

List-Frames

List-Command—Prog-Variables

Dump-Memory

—_

.

U
'
I
J
‘
—
"
U
O
I
\
.
)
—
‘

4.6.

'
«
-
O
C
D
\
'
I
O
’
\
U
'
I
J
:
'
W
I
\
)
—
l

1.
1.
1.
1.

2.

2.

2.
?

2.

2.

2.

2.

2.

2.

.6.3.
3.1. Define-Local-Machine

3. 2 Define-Machine-Route

3.3. Start-Link/Stop Link

4,6.4, Commands for Debugging Systems that use XMSG

4,1, SAVE-POF and FETCH-POF Commands
4,2, TRACE Generation Commands
4,2.1. OPEN-TRACE

4,2.2. ENABLE-TRACE

4,2.3. DISABLE-TRACE

h,2,4, CLOSE-TRACE
4.3, Commands for Dumping a Trace File

4.3.1
4.3.2
5
6

.3 DUMP -TRACE-OPEN/DUMP-TRACE-CLOSE

NEXT-TRACE and PREVIOUS-TRACE

.6.6. Commands affecting Buffers in XMSG-COMMAND

6.1. List-buffer

ND-60.134.02

Modifying the Routing Tables and Controlling Links

4.6.5. Commands that act like normal XMSG Function Calls

4,6 C

xii

Section Page

6.2, Fill-output-buffer 67
6.3. Clear-buffer 67
6.4. Append-integer 67
6.5. Append-string 67
6.6. Buffer-ready 68
6.7. Decode-buffer 68
6.8. Generate-, Check-Pattern 68

4.6.7. Miscellaneous Commands 69
7.1. Mode 69

7.2. Set-port 69
7.3. Get-error-message 69
7.4. Debugprint-on/-off 69
7.5. Monitorecall-on/-off 70

7.6. Help 70
7.7. Disconnect 70

7.8. Exit 70

4.7. Calls from Drivers/Direct Task 71

4,8, Error Handling 71

4.9. Loading Instructions 72
4,9.1. Assumptions prior to loading 72
4.9.2. Generating XMSG 72
4.9.3. Loading XMSG 73
4,9.4, Starting XMSG T4
4.9.5, Stopping XMSG T4

4.,10. Overview of files on ND-10130 75
4,10.1. System Definition Files 75

1.1, XMSG-SYS-DEF - XMSG System Definition file 75

1.2, XMSG-VALUES - Function and Error Symbols 75

1.3. XMSG-SYSTABS - XMSG Internal Table Descriptions 75

1.4, XMSG-POFTABS - XMSG Internal Table Descriptions 75

1.5. XMSG-SIN-DATA - SINTRAN Table Descriptions 76

4.10.2. XMSG-XROUT:SYMB - The Routing Program 76
4,10.3., XMSG-POFCODE:SYMB - The POF Kernel Code 76

4,10.4, XMSG-MULTI-MC - The Multi-Machine XMSG Code 76

4,10.5. XMSG-COMMAND:PROG - The Command Program 76
4.10.6. XMSG-LIBRARY:BRF - Library Routines 76
b o10.7. Mode Files 76

7.1. XMSG-GENERATE : MODE 76

T. 2 XMSG-LOAD:MODE 76

4.10.8. XMSG Generation Definition Symbols (XMSG-SYS-DEF) 77

5. HIGH LEVEL DATA LINK CONTROL (HDLC) DMA (OPTION) 79

5.1. Introduction 79

5.2. The Monitor Call HDLC (MON 201) 79

ND-60.134.02

xiii

Section Page

5.2.1. HDLC Monitor Call Format 81
1.1. Calling HDLC in NPL 81

1.2. Calling HDLC from FORTRAN 82

1.3. The use of Device Numbers in Mon HDLC 82

5.2.2. Send DCB (SDCB) 8y
5.2.3. Receive DCB (RDCB) 84

5.3. The Driver Control Block 84

5.3.1. The Driver Control Block Format 85

5.3.2. HDLC-Driver Commands 85
2.1, Device Clear (DEVCL) 86

2.2. Device Initialization (DEVINI) 86

2.3. Device Reset (RESET) 87

2.4, Transfer Frame Data (TRANS) 87

2.5. Device Status (DEVSTAT) 88

5.4. How to Program the HDLC-Driver 89
5.4.1. The Input LDN 89
5.4.2. The Output LDN 89

6. X.21 COMMUNICATION PROTOCOL 91

6.1. Introduction 91

6.2. The Monitor Call X.21 (MON 201) 91
6.2.1. X.21 Monitor Call Format 93

1.1, Calling X.21 in NPL 93

1.2. Calling X.21 from FORTRAN 93

1.3. The Arguments of MON X.21 qu

1.4, The use of Device Numbers in Mon X.21 94

6.2.2. Send DCB (SDCB) 95

6.2.3. Receive DCB (RDCB) 95

6.3. The X.21 Driver Control Block 95

6.3.1. The X.21 DCB Format 96

6.3.2. The X.21 Commands 97

2.1. Connect (CONNECT) 97

2.2, Disconnect (DISCONNECT) 98

2.3, Call (CALL) 98

2.4. Ready (READY) 98

2.5, Clear (CLEAR) 99
2.6. Get Charging Information (GCHAR) 99
2.7. Redirection of Calls (RDIRC) 100

2.8. Get Status (GSTAT) 100

2.9. Return when call terminated 100

6.4, Writing HDLC Driver for X,21 Network 101

ND-60.134.02

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

xXiv

APPENDICES

MAGTP FUNCELiONS.teececeavonsanccnccceesnsss 02

XMSG -Summary Description of Functions
and Parameters..ccevesssscsccectssss109

XMSG -Example of a Driver using

Message SysSteMeceeeeereeeeeeconsanesll?

XMSG -Symbol Table....-...........-.......115

HDLC -Error Codes from the

Monitor Call HDLC.ueeeeoooansooocsesl?2l

HDLC -Status Codes in the DCB...eeeeeeen..123

HDLC -Example Of US€.ieeeeecaconcensasesnsel?5

X21 ~Facility BitS.ueeeseeseeccsseccenenass129

X21 -Call Progress SignalS..eeeeeecessassal3l

Error CodesS.cevecereeesssnnsnnnnscconesenslld3

X21 -Status Codes in the DCBicevecoessssse135

IndeXecceeeseeersssessasassesecnnsesceonssl30

ND -60.134. 02

SIII COMMUNICATION GUIDE

ND-60.134.02

2 SIIT COMMUNICATION GUIDE

INTRODUCTION

1. INTRODUCTION

Most SINTRAN III wusers handle local input-output through the file

system. This manual is a guide to the data communication functions

which can be used on the local peripheral equipment. It contains

documentation on the functions available in the SINTRAN I1I

communication software,

All commands are available for ordinary time-sharing users unless

otherwise noted. Similarly, all monitor calls are public unless
otherwise stated.

Chapter 1 gives an introduction to the manual.

Chapter 2 1is a guide to the NORD-NET communication system, NORD-NET

enables a user in the local computer to communicate with other NORD

computers through a distributed data network. Resource-sharing and

inter-program communication are implemented, forming an extension to

the SINTRAN III operating system,

The NORD-NET architecture is based on node-to-node connections. There

is no master/slave relationship imposed in the architecture. This

makes it possible to arrange different types of network structure to

suit various user requirements. The network organization may be

hierarchical, ring or star.

Chapter 3 1is a guide to Remote Job Entry (RJE) commands in SINTRAN
IIT, This is implemented as software packages for emulating RJE to

CDC, Honeywell, IBM, SIEMENS and UNIVAC equipment,

The RJE packages together with packages for interactive terminal

communication on IBM 3270, Honeywell VIP 7750 and Univac UTS-400
constitute NORD Intelligent Data Terminals (IDT software packages).

Chapter 4 is the complete documentation on XMSG task-task message

system (Also called X-message.) A task can be a foreground or

background program, a direct task or a peripheral equipment driver.

The main features of X-message are:

Data Transfer The transfers are message oriented, i.e. data is
transferred in units of variable length messages. Security is provided

by making it impossible to overwrite the data while it 1is being

transferred. Many tasks may be talking to one receiver (Fan in).

Addressing Ports may be named by a string of ASCII characters. The

access is checked for validity. Abnormal situations, such as abort,
escape, etc., will be handled properly.

Syncronization A process may wait for a message or it may be woken up

upon arrival of the next message (MON RT).

General All functions are available from foreground and background

programs, direct tasks and drivers.

XMSG assimilates the functions of internal devices.

ND-60.134.02

SIII COMMUNICATION GUIDE 3

INTRODUCTION

Chapter 5 describes the monitor call for the HDLC driver. HDLC stands

for High Level Data Link Control, a data transmission format defined

in the ISO 3309 standard. The driver makes it possible for application

programs to use the HDLC interface (ND-720 or ND-730).

Finally, chapter 6 describes the monitor call for the X.21

communication protocol. It makes use of the HDLC driver, and makes

calling and searching on a line switched network easy for the user.

The X.25 procedure on packet level switching is described in a

separate manual,

ND-60.134.02

STII COMMUNICATION GUIDE

NORD~NET

ND-60.134.02

SIIT COMMUNICATION GUIDE 5

NORD-NET

2. NORD-NET

2.1. Introduction

The NORD-NET communication system is an optional part of the SINTRAN

III I/0 system. Its purpose is to provide communication between two or

more independent NORD computer systems. The communication can be

divided into four categories.

1. Remote terminal communication. A user of a local terminal may use

commands and run programs in the remote computer as if his terminal

was connected directly to that computer.

2. Remote file access. Files on a remote computer may be accessed by

commands or monitor calls as if they were local files. However, then
only the functions for open, close, read and write are available

3. Data transfer. A remote and a local program may communicate

directly through the channels in a fashion similar to using an

internal device.

4, Remote load. The remote computer may be loaded from the 1local

computer., Only main memory can be loaded.

ND-60,134.02

6 SIII COMMUNICATION GUIDE
NORD-NET

Since all communication occurs on serial lines, the line transmission
speed may be a limiting factor.

local remote

» channel 0
16 » channel 1
channels avate

» channel 15

< channel 0
16 < channel 1
channels S

< channel 15

Figure 2-1 A Communication Line

This chapter describes points 1 to 3. Remote load is described in the
SINTRAN III SYSTEM SUPERVISOR manual. Besides Remote Load, the system
supervisor 1is responsible for starting and stopping the communication
on a line (use @START-COMMUNICATION and @STOP-COMMUNICATION).

User RT can associate a password with remote file access (@REMOTE -~
PASSWORD). A further guide to this command can be found in the manual
SINTRAN III REAL TIME GUIDE (ND-60.133).

2.2. The Communication Line

2.2.1. General

The communication 1line can be divided logically into a maximum of
sixteen channels each way (figure 2-1).

They are numbered from zero to fifteen. If more channels are required,
another communication line must be added.

Each channel is provided with a buffer on either side. A buffer is
scheduled for transmission either when it is full or when a break
character is written to the buffer.

The set of break characters may be choosen by the user.

ND-60.134.02

SIII COMMUNICATION GUIDE 7

NORD~-NET

Information 1is transmitted in wunits called communication frames.

Acknowledgement for correctly received frames are transmitted together

with the frames returned to the sender.

Up to four frames may be transmitted without receiving

acknowledgement. This is done by dividing the buffers into four

groups.

For each group, the buffer is not discarded until acknowledgement for

this group is received. The buffers for sending are always directed to

the four groups in a cyclic manner to ensure a correct sequence,

On the receiving side, they are distributed in the same cyclic manner,

When a buffer is transmitted, it is preceded by a buffer header and

followed by a cyclic check sum.

A logical device number (LDN) is assigned to the channel on either

side. It may be reserved, released, and accessed in a similar manner
to any other device in SINTRAN IIT,

The LDN on either side may be of a different value (figure 2-2).

The various channels can be interrogated by the commands shown in the

next section.

A channel with an associated background program can only be used for

remote terminal communication.

Such channels are marked with "BACKGROUND" in the report made by these

interrogation commands.,

A channel without a background program is used for remote file access

and data transfer.

local remote

LDN=600 > IDN=640
LDN=601 > IDN=641

LDN=617 > IDN=657

IDN=620 +— IDN=660
IDN=621 < IDN=661

IDN=637 < IDN=677

ND-60.134.02

8 SIII COMMUNICATION GUIDE

NORD-NET

2.2.2. (@COMMUNICATION-STATUS

@COMMUNICATION-STATUS <line number>,<output file>

Report the status of the <line number> on the <output file>., The
report contains logical device numbers, background vs. data channels,
error information and the current communication state,

2.2.3. @COMMUNICATION-LINE-STATUS

@COMMUNICATION-LINE-STATUS <line number>

This command produces an abbreviated report containing only error
information and the current communication state.

2.3. Remote Terminals

2.3.1. General

*+—local ———p — remte —————

channel
TERMINAI~1 |« »

0

remote remote operator
TERMINAL~2 proces- inter- communi~

sor face cation
AP and

back-
channel ground

TERMINAL-n |« » | system
1

Figure 2-3 Remote Terminal Processing

ND-60.134.02

SIITI COMMUNICATION GUIDE 9

NORD-NET

The channels marked BACKGROUND in the report, mentioned above, can be
connected to a remote processor. These channels are wused for

communication between a terminal user in a local SINTRAN III system

and the operator’s communication and background system in a remote

SINTRAN III system. Figure 2-3 shows the main parts of the NORD-NET

implementation.

A terminal user may connect to the remote processor by typing the

command @REMOTE <line number> on his terminal. A free channel will be

allocated, if available, to the terminal. The user may now LOG 1IN on

the remote system. "rub-out" or "del" puts him temporarily back to the

local command processor. The channel 1is still allocated to the

terminal. Another @REMOTE with the same <line number> puts him back to

the remote command processor. If he instead types @LOCAL the channel

will be disconnected. (A more detailed description is found in section

3.3.5.

For example:

local processing

@REMOTE 1

CHANNEL NUMBERS: LOCAL -600 REMOTE -600

"escape"

15.54,20 18 APRIL 1980

ENTER OLE

PASSWORD:

OK

R@

remote processing

RELOGOUT

16.11.34 18 APRIL 1980

-EXIT-

"rub-out"

@

local processing

Remote command mode is indicated by R@ as prompt characters instead of

only the @ alone.

ND-60.134.02

10 SIIT COMMUNICATION GUIDE

NORD-NET

A user can be connected to only one line at a time. Thus, if he is
connected to remote line 1 and wants to change to remote line 2, it is

done as follows,

1. Log out as remote user (R@LOGOUT).

2. Type "rub-out".

3. Type @QLOCAL.

4. Type @REMOTE 2

5. Log in as remote user on line 2.

Typing "rub-out" to the remote command processor while in remote

command execution mode or remote user mode causes a return to local

mode, but the remote processing will continue. The terminal output

will be saved and displayed when the user returns to remote command

processing,

2.3.2. @REMOTE

@REMOTE <line number>
Connect terminal to remote command processor. If no remote connection

exists for this terminal (no @REMOTE since last @LOCAL) a free channel
is found and the terminal is connected to the background processor of

the remote computer. If a remote connection already exists, the

terminal is connected to this channel., In the latter case, @REMOTE has

the reverse function of "rub-out",

2.3.3. @LOCAL

Disconnect remote connection. The communication channel used by the

remote connection is released and may be used for other purposes,

ND-60.134.02

SIII COMMUNICATION GUIDE

NORD-NET

2.3.4, Example of @REMOTE and @LOCAL

In this example, G@GREMOTE and RUB-OUT

disconnect from the remote system.

"escape"

15.25.56 5 SEPTEMBER 1980

VERSION 80.02.01A

ENTER TOM

PASSWORD:

OK

@DATCL

15.26.12 5 SEPTEMBER 1980

@WHO
1 TOM

38 GROUP-Y4

670 SYSTEM

672 SYSTEM

@REMOTE
CHANNEL NUMBERS: LOCAL -600, REMOTE -600

"escape"

15.25.25 5 SEPTEMBER 1980

ENTER SYS

PASSWORD:

0K

R@DATCL

15.25.39 5 SEPTEMBER 1980

REWHO
1 RT

670 SYSTEM

672 SYSTEM

384 SYSTEM

R@"rub-out"

VERSION 80.02.01

@DATCL

15.27.03 5 SEPTEMBER 1980

@REMOTE

RALOG
15,27.01 5 SEPTEMBER 1980

-- EXIT --
"rub-out"

VERSION 80.02.01

@LOCAL

@L0G
15.28.18 5 SEPTEMBER 1980

-=- EXIT --

ND-60.134.02

are

1

used to connect to and

12

1l. Local terminal

SIII COMMUNICATION GUIDE

NORD-NET

@LOGOUT; terminate remote connection

&
1;

logged out

ESCAFE;
local @LOGOUT
log in

commands; [
@REMOTE m; | ' local processing
establ.
4———12, Local camand @LOCAL; term. remote | con.
communi- mode 2

cation —
on line D
m @REMOTE n; 0

establish

communication N
on line n @LOCAL; 0

terminate T
remote
connection U

l'rub Ol]t" g

3. Remote com- —eeep | 6, LOCal command

munication logged

out b

1 @REMOTE n
uescapen;

remote RELOGOUT;
log in log cut

remote
terminal

camands;
remote "

proces- "rub-out"
sing —# (4., Remote com— —_—

mand mode

(logged in) —

T @REMOTE n
ROEREMOTE 1i;

connect to next
remote system

mede, channel is

L.connected

commands;
local processing

5. Local comand

mode, channel is
connected

local

Figure 2-4 Remote Processing, State Diagram

ND-60.134,02

ds;

processing

H
w
g

H
O
=
A

0
0
U

SIIT COMMUNICATION GUIDE 13

NORD-NET

2.3.5. Detailed Description of Remote Terminal Connection

This section 1s a thorough description of the states of remote

terminal connection.

The state diagram of remote terminal connection is shown in figure 2-

4, The diagram should be compared to figure 2-4 in the SINTRAN III

TIME-SHARING/BATCH GUIDE,

State 1 of figure 2-4 is equivalent to state 1 of figure 2-U4,

State 2 of figure 2-5 is equivalent to the other states of figure 2-4

except the response to @REMOTE,

This command establishes communication by reserving a free channel ,if

any. The state is changed to 3.

Normally, the user proceeds to state 4 by logging on remotely.

All commands will now be processed on the remote system. Typing "rub-

out" causes a transfer to local command mode, state 5.

Note that "rub-out" may be entered while in remote command processing

mode or remote user mode.

This causes any remote processing to proceed as an independent process

while the next commands are processed locally.

Any remote terminal output during state 5 will be collected and

displayed when returning to state U,

Another @REMOTE n command will cause a transfer to remote command

mode, state 4, using the same channel as before.

In state 5 it is possible to terminate the remote connection (@QLOCAL
or @LOGOUT), but this should be avoided. The remote processing may be

left in an 1indeterminate state. Instead, go back to state 3, type

"pub-out" to change to local communication, and type @LOCAL to

terminate the remote connection. (@LOGOUT will also terminate the

connection.)

State 6 is equivalent to state 5 with respect to handling @REMOTE n.

The state is changed to remote communication, state 3, using the same

channel as before,.

ND-60.134.02

14
SITI COMMUNICATION GUIDE

NORD-NET

Nesting of remote connections is performed in state 4 by typing
another @REMOTE m command., It could even be a remote connection back
to the local system.

This 1is necessary for the type of processing shown in figure 2-5.
Here, the user runs a remote program which uses one or more files in
the local system.

The session starts with the first @REMOTE n command, establishing the
interactive dialog on channel a. The user must then establish channel
b by means of a @REMOTE m command back to the local system,

Then 1log onto the local system and finally type "rub-out" to get back
to the remote system. The user may now start the remote program
(program x) which can be run either in foreground or background.

The program will use a third channel for data transfer (channel c)
while channel b will be used for administration.

Transfer of data can only occur directly between two systems which
have a direct connection.

If system A connects to system B and B connects to system C, it is
possible to connect to B, log in on B, connect to C and log on to C.
However, any data transfer from A to C must first be made to B and
then to C.

An intermediate file or program in B will take care of this problem,

channel a; interactive

channel b; admini-

stration

local — |remote system
terminal —— system containing

-—I- program x

channel ¢; one extra
channel pr. file

disk con- opened in the local
taining system
file a

Figure 2-5 Remote Program Using a Local File.

ND-60.134.02

SIIT COMMUNICATION GUIDE

NORD-NET

2.4, Remote File Access

Files on a remote NORD system may be opened

system. Only open, close, input and output functions are permitted

remote files. The communication channel to

prefix to the file name. To open a remote

program, the user must be logged in on both

file from a foreground program, the password

system must be set by the @REMOTE-PASSWORD
example, the local file LFIL is read by QED and written to the

be used is CHANNEL-1 and must have been file RFIL. The channel to

defined as a peripheral file by user SYSTEM

15

and closed from the local

on

be used is specified as a

file from a background

systems. To open a remote

of user RT on the remote

command. In the following

remote

(@SET-PERIPHERAL-FILE),

LFIL is owned by user PER and RFIL by user OLE,

The

at the end of this section.

"escape"

12.1.06 28 AUGUST

ENTER PER

PASSWORD:

OK

@REMOTE

CHANNEL NUMBERS:

"escape"

12.10,12 28 AUGUST

ENTER OLE
PASSWORD:

OK

R@"rub-out"

@QED
QED 3.8

¥R LFIL

2480 WORDS READ

¥W CHANNEL-1,RFIL

2480 WORDS WRITTEN

*EX
@REMOTE

RALOC
12.12.04 28 AUGUST

-—= EXIT --

"rub-out"

@LOG
12.12.15

-- EXIT --

1980

LOCAL - 600, REMOTE - 600

1980

1980

18 AUGUST 1980

ND-60.134.02

use of CHANNEL-1 as a prefix to the remote file name is explained

16 SIIT COMMUNICATION GUIDE

NORD-NET

Note that when the remote file is accessed, the own user name is the
name used when logging in on the remote system. The file RFIL is
expected to be among the files owned by user OLE or user SYSTEM on the
remote system.

When processing the command ¥W CHANNEL-1.RFIL, two channels are used.
The first is the one allocated to commands. The second is the channel
corresponding to the peripheral file name CHANNEL-1.

The next example is a compilation in the 1local system. The FORTRAN
source file LFIL is compiled. The compiler listing is output to the
remote line-printer and the object code is output to the new remote
file OBJ:BRF belonging to user OLE.

"escape"

12.25,18 28 AUGUST 1980

ENTER PER

PASSWORD:

OK

@REMOTE

CHANNEL NUMBERS: LOCAL - 600, REMOTE - 600

"escape"

12.25.30 28 AUGUST 1980
ENTER OLE

PASSWORD:

0K

R@"rub-out"

@FTNY
NORD-10 FTN COMPILE

$COM LFIL,CHANNEL-1,L-P,CHANNL-2."OBJ"

189 STATEMENTS COMILED, OCTAL SIZE = 3122

CPU-TIME USED IS 6.9 SEC.

$EX
@REMOTE

RELOG
12.32.31 28 AUGUST 1980
-- EXIT --
"rub-out"

@LOG
12.32.40 28 AUGUST 1980

-- EXIT --

ND-60.134.02

SIII COMMUNICATION GUIDE 17

NORD-NET

In general, the syntax of a remote file name is:

<channel name>,<local file name>

Only one level of remote connection can be specified., For ex.:

CHANNEL-1.(PACK-ONE:PER)FILA:SYMB;2

CH-2."FILE-2"

KANALY . (SYS)FTNLIBR:BRF

The file number returned from a remote @OPEN-FILE, OPEN statement or

OPEN monitor call will be the logical device number of the channel as

defined in the local computer. After the file is opened, a remote file

may be accessed by READ and WRITE statements, INBT and OUTBT monitor

calls, etce.

ND-60.134.02

18 SIII COMMUNICATION GUIDE

NORD-NET

2.5. Data Transfer -

2.5.1. General

Anv free channel not dedicated to backgrond programs may be used for

data transfer. The channel will then have a function similar to an

internal device. The only difference 1is that the sending and the

receiving programs are in two different systems. The following rules

apply:

1. The channel must be reserved by the user programs. The logical

device number on either side is used for reservation.

2. The receiving program asks for input (by using a monitor call or

statement) and is set in a waiting state until data is received

through the channel,

3, The sending program outputs to the channel (by using a monitor call

or statement) and is set in a waiting state under one of the following

conditions:

- the receiving program has not asked for input,

a break character is sent,

the buffers available are almost full, or

- a wait acknowledge (WACK) is received from the channel.

The sending program is restarted when a request for input is received

through the channel. The request is sent from the receiving program

when it detects a break character.

A wait acknowledge is sent if the input queue for a channel exceeds a

predefined number of buffers. (The number is defined at system

generation time.) The wait will prevent one channel occupying the

whole buffer pool if the receiver reads data at a lower rate than the

sending program.

A wait acknowledge simulates a break character at the end of the last

transmitted buffer on the channel.

4, The break strategy may be defined by the receiving program. The

strategy is transmitted to the sending system as a special buffer. It

is possible to specify no break is permitted occur.

A buffer will then be transmitted only if it is full or the sending

program executes CLOSE-FILE or IOSET function on the channel. The

break strategy should cause as few breaks as possible in order to

reduce the system overhead.

ND-60.134.02

SIII COMMUNICATION GUIDE

NORD-NET

The following standard monitor calls may be used on

channel:

RESRV - Reserve channel

RELES - Release channel

INBT - Read a byte

OUTBT - Write a byte

B8INB, MBINB, BUINW - Read 8 bytes

B8OUT, M8OUT - Write 8 bytes

CIBUF - Clear input buffer

COBUF - Clear output buffer

IOSET - On input: function = -1: clear input buffer

-2: set break strategy

On output: function= -1: send last buffer

a

-2: clear output buffer

>1000: the receiver will display an

error message corresponding
to (function - 1000).

BRKM -~ Set break strategy

19

communication

ECHOM - Set echo strategy. The command will only have an effect if the

program on the other side is a remote terminal processor.

MAGTP - Transfer a block of data to or from a communication channel,

RFILE - Read a block of data from a communication channel,

WFILE - Write a block of data to a communication channel.

ND-60.134.02

20

In the following example, data is

channel having the LDN

LDA (REPAR
MON 122
LDT (600
MON 13
JMP ERROR
SAA -1
MON U4
LDT (600
MON 1
JMP TEST

LOOP,

JMP LOOP

%
%
%
%

3
2

R

3
N

R

W

SIII COMMUNICATION GUIDE

received from

600:

RESERVE CHANNEL

CLEAR INPUT BUFFER

ERROR EXIT

SET BREAK STRATEGY

INPUT A BYTE

TEST FOR ERROR

% IF ERROR = 161, NO ANSWER FROM DEVICE,

% THEN TRY AGAIN AFTER 5 SEC. (CAN BE LIMITED

% TO FOR EX. 40 RETRIES.) THE DRIVER HAS NO

% RETRY FACILITY.

TEST, SAT 161

SKP EQL SA DT

JMP ERROR

LDA (HPAR

MON 104

JMP LOOP

REPAR, (600
(0
(0

HPAR, (5
(2

YFILL

The

3
1

R

=9

W

32

TR

3
W

T = 161

TEST FOR 161

NOT 161 - ERROR

WAIT 5 SEC.

HOLD

TRY AGAIN

CHANNEL NUMBER

INPUT BUFFER

WAIT FOR RESERVATION

5 SEC.

UNIT OF SECONDS

NORD-NET

the communication

input buffer should always be cleared, since the previous program

using the channel may have been terminated abnormally.

ND-60.134.02

SIIT COMMUNICATION GUIDE 21

NORD-NET

The following FORTRAN program will write a record to the channel:

I=RESRV(600B, 1,0)
I=IOSET(600B,1,0,-1)

WRITE(600B,10) ...
10 FORMAT(...

aew

The corresponding program to read is:

I=RESRV(600B,0,0)

READ(600B,10) ...
10 FORMAT(...

2.5.2, WRQI (MON 163)

Place the calling program in a wait state until a request for input is

received from the remote system., The call is useful in interactive

communication programs when the local echoing should wait until the

receiving program asks for input.

ND-60.134.02

22 SITIT COMMUNICATION GUIDE

NORD-NET

2.5.3. Example of a foreground data transfer program

In this example, two foreground programs will be seen. A sending

program, FIRSTR will run in the remote system and a receiving program,

FIRST, will run in the local system:

FIRSTR

- Read records of 5 characters from a file (RT)SEND and send them

through channel 603.

- Terminate when reading EOF from the file.

FIRST

- Read records of, 5 characters from channel 603 and write them on the

terminal,

- Terminate when reading EOF.

"escape"

15.18.02 19 OCTOBER 1979
VERSION 78.10.18.B

ENTER RANDI

PASSWORD:

OK

eFTN
NORD 10 FORTRAN COMPILER FTN-2090F

$COM FIRST,1,FIRST

1% PROGRAM FIRST,U5
2% CHARACTER IARR¥6
3% CALL RESRV(603B,0,0)
4% I=I0SET(603B,0,0,-1)
5% 1 READ(603B,* ,END=10) TARR
6% CALL RESV(1,1,0)
7% WRITE(1,%)TARR
8+ CALL RELES(1,1)
9% 10 CALL RELES(603B,0)

10% STOP
11% END

11 STATEMENTS COMPILED , OCTAL SIZE= 200

CPU-TIME USED IS 0.5 SEC

$EX

ND-60.134.02

SITT COMMUNICATION GUIDE 23

NORD-NET

@REMOTE

CHANNEL NUMBERS: LOCAL - 600, REMOTE - 600

"escape"

15.15.10 19 OCTOBER 1979

VERSION 78.10.18.B

ENTER RANDI

PASSWORD:

0K

REFTN
NORD 10 FORTRAN COMPILER FTN-2090F

$COM FIRSTR, 1,FIRSTR

1% PROGRAM FIRSTR,U45
2% CHARACTER IARR¥5
3% IFILE=2
y* OPEN(IFILE,FILE= “SEND’,ACCESS= ‘R”)
5% CALL RESRV(603B,1,0)
6% I-IOSET(603B,1,0,-2)
T* READ(IFILE, ¥ ,END=10,ERR=20) IARR
8% WRITE(603B,*)IARR
9% GO TO 1

10%# 20 II=ERRCODE+1000B
11% I=TOSET(603B,1,0,II)
12% GO TO 100
13% 10 I=TOSET(603B,1,0,1003B)
14% 100 CALL RELES(603B,1)
15% STOP
16% END

16 STATEMENTS COMPILED , OCTAL SIZE= 172

CPU-TIME USED IS 1.0 SEC.

$EX
RELOG
15.15.54 19 OCTOBER 1979

-=EXIT--

"rub-out"

VERSION 78.10.18.B

@LOCAL

@LOG

15.19.52 19 OCTOBER 1979
--EXIT--

ND-60.134.02

24

"escape"

15.19.54 19 OCTOBER 1979

VERSION 78.10.18.B
ENTER RT
PASSWORD:
oK
@RT-LO

REAL-TIME LOADER 78.10.18B

¥NREE (RANDI)FIRST,,

NEW SEGMENT NO: 65

¥END-LOAD

¥EX
@RT FIRST

@REMOTE

CHANNEL NUMBERS: LOCAL - 600,

"escape"

15.16.45 19 OCTOBER 1979
VERSION 78.10.18.B
ENTER RT
PASSWORD:
OK
RERT-LO

REAL-TIME LOADER 78.10.18B

#NREE (RANDI)FIRSTR,,
NEW SEGMENT NO: 111
¥END-LOAD
*EX

R@RT FIRSTR

RG@LOG

15.17.49 19 OCTOBER 1979
--EXIT~--

"rub-out"

VERSION 78.10.18.B

@LOCAL

@LOG
15.21.51 19 OCTOBER 1979

--EXIT--

PER

PAAL

ESPEN ASKELADD

REMOTE -

ND-60.134,02

600

SIII COMMUNICATION GUIDE

NORD-NET

SIIT COMMUNICATION GUIDE 25

COMMANDS FOR REMOTE JOB ENTRY (RJE)

3. COMMANDS FOR REMOTE JOB ENTRY (RJE)

3.1. General

SINTRAN TIT can be delivered with software packages for emulating RJE

terminals on several large mainframe computers. At present the

available RJE emulators are;

ND-10026 CDC 200 User Emulator, manual ND-60.061

ND-10027 Honeywell GERTS 115, manual ND-60.041

ND-10028 IBM HASP Work Station, manual to be issued

ND-10029 UNIVAC NTR (for SINTRAN III/VS), manual ND-60.070

ND-10030 IBM 2780/3780, manual ND-60.067

ND-10031 UNIVAC DCT 2000, manual ND-60.060

ND-10056 UNIVAC NTR (for SINTRAN III/RT), manual ND-60.070

ND-10057 UNIVAC DCT 2000 (for SINTRAN III/RT), manual ND-60.060

ND-10063 IBM HASP Work Station DMA, manual to be issued

ND-10069 CDC 200 User Multidrop, ND-60.061

These emulators constitute the NORD Intelligent Data Terminals (IDT)

together with the following interactive emulator packages,

ND-10016 IBM 3270, manual ND-60.114

ND-10059 Honeywell VIP 7750, manual ND-60.100

ND-60.134.02

26 SIIT COMMUNiICATION GUIDE

COMMANDS FOR REMOTE J0B ENTRY (RJE)

An emulator is 1loaded and started as a foreground program by user

SYSTEM, Once the RJE emulator is running any user may appenrnd jobs to a

batech queue (in the local computer) in a similar way to local batch.

In general there are three ways in which a SINTRAN III wuser may run

batch jobs,

1T, he may run local batch as explained in chapter 7 of the manual

SINTRAN III TIME-SHARING/BATCH GUIDE. The jobs contain SINTRAN TIIT

commands,

2 ., he may use NORDNET commands to run remote batch in another NORD

computer. These jobs also contain SINTRAN III commands.

3 , he may use RJE commands to submit jobs to a host computer which

is not a NORD computer. The jobs contain commands in the job control

language of the host computer,

Batch jobs can be sent to the remote computer in two ways:

1) - when the emulator is started, a terminal is allocated as the

remote batch console. This is normally terminal 2. The console 1is

under control of the emulator and the user enters special emulator

commands in order to send remote batch files, The files are not

queued.

2) - a SINTRAN III command permits any time-sharing user to submit

jobs to the remote computer. (User SYSTEM must have started the

emulator from the remote batch console.) The jobs are queued in the

local computer. The commands are shown below.

ND-60.134.02

SIII COMMUNICATION GUIDE 27

COMMANDS FOR REMOTE JOB ENTRY (RJE)

3.2. @APPEND-REMOTE

@APPEND-REMOTE <remote computer>,<input file>

Append a batch input file to the remote batch queue of a computer., For

ex.t

@AP-REM UNIVAC,JOB-1

The bateh input file JOB-1 is appended to the batch queue of the

remote computer UNIVAC. The file must have read access for user RT,

3.3. @LIST-REMOTE-QUEUE

@LIST-REMOTE-QUEUE <host computer>

List the contents of a remote batch queue. For ex.:

@L-R-Q IBM
1 (SYSTEM)CARD-READER

2 (USER-NAME)IBMJOB

The queue contains two entries, one from the card reader and one from

the file (USER-NAME)IBMJOB.

3.4, @DELETE-REMOTE-QUEUE-ENTRY

@DELETE-REMOTE-QUEUE-ENTRY <remote computer>,<queue entry>

Remove a remote batch input file from the queue for a remote computer.

For ex.:

@D-R-Q-E UNIVAC,JOB-1

The file name JOB-1 is deleted from the queue for the remote computer

UNIVAC,

ND-60.134.02

28

ND-60.134.02

SIIT COMMUNICATION GUIDE

XMSG -~ Introduction

SIIT COMMUNICATION GUIDE 29

XMSG - Introduction

4, XMSG - TASK-TASK MESSAGE SYSTEM (OPTION)

4.1. Introduction

Many applications require the division of a program system into

separate, asynchronous processes or tasks, that communicate by sending

messages.
This separation may be motivated by security considerations

(separation of work-areas, definition of interface points), by
hardware design (tasks may run in separate machines), by address space

limitations, or simplicity of program development.

We will use the word task to mean a driver, direct task, or RT
(foreground or background) program. The XMSG system ' allows tasks to

send messages to each other, including handling of memory allocation,
queueing, and task synchronisation.

A task can open ports through which it can send and receive

information about messages. Data is normally transferred between tasks

via message buffers within XMSG. The sending task first opens a port,

then reserves an XMSG message buffer, transfers his data into that
buffer and finally informs the receiving task’s port that data is

awaiting collection. Reservation and releasing of messages is done

explicitly by the user.

XMSG facilities take two forms: Functions and Services:

¥MSG functions are invoked via the XMSG monitor call (200) with
parameters being passed in the registers. The T register indicates the

particular function required with option bits set in its high order

byte when required.

Completion status is returned in the T register, positive (precise

meaning depends on the function) if successful, zero if the operation

was not terminated and negative indicating an error.

The functions are divided into two groups: user functions (of general

interest) and system functions (used mainly by XROUT and XMSG-
COMMAND) . The functions in each group are described in the

corresponding sections below: ‘User Function Specifications” and

‘System Function Specifications’.

XMSG Services are invoked by sending messages (using functions) to a

standard task called XROUT. The services and method for accessing them

are described in the section “XROUT Service Specifications’ below.

Note that all function, service and error codes are referred to

symbolically. Their values are defined in file XMSG-VALUES (see

Appendix D), which should thus be used as an include file when

compiling the task code. The routine XMERR in XMSG-LIBRARY converts an

XMSG error code in the A-register to a pointer to an explanatory text

returned in the A-register. The text is in ASCII characters terminated

by a quote character (7).

ND-60.134.02

30 SIII COMMUNICATION GUIDE

IMSG - Multi-machine XMSG

4.2, Single- and Multi-machine XMSG

XMSG can be configured in two ways:

Single-Machine XMSG only provides communication between tasks running

in a single ND-100 CPU,

Multi-Machine XMSG (XMSGM) also allows communication (but not indirect

buffer access) between tasks running in a group of ND-100s. The

current XMSG version allows up to 64 machines per XMSGM network.

The following extra concepts are used in Multi-machine XMSG:

A machine is a Processing Unit that runs an independent XMSG kernel -

(i.e. ND-100 CPU - not PIOC (Programmable I/O Controller) or ND-500
which are seen as part of a ND-100 since every PIOC or ND-500 task

which uses XMSG has a “shadow’ task in the ND-100).

A link connects machines.

ND-60.134.02

SIII COMMUNICATION GUIDE 31

XMSG - User Function Specifications

4,3, User Function Specifications

In the following descriptions these symbols will be used in the

parameter lists (integer unless specified otherwise):

ISTAT - result status

XFxxx - function code (options are indicated in parentheses)

NBYTES - number of bytes

MESAD - message identifier (in fact an address on the XMSG segment)

UADD - user buffer address

ULEN - length of user data in BYTES

DISP - displacement within message in BYTES

PORTNO - local port identifier. If zero, the most recently opened

port is assumed. 1

RPORT - remote machine no and port.

MAGNO - double word containing remote port identifier,

XFWTF - wait flag. Leads to IO-wait until the wuser specified

function terminates.

XFWAK - wake flag. XMSG wakes up the RT program (RTENTRY) when the

user specified function terminates.

QLEN number of messages currently queued for a port.

DATAO first two bytes of user data.

The calls will be described by showing the NPL code required to use

them. The user must remember that the T-register always contains the

status on return (which should be checked!)

Some functions and services are privileged. Before calling these, a

task must make itself privileged by invoking the XFPRV function

described below in the section “System Functions’. A short description

of XMSG funetions is given in appendix B.

ND-60. 134,02

32 SIII COMMUNICATION GUIDE

XMSG - User Function Specifications

4.,3.1. Manipulating Ports

When a task opens ports they are identified locally with a port number

(1like a file number). A task identifies other tasks’ ports using a 32

bit magic number (MAGNO) which comprises the port number, the machine

number and a random part that guarantees that a port that is closed

and then re-opened does not have the same identifier.

The current XMSG version allows addressing of up to 1020 ports per

machine.

4.3.1.1. Opening Ports (XFOPN)

T:=XFOPN (BONE XFPRM); ¥MON 2XMSG

A=:PORTNO

A port is opened and its number returned to the calling task. If the

XFPRM flag 1s set, the port is defined as permanently open and will

only be closed by an explicit close of that port, or by a close (-2) -

see XFCLS description below. '

4.3.1.2. Closing Ports (XFCLS)

T:=XFCLS; A:=PORTNO; *MON 2XMSG

Closes the specified local port. If A=-1, all non-permanent ports will

be closed. If A=-2, all ports, including permanently opened ones, will

be closed.

When a port is closed, all ‘non-secure’ messages currently queued for

that port are released, while all “secure’ messages (as well as the

port current message, if any) are set ‘non-secure’ and returned to the

sender.

A close (A=-1) 1is automatically executed whenever a background

processor returns to the command input mode (@..) A close (A=-2) is
automatically executed when a background user logs out or a foreground

program terminates or aborts.

ND-60.134.02

SIII COMMUNICATION GUIDE 33

¥MSG - User Function Specifications

4.3.1.3. Port Status (XFPST)

T:=XFPST (BONE XFWTF/XFWAK); A:=PORTNO; *MON 2XMSG

A=:RPORT; A:=D=:MESAD; X=:QLEN

On return T indicates the message type of the first message in the

queue (or 0, if there are none). If a message is waiting, D contains

its address and A the machine number in the lefthand byte and the port

number in the righthand byte of the port from which the message has

been sent. The X register always contains the queue length. The

message types and wait options are as for the receive function (XFRCV)

described later.

4.3.1.4. General Status (XFGST)

A task may have many open ports, and not be sure to which one the next

message is going to come. XFGST allows him to check all ports:

T:=XFGST (BONE XFWTF/XFWAK)j; A:=PORTNO; *MON 2XMSG

A=:PORTNO;

The call parameter PORTNO indicates where the message system should

begin the search (next port after that specified). If we have, for

example, just handled a request received on port U4, we can then call

XFGST with A=4 to find out whether any requests have been received on

any port. Port U4 will then be the last to be looked at by XMSG. This

is called ‘round-robin’ scheduling of requests. The result parameter

PORTNO contains the port number where the message is waiting.

If the XFWTF flag is set, then the task will go into I0-wait if no

messages are waiting, otherwise a zero status will be returned, and if

XFWAK is set, then the task will be ‘woken up when the next message

arrives,

b,3.1.5. Disconnect (XFDCT)

T:=XFDCT; *MON 2XMSG

Closes all ports. All XMSG space belonging to the current caller is

released. Special action is taken in the case of current messages, and

messages waiting on the input queue (see XFSND, XFRCV and XFCLS).

There is no return from driver calls to XFDCT (as the driver context

is released by the call).

Note that RT-program abort and logout from background lead to

automatic disconnect.

ND-60.134.02

2y SIIT COMMUNICATION GUIDE

XMSG - User Function 3pecifications

4,3.2. Manipulating Message Buffers

Message buffers are simply variable length areas which can be reserved

within XMSG’s address space. When assigned to a task they remain

reserved for that task until it decides to release them or “send” them
to another task, at which point ownership 1is transferred to the

receiving task so that it is able to read the data. Having read the

data, the receiving task may then either release the buffers back to

the pool or use them itself for storing a message to send back to the

first or any other task.

Note that in many of the functions which follow, there is no parameter

required to specify the message identifier (MESAD), for the reason
that a current {(default) message buffer is assumed, namely the last
message received on the appropriate port, or, if none, the last

operated on by the task., Sending or releasing a message leads to is

currency being lost. The task may also change the value of the Current

Message with the XFSCM function. A MESAD value of -1 implies the

current message.

Messages cannot be released, read from or written to by tasks other

than the current owner or whilst queued to a port. In the latter case

the message must be received first.

4,3.2.17. Reserving Message Buffers (XFGET)

T:=XFGET (BONE XFWTF/XFWAK); A:=NBYTES; ¥MON 2XMSG

A=:MESAD

MESAD is returned to the caller for possible use in subsequent

functions. The message buffer consists of a descriptor of the current

owner, sender, size, length etc., and a buffer for user data. The
buffer size has a maximum, system dependent size (X5MMX) defined when
the XMSG system is generated.

At any particular time, the total space owned by a task cannot exceed

another 1limit (X5MTS), which is also defined when the XMSG system is
generated.

Only the current owner of a message is allowed to read or write in it,

give it to someone else or release it.

Specifying a buffer length of 0 bytes implies that only a message

descriptor will be reserved. Privileged tasks can then associate a
physical memory area with that message descriptor by using the Define

User Buffer (XFDUB) function described below.

ND-60.134.02

SIIT COMMUNICATION GUIDE 35

XMSG - User Function Specifications

4,3.2.2. Defining a User Buffer (XFDUB)

This is a privileged function (cf XFPRV) that allows a user to

associate a physical memory buffer with a message descriptor

previously obtained by XFGET with NBYTES=0. All XMSG functions then

operate on that message as though the buffer space was part of the

general XMSG buffer, except that XFREL (see below) only releases the

message descriptor and not the buffer area.

This allows special systems or drivers to have full control over their

memory allocation procedures, and to allocate, for example, messages

whose buffer areas lie in a PIOC.

T:=XFDUB; AD:=PHYSAD; X:=NBYTES; ¥*MON 2XMSG

The function acts on the current message. PHYSAD is the physical (24

bit) address of the start of the buffer, and NBYTES is its length in

bytes.

4.3.2.3. Releasing Message Buffer (XFREL)

A buffer is released thus:

T:=XFREL; A:=MESAD; ¥MON 2XMSG

4.3.2.4, Writing into Message Buffers (XFWRI)

After building up a data buffer is its own space, a task transfers the

data buffer into the current message buffer as follows:

T:=XFWRI; NBYTES=:D; A:=UADD; X:=DISP; ¥MON 2XMSG
A:=D=:NBYTES

If the ‘whole-message-read’ flag has been set (see XFREA) it is

cleared, and the current message length (not the same as size) is set

to 0. If DISP is -1, a value for DISP equal to the current message

length is assumed instead, thus providing an append function. If the

displacement is odd, 1 is added to it, and a zero byte inserted in the

message. If DISP+NBYTES 1is greater than the message size, an error

return occurs. Otherwise NBYTES bytes are copied from UADD into the

message buffer., If this resulted in the message being longer than

before, the current message length is set to DISP+NBYTES (rounded up

if odd). NBYTES is returned to indicate the actual number of bytes

transferred.

If the user has access to the buffer area directly (either because it

was defined using the XFDUB function or because he has access to

physical memory), he can of course do the read and writes himself,

However, he must then be aware that the ‘current displacement® and

‘current length’ information in the message descriptor will not be

updated.

ND-60.134.02

36 SIIT COMMUNICATION GUIDE

XMSG - User Function Specifications

4.3.2.5. Writing only the Header of a Message Buffer (XFWHD)

T:=XFWHD; AD:=BOto3; X:=B4to5; ¥MON 2XMSG

This function inserts the A, D and X registers as the first six bytes
of the current message, and increments the length parameter if

necessary.

4,3.2.6. Reading from a Message Buffer (XFREA)

T:=XFREA; NBYTES=:D; A:=zUADD; X:=DISP; ¥MON 2XMSG

A:=D=:NBYTES

The data 1is read from the current message starting with displacement

DISP (rounded up to the next word boundary) into the user buffer
specified by UADD (length NBYTES) and NBYTES is set to the actual
number of bytes read. If DISP is -1, the reading of the message is

resumed from the point it had reached on the previous read. If the

last byte in the message is read, the ‘whole-message-read’ flag is
set, so that the next XFWRI will reset the current message length.

NB Note that the displacement is always rounded up to the next word

boundary.

4,3.2.7. Reading only the Header of a Message Buffer (XFRHD)

The first six user bytes of a message can be read using:

T:=XFRHD; A:=MESAD; ¥*MON 2XMSG

With the six bytes being returned in the A, D and X registers (in that

order!). If MESAD is not -1, the specified message becomes the current

task message.

ND-60.134.02

SIITI COMMUNICATION GUIDE 37

XMSG - User Function Specifications

4,3,2.8. Sending Message (XFSND)

When a task wants to “send” a message to another task, it naturally

must know the ‘address’ or MAGNO of a port of the task., Since port

numbers (and hence MAGNOs) are allocated by XMSG when the port is

opened, the destination MAGNO must be obtained by an executing task

via XMSG.

Initial contact is in fact made by sending a message to a dedicated

task named XROUT (see services below), to first name one’s port(s).
Subsequently a second task may send a “letter’ via one of his ports
also to XROUT, specifying a destination port by name (see XROUT Letter

Service XSLET). . If this name has been previous declared, XROUT will

forward the message to the named port.

The first task can then use the XFMST function to extract the MAGNO of

the second task and hence a direct dialogue can begin. (Note that only

ports expecting letters need to have names. These will usually be

ports providing services - ‘server ports”.) XROUT and XFMST are

described later.

In this section it is assumed the sender now knows the destination

MAGNO,

A Message Buffer is “transferred’ from one task to another, thus:

T:=XFSND (BONE option); AD:=MAGNO; X:=PORTNO; ¥MON 2XMSG

The options are:

XFWTF - Wait flag. This is only significant when using multimachine

XMSG and XFSEC (see below). If set, it implies that the caller
will only be restarted (with proper status) when the message

has been put into the receiver’s input queue.

If not set, secure messages that cannot be delivered, will be
returned as if they had been put into the destination queue

and then the port been closed before the message was received

by the destination task.

ND-60.134.02

38

XFSEC -

XFHIP -

XFFWD -

XFROU -

XFBNC

A magic

message

SIII COMMUNICATION GUIDE

XMSG - User Function Specifications

Secure message. The message will be returned to the sending
port if it cannot be delivered or if the handling program
terminates while the message is ‘current’. Non-secure messages
are discarded and released by XMSG if they cannot be
delivered.

High priority message. It will be chained to the head of the
receiver’s queue instead of the tail, following any other high
priority messages already queued.

Forwarding. The sender information in the message will not be
updated, so that to the receiver it will appear that the
message was sent directly from the previous sending port.

Ignore the MAGNO parameter and send the message to the 1local

routing task (XROUT). The message contents should be
parameters to XROUT. (See section on XROUT services.)

Bounce message. When the receiver issues XFRCV which would
have led to this message being received, it will instead be
returned to the sender.

number parameter of -1 (in both A and D) will direect the
back to the port from which it was last sent.

ND-60.134.02

SIITI COMMUNICATION GUIDE 39

XMSG - User Function Specifications

4,3.2,9. Returning a Message (XFRTN)

The user often needs to write a return status into a message and send

it back to the port from which it came (e.g. replying to a

transaction):

T:=XFRTN; DATAO=:D; A:=MESAD; X:=PORTNO; *MON 2XMSG

leads to DATAOQ being written into the first two bytes of the message

buffer, and the message buffer being returned to the port from which

it was last sent. The function options are as for XFSND, (In fact the

function is as XFSND, except that the D register contains two bytes of

data and the A register the message address.)

4.3.2.10. Receiving Next Message (XFRCV)

When a task is ready to handle the next request, it calls XFRCV:

T:=XFRCV (BONE XFWTF/WFWAK); A:=PORTNO; *MON 2XMSG
A=:RPORT; A:=D=:MESAD; X=:NBYTES

If a message is waiting on the specified port, it is received

(unchained from the message queue) and the A register contains the

sending machine (high-order byte) and port number. The D-register

indicates the message address, X the message length in bytes, and T

the message type (see XMSG-VALUES for values):

XMTNO - Normal message.

XMROU - Message last sent by a routing program (XROUT - see below).

XMTHI - High priority (sent with XFHIP option).

XMTRE - Returned message (sent as secure but could not be delivered).

XMTPS - Pseudo message (not used at present!)

If no message is waiting, then if XFWTF is set, the task 1s suspended

until the next message arrives, otherwise a zero status is returned

and, if XFWAK is set, the next transmission to that port will lead to

a ‘wake up’ (RT - MON 100) of the receiver task. This allows timed-out

waits to be executed.

When the ‘wake up’ is done, the message is not received, and so the

receive must be repeated. This ‘wake up’ option can be enabled on more

than one port at a time.

A successful XFRCV leads to the returned message becoming the current

message for that task (and port). If that message 1is ‘secure’, and, if

the task aborts before the current message is cleared, the message

will be returned to the sender with ‘return’ status.

The current task message is cleared by releasing/sending it to someone

else, or receiving another secure message.

ND-60.134.02

o SIII COMMUNICATION GUIDE

XMSG - User Function Specifications

4,3.2.11. Receive and Read (XFRRH)

As an alternative to receive, the user can call the XFRRH funection,
which receives the next message in the queue (as XFRCV), and also
reads the first two bytes of the message:

T:=XFRRH (BONE XFWTF/XFWAK); PORTNO; *MON 2XMSG
A=:RPORT:=D=:MESAD; X=:DATAQ

Note that this is identical to the receive function, except that it
returns the first two bytes of user data instead of the message
length.

4,3.2.12. Message Status (XFMST)

XFMST allows one to extract the sender’s magic number, and get the
length and type of a received message:

T:=XFMST; A:=MESAD; *MON 2XMSG
AD=:MAGNO; X=:NBYTES

The message type is returned in the T-register. (See Receive - XFRCV
above.) It might be expected that this requires an extra call, but:

a) - one often just sends a message back to its sender (XFSND
with MAGNO=-1 or XFRTN) and

b) - one can read the magic number once, and after that use the
machine and port information returned by XFRCV to identify
the sender, whose MAGNO you now have.

4.3.2.13. Set Current Message (XFSCM)

Since many functions implicitly operate on the current message, it is
useful to be able to set the latter:

T:=XFSCM; PORTNO=:D; A:=MESAD; *MON 2XMSG

Sets the specified message as task current. If the port number is >=0,
the message is also set as current for the specified port.

ND-60.134.02

SIITI COMMUNICATION GUIDE 41

XMSG -~ User Function Specifications

4.3,3. Indirect Data Transfer

The amount of space available for message buffers is limited, but the

user may wish to transfer large quantities of data within a machine.

He may then, instead of transfering the data into a message buffer

pefore sending it, Jjust send a buffer description which allows the

receiver to read or write to this buffer when required.

The data area of the message can be used to include usual information

(describing what the indirect buffer contains, fo example).

These functions can only be used between foreground and/or background

programs running on the same machine. The transfer speed is about 3

milliseconds per kbyte (ND-100)

4.3.3.1. Define Indirect Buffer (XFDIB)

Appends to the message descriptor the information required to allow

the receiver to do indirect read and write operations:

T:=XFDIB (BONE XFWOK); ULEN=:D; A:=UADD; X:=MESAD; *MON 2XMSG

The XFWOK (Write OK) flag determines whether the task to which the

message is going to be sent, is allowed to write in the buffer area

described by UADD and ULEN.

This definition of the indirect buffer becomes usable only after the

next XFSND (without forwarding option). It then becomes invalid when

the message 1is sent further, unless forward option is used. This

prevents a user receiving a message and then defining a buffer area in

the virtual space of the last sender. Closing the sending port also

stops access to the indirect buffer.

4,3,3.2. Read/Write Indirect Buffer (XFRIB/XFWIB)

Allows someone who has received a message containing an indirect

buffer address to read or write to that buffer. (Write only if XFWOK

was specified).

T:=XFRIB/XFWIB; NBYTES=:D; A:=UADD; X:=DISP; #MON 2XMSG

A:=D=:NBYTES

The data is transferred between the local buffer area specified by the

AD registers and the remote indirect buffer specified by the XFDIB

function, starting with the displacement specified in X, which must be

an even number. The transfer terminates, when either the count is

zero, or the remote buffer is exhausted. NBYTES returned is the number

of bytes not transferred.

ND-60.134.02

ho SIIT COMMUNICATION GUIDE

XMSG - XROUT Service Specifications

4.4, XROUT Service Specifications

As mentioned above, XROUT is a special task that allows tasks to find
each other initially by providing a port naming scheme.

It can be considered to be equivalent to the ’‘directory enquiries’

service provided by a public telephone company, but with the following

restriction

XROUT will never give you somebody else’s telephone number, but will

give him a message sent by you, together with your magic number. The

destination task can then look at your message and ring you back, 1if

he wants to, and thereby give you his magic number.

XROUT is implemented as a standard foreground-program that runs on a

demand segment, and so 1is relatively independent of the XMSG

communication system as such.

Tasks communicate with XROUT by sending it messages using the XMSG

function XFSND with option XFROU (instead of a MAGNO).

ND-60.134.02

SIIT COMMUNICATION GUIDE 43

XMSG - XROUT Service Specifications

4.4,1, XROUT Message Formats

The messages that users send to XROUT have a standard format:

Byte O - a serial number returned unchanged by XROUT in order to

allow users who may have many requests outstanding, to

recognise particular replies. Note that messages sent from

XROUT also return a special message type (XMROU) in the T-

register as a result from a receive call (XFRCV or XFRRH),

so that they can be distinguished from messages originating

from other tasks.

In order to comply with the ND standard message format, the

high order bit of byte O should be zero.

Byte 1 - the service number (symbol XSxxx) of the service being

requested. XROUT overwrites this with the return status

from the request: 0 is OK, whilst other values are errors

as defined by the XR... symbols (cf. XMSG-VALUES - e.g.

XRISN=1 - illegal service number). Note: XROUT service

values and result/error codes are always in the range

0..127, so that the user may set the high-order bit (bit T7)

to indicate user services and/or result statuses. The

routine XMRER in XMSG-LIBRARY takes as input a routing

error code in the A-register and returns a pointer in the

A-register, to an error message containing ASCII characters

(terminated by a quote character).

Byte 2-3 - length of remainder of message in bytes. Followed by a

sequence of parameter blocks.

Each parameter block has the form:

Byte O - Parameter number and type (0 means skip this byte to allow

for fill). Integers have positive values, strings negative

(two s complement of parameter number).

Byte 1 - Length of parameter in bytes.

Byte 2 ... Parameter data.

The number and type of parameters is dependent on the particular

service. All parameter blocks must start on even byte boundaries in

the message (use zero fill). NPL routines are provided to allow the

building of service messages in a user buffer, which can then be

written to a message buffer (XFWRI) and sent (XFSND). The message sent

to XROUT must be big enough for the reply, if the latter is longer

than the request.

ND-60.134.02

Yy SIII COMMUNICATION GUIDE

XMSG - XROUT Service Specifications

The parameters in sections 4.4.1.1 and U4.U4.1.2 are used.

4.4.1.1. Integer

Since messages will be sent between machines with different word

lengths, integers will be treated as signed, so that the sign bit will

be extended if necessary. This allows the sender to decide how much

space he wishes to use in the message for an integer, and the user to

take appropriate action when receiving.

4.4,1.2. ASCII Strings

The 1length is defined by the parameter length. If a fixed length

record is required, the record will be filled up with blanks.

4.Y4,2, Services in Detail

The following list (sections 4.4.2.1 through 4.4.2.18) of services is

tentative, and will most certainly be extended later. The symbolic

names XS... are defined in the XMSG-VALUES file.

4,4,2,1, Name a Port (XSNAM)

In order for a port be named, this name must be declared to XROUT.
This is done by the XSNAM service with the following parameters:

1 - Identifier (type string)

If an open port already has the specified name, an error status is

returned.
The sending port 1is then given the specified name. If it previously

already had a name, the port is renamed with the new name.
The maximum name length accepted can be defined when the XMSG system

is generated (symbol XSNLW in XMSG-SYS-DEF, default=32 bytes).

h,4,2.2. Create Connection Port (XSCRS)

Parameters:

1 - Identifier (type string)
2 = Max no of connections accepted (type integer)

3 - Uniqueness flag (type integer)

This service is very similar to XSNAM, but allows XROUT to control the
number of users that a port can handle simultaneously, and even

distribute users among servers.

XROUT first handles the message like an XSNAM service request, except

that wunless the wuniqueness parameter is specified and is non-zero,

connect ports are allowed to have identical names. It then sets a

counter (the free connection counter) associated with that port to the

value specified in parameter 2. For remainder of specification, see

Letter service (XSLET) below.

ND-60.134.02

SIIT COMMUNICATION GUIDE 45

XMSG - XROUT Service Specifications

4.4.2.3. Increment Free Connection Count (XSNSP)

Parameter:

1 - No of new free connections (type integer)

After opening a connection port (see XSCRS above), a task can later

increment the free connection count (when connections become

available) by using the XSNSP service.

4,4,2,4, Send Letter (XSLET)

This service is used to contact a remote port. The parameters used by

XROUT is:

1 - Port or Connection Name (type string)
2 - Machine name (type string)

If parameter 2 is specified, XROUT looks this up in the name table,

and if this has been defined as a remote name (see define remote name

below), forwards the letter to the XROUT in the specified machine,

Otherwise XROUT extracts the identifier and looks up the string in its

name table. If a match is found, XROUT looks at the port type. If this

is a normal named port (named using the XSNAM service), the whole

message is forwarded (function XFFWD) to the matching magic number.

If it 1is a connect port (named using XSCRS), XROUT looks at the free

connect count and if greater than zero, it decrements it and forwards
the letter. If not it tries to find another port with the same name.

If no match is found, the function code is set to an error value, and

the message returned to the sender,

The remainder of the message, can contain data for the receiving task

(user name, password,) to allow the server to check that the
sender 1is entitled to use that service, before replying to him and

thereby giving the caller his magic number, If the server wants to

reply to the requester without giving away his own magic number, he

should reply with the forward option (XFFWD).

ND-60.134.02

6 SIII COMMUNICATION GUIDE

XMSG - XROUT Service Specifications

4,4,2.5, Return a null status message (XSNUL)

XROUT returns a message of two bytes containing the reference number

and 0 (used for testing/benchmarking).

4,4,2.6, Get Name from Magic Number (XSGNM)

Any XMSG user can obtain the name of a given port by sending a message

containing the magic number (integer) as parameter 1. The return

message will contain the port name appended as parameter 2 (type

string), if there was space in the message (make sure there is

enough!)

4, 4,2.7. Get Name of Port from Port Number (XSGNI)

Privileged callers may obtain the name of a given port by sending a

message containing the machine number and the port number as parameter

1. XROUT will return the name of the port with the 1least machine

number/port number greater than or equal to the input parameter. The

port ‘s machine number and port number are returned as parameter 1 and

the name as parameter 2., If no port was found satisfying the above

conditions, the first parameter is zero.

h,4,2,8, Clear name (XSCNM)

When a name’s validity has expired, the clear name service can be used
to remove the specified name from the name table.

Name clearing is also done automatically by XROUT when it notices that

a port has been closed.

Other machines that have fetched the current port’s magic number (see

XSREM below) are also informed when the port is closed.

ND-60. 134,02

SIII COMMUNICATION GUIDE y7

XMSG - XROUT Service Specifications

4.,4.2.9., Find Remote Name (XSREM)

In multi-machine XMSG configurations, a local XROUT must be told

explicitly to go and find a remote name. A user process does this by

sending an XSREM request to his local XROUT, who then contacts the

remote XROUT to ask for the target port’s magic number, which it then

enters in its own tables. Note that the magic number is not returned

to the user.

This ‘Find Remote Name ' request only needs to be done once - at system

initialisation, but it must be done after the remote process has

opened its port and named it locally using the XSNAM service described

above.

Parameters:

1 - Local name (string)
2 - Remote name (string)
3 - Remote machine number (integer)

The local name is the name by which the port can be referred to (after

completion of the XSREM request) locally, whilst the remote name is

that which will be sent to the remote XROUT in order to fetch the

magic number, and so should be the name used by the remote task when

naming its port. A user may normally set the local name the same as

the remote name, but cannot, where this would cause a name conflict.

4,4,2.10. Get Magic Number (XSGMG)

This is a privileged service, which is used between XROUTs in order to

implement the XSREM service described above. It returns the magic

number for a particular name, and implies that the remote XROUT should

inform the calling XROUT when the port is closed (using the XSCMG

service described below). Each XROUT remembers which remote XROUTs

have got each port’s magic number using a bit map of 256 bits which 1is

part of each name record.

Parameters:

1 - Name (string) Result:
1 - Magic Number (integer)

h,4,2.11, Clear Magic Number (XSCMG)

This is another privileged service used for XROUT to XROUT

communication and implies that the specified magic number is no longer

valid. It is sent by an XROUT when it becomes aware that a local port

has been closed to all XROUTs who have obtained that port’s magic

number by using the XSGMG service described above.

Parameters:

1 - Magic number (integer)

ND-60.134,02

48 SIIT COMMUNICATION GUIDE

XMSG - XROUT Service Specifications

4,4,2,12. Define Remote Name (XSDRN)

XSDRN is wused for defining the names of machines (specified as

parameter 2 in letters - XSLET service). XSDRN is normally accessed

via the Define-Remote-Name command of the XMSG-COMMAND background

program, XSDRN is privileged.

Two parameters are specified:

1 - Machine name (type integer)

2 - Machine no

The specified name is put into the name table (must be unique) and all
letters that are addressed to that machine (parameter 2 in XSLET) will

be forwarded to the specified machine. Note that a machine can have

many names, so names should be used to identify functional machines

rather than physical machines whenever possible (e.g. SIBAS-BACKEND or

MAIL-HANDLER rather than ND-100-377.)

If the second parameter is not specified, the name is cleared.

4.4.2.13. Define Machine Routing (XSDMC)

Whereas Define Remote Name (XSDRN) defines a mapping of a machine name

to an XMSG machine number, Define Machine Routing (XSDMC) specifies
how to get to that machine. This is not necessary if the machine is

directly connected, since XROUT will find out when the 1link to that
machine starts up, but is necessary (at present) for both the local
machine and machines connected via neighbours. The XSDCL service

(which is privileged) takes two parameters:

1 - Machine Number

2 - To be routed via this machine (or 0)

It leads to the routing tables being updated such that the specified

machine 1is marked as being available via the machine defined in

parameter 2. If the second parameter is zero, the cluster is marked as

‘not available,”’

If no parameter 2 is specified, the machine number is defined as the

number of the local machine. This operation must be done before any

access to multimachine XMSG can be made.

ND-60.134.02

SIIT COMMUNICATION GUIDE 49

XMSG - XROUT Service Specifications

4.4.2.14, Get Routing Information for a Machine (XSGMC)

YMSG-COMMAND allows one to list the routing information held by any

accessible XROUT in an XMSG network. This is done by sending X3GMC

messages with one integer parameter, the object machine number. XROUT

replies with a message containing one double word parameter which

should be interpreted as 4 bytes.

The most significant byte is the machine number as requested by the

user, or the next higher known machine number if that machine number

is unknown. If there are no machine numbers greater than or equal to

the input parameter, the byte is zero.

The next byte contains zero.

The next two bytes contains the connection type and address:

Byte 2 - Connection Type Byte 3 contains:

0 - Unavailable

1 - Neighbour Link Index

2 - Via Machine number

4 - Loecal

ND-60.134.02

50 SIII COMMUNICATION GUIDE

XMSG - XROUT Service 3pr -~ ifications

4,4,2,15. Starting up / Stopping a Multi-Machine Link - XSLKI

This privileged service is wused by the START-LINK and STOP-LINK

commands in XMSG-COMMAND,., It is used when one wants to use an HDLC

link (which must have been declared in generation of SINTRAN) as a

multi-machine link. The XSLKI request requires three parameters:

1 - HDLC link logical unit number

2 - Timeout value in Basic Time Units (BTU).

3 - Number of frames to allocate (window+1)

XROUT will reserve the HDLC link (both input and output data fields),

check that there are enough free frame buffers and then initialise the

interface. The link will then go into the ‘calling’ state, which means
that it tries to make contact with the adjacent machine, by sending a

predefined maximum number of SABM frames. (SABM= Set Asynchronous

Balance Mode.)

If the number of frames to allocate (parameter 3) is zero, a ‘close’

link operation is performed instead; the link is disabled, released,

and the routing information updated.

4,4,2.16., Trace Initialise - XSTIN

The service is used by the OPEN-TRACE command in XMSG-COMMAND to

initialise the trace system (see description under OPEN-TRACE). It

takes as a parameter, the file name of the trace file. XROUT then
opens and initialises the file, resets the trace infomation and starts
up the trace dump foreground program (XTRACE). Systems 0 and 1 (Clock
and Trace Management) are automatically enabled.

4.4.2.17. Trace Close - XSTCL

Tis is the opposite to XSTIN (above) and leads to the last block(s)
being written, the file closed and XTRACE aborted.

4.4,2.18. Define Trace Conditions - XSDTC

This takes as a parameter, an integer. If it is positive, the system

with that number 1is enabled for tracing, if it is negative then the

system is disabled.

ND-60.134.02

SIII COMMUNICATION GUIDE 51

X¥MSG - XROUT Service Specifications

4,4,3, NPL Routines for Message Formatting

The file XMSG-LIBRARY:BRF contains a set of NPL routines which can be

useful for formatting messages to XROUT. They all act on a local user

puffer which is always pointed at by the X-register. The B-register is

always preserved over a call from any of these NPL routines. They all

give a skip return if OK, non-skip if buffer full.

4.4,3.1, XBINI - Initialise Buffer

This initialises the specified buffer:

X=Buffer Address

A=Buffer length in bytes (U4 bytes used by header)

4.4,3,2, XBAST XBARC - Append String Append Record

Appends the specified string (terminated by quote character) or record

(of specified length) to the current message:

X=Buffer Address

A=String address (terminated by ~ if XBAST)

D=Number of bytes (for XBARC)

T=Parameter number (complemented by XBAST)

4,4,3.3. XBAIN, XBADB - Append Integer

These routines append an integer as next parameter in the message.

XBAIN always appends a 16-bit value, whereas XBADB takes as input a

32-bit value, which it puts into the message as 16-bits if (and only

if) this is valid:

X=Buffer Address

A/AD=Value (XBAIN/XBADB)

T=Parameter number

h,4,3.4, XBLOC - Locate Parameter

Since the parameters can be put into a message in a random order, it

is useful to have a routine that can find a specified parameter:

X=Buffer Address

T=Parameter Number (always positive)

Result: A=Start of parameter block

ND-60.134.02

52 ’ SIIT COMMUNICATION GUIDE

XMSG - XROUT Service Specifications

b,5. System Function Specifications

All system functions are privileged.

These system functions are mainly used by XMSG command program

(background) to enable the user to find out what the message system is

doing. They should not normally be called by users but are included

here for reasons of completeness,

4.5.1. XFPRV - Make Calling Task Privileged

Most system functions, as well as some user functions (e.g. Define

User Buffer - XFDUB) can only be executed by privileged tasks. In

order to become privileged (for XMSG), a task must successfully

execute the XFPRV function,

In order to do this the caller must be either a driver, direct task,

foreground program on ring 2,3 or background program logged in as user

system. Besides this, the program must also specify the current XMSG

password (XPASW) which is defined in the XMSG-POFTABS file in the A-

register:

T:=XFPRV; XPASW; ¥MON 2XMSG

When the task wants to stop being privileged, the same call should be

used, but with the A-register equal to zero.

The reason for specifying the XMSG password 1is to ensure that

privileged programs that base themselves on accessing XMSG table

structures have been updated to the current XMSG table definitions (in

XMSG-POFTABS) .

4,5.2, XFSIN - Initialise for System Functions

This returns the basefield address of the message system in POF, which

is needed in order to be able to access XMSG tables using the system

functions.

XFSIN; *MON 2XMSG Ts=

= :BASEADD A

4.5.3. XFABR - Absolute Read from POF

This function allows a program to read a block of data from POF into

his user area. This function can be executed even when the message

system is locked (see XFMLK, XFMUL),.

T:=XFABR; ULEN=:D; A:=UADD; X:=ABADD; *MON 2XMSG

ND-60.134.02

SIII COMMUNICATION GUIDE 53

XMSG -~ System Function Specifications

4,5,4, XFABW - Absolute Write to POF

This function is simited when the message system is locked.

T:=XFABW; ULEN=:D; A:=UADD; X:=ABADted when the message system is

locked.

T:=XFABW; ULEN=:D; A:=UADD; X:=ABADD; *MON 2XMSG

4,5,5., XFMLK - Message System Lock

This function 1locks the message system, so that all requests will be

refused until an unlock is done. This allows consistent modification

of tables to be done using XFABR and XFABW.

T:=XFMLK; *MON 2XMSG

4,5.6. XFMUL - Message System UnLock

Inverse function to XFMLK:

T:=XFMUL; *MON 2XMSG

4,5.7. XFM2P - Convert Magic Number to Port and Machine Number

T:=XFM2P; AD:=MAGNO; ¥MON 2XMSG
A=:PORT; A:=D= :MCNO

4,5,8, XFP2M -~ Convert Port Number to Magic Number

T:=XFP2M; A:=PORT; *MON 2XMSG
AD= :MAGNO

ND-60.134.02

54 SIII COMMUNICATION GUIDE
XMSG - System Function Specifications

4.,5.9, XFCRD - Create Driver

This function 1is used to create a driver with a given context (see

section 4.7 for details on calling XMSG from drivers):

XFCRD (BONE XFPON); UADD=:D; A:=ILEV; *MON 2XMSG Te=

A= :TASKADD;

The ILEV parameter contains the interrupt level that the driver should

run on. XFPON should be set if paging should be on when the driver is

started (PIT3 assumed), and UADD points to an 8 word buffer.

The buffer contains the register block that the driver will be

started with, in the order required for the Load Register Block (LRB)

hardware instruction (ef. NORD-100 Reference Manual - ND-06,014,01).

XFCRD allocates an XT-block to the driver and returns its address in

the A-register.

4.5.10. XFSTD - Start Driver

Starts an already created driver:

T:=XFSTD; TASKADD; ¥MON 2XMSG

XFSTD overwrites the driver’s L-register with his XT-block address

before starting the driver.

In this way a driver started will have the L-register containing its

XT-block address. The driver must be set back again before calling

XMSG - see section 4.7 on calling XMSG from drivers.

XFSTD does not set the appropriate bit in the PIE, or load or fix any

segments.

This should be done using FIXC and ENTSG - see SINTRAN III Reference

Manual - ND-60.128.01,

ND-60.134.02

SIII COMMUNICATION GUIDE 55

XMSG - The XMSG-COMMAND Background Program

4.6, The XMSG-COMMAND Background Program

XMSG-COMMAND is a background program that is used to control and

supervise the XMSG system.

It can also be used for XMSG testing and benchmarking.

XMSG-COMMAND accepts commands in the wusual SINTRAN way, with

abbreviations being allowed, and prompts for parameters that are not

specified on the command line,

A MODE command allows a file of commands to be executed instead of

having to type them in,

Any command line preceded with the @ sign will be handed over to the

SINTRAN IIT background command processor for execution.

Many of the commands in the background program use privileged XMSG

functions.

XMSG-COMMAND will automatically use the XFPRV function to make itself

privileged when some of these functions are invoked, but will be

refused if the user is not logged in as ‘SYSTEM.’

ND-60.134.02

56 SIII COMMUNICATION GUIDE

XMSG - The XMSG-COMMAND Background Program

4,6.1. Output Formatting

Since the command program is mainly a formatting program for XMSG

tables and trace elements, a generalised formatting facility has been

implemented (QFORM). This is similar to FORTRAN formatted output, but

extended to be able to handle record, table and 1list structures. It
also allows arithmetic operations to be executed by the format strings

and for formats to call each other - like subroutines.

This is not the place for a complete description of QFORM, but a brief

overview of the commands in XMSG-COMMAND that are associated with

these formats follows:

4,6,1.1. LIST-FORMATS

This 1lists the formats matching the specified parameter on the

terminal.

4,6,1.2. FETCH-FORMAT

Fetches the specified format into the format edit buffer.

4.6.1.3. EDIT-FORMAT

Allows editing of the format currently in the edit buffer. All normal

S-III edit control characters are allowed. Note that the format is NOT

implicitly saved after editing, so this must be done explicitly using

the following command:

4,6.1.4, SAVE-FORMAT

Saves the current edit buffer contents as a format with the specified

name. If no name is specified, the last name specified will be used,

4,6.1.5. DUMP-FORMATS

Allows all formats matching the specified parameter to be dumped onto

the specified file. The file written is such that it can be executed

using the MODE command (see below) and to have all the formats

reloaded. This makes it easy for users to build up their own format

library.

ND-60.134.02

SIII COMMUNICATION GUIDE 57

XMSG - The XMSG-COMMAND Background Program

4.6.2. Commands that List XMSG Tables:

The following commands list XMSG tables. They all use the privilegea

funetion XFABR in order to read the tables from the Paging Off area.

4,6.2.1. List-Tasks

This command gives a list of tasks using the local XMSG system.

It prompts for a ‘Task Address?’. If an XT-block address is specified,

only that task is listed. If O is specified, all tasks are listed. If

nothing is specified, the command repeats what was done last time.

Information given for each task is:

ADDRESS - Address of XT-block (like RT-block)

RT/DR - RT name if RT-program, else ¥DRIVER¥

PROCESS - RT address or interrupt level and paging status

I0W - Y if task is in I/0 wait.

GWT - Y if task is in a global wait on all ports

PRV - Y if task is privileged

MEM USED - Number of bytes currently owned by this task

LIMIT - Max number of bytes that can be owned by this task

PORT HD - Port number of last port opened (start of chain)

CURMES - Address of current task message

4,6,2.2., List-Ports

This command can 1list either one port, or all ports, or all ports

owned by a task. The first prompt asks whether a task port chain is to

be followed, and if so, the second parameter asks for the task

address. If not, a port number can be given, or all ports requested.

The information listed for each port is:

NO - The port number (index in port table)

ADDRESS - Address of port descriptor in physical memory

OWNER TASK - Task address of owner

QHEAD -~ Address of first message in input queue

QLEN ~ Number of messages in input queue

CHAIN - Port number of next port belonging to same task

WAK ~ Task will be woken if a message arrives on this port

PRM - 1 if port was opened with permanent option

I0wW - 1 if the task is in I/0 wait on this port

CURMES -~ Address of current port message

ND-60.134.02

58 SIIT COMMUMICATION GUIDE

XMSG - The XMSG-COMMAND Background Program

4,6.,2,3. List-Messages

List information from the message descriptors. As for ports, list

either a single message, or all messages, or all messages on the input

queue to a port, depending on the reply to the "Record Address?

prompt.

The information listed for each message is:

ADDRESS ~ Address of message descriptor in physical memory

OWNER - Task address of owner and name if RT-program

FROM-PORT - Machine number and port index of last sender

LENGTH - Current used message length in bytes

BUFFER -~ Physical address of start of buffer area

SIZE - Buffer size in bytes

R - 1 - Implies message is being returned.

S - 1 -~ Message is a secure message

C - 1 - Message is chained to a queue

4.6.2.4, List-Names

This command asks an XROUT to dump out its name table, listing the
machine and port numbers for each name in XROUT s tables.

In a multi-machine configuration, the command allows access to any

XROUT, so the first prompt asks for the machine number where the XROUT
program is to be found. (Default is local.)

4,6,2.5. List-Routing-Info

As with List-Names, this command accesses an XROUT lying in the

machine specified by the reply to the first prompt. The command 1lists

out the information that the target XROUT has about how to access each

machine known to it. The information specified for each machine is

(see section 3.6.3, modifying the routing tables, for details):

MCNO - the machine’s number
CONNECTION ~ Connection type:

UNAVAILABLE

VIA MACHINE - Access is via machine

VIA LINK ~ Access is via (running) link

PIOC NUMBER - Machine is local PIOC

MACHINE/LINK - Specifies the field according to connection type above

ND-60.134.02

SIITI COMMUNICATION GUIDE 59

XMSG - The XMSG-COMMAND Background Program

4,6,2.6, List-Links

This command is used to 1list the current status of all HDLC 1links

being used by XMSG (i.e. those that have been started by the START-

LINK command. The information listed for each link is:

NO - link index in XMSG

ADDRESS - in POF of link block (XL-block)
STATE - of connection to adjacent machine. Values are:

DEAD - crashed (fatal timeout or hardware error)

INIT - being initialised (purely internal)

CALL - trying to make contact with neighbour

CONN - contact made.

RUN - data phase.

MCNO - of neighbour (CONN and RUN states only!)

ANY-AC - last HDLC A/C bytes received at all

-RUN - A/C bytes from last RR or INFO frame

LUN - SINTRAN Logical Unit No (Octal)

HDLCST - Transmitter Driver status, if DEAD (octal)

HDLCHW - HDLC Hardware status

TIMEOUT - Timeout value in BTU’s

4,6.2,7. List-Frames

This command always list all the frames in the Multi-machine XMSG

frame pool. Information listed for each frame is:

NO - Frame index in pool

ADDRESS - in POF of frame’s XD-block

OWNER - address of link that owns it

HANDLER - address of link currently handling it

HAC - HDLC A/C bytes (HEX)

NETAD - Destination/Source mc numbers (HEX)

TRTYP - Transport type

CNT1 - Number of bytes in the first data part

BUFFER1 - Address of the first data part

CNT2 - Number of bytes in the second data part

BUFFER?2 - Address of the second data part

4,6,2.8. List-Command-Prog-Variables

Lists the current values of variables that are internal to the command

-program - e.g. buffer addresses, lengths, sizes, as well as the

values for the current task, port and message.

ND-60.134.02

60 SIITI COMMUNICATION GUIDE

XMSG - The XMSG-COMMAND Background Program

4,6.2.9. Dump-Memory

Is an unstructured dump of physical memory in bank 0. It takes as

parameters the first and last address of the area to be dumped (in

octal).

4.6.3. Modifying the Routing Tables and Controlling Links

In a multi-machine XMSG configuration, we need to be able to build
tables that specify for each local XMSG where it should send messages

destined for a particular machine. This information 1lies in the

routing tables, See section 4.2, for a definition of the terms

‘machine” and “link’.

Each machine contains an XROUT program, which in turn contains three
routing tables:

The Machine Location Table (MLT) is almost the same for every machine.

It contains a word for each machine (indexed by machine number) which

indicates either the machine via which this machine can be accessed or

the link index if directly connected. The ‘via® operation can be

repeated.

When a link 1is established, the machines at each end of the link

exchange identifiers and update their routing tables accordingly.

Otherwise all modification of routing tables must be done manually

using the commands described below. (Note that the commands allow one

to execute the command in any machine to which one has access - “XROUT

machine? * prompt.)

4.6.3.1. Define-Local-Machine

This command must be used before multi-machine XMSG is available and

cannot be repeated. It simply informs XMSG of the local XMSG machine

no.

4,6.3.2., Define-Machine-Route

Updates the machine location table in the specified machine (parameter
1 can be accessed via parameter 2).

4,6,3.3. Start-Link/Stop Link

These commands provide a direct interface to the XROUT Start Link
Service: see section U4.4 for further details.

ND-60.134,02

SIII COMMUNICATION GUIDE 61

XMSG - The XMSG-COMMAND Background Program

h,6,4, Commands for Debugging Systems that use XMSG

When debugging complex systems made up of many communicating programs,

one may want to take dumps of the XMSG tables every now and then on a

file, and then look at the file afterwards to see how the situation

evolved. XMSG provides two ways of doing this:

1 - Snapshots - Implies writing a copy of XMSG tables to disk, either

at the beginning of a file, or appended to the current contents,

so that snapshots can follow each other. Another command allows

the snapshots to be fetched, and then one can use all the usual

commands on the snapshot instead of on the actual situation.

Since all RT-names are also included as part of the snapshot,

this allows the analysis to be done on another machine. If you

have problems using XMSG, it 1is strongly recommended that

snapshots are taken in a file which can be sent to Norsk Data on

a diskette.

2 - Tracing. A trace facility has been incorporated into XMSG.

Routines in XMSG place trace elements (of variable length) in

buffers, which when full, are written out on to a contiguous

(wrap-around) disk file by an RT-program called XTRACE. This file

can then be inspected using the trace manipulation routines

described below. Tracing can only be done on ND-100"s (not NORD-

10°s.)

4.6.4,1. SAVE-POF and FETCH-POF Commands

SAVE-POF takes a snap-shot of the current POF tables and writes them

out on to a file, together with all RT-program names. (The latter

takes a little time - so do not panic!) The snap-shot can either be

put at the beginning of the output file, or following previous snap-

shots. Default file type is :XPOF.

FETCH-POF reads a snap-shot as specified by the user from a file

previously written using the SAVE-POF command. This copy of POF is

then locked in XMSG-COMMAND ‘s 1logical space, either wuntil another

snap-shot is fetched, or until the UNLOCK-POF command is invoked. Note

that the DUMP-MEMORY command does not access the snap-shot, but tries

to access the real physical memory.

4,6.4,2. TRACE Generation Commands

The following commands control the way in which the trace 1is made.

They should therefore be used whilst the test system is being run.

Note that tracing does take a certain amount of time (partly writing

the information to disk) - preliminary estimates - about 50

microsecs/word traced, on a slow ND-100.

In order to include the trace facilities, XMSG must be generated with

the trace option 8TRAC. This leads to the required calls being

assembled in, as well as inclusion of the handling routines and buffer

space. The RT-program XTRACE is always included.

ND-60.134,02

62 SIIT COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background Program

The format of the trace file is simple. The file comprises blocks of
512 words, Block O is the header block and contains the following
information:

Word (oct) Contains

0:0

1 123456 octal

2-3 : MTIME (basic clock time) when was file opened (OPEN-TRACE)
h-12 : CLOCK (date, time) when file was opened (OPEN-TRACE)

13 : XMSG password to check version information
400-777 : Copy of XMSG basefield

The remaining blocks contain the trace information itself. Each block
has a two word header containing the logical block number (incremented
by 1 for each block written - skipping 0 - indicates that the block
has not yet been used) and the number of trace calls missed since the
last block was written (due to all buffers being full). The remainder
of the block comprises trace elements following immediately after each
other.

Each trace element has a header - which is of interest to the trace
system, and a body, which of interest to the user of the trace system.
The header comprises one word: the left hand byte is the system number
(see ENABLE-TRACE command) and the right hand byte contains the number
of words in the body.

A header that is zero terminates the block.

The following system numbers have been allocated:

System (dec.)
0 : Clock. Only output when necessary. Body (2 words) contains

ATIME (in basic time units.)
Trace management. First word of body contains the function
1: open

2: close

3: enable/disable (next word contains the system number -
negative means disable)

8 : XMSG Calls. The 5-word body contains the T-,A- and D-regs,
the XT-block address and the X-reg from the caller.

9 ¢ XMSG return to user. Body is as for system 8, but with
result registers instead.

10 : XMSG kernel context switch - traces queue and element
address.

XMSG Link Layer frame received.

XMSG Link layer - bad frame received and ignored.
XMSG Link Layer send frame. Trace body: AC bytes, length,

11

12

13
ete.

14 : Network Layer - Complete datagram queued to receiver queue.
15 : Network Layer - Datagram fragment received.

16 : Network layer - Any frame received (inc. route thru’)

ND-60.134.,02

SIIT COMMUNICATION GUIDE 63

XMSG - The XMSG-COMMAND Background Program

4,6,4.2.1. OPEN-TRACE

Open the trace file and initialise the trace system. The header block

is written and the first word in all other blocks is set to zero to

indicate unused. Systems 0 and 1 are automatically enabled (elock and

trace management).

Note that since XROUT actually initialises the trace system it 1is

possible to start a trace in any machine that one may access. XMSG-

COMMAND only sends a start-trace message to the specified XROUT and

waits for the reply.

N.B. The trace file should lie on user RT, since some Sintrans have a

bug preventing direct mode access to files lying under other users, It

must also have been previously created as a contiguous file (ef.

SINTRAN REFERENCE MANUAL ND 60.128.02).

4.6.4.,2.2., ENABLE-TRACE

Specifies which systems are to be traced. Only one system can be

enabled by each call of the ENABLE-TRACE command, but many systems can

of course be enabled at the same time.

4,6.4.2.3. DISABLE-TRACE

Has the opposite effect to ENABLE-TRACE.

4.6.4,2,4, CLOSE~-TRACE

Leads to all traces being disabled, the remaining blocks written to

the trace file, and the trace file is closed.

4.,6.4.3. Commands for Dumping a Trace File

The following commands allow ‘post-mortem” analysis of a trace file

created using the above commands. Together with the SAVE and FETCH-POF

commands they allow trace analysis to be performed on a machine, other

than the one on which the trace was made. (Send trace files to

Software Service department Norsk Data, if problems are encountered.

4.6,4,3.1. DUMP-TRACE-OPEN/DUMP-TRACE-CLOSE

Opens (or closes) the trace file for dumping. This is done by the

command program itself, so (RT) should be specified if necessary. The

command opens the file and checks its format.

ND-60.134.02

6U SIII COMMUNICATION GUIDE

XMSG - The XMSG-COMMAND Background Program

4.6.4.3,2. NEXT-TRACE and PREVIOUS-TRACE

These take as parameters the number of trace elements to be dumped and
lead to the trace elements being read and formatted. If the parameter
zero 1is specified the command will skip either to the first element
(PREVIOUS 0) or last element (NEXT 0) in the current trace. The trace
elements are (at present) always output on the terminal. The time that
is specified is the time in seconds and hundredths of a second between
the trace file being opened and the generation of the trace element.
Resolution is in Basic Time Units (20 msecs).

Each element is formatted by calling the QFORM format whose name is
FXZEnnn where nnn is the decimal representation of the system number
for the system that caused the trace element to be generated. For
example, XMSG-call trace elements are formatted by FXZE00S8. Try the
command ‘LIST-FORMAT FXZ and see!

ND-60.134.02

SIII COMMUNICATION GUIDE 65

XMSG - The XMSG-COMMAND Background Program

4.6.5. Commands that act like normal XMSG Function Calls

The following commands provide an interactive way of executing XMSGC

calls without having to write a program to do it. XMSG-COMMAND just

collects the parameters and executes the appropriate monitor call(s).

An asterisk (*) indicates that the command also asks for a count of

how many times it should repeat the operation. Default is once, and if

any other value is specified, XMSG-COMMAND will take the start and

stop (real) times and calculate the time taken per loop in order to

facilitate benchmarking.

XMSG Function XMSG-COMMAND command

XFDCT Disconnect

XFOPN Open-port

XFCLS Close-port

XFGET Get-message-space

XFREL Release-message-space

XFREA ¥ Read-direct

XFWRI #¥ Write-direct

XFSND Send-message

XFSND (XFROU) Route-message

XFRCV Receive-message

XFMST Message-status

XFSCM Set-current-message

XFGST Wait-general

XFDIB Define-indirect-buffer

XFWIB *# Write-indirect

XFRIB ¥ Read-indirect

XFDUM ¥ Dummy-loop

XFRCV & XFSND * Loop-receive-reply (echo)

XFPRV (XPASW) Set-privileged
XFPRV (0) Clear-privileged
XFCRD Create-driver

XFSTD Start-driver

XFMLK Lock-message-system

XFMUL Unlock-message-system

XFSIN Initialise-service-system (automatically)

ND-60.134.02

66 SIII COMMUNICATION GUIDE

XMSG - The XMSG-COMMAND Background = ‘sram

XMSG-COMMAND allows default values to be specified for many of these

parameters,

A list of the current defaults held by XMSG-COMMAND can be obtained

using the ‘list-command-prog-variables’ command described in section

3.6.2.8. Some commands are more complex, providing a sequence of XMSG
calls:

Ask-Route expects the user to have set up data for a message in the

output buffer using the commands ‘clear-buffer’, “append-integer’ and
‘append-string’ described in sections 3.6.6.3 - 3.6.6.6.

"Ask-route” then does the ‘buffer-ready” action, writes the buffer
into a message (which must previously have been got), opens a port if
none 1s open and sends the message to the XROUT task in the specified

machine,

It then waits for the reply, reads it into the input buffer and

decodes it, (see ’‘decode-buffer’ section 3.6.6.7).

Remote-Loop is more complex, and expects two other special programs to

be running (echo-slave and echo-master). It is used for more

generalised benchmarking and testing.

ND-60.134.02

SIII COMMUNICATION GUIDE 67

XMSG - The XMSG-COMMAND Background Program

4,6.6. Commands affecting Buffers in XMSG-COMMAND

XMSG-COMMAND has two local buffers - one for input and one for output

which can be used to build up data, which can then be written into a

message and sent using the above commands (see “ask-route’, section

3.6.5, in particular), so that one can interactively build and send

messages to programs that are being tested. The following commands

have been implemented to access these buffers:

4,6.6.1. List-buffer

Lists the addresses, sizes and current lengths of the two buffers, as

well as their contents as ASCII strings. (See also “decode-buffer’.)

4,6.6.2., Fill-output-buffer

This is the simplest command for putting data in the output buffer -

either a sequence generate by XMSG-COMMAND or typed in as response to

a prompt.

The SINTRAN command LOOK-AT MEMORY can also be used to put information

directly into the buffer, but the length should be preset using the

fill-output-buffer command, as this length is used as default when

writing the data into the XMSG message (write-direct command) .

4.6,6.3. Clear-buffer

This command presets the output buffer for repeated use of the next

three commands, which allow the building up of a message conforming to

the XMSG standard, expected by XROUT (see beginning of section 3.4 on

XROUT). Obviously, if this format is not being wused, then these

commands (in fact most of the remainder of this section) will not be

relevant,

4.6.6.4, Append-integer

Appends an integer parameter to the current output buffer in the

standard format. Note that this only has an effect in the local XMSG-

COMMAND output buffer.

4.,6,6.5. Append-string

As above, but appends a parameter of type string.

ND-60.134.02

68 SITII COMMUNICATION GUIDE

XMSG - The XMSG~-COMMAND Background Program

4,6.6.6. Buffer-ready

When all the parameters have been appended, the serial number and

service number need to be put in (first two bytes in message). This is

done by the Buffer-ready command, which does not copy the local buffer

into the message.

A typical example of the building up of a buffer for sending to XROUT

(or any other task understanding the message standard) would be:

¥clear-buffer

*append-string

Parameter no? 1
String? KLODDY

¥buffer-ready

Service no? 3

Reference no? 1

Note that this just prepares the buffer locally. It must then be

written into a message and sent, using the commands ‘write-direct’ and
‘send-message’, or the combined command “ask-route’ if the message is
to be sent to a routing program,

4,6.6.7. Decode-buffer

Having put things into these buffers, either using the above commands,

or by reading messages that have been received, they can be dumped in

an intelligible format (if they are in the standard format) by using

the ’‘decode-buffer’ command. This can decode either the output or

input buffer.

4,6.6.8., Generate-, Check-Pattern

One can also use the remainder of XMSG-COMMAND ‘s logical memory space

(above 100000 octal) to generate and check patterns which have been

written to, and read from, other areas using the read/write-

direct/indirect commands. Generate and check for linear sequences of

bytes of lengths up to 32 k, with user definable start value and

increment.

ND-60.134.02

SIIT COMMUNICATION GUIDE 69
XMSG - The XMSG-COMMAND Background Program

4,6,7. Miscellaneous Commands

4,6.7.1. Mode

This command asks for the name of a file from which it will read all

further input until it meets an end of file. Mode commands can be

nested to a maximum depth of 8.

The mode file allows the system configuration for a system to be kept

as a source file, (’define-machine-location’ and ‘define-cluster-
routing-info” commands) which is run when the system is started up.

4,6.7.2. Set-port

Allows the default port number to be set.

4.6.7.3. Get-error-message

Takes as input an XMSG error code (<0) or crash code (>0) and returns

an explanatory text (uses the XMERR routine in XMSG-LIBRARY).

4.,6,7.4, Debugprint-on/-off

These commands control the debugprint flag. When this is on, XMSG-

COMMAND writes out the register contents before and after every XMSG

monitor call it makes.

This can be useful for learning how XMSG works. For example by

switching debug print on and using the ‘list-names’ command, one finds

out how one communicates with XROUT,

ND-60.134.02

70 SIII COMMUNICATION GUIDE
XMSG - The XMSG-COMMAND Background Program

4,6.7.5. Monitorcall-on/-off

These commands control the monitorcall flag. When this is off, XMSG-

COMMAND skips all XMSG monitor calls. (For debugging).

4.6.7.6. Help

List commands matching the parameter specified.

4.6.7.7. Disconnect

Executes the disconnect function (XFDCT) followed by an exit (MON 0).

4,6,7.8. Exit

Does an exit (MON 0) without disconnecting.

ND-60.134.02

SIIT COMMUNICATION GUIDE 71

XMSG - Calls from Drivers and Error Handling

4.,7. Calls from Drivers/Direct Task

Since there is no RT-description for drivers and direct tasks, the

message system uses an XT-block (which is a data area it reserves for

each task) for saving the current context. When a driver/direct task

calls the message system, the L-register must contain the address of

this block. If none has so far been allocated, then L must be zero,

leading to a new block being automatically allocated, and its address

returned in L.

When XMSG restarts a driver after executing an XMSG call, it starts it

with a skip return. This allows the driver to have a jump to a wait

routine directly following the XMSG call. (Since XMSG runs on

interrupt level 5, it will not be able to execute the function before

the driver/direct task has done a WAIT.) If the driver is restarted by

XMSG, it will continue at the skip address (with the corresponding

context), but if triggered by an interrupt, it will continue after the

WAIT, or call to WIxx (but must not call XMSG until a return has been

made from the previous function call). No restart is done by IMSG

after a call to the disconnect function (XFDCT).

If the XMSG ‘create-driver’ function (XFCRD) is used, it allocates an

XT-block before starting the driver and hands this over to the driver

in its L-register.

Note that this makes it extremely easy to write drivers handling

identical devices with each driver having its own full context, since

it is only necessary to have a word in the datafield where the XT-

block address is saved. Each driver can then wait for messages as a

separate task owning its own port(s).

The XMSG monitor call is special in that it can be called directly

from a driver or direct task in almost the same way as from an RT-

program (see example in appendix C).

4.8. Error Handling

XMSG spends a lot of its time checking itself, since inconsistencies

in the POF tables could easily 1lead to the destruction of the

operating system. If one of these checks fails (which could be due to

somebody else overwriting XMSG tables or XMSG itself going wrong!),

IMSG will close itself down, return a bad status (XECRA) to the user,

and print an error message on the SINTRAN error device (error number

46 or U47). If this occurs, a dump of the XMSG basefield should be

taken to find out what has happened.

In the normal course of events, the user will probably have made a

mistake, and so will get an error status returned in his T-register.

The file XMSG-VALUES provides a symbolic name and description for each

of these error messages, which are also listed at the end of this

manual,

The routine XMERR in XMSG-LIBRARY converts an XMSG error code in the

A-register to a pointer to an explanatory text returned in the A-

register. The text is ASCII terminated by a quote character(”).

ND-60.134.02

72 SIIT COMMUNICATION GUIDE

XMSG Loading Instructions

4,9, Loading Instructions

This section describes how to load XMSG into a SINTRAN III VS(E)

system:

If a new system has just been installed start at section 4,9,1

If a HENT/LOAD operation has been done, start at section 14.9,3

If a normal system restart (Master Clear/Load) has been done, start
at section 4.9.4

4.9,1., Assumptions prior to loading

1) That user UTILITY exists and has enough space (300 pages, say).

2) That (UTILITY)SYMBOL-1-LIST:SYMB and SYMBOL-2-LIST contain the

(MAC readable) symbol lists for parts 1 and 2 of SINTRAN, These

are delivered together with SINTRAN.

3) That the SINTRAN system you have ordered has XMSG resident

routines included (library mark 8XMSG). If not, order a new
SINTRAN!

4) That the following subsystems have been installed: MAC, FMAC,

NPL, NRL (with those names!) If other names are used, the
XMSG-tMODE files should be edited accordingly.

4.9.2, Generating XMSG

a) Log in as UTILITY,

b) Copy all XMSG files to UTILITY using the BACKUP-SYSTEM.

c) Define the XMSG Configuration:

If a non-standard XMSG configuration is required, XMSG-SYS-DEF must be

edited. See Appendix D for a list of symbols defined in this file,

together with their meaning and default value., Some care must be taken

here, in particular if the system is to be run on NORD-10, in which

case the 8X100 library mark must be reset and the buffer space moved

from physical memory to POF (X5SBS must be zero, and X5BUF equal to

the number of words of buffer space required). This will then imply

that S5XFPP (first page to use in POF) must be decremented accordingly.

d) Generate XMSG:

@MODE XMSG-GENERATE:MODE LINE-PRINTER

This does not affect the running system, but results in the creation

of the files XMSG-POF:BPUN (POF code), XMSG-XROUT:BPUN (Routing

program) and XMSG-SEGMENT:BPUN and their listings.

ND-60.134,02

SIII COMMUNICATION GUIDE 73

XMSG Loading Instructions

4.9.3. Loading XMSG

This needs to be done after all)HENT and)LOAD operations:

a) Log in as SYSTEM.

b) Load XMSG

@MODE (UTILITY)XMSG-LOAD:MODE,,

1) loads XMSG-POF:BPUN onto segment 33 (non-demand).

2) loads XMSG-SEGMENT:BPUN onto segment 35 (will be FIXC’d in

physical memory to provide buffer space for messages, frames and

indirect transfer).

3) loads XMSG-XROUT:BPUN onto segment 34,

4) creates the foreground programs XROUT and XTRACE.

5) patches XMSGU+4 in resident to -1 to indicate that XMSG 1is

loaded.

¢) Restart the System:

@RESTART-SYSTEM

Leads to the POF space needed by XMSG being reserved as swapping

pages.

If the system does not restart now, but instead stops at ERRFATAL the

chances are that there was not enough space in the Paging Off area.

One can then either do a)HENT or use MACM to patch back location 165

in image to O (clears XMSG) and then restart by typing 22! Contact

support for further help in finding space in POF,

ND-60.134.02

74 SIII COMMUNICATION GUIDE

XMSG Loading Instructions

4.9.4., Starting XMSG

After a normal MASTER CLEAR, LOAD sequence (or RESTART-SYSTEM) the
START-XMSG command in the SINTRAN service program should be executed:

@SINTR

¥START-XMSG

OK: XMSG STARTING UP

*EX
@

which leads to the XMSG-POF and buffer area segments being fixed

(FIXC) into physical memory, the monitor call being enabled, and XROUT
started, This operation should be included in the normal start up

sequence and executed before starting NORDNET or SPOOLING, since these
can “steal’ the POF space reserved for XMSG when they fix their
segments,

Since XROUT now has to find space in which to fix segment 35, it may

take a short time between the OK: ... message being printed (usually

<?2secs) and XMSG being fully active. This may imply that it is

worthwhile putting a short HOLD in startup Mode files if the next

operation requires XMSG to be running.

4.9.5. Stopping XMSG

If at any time XMSG needs to be stopped (it can later be restarted),
the STOP-XMSG command in the SINTRAN service program can be used., This

disables the XMSG monitor call and releases the physical memory space.

ND-60.134.02

SIII COMMUNICATION GUIDE 75

Overview of Files

4.10. Overview of files on ND-10130

XMSG is loaded in 4 parts: 1) POF - loaded into physical memory in the

33-64k part of bank O (known as the Paging Off Area - POF) and is on

segment 33, 2) Buffer area in physical memory on segment 35, 3) XROUT

- an RT program running on (demand) segment 34 and 4) XMSG-COMMAND - a

normal background program.

The loading address for the POF part of XMSG is system dependent, as

are some of the internal configuration parameters for XMSG, so some

preparation needs to be done and values set by editing a file, unless

a default configuration is required. A short description of the files

distributed on the XMSG floppy disk follows,

The only file that needs to be edited is XMSG-SYS-DEF.

4.10.1. System Definition Files

These files describe the tables used by XMSG and define the

configuration. They are all of type :SYMB.

4.10.1.1. XMSG-SYS-DEF - XMSG System Definition file

This file contains a sequence of NPL code that defines the symbols

needed for generating XMSG. The values of these symbols can therefore

be redefined by editing this file, noting that the values are OCTAL.

4,10.1.2. XMSG-VALUES - Function and Error Symbols

This file defines values for symbols used to represent the XMSG

functions and services provided by XROUT, and associated error codes.

Explicit constant values should never be used in programs using XMSG,

but the symbolic names used instead, after including the file (e.g.

MON 2XMSG). This file was previously known as XMSG-FUNC-VALUES

4.10.1.3. XMSG-SYSTABS - XMSG Internal Table Descriptions

NPL file defining the structure of XMSG internal tables shared between

all parts of XMSG. It is not usually relevant to users.

4.10.1.4. XMSG-POFTABS - XMSG Internal Table Descriptions

As XMSG-SYSTABS, but defining tables shared between the POF part and

XMSG-COMMAND.,

ND-60.134.02

76 SIIT COMMUNICATION GUIDE

Overview of Files

4,10.1.5. XMSG-SIN-DATA - SINTRAN Table Descriptions

As XMSG-SYSTABS, but defines the structure of SINTRAN tables accessed

by XMSG. As far as possible the same symbolic names have been used as

in SINTRAN,

4.10.2. ¥XMSG-XROUT:SYMB - The Routing Program

4,10.3. XMSG-POFCODE:SYMB - The POF Kernel Code

4,10.4, XMSG-MULTI-MC - The Multi-Machine XMSG Code

4.,10.,5., XMSG-COMMAND:PROG - The Command Program

Needs to be copied in, and dumped as a reentrant subsystem, if
required. Start and restart addresses are 0 and 1 respectively.

4,10.6. XMSG-LIBRARY:BRF - Library Routines

This file contains the BRF form of the routines which can be wused to

build up a message to XROUT, as well as an error routine.

This file was previously called XMSG-MESS-FORMAT:BRF

4,10.7. Mode Files

The following mode files (of type :MODE) are used for generating and
loading XMSG.

4,10.7.1. XMSG-GENERATE :MODE

When XMSG is first obtained, or a new version of SINTRAN is ordered,
the XMSG-GENERATE:MODE file should be run using the MODE command after

editing the XMSG-SYS-DEF file to define the XMSG configuration

required, although the values provided are probably OK for a first

attempt!

XMSG-GENERATE creates the files required by XMSG-LOAD:

4,10.7.2. XMSG-LOAD:MODE

One of these files should be run (depending on which SINTRAN III

version is being used) using the MODE command after 1loading a new

system, or restarting after)HENT or)LOAD, After executing it, the
system should be restarted using the RESTART-SYSTEM command (or

MASTER-CLEAR, LOAD),.

After restarting, the SINTRAN-SERVICE command START-XMSG, starts XMSG.

ND-60.134.02

SIII COMMUNICATION GUIDE 77

XMSG - System Definition Symbols

4,10.8. XMSG Generation Definition Symbols (XMSG-SYS-DEF)

The following is a list of symbols describing the XMSG configuration

together with their meaning and default values. The symbols are

defined (in OCTAL) in the file XMSG-SYS-DEF, The information at the

end of each comment defines the approximate space required in bytes

(decimal) per element and where (POF=Paging Off, PHYSzPhysical Memory
outside bank 0, SEG=XROUT Demand Segment).

Symbol Default Value Meaning of symbol

8X100 Set Library mark set if this generation is only to be run on

ND-100 CPUs.
XMSGM Reset Library mark set to include the multi-machine XMSG code.

8TRAC Reset Library mark set to include trace calls and handling

code,

X5MMX 2000 Maximum message size in bytes.

X5MTS 4000 Maximum number of bytes of message space that can be

owned by a task at one time (see XFGET function - Get

message Sspace,)
X5VBT 240 is a "tuning parameter." It determines the minimum

transfer size in bytes for which it is worthwhile using

the window copying mechanism to transfer data between a

user logical space and physical memory. This can be

different for different machines, but a non-optimal
setting will only lead to a slight loss of speed. If in

doubt (!) leave this to the original default.
X5RTP 400 Number of RT programs in this system. (¥2 POF.)
X5NAM 100 Maximum number of names that can be remembered in XROUT.

(XROUT demand segment)
XSNLW 20 Maximum length of a name in words (SEG).
X5MLT 20 Maximum machine number in network (¥2 POF,)
X5MXH 10 Maximum number of hops a frame can make before it gets

thrown away.

X5LTO 100 Link Layer Receiver timeout in basic time units.

X5IRM 100 Default number of attempts when opening a link.

XS5RPM 5 Maximum number of unsuccessful repeats before closing a

link.

ND-60.134.02

78

X5LNK

X5PIO

X5NBF

X5TSK

X5PRT

X5MES

X5COoM

X5FRM

X5FSZ

X5BUF

X58BS

5XSG3

5XFPP

5XPPS

X5TRB

Q
W
w

I

&=

10

400

20000
35
T1

140

SIII COMMUNICATION GUIDE

XMSG - System Definition Symbols

Maximum number of links (¥64 POF).
Maximum number of PIOCs (¥*? POF).
Default number of XF-blocks/links (see X5FRM).
Number of task descriptor blocks. This is equal to the

maximum number of tasks that can use XMSG

simultaneously. (¥60 POF).
Number of port descriptor blocks. This is equal to the

maximum number of ports that can be opened

simultaneously. (¥14 POF).
Number of message descriptors (¥32 POF).
Number of frames that can be under transmission

simultaneously from local messages (*U8 POF).
Number of receive or forward frame buffers(¥48 POF,
¥X5FSZ PHYS).

Maximum frame size in bytes.

Buffer area in POF in words for NORD-10 only. (¥*2 POF).
Buffer area in physical memory in words (¥2 PHYS).
XMSG segment 3. If SINTRAN III F or later, use 35.

defines the first page that will be used by XMSG in the

POF. (Paging Off Area.)

first page to use in physical memory for message buffers

and frame buffers and indireect transfer buffer.

number of trace buffers if 8TRAC (¥4 POF+¥*1024 PHYS).

The other symbols set in XMSG-SYS-DEF are dependent on the symbols

defined above,

ND-60.134.02

SITIT COMMUNICATION GUIDE 79

HDLC - High Level Data Link Control

5. HIGH LEVEL DATA LINK CONTROL (HDLC) DMA (OPTION)

5.1. Introduction

The HDLC Monitor Call (MON 201) is used to control a High Level Data

Link Control (HDLC) Interface. This is a synchronous modem interface

which canh also be used as an intercomputer link interface. The Monitor

Call MON 201 is currently used by both HDLC DMA Controller (ND-720 or

ND-730) and X.21 (next chapter).

The HDLC DMA option is included in the wuser’s SINTRAN III

configuration when he orders his operating system from Norsk Data A.S.

The HDLC-driver and the user program communicate by means of Driver

Control Blocks (DCB). The first 3 words of the DCB contain control and

status information, while the rest of the block may contain data
frames or additional information. Section 6.4 describes the DCB format

in detail,.)

For the purpose of transferring DCB s between user programs and the

HDLC-driver, the monitor call HDLC is used as explained in the next
section,

5.2. The Monitor Call HDLC (MON 201)

MON HDLC is used for transferring DCB’s back and forth between user

programs and the HDLC-driver.

DCB s are sent from a user program to the HDLC-driver using SEND. When

a DCB is sent to the driver, it is copied from the user program to a

driver buffer-area., Here it 1is inserted in a queue of DCB’s to the

driver. The driver processes the DCB’s one by one and, after

processing, puts them in another queue of DCB’s back to the user

program, The user program can then receive them using RECEIVE., This is

done by copying the DCB from the buffer area to the user program.

Since the receiving of DCB s may be done asynchronously with respect

to the sending, each DCB is given an identifier.

Figure 5-1 shows how the data transfer is organized. The DCB’s are

filled with frame data or emptied of frame data by the driver.

ND-60.134.02

SIII COMMUNICATION GUIDE
HDLC - High Level Data Link Control

buffer area

user program

command

SEND

camand |———————p
DCB HDIC driver

v

command
—_—

comm.
e}

camand link

status

H status

command Y

status coamand

RECEIVE
H status| ¢«——| status

DCB
H status

Figure 5-1 Data Organization

ND-60.134.02

SIII COMMUNICATION GUIDE 81

HDLC - High Level Data Link Control

5.2.1. HDLC Monitor Call Format

5.2.1.1. Calling HDLC in NPL

When calling HDLC in NPL, the A-reg points to a list of parameter

addresses.

LDA (PLIST
MON 201
JMP ERROR
JMP OK
—————

PLIST, PARAM1 ADDRESS

PARAM2 ADDRESS

PARAM3 ADDRESS

PARAMY ADDRESS

PARAMS ADDRESS

Parameters 1 to 5 are described in the next section.

There are two basic return sequences.

- skip return: DCB successfully transferred

A-reg contains DCB identifier.

- Non skip return: Error in DCB transfer

A-reg contains error code. (Negative)

See Appendix E

ND-60.134.02

82 SIITI COMMUNICATION GUIDE

HDLC - High Level Data Link Control

5.2.1.2. Calling HDLC from FORTRAN

ISTAT = HDLC (PARAM1,PARAM2,....,PARAM5)

If ISTAT is positive, the transfer of the DCB was sucessful, and ISTAT
is set to the DCB-identifier, Otherwise, if ISTAT is negative, an
error has occured. For further decription, see the list of error codes
in Appendix E.

In the remaining part of this section, we will simply refer to the

argument list as (PARAM1,PARAM2, ...,PARAM5). As described below,
PARAM1 gives the function (0 for SEND, 1 for RECEIVE), PARAM2 is the
logical device number, PARAM3 is the DCB, PARAMY4 the used DCB size,
PARAMS the max DCB size or a wait flag.

The size of the DCB is given in two parameters, used size and maximum

size. The maximum size is the size of the DCB in the driver buffer

area. The wused size is the size of the DCB in the user program, when

it is sent or when it is received. The sent size dand the received size

may differ, for instance when the sent DCB contains frame data and the
received DCB only the resulting status. The maximum size will be the

larger of the two used sizes,

The symbols below will be used in the parameter list,

SDCB - Equals 0. Send DCB to driver.

RDCB - Equals 1. Receive DCB from driver.

LDN - Logical Device Number.

One for input, one for output.

DCB - The DCB to be sent or received.

DCB-usize - Used size of the DCB in number of bytes.

DCB-msize - Maximum size of the DCB in number of

bytes.

5.2.%1.3. The use of Device Numbers in Mon HDLC

One HDLC-Interface requires use of two logical device numbers (LDN).
One LDN will cover the input part, while the other will cover the
output part of the interface.

For obtaining exclusive access to a LDN, the monitor calls RESERVE and

RELEASE should be used,

Note that there is one SEND queue and one RECEIVE queue for each LDN,

and that one LDN controls only input from the communication link or

output to the communication link. The HDLC driver can handle many

LDN's and has two queues per LDN. Some queues may be empty (LDN3 SEND

and LDN4 RECEIVE),

ND-60. 134,02

SIII COMMUNICATION GUIDE

HDLC - High Level Data Link Control

user program buffer area

IDN 1
send >

¥

y

—p

IDN 1
receive ¢+—mmm—0——o0o ——— —

IDN 2

send > -

IDN 2

receive ¢——mm—m— . st

e——————

v

IDN 3 Y
receive —mmm— —eo .

IDN 4
send

 |

Figure 5-2 Queues of Driver Control Blocks (DCB)

ND-60.134.02

84 SIIT COMMUNICATION GUIDE

HDLC - High Level Data Link Control

5.2.2. Send DCB (SDCB)

Istat = HDLC (SDCB,LDN,DCB-address,DCB-usize,DCB-msize)

SDCB is used when the user program wants to send a DCB to the HDLC-

driver. The DCB 1is chained to the tail of the driver queue. Only as

many bytes as specified in DCB-usize is sent to the driver. However,

upon later reception of the same DCB, after driver treatment, it might

have grown to the size specified in DCB-msize.

5.2.3. Receive DCB (RDCB)

Istat = HDLC (RDCB,LDN,DCB,DCB-usize,WAITFL)

By means of RDCB, the user program may get DCB’s back from the HDLC-

driver. If no completed DCB exists, the system response depends upon

the use of the WAITFL-parameter. If WAITFL is 1, the calling program

is set in I/O-WAIT until a DCB arrives from the driver, If WAITFL is

0, the user program will always continue whether there exists a DCB

for it or not. However, if RTWT is called after an unsucessful RDCB,
the program will be activated at the instruction following MON RTWAIT,

when a DCB is sent to it. This property may be useful if one program

controls many LDN’'s, and is not sure which LDN the next DCB is going

to come from and when it will come.

The DCB-usize is set by the driver to the size of the DCB after driver

treatment. DCB size may never exceed the DCB-msize used when the DCB

was sent to the driver.

5.3. The Driver Control Block

A user program makes a request for service to the HDLC-driver by

sending it a block of data called the Driver Control Block (DCB).

The first 3 words in the DCB contain command and status information,

while the rest may contain frame data or additional information. When

the request 1is granted by the HDLC-driver, the STATUS parameter is

updated, and the DCB is sent back to the user program.

ND-60.134.02

SIIT COMMUNICATION GUIDE 85

HDLC - High Level Data Link Control

5.3.1. The Driver Control Block Format

The DCB has the following general format used when transferring data.

NOTE: Other commands such as device initialization and device status,

have slightly different formats.

-

- COMMAND -

- STATUS -

- HARDWARE STATUS -

- FRAME DATA -

o

The various commands are decribed in the next section. Status codes

are found in Appendix E. The hardware status (HSTAT) varies depending

on the transfer direction. It is not updated if the transfer is

successful. If an output LDN is used, hardware status is a copy of the

transmitter transfer status register. This is described under

programming specifications (IOX GP + 12) in the manual "HDLC - High

Level Data Link Control Interface" (ND-12.018). If an input LDN is

used, HARDWARE status is a copy of the receiver list status word found

in the section on receiver lists in the same manual.

In the remainding of this section we will simply refer to the DCB as

(PARAM1,PARAM2,....)

5.3.2. HDLC-Driver Commands

The commands used in the DCB are,

DEVCL (=3) Device Clear

DEVINI (=4) Device Initialization

RESET (=2) Reset Logical Device

TRANS (=1) Transfer Frame Data

DEVSTA (=5) Get Device Status

In this chapter these symbols will be used in the DCB argument list,

STAT - Status. result of operation.

NA - Argument not applicable.
HSTAT - Hardware status. For details see the HDLC

manual ND-12.018.
FRDAT - Frame of data, DCB-usize is the number of

bytes in the frame,

ND-60.134.02

86 SIITI COMMUNICATION GUIDE

HDLC - High Level Data Link Control

5.3.2.1. Device Clear (DEVCL)

(DEVCL,NA,NA)

DEVCL will completely clear the HDLC-interface. Both the input and the
output side of the interface will be cleared. All data transfer to and
from the interface will stop. DCBs currently being processed by the
driver will be returned, with the value of STAT = 110. Further use of
the interface must include the DEVINI command.

Input parameters (set by user)

DEVCL equals 3

5.3.2.2. Device Initialization (DEVINI)

(DEVINI,STAT,HASTAT,MODUS,FRSIZE ,MAXERR,DISP)

DEVINI should always be used after DEVICE CLEAR. The command will give
the interface necessary information related to the operation mode.

Input parameters (set by user)

DEVINI equals Y4

MODUS=0: full duplex operation, MODUS=1: half duplex, MODUS=2:
maintenance mode, looping transmitted data back to received data.

FRSIZ specifies the maximum size of the dataframes to be transferred.

MAXERR is number of retries in case of errors. It only applies to the
output side of the interface,

DISP or displacement is the number of free bytes reserved at the
beginning of each dataframe in the DCB. Only the FRAME DATA part of
the DCB is affected (displaced).

Output parameters (set by driver)

STAT is the resulting status of the operation, see Appendix F,

HSTAT is set to the checksum given by the interface as a response to
the initialize command. See the section on initialization in the HDLC

manual, ND-12.018.

ND-60.134.02

SIII COMMUNICATION GUIDE 87
HDLC - High Level Data Link Control

5.3.2.3. Device Reset (RESET)

(RESET,NA)

The command is used to reset either the input or the output side of

the interface depending on the LDN., It is not necessary to do DEVINI

after this command. DCB’s currently being processed by the driver will

be returned, with the value of STAT = 110.

Input parameters (set by user)

RESET equals 2

5.3.2.4, Transfer Frame Data (TRANS)

(TRANS,STATUS,HSTAT,FR-DATA ...)

The command is used for transferring frames of data to and from the

computer. If the DCB is sent to an output LDN, the frame data will be

transferred to the communication link. If the DCB is sent to an input

LDN, the frame data-part of the DCB will be filled with data from the

communication link.

Input parameters (set by user)

TRANS equals 1

Output parameters (set by driver)

STAT is the result of the operation, see Appendix F.

HSTAT, see general description in section 5.3.1

FR-DAT is the array of frame data bytes received or transmitted. The

array length is equal to DCB-usize.

ND-60.134.02

88 SIIT COMMUNICATION GUIDE
HDLC - High Level Data Link Control

5.3.2.5. Device Status (DEVSTAT)

(DEVSTAT,NA,NA,ERRNO, ORERR, LHAST , RSTOP ,MAXR)

This command will give status information about the LDN wused. The
internal parameters inspected will be cleared,

Input parameters (set by user)

DEVSTAT equals 5

Output parameters (set by driver)

ERRNO is set to the total number of errors detected. The internal
parameter ERRNO is set to zero after this call.

ORERR is an OR function of all hardware errors at the LDN. The
hardware status register used, is the transmitter status register for

an output LDN, and the receiver list status word for an input LDN. The
internal parameter ERRNO is set to zero after this call. See the HDLC

manual, ND-12.018.

LHAST is set equal to the last hardware status detected by the driver.

(Transmitter Transfer Status or Receiver List Status word according to

LDN, see the HDLC manual.)

RSTOP is the number of receiver stops due to lack of buffer space.
Note that the user is responsible for providing the input LDN with

sufficient buffer space. He must send enough DCBs with command TRANS

to the LDN. The internal parameter RSTOP is set to zero after this

call,

MAXR 1is set to the maximum number of DCB’s which can possibly be held
by the driver. The argument only applies to an input LDN,

ND-60.134.02

SIIT COMMUNICATION GUIDE 89

HDLC - High Level Data Link Control

5.4, How to Program the HDLC-Driver

The two first DCB’s sent to the driver must be DEVICE CLEAR and

DEVICE INITIALIZATION. These DCBs may be sent to both logical devices,

as they will affect both the input and the output side. To check the

driver reaction, the status information from the driver is obtained

when the DCBs are returned by doing two RECEIVE DCB on the same LDN.

After successful completion of DEVICE CLEAR and DEVICE INITIALIZATION,

the actual data transfer may start. The methods of controlling the two

LDNs are somewhat different, as explained below.

5.4.1. The Input LDN

As it is difficult to predict the arrival of data, the driver must

have some amount of buffer space for storing the frame data when it

arrives. This should be done initially by sending empty (command

TRANS) DCBs to the driver. However, the driver is only capable of

holding a limited number of empty DCB‘s. This number can be obtained

from the RMAX parameter of the DEVSTAT command. When this limit is

reached, the driver will send the empty DCB back to the source with

status 110.

The user program may then get a DCB back by doing a RECEIVE DCB.

Normally the DCB will now contain data. To maintain the driver’s

bufferspace, the user program should, upon receiving one DCB, send the

driver a new empty one.

Note that the receiving part of the interface is activated when the

driver receives the first empty DCB.

5.4,2. The Output LDN

The driver is activated by a "SEND DCB". The command in the DCB should

be TRANSFER. The driver will then always give status information which

the user program can receive on a RECEIVE DCB to the same LDN,

ND-60.134.02

90 SIITI COMMUNICATION GUIDE

HDLC - High Level Data Link Control

ND-60.134.02

SIII COMMUNICATION GUIDE 89

HDLC - High Level Data Link Control

5.4, How to Program the HDLC-Driver

The two first DCB's sent to the driver must be DEVICE CLEAR and .

DEVICE INITIALIZATION., These DCBs may be sent to both logical devices,

as they will affect both the input and the output side. To check the

driver reaction, the status information from the driver is obtained

when the DCBs are returned by doing two RECEIVE DCB on the same LDN.

After successful completion of DEVICE CLEAR and DEVICE INITIALIZATION,

the actual data transfer may start. The methods of controlling the two

LDNs are somewhat different, as explained below.

5.4.1. The Input LDN

As it is difficult to predict the arrival of data, the driver must

have some amount of buffer space for storing the frame data when it

arrives. This should be done initially by sending empty (command

TRANS) DCBs to the driver. However, the driver is only capable of

holding a limited number of empty DCB‘s. This number can be obtained

from the RMAX parameter of the DEVSTAT command. When this limit is

reached, the driver will send the empty DCB back to the source with

status 110.

The user program may then get a DCB back by doing a RECEIVE DCB.

Normally the DCB will now contain data. To maintain the driver’s

bufferspace, the user program should, upon receiving one DCB, send the

driver a new empty one,

Note that the receiving part of the interface is activated when the

driver receives the first empty DCB.

5.,4.2., The Output LDN

The driver is activated by a "SEND DCB". The command in the DCB should

be TRANSFER. The driver will then always give status information which

the user program can receive on a RECEIVE DCB to the same LDN.

ND-60.134.02

90 SIII COMMUNICATION GUIDE

HDLC - High Level Data Link Control

ND-60.134.02

SIIT COMMUNICATION GUIDE 91

X.21 COMMUNICATION PROTOCOL

6. X.21 COMMUNICATION PROTOCOL

6.1. Introduction

The CCITT X.21 recommendation defines the physical characteristics and

the call control procedures between the DTE (Data Terminal Equipment,

The Subscriber) and the DCE (Data Circuit Equipment, The Network). The

Nordic Public Data Network (NPDN) operates in accordance with this

recommendation.

The ¥X.21 Monitor Call is used to control a High Level Data Link (HDLC)

Interface in accordance with the CCITT X.21 recommendation., The

Monitor Call number is the same as for MON HDLC. The system uses the

logical device number (LDN) to distinguish between HDLC and X.21.

The X.21-driver and the user program communicate by means of Driver

Control Blocks (DCB),

For the purpose of transferring DCB ‘s between user programs and the

X.21-driver, the monitor call X.21 is used. For a description of MON

X.21 see section 6.2 below

The format of the DCB and the different X.21 commands can be found in

section 6.3.

6.2. The Monitor Call X.21 (MON 201)

MON X.21 is used to transferring DCB’s between the user programs and

the X.21-driver.

DCB’s are sent from a user program to the X.21-driver using SEND. When

a DCB is sent to the driver, it is copied from the user program to a

driver buffer-area. Here it is inserted in a queue of DCB's to the

driver. The driver processes the DCB’s one by one and, after

processing, puts them in another queue of DCB’s back to the wuser

program. The user program can then receive them using RECEIVE, This is

done by copying the DCB from the buffer area to the user program,

Since the receiving of DCB’s may be done asynchronously with respect

to the sending, each DCB is given an identifier.

Figure 6-1 shows the data organization of the X.21 software. The

parameters STATUS and CP-SIGNAL are filled in by the X.21-driver.

ND-60.134.02

92

SITI COMMUNICATION GUIDE

X.21 COMMUNICATION PROTOCOL

buffer area

user program

CCMMAND

SEND STATUS

CCMMAND >
DCB X.21 driver

STATUS

COMMAND

FACTLITY

Camm.

4
CCMMAND link

STATUS

FACILITY

CP-SIGN.

COMMAND

STATUS COMMAND
RECEIVE

FACILITY | {1 STATUS

ICB
CP-SIGN. FACILITY

CP-SIGN.

Figure 6-1 Data Organization in X.21

ND-60.134.02

SIIT COMMUNICATION GUIDE 93

X.21 COMMUNICATION PROTOCOL

6.2.1. X.21 Monitor Call Format

6.2.1.1. Calling X.21 in NPL

When calling X.21 in NPL, the A-register points to a list of parameter

addresses.

LDA (PLIST

MON 201

JMP ERROR

PLIST, PARAM1 ADDRESS

PARAM2 ADDRESS

PARAM3 ADDRESS

PARAMY4 ADDRESS

PARAMS ADDRESS

There are two basic return sequences.

- Skip returng DCB successfully transferred

A-register contains DCB identifier.

- Non skip returng Error in DCB transfer

A-register contains error code.

(Negative)

6.2.,1.2. Calling X.21 from FORTRAN

ISTAT = X.21 (PARAM1,PARAM2,....,PARAM5)

If ISTAT is positive, the transfer of the DCB was sucessful, and ISTAT

is set to the DCB-identifier. Otherwise, if ISTAT is negative, an
error has occurred. For further decription, see the 1list of error

codes in Appendix J.

ND-60.134.02

9L SIII COMMUNICATION GUIDE
X.21 COMMUNICATION PROTOCOL

6.2.1.3. The Arguments of MON X.21

In the remaining part of this section, we will simply refer to the

argument list as (PARAM1,PARAM2, ...,PARAM5). As decribed below,
PARAM1 gives the function (0 for SEND, 1 for RECEIVE), PARAM2 is the
logical device number, PARAM3 is the DCB address, PARAMY the used DCB

size, PARAM5 the maximum DCB size or a wait flag.

The size of the DCB is given in two parameters, used size and maximum

size, The maximum size is the size of the DCB in the driver buffer

area. The used size is the size of the DCB in the user program when it

is sent or when it is received. The sent size and the received size

may be quite different. The maximum size will be the larger of the two

used sizes.

The symbols below will be used in the parameter list.

SDCB - Equals 0. Send DCB to driver.

RDCB - Equals 1. Receive DCB from driver.
LDN - Logical Device Number.

DCB-address - Address of the DCB

DCB-usize - Used size of the DCB in number of bytes.

DCB-msize - Maximum size of the DCB in number of

bytes.

6.2.,1.,4, The use of Device Numbers in Mon X.21

There is one logical device number (LDN) used for each Data Network

Connection.,

To obtain the exclusive access to an LDN, the monitor calls RESERVE

and RELEASE should be used.

Note that there is one SEND queue and one RECEIVE queue for each LDN,

ND-60,134.02

SIITI COMMUNICATION GUIDE 95

X.21 COMMUNICATION PROTOCOL

6.2.2. Send DCB (SDCB)

ISTAT = X.21 (SDCB,LDN,DCB-address,DCB-usize,DCB-msize)

SDCB is used when the user program wants to send a DCB to the X.21-

driver. The DCB is put at the end of the driver queue. Only as many

bytes as specified in DCB-usize are sent to the driver. However, when

receiving the same DCB at a later time (after driver treatment) it

might have grown to the size specified in DCB-msize.

6.2.3. Receive DCB (RDCB)

ISTAT = X.21 (RDCB,LDN,DCB-address,DCB-usize,WAITFL)

By means of RDCB, the user program may get DCB ‘s back from the X.21-

driver. If no complete DCB exists, the system response depends upon

the use of the WAITFL-parameter. If WAITFL is 1, the calling program

is set in I/0-WAIT until a DCB arrives from the driver. If WAITFL is

0, the user program will always continue whether there is a DCB for it

or not. A subsequent call to RTWT (MON 135) should be used to wait for

a DCB. This feature may be useful if one program controls many LDN s,

and it is not known which LDN the next DCB is going to come from, or

when it will come.,

The DCB-usize is set by the driver to the size of the DCB after driver

treatment. The DCB size may never exceed the DCB-msize specified, when

the DCB was sent to the driver

6.3. The X.21 Driver Control Block

A user program makes a request for service to the X.21-driver by

sending it a block of data called the Driver Control Block (DCB).

The first 4 words in the DCB contain command and status information,

while the rest of it may contain additional information. When the

request is fulfilled by the X.21-driver, the STATUS parameter is

updated, and the DCB is sent back to the user program.

ND-60.134.02

96 SIII COMMUNICATION GUIDE

X.21 COMMUNICATION PROTOCOL

6.3.1. The X.21 DCB Format

The X.21 DCB has the following general format.

- -

P1 - COMMAND - Integer (1 word)

P2 - STATUS - Integer (1 word)

P3 - FACILITY - Bits (1 word)

P4 - CALL PROGRESS SIGNALS - Ia5 (1 word)

P5 - DTE/DCE PROVIDED INFORMATION - TAS (n words)

S i

COMMAND is given by the user. A description are found in next section.

FACILITY is given by the user. By using this parameter, the user may

make requests for optional service provided by the network. The coding

is decribed in Appendix H.

STATUS is provided by X.21, and indicates the result of operation

(Appendix H).

CALL PROGRESS SIGNALS is status information provided by the DCE. The

characters used are selected from the International Alphabet No. 5

(Appendix I).

DTE/DCE PROVIDED INFORMATION field will hold information either given

by the user (DTE PROVIDED) or the DCE (DCE PROVIDED) or both, All

characters in this parameter should be according to the International

Alphabet No. 5.

The only DTE PROVIDED information currently applicable 1is the

suberiber number used in the CALL command.

When it comes to the DCE PROVIDED information, two different types may

occurs

Called/Calling Line Identification

Charging Information

The Called/Calling Line Identification will have as a prefix the IA5

character "¥" ywhen the call is national, and "¥¥" ywhen the call is
international. The Charging Information will have as a prefix the IAS

character "/", For a detailed decription of the Charching Information,

see the specific command,

In the remainding part of this section we will simply refer to the

DCB as

(PARAM1,PARAM2....)

ND-60.134.02

SIII COMMUNICATION GUIDE 97

X.21 COMMUNICATION PROTOCOL

$.3.2. The X.21 Commands

The following values are used for PARAM1,

CONNECT (==5) Connect LDN’s to X.21

DISCONNECT (=-6) Disconnect LDN’s from X.21

CALL (==1) Call request

READY (==2) Ready for incoming call

CLEAR (==3) Clear

GCHAR (==U) Get charging information

RDIRC (==T) Redirection of calls

GSTAT (==8) Get status

TERM (==9) Returned when call terminated

6.3.2.1. Connect (CONNECT)

(CONNECT,STATUS,NA,NA, ILDN, OLDN, RTUSER)

This command will connect the current X.21 LDN with ILDN (Input

Logical Device Number) and OLDN (Output Logical Device Number), and by

doing so enabling ILDN and OLDN to be used for transfering data on a

X.21 network. All X.21 commands must be sent to the X.21 LDN, while

data is transferred through ILDN and OLDN. The ILDN and OLDN must be

reserved by an RT-program prior to using this command. The RTUSER

parameter holds the address of the RT-program having reserved the ILDN

and the OLDN. RTUSER set to O indicates that the current RT-program

has reserved ILDN and OLDN. ILDN, OLDN and RTUSER are all integers.

ND-60.134.02

98 SIITI COMMUNICATION GUIDE

X.21 COMMUNICATION PROTOCOL

6.3.2.2. Disconnect (DISCONNECT)

(DISCONNECT,STATUS,NA,)

The DISCONNECT command is used to cancel the last CONNECT command. The

current X.21 LDN is disconnected from ILDN and OLDN.

6.3.2.3. Call (CALL)

(CALL,STATUS,FACILITY,CP,DTE/DCE PROVIDED INFORMATION)

CALL will try to establish a connection with the DTE having the number

specified by the user in the DTE PROVIDED INFORMATION field. The

parameter must be terminated by "+",

The FACILITY PARAMETER may contain combinations of the following bits;

CHARGING INFORMATION, CALLED LINE INFORMATION, and CONNECT WHEN FREE,

(See appendix H.) In the case of CHARGING INFORMATION, the network

will send charging information when the call is terminated. The

information 1is available through the GCHAR command. The CALLED LINE

IDENTIFICATION will be returned within the current message 1in the

DTE/DCE PROVIDED INFORMATION field.

When the CONNECT WHEN FREE facility is requested, the X.21-driver will
wait until the connection is established, If however, a new message is
sent to the X.21-driver the call will be terminated, and the message

will be returned with status 21.

6.3.2.4. Ready (READY)

(READY,STATUS,NA,CP,DTE/DCE PROVIDED INFORMATION)

By sending this command, the user indicates that he is ready to accept

incoming calls, The message will be returned to its originator when an

incoming call arrives, or if some error occurs. The message will also
be returned, and the Ready state terminated if a new message is sent
to the same LDN, If the option for calling line identification is

available for this suberiber, the information will be found in the DCE

PROVIDED INFORMATION field.

The FACILITY parameter is not applicable in this command.

ND-60,134.02

SIIT COMMUNICATION GUIDE 99

X.21 COMMUNICATION PROTOCOL

6.3.2.5. Clear (CLEAR)

(CLEAR,STATUS,NA,CP,NA)

This command will break any existing connection with the network, and

set this subscriber in a "not ready" state. By doing so all

communication with the network is disabled.

Only the STATUS and the Call Progress signals parameters are used in

this command.

6.3.2.6. Get Charging Information (GCHAR)

(GCHAR,STATUS,NA,CP,DCE PROVIDED INFORMATION)

GCHAR is used to retrieve the charging information of the last call

established with the CHARGING bit set in the FACILITY parameter. When

receiving the DCB, the charging information is found in the DCB

PROVIDED INFORMATION part of the DCB., This part informs the subsecriber

of either the monetary charges for a call, the duration of a call, or

the number of units used during the call.

The syntax of the part is described below using Backus Normal Form

(BNF) as shown in the CCITT document "DRAFT RECOMMENDATION X.21 -

DRAFT REVISION A" with Addenda T119 and T123.

When charging information is given in monetary charges for the call,

the prefix of the information is 1 and the information consists of x

integer digits optionally followed by a colon and two digits

representing the fraction. In general, the format is:

L/><N></><K 0000 e ><4+>

or

</><1></><K 0000 o $YYD<H>

ND-60.134.02

100 SIII COMMUNICATION GUIDE

X.21 COMMUNICATION PROTOCOL

When the charging information is presented as the duraction of a call,

the prefix is 2. The information consists of x integer digits

representing seconds. In general, the format is:

/525> K0 0 a s o O<HD>

When the charging information 1is presented as the number of units

used, the prefix is 3. The information consists of x integer digits

representing the units. In general, the format is:

</><3></><K 00w <4

6.3.2.7. Redirection of Calls (RDIRC)

(RDIRC,STATUS,NA,CP,NA)

The purpose of this command is to redirect all incomming calls to

another subscriber. The address of the new subscriber is predefined

within the network.

6.3.2.8. Get Status (GSTAT)

(GSTAT,NA,NA,NA,STATUS)

The command will return the current status of the X.21 LDN. STATUS may

take any of the following values:

=0 The X.21 LDN is not used.

=1 The connect command is used, but no link through the network is

established.

=3 A connection through the network is established and a data transfer

is currently going on.

6.3.2.9. Return when call terminated

(TERM,STATUS,NA)

The DCB will be returned if the current X.21-line is in or enters a

non data phase state. The status parameter in the DCB will be set to

20(octal). See appendix K.

ND-60.134.02

SITITI COMMUNICATION GUIDE 101

X.21 COMMUNICATION PROTOCOL

6.4. Writing HDLC Driver for X.21 Network

The Monitor Call MON X.21 is wused for an explicit request to the

network. This is done through the various commands decribed in

previous sections.

When a connection 1is established, the DTE’s will be responsible for

establishing their own alignment. In this phase, the data phase, a

software driver will control the HDLC interface. Since the network at

any time may initiate a disconnection, the following constraints will

apply to the software driver.

When an input transfer 1is finished, the receiver transfer status

register will be modified, and be of no use to the driver. But a copy

with some additional information (bit 14 and 13) will be found in the

A-register.

BIT 14 set to 1 means that the connection is broken due to DCE

clearing.

BIT 13 set to 1 means that the transfer just completed is in error.

ND-60.134.02

APPENDIX A

MAGTP Functions

ND-60.134.02

Appendix A 103

MAGTP Functions

Notes

1) See the section "Call Formats" following this section

2) Applies to the whole device, i.e. all units

3) Included in the 80B and later versions

4) Function depends on hardware configuration

5) Select parity and density as follows

800 BPI, odd parity

556 BPI, odd parity
200 BPI, odd parity

800 BPI, even parity
556 BPI, even parity

200 BPI, even parity

<density/parity>

M
E
=
w
h
h

-
0

Default value is zero.

In some hardware conwigurations, the value is selected by setting a

switech on the front panel.

6) Select density as follows

0: 1600 BPI
1: 6250 BPI

<density/parity>

7) Clear unit only as determined by the logical device number.

8) Read density and parity (a)

9) Read parity and density (b)

10) Read format (c). (Floppy disk formats are shown in note 21 below,

while a, b and ¢ are explained in the section "Call Formats" on page

99 and 100.)

11) The format of ISTAT for Tandberg, Pertec or STC is

(condition is set if bit is set)

bit 0: Tape on line

1: Write enable ring present

2: Tape standing on load point

CRC error/fatal error
Set if any of bits 5, 6, 7, 8, 9, 11, or 12 is set
Control or modus word error. Trying to write on

unprotected tape, reserving tape at load point,

tape unit not on-line, etc. Action is inhibited.
Bad data block. An error has been detected

End of file has been detected

The search character has been detected

End of tape has been detected. Resetting the bit depends

on the model,.
Tandberg, STC: The bit remains on if carrying out a

function after EOT (end-of-tape).

U
l

=
W

ee

o0

eo

O

O
~
 N

e
se

se

e

ND-60.134.02

104 Appendix A
MAGTP Functions

Pertec : The bit is cleared if carrying out a

function after EOT.

10: Word counter is not zero

11: DMA error

12: Overflow (in read)

13: Tape busy or formatter busy

14: LRC error/software error

15: Interrupt when formatter is ready

12) For Hewlett-Packard magnetic tape the format of ISTAT is

(condition is set if bit is set)

bit 0O: Ready interrupt enabled (cleared by the interrupt)

1: Error interrupt enabled (cleared by the interrupt)

2: Device active

3: Device ready for transfer

4: Set if any of bits 6, 9, 10, 11 or 12 is set or if
a reverse command is at load point

: Write enable ring present

¢t LRC error

: EOF detected

¢ Load point (The unit remains in this state also after

the first forward command after load point is detected)

9: EOT detected

10: Parity error

11: DMA error

12: Overflow in read

13: Density select 1 = 800 BPI
14: Magnetic tape unit ready (selected, on-line and not

rewinding)
15: Bit 15 is loaded by the previous control word

13) Only available as @DEVICE-FUNCTION

14) For Philips cassette the format of ISTAT is (condition is set if
bit is set):

bit Ready for transfer, interrupt is enabled
Error interrupt enabled

Device is active

Device is ready for transfer

Set if any of 0, 1, 4 or 5 is set
Write enable

Cassette side indicator (A = 1, B = 0)
Bit clock

Read fail

Sync fail

Not used

Not used

Drive fail

13: Write protect violation

14: Beginning or end of tape
15: Not used

0
1

2

3
I
5

6

7
8

9
0
1

2 _

15) For Versatec line-printer the format of ISTAT is (condition is set
if bit is set):

ND-60.134.02

Appendix A 105

MAGTP Functions

bit 0: Ready for transfer, interrupt enabled

: Error interrupt enabled

Device active

Device ready for transfer

Set if any of bits 6 or 7 is set

Not used

¢ No paper

7: Plotter not on-line

8 - 12: not used, bits set at random

13: Plotter ready

14 - 15: Not used, bits set at random

A

E
W
N

s
oo

on

se

16) For floppy disk the format of ISTAT is (condition is set if bit is

set):

bit 0: Interrupt enabled

1: Not used

Device busy

Device ready for transfer

Set if bits 5, 8, 11, 12 or 14 are set
Deleted record detected

Read/write completed

Seek completed

Drive not ready

Write protected

Not used

Address mismatch

CRC error

13: Not used

14: Data overrun
15: Not used

N

N

=
2
0

O
V
o
O
I
T
O
0
U

W

—_

17) Write a block in a unique format to indicate EOF. The disk address

is incremented by one,

18) The disk address is set to zero.

19) The disk address is decremented by one.

20) The disk address is incremented by one.

21) The following formats are available:

0: 256 words/sector, 8 sectors/track
(Standard format used by Norsk Data A.S)

1: 128 words/sector, 15 sectors/track
2: 64 words/sector, 26 sectors/track

<input format>

22) All data on the diskette 1is overwritten and the diskette is

formatted (i.e. new addresses are written)

23) Read a record even if it has been flagged as deleted.

21) After the record is written it is flagged as deleted.

ND-60.134.02

106 Appendix A
MAGTP Functions

25) Versatec may be used similarly to other line-printers., OUTBT

(MAC/NPL) WRITE, OUTPUT or OUTCH (FORTRAN) is wused to print

characters. In order to vreserve the access to the device it should

first be opened, then written to and finally closed. On closing, the
remaining characters to be printed are transmitted to the Versatec.

(RESERV and RELES may also be used.)

26) SINTRAN III can handle at maximum two floppy disk controllers each

having a maximum of three drives. Before it can be used, the floppy

disk must be formatted. (Function 41, see SINTRAN TIME-SHARING/BATCH

GUIDE, section 3.12)

Instead of creating a directory the floppy disk can be used as a

sequential medium. It is then first created as a periheral file (E@SET-

PER-FI, @SET-FI-ACC) and ordinary I/0 calls (INBT, OUTBT, etc.) are
used. End-of-file (EOF) must be written after the last write call by

using @DEVICE-FUNCTION or MAGTP, function 12.

27) Read hardware status on last unit operated upon. It can be any

unit on the device,

28) Read hardware status of the last operation on the own device.

29) Tape is positioned immediately after the EOF.

30) Tape is positioned immediately in front of the EOF.

ND-60.134.02

Appendix A 107

MAGTP Functions

Call Formats

<d> = dummy parameter. Use a variable for this parameter, for ex.:

IDUM=0

ISTAT = MAGTP(40B,IDUM, 1000B,IDUM)

<LDN> = logical device no.

In all formats, except a, ISTAT will receive error status on return.
If ISTAT=0 the call terminated correctly. If ISTAT>0 it contains the

file system error number, see appendix D of SINTRAN III REFERENCE

MANUAL (ND-60.128).

K

The device must be reserved in order to read hardware status.

(If not, a positive value of ISTAT may not be the correct status.)

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<d>,<d>)

ISTAT = Hardware status on return.

b

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<d>,<d>)

ke

ISTAT= MAGTP(<function no.>,<array name>,<LDN>,<max. words>,<words read>)

4

ISTAT= MAGTP(<function no.>,<array name>,<LDN>,<words to be written>,<d>)
<words to be written> is rounded off to whole words

S

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<density/parity>,<d>)

ISTAT=0: OK
ISTAT>0: file system error

i

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<input format>,<d>)
For <input format> see note 21) above.

g

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<d>,<output format>)

b

ISTAT= MAGTP(<function no.>,<d>,<LDN>,<d>,<disk address>)

ND-60.134.02

Appendix A 108

MAGTP Functions

i

ISTAT= MAGTP(<function no.>,<status array>,<LDN>,<d>,<d>)
<status array> contains Y4 word status on output.

ND-60.134.02

APPENDIX B

XMSG -Summary description of Functions and Parameters

ND-60.134.02

110 Appendix B

XMSG -Summary description of Functions and Parameters

Function T-reg A-reg D-reg X-reg Comment

XFDCT Disconnect

XFOPN Perm. flag =Port no Open port

XFCLS Port no Close port

XFGET XFWTF/XFWAK Size in bytes Get-mess-space

(XFWTF) =Message ptr.

XFREL Message ptr. Release mess.

XFRHD Message ptr. Read header

=< First six bytes of message >

XFWHD < First six bytes of message > Write header

XFREA User buffer Max no bytes Displacement Read block

=Actual no

XFWRI User buffer No. of bytes Displacement Write block

XFDIB XFWOK User buffer Size in bytes Message ptr Define ind buf

XFWIB User buffer Size in bytes Displacement Write indirect

=No NOT transfered

XFRIB User buffer Size in bytes Displacement Read indirect

=No NOT transfered

XFMST Message ptr Get mess stat

=Mess type =< Magic number > =Length

XFSCM Message ptr Port no Set cur mess

(-1=>task default) (if 0 then task)
XFSND Send opts. < Magic number > Port Send cur mess

=Receiver Qlen

XFRTN Send opts. Message ptr Bytes 0/1 Port Return message

=Receiver Qlen
XFRCV XFWTF/XFWAK Port no Receive mess

=Mess type =Mcno/Port no =Message ptr =Length

XFRRH XFWTF/XFWAK Port no Rec. & Read hd

=Mess type =Mecno/Port no =Message ptr =Bytes 0/1

XFPST XFWTF/XFWAK Port Port status

=Mess type =Mcno/Port no =Message ptr =Queue length

XFGST XFWTF/XFWAK Port Wait general

=port RT if not wait
XFDUB Bank number Address in bank Length Def. User buf

XFSIN =Basefield add Service 1nit

XFPRV Password or 0 Privilege

XFABR Buffer add Length Absolute add Absolute read

XFABW Buffer add Length Absolute add Absolute write

XFMLK Lock

XFMUL Unlock

XFM2P < Magic number > Magic to port

=Port no =Machine no

XFP2M Port no Port to magic

=< Magic number >

XFRIN Port no Machine no Routing tab Routing init

XFCRD PON bit Level Register blk Create driver

=Task address

XFSTD Task address Start driver

ND-60 . 134,02

Appendix B 111

XMSG -Summary description of Functions and Parameters

Notes

T register holds result status (<0 if error), except for XFDCT.

Send options: Secure message, High priority, Forward, Route, Bounce

(XFSEC, XFHIP, XFFWD, XFROU, XFBNC.)

Functions that affect the current port message: XFRCV, XFRRH, XFSCM.

Functions that affect the current task message: XFRCV, XFRRH, XFGET,

XFREL, XFRHD, XFSCM.

If a message pointer of -1 is used, the default port message will be

used if possible (port specified and a port default message

available), otherwise the task default will apply.

ND-60.134.02

APPENDIX C

XMSG -Example of a Driver using Message System

ND-60.134.02

Appendix C

XMSG -Example of a Driver using Message System

This example

driver:

SUBR TGPIB

INTEGER XRMES:=3

INTEGER XRLNG:=6

INTEGER XRPO1:=17T404

INTEGER NAME:= ‘GPIB’

TGPIB:

L:=03T:=XFOPN;*MON 2XMSG;JPL

IF T<0 GO FAR XERR

A=:PORT;A:=L=:XTBLK

T:=XFOPN;CALL MCALL;A=:DPORT

T:=XFGET;A:=20003CALL MCALL

A=:DMESA;T:=B;B:=A;AD:=XMDAD;B:=T;AD=: DBUFA
A:=12=:D;A:="XRMES";X:=0;T:=XFWRI;CALL MCALL
T:=XFSND BONE XFROU;X:=PORT;CALL MCALL
T:=XFRCV BONE XFWTFj;A:=PORT;CALL MCALL
AD:=DBUFA;¥EXAM

IF T><0 THEN ;CALL XERR FI

GCOM:
T:=XFRCV BONE XFWTF;A:=PORT;CALL MCALL

T=:CURMTY;A:=D=:CURMES

113

is an abbreviated version of the kernel of the GPIB bus

9 FIRST TWO BYTES IN XROUT MESSAGE
% NEXT TWO BYTES IN XROUT MESSAGE
9 PARAMETER LENGTH IN XROUT MESSAGE
% PORT NAME

I (WT11

3R

30

3
R

T

2R

W
W

W
=2

N

2
0

A:=32=:D3;A:=B;X:=0;Ts=XFREA;CALL MCALL %

T:=CURMES;T:=:B;AD:=XMDAD;B:=T

X:=MDATA;*¥RADD SX DD;COPY SA

A:=CURMTY

IF A=XMROU GO FAR LOGON

IF A=XMTRE GO FAR LOGOF

DA ADC;STD CURAD,B %

%
%

<Handle Request as defined in message>

ND-60.134.02

OPEN COMMAND PORT

CHECK IF ERROR RETURN

SAVE PORT NO, AND

XTBLK ADDRESS

OPEN DMA PORT

GET DMA BUFFER

SAVE DMA BUFFER ADDRESS

WRITE TO MESSAGE

NAME PORT

REC. RESPONS FROM XROUT

READ XROUT STATUS

IF T><0 FATAL ERROR

WAIT FOR COMMAND

SAVE CURRENT MSG, ADDRESS

& TYPE

GET PARAM. BLOCK INTO

DATAFIELD

SAVE BUFFER ADDRESS

IF ROUTED MESSAGE GO LOGON

IF RETURNED MESSAGE GO LOGOF

114 Appendix C
XMSG -Example of a Driver using Message System

RETUR:

A:=CURMTY;IF A- XMTRE O GO GCOM % IF LOGOF WAIT NEXT COMMAND
T=:CURFUN;A:=32= =B;X:=0;T¢=XFWRI;CALL MCALL % STORE STATUS IN MESSAGE
T:=DINPT;IF T><0 THEN
A:=CURBC+32;T:=CURMES;B:=T;
T:=XFSND BONE XFSEC;X:=PORT
GO GCOM

T FI % SET MESSAGE LENGTH A :

b LL MCALL % RETURN MESSAGE

:XMLEN 3B

. H)H

;B:
D;CA ==1=

ERR: T=¢ERCOD;GO RETUR
LOGON: % Handle Connect Request from GPIB User
LOGOF: % Handle Disconnect Request from GPIB User

SRENT: CALL WT11

MCALL: A=:AREG;A:="SRENT"=:DRIVER;A:=XTBLK:=:L=3:"MRETA":=AREG

¥MON 2XMSG;JMP I (WT11

IF T<0 GO XERR;GO MRETA

FATER: T=:ERCOD;A:=L;A-1;CALL 9ERR(£93);GO HGPIB

XERR: =:XERCO;A:=L;A-1;CALL 9ERR(£92)

HGPIB: FOR X:=0 TO 17 DO

0=:UMESS(X)

oD

T:=XFDCT;CALL MCALL

GO WT11

RBUS

ND-60.134.02

APPENDIX D

XMSG -Symbol Table

ND-60.134.02

116 Appendix D

XMSG -Symbol Table

The following is a listing of the XMSG~VALUES file that defines the

symbolic Names for error codes and function values used by XMSG:

%**

%
% XMSG-VALUES:SYMB Defines the values for symbolic
B e s i i names for functions and error codes.
%
%**

@LIB SINDA-,

SYMBOL 2XMSG=200 % Monitor call number for XMSG (in SIN-DATA)

@ELIB

% FUNCTION VALUES

SYMBOL XFDUM=0 % Dummy function
SYMBOL XFDCT=1 % Disconnect from message system

SYMBOL XFGET=2 % Get message space
SYMBOL XFREL=3 % Release message space

SYMBOL XFRHD=4 % Read header from a message (6 bytes)

SYMBOL XFWHD=5 % Write header to a message (6 bytes)

SYMBOL XFREA=6 % Read from message to user buffer

SYMBOL XFWRI=7 % Write from user to message

SYMBOL XFSCM=10 % Set current message

SYMBOL XFMST=11 % Get message status
SYMBOL XFOPN=12 % Open port
SYMBOL XFCLS=13 % Close port

SYMBOL XFSND=14 % Send message to a remote port

SYMBOL XFRCV=15 % Receive a message on a given port

SYMBOL XFPST=16 % Get local port status

SYMBOL XFGST=17 % General status or wait

% SERVICE FUNCTIONS

Service initialisation function

Service release function (obsolete)

Absolute read block from POF area

SYMBOL XFABW=23 Absolute write block to POF area

SYMBOL XFMLK=2Y4 Lock message system

SYMBOL XFSIN=20 ¢

%

%
%
%

SYMBOL XFMUL=25 % Unlock message system

%
%
%
%
%

SYMBOL XFSRL=21

SYMBOL XFABR=22

SYMBOL XFM2P=26 Magic number to port id.
SYMBOL XFP2M=27 Port to magic number

SYMBOL XFRIN=30 Routing initialise (obsolete)
SYMBOL XFCRD=31 Create driver with context
SYMBOL XFSTD=32 Start driver

ND-60, 134,02

Appendix D 117

XMSG -Symbol Table

9 INDIRECT BUFFER HANDLING FUNCTIONS

SYMBOL XFDIB=33 % Define indirect buffer

SYMBOL XFRIB=34 % Read from indirect buffer

SYMBOL XFWIB=35 ¢ Write to indirect buffer

9 FUNCTIONS ADDED AFTER THE FIRST RELEASE

SYMBOL XFPRV=36 % Request privilege

SYMBOL XFRTN=37 % Write word 0 and return message

SYMBOL XFRRH=UM0 % Receive message and read word 0

SYMBOL XFDUB=41 % Define user buffer area for current message

SYMBOL XS5FUN=42 ¢ *#* END MARKER ¥#* LEAVE ME HERE PLEASE

4 BIT VALUES IN FUNCTION CODE REGISTER (T-REG)

SYMBOL XFWTF=17

SYMBOL XFWAK=16

9 If set then wait if operation not terminated

9 In RCV/PST/GST: Do RTENTRY on status change

SYMBOL XFPRM=15 % In XFOPN: Permanent open requested

SYMBOL XFOPS=14 % In XFOPN: Specified port number required (not impl.)

SYMBOL XFPON=15 9% In XFSTD: Driver to run with paging on

SYMBOL XFWOK=15 % In XFDIB: Allow write access to indirect buffer

SYMBOL XFHIP=15 % In XFSND: High-priority message

SYMBOL XFBNC=14 % In XFSND: Bounce message

SYMBOL XFFWD=13 % In XFSND: Forward message

SYMBOL XFROU=12 % In XFSND: Message to be sent to local XROUT

SYMBOL XFSEC=11 % In XFSND: Secure message (Return if not deliv’d)

4 %%% Warning: bits 10, 11 (octal) are used for bank no in XFABR, XFABW EEE

%
4 MESSAGE TYPES: RETURNED AS SUCCESSFULL STATUS FROM XFRCV

SYMBOL XMTNO=1

SYMBOL XMROU=2

SYMBOL XMTHI=3

SYMBOL XMTRE=4

SYMBOL XMKIK=5

SYMBOL XMTPS=6

Normal message

Routed message (Via XROUT)
High priority message

Return message (Abnormal condition)

XROUT has been kicked (no message)
Pseudo message (not used) Q

R

W

N

W

ND-60.134.02

118

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
S YMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
S YMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
S YMBOL
SYMBOL

USE

XENOT=

XEIRM=

XETMM=

XENIM=

XEIBP=

XEBNY=

XEISP=

XENOP=

XEIDR=

XENDM=

XEMCH=

XEBFC=

XEAIN=

XECRA=

XEWNA=

XENVI=

XEILF=

XEIMA=

XEMFL=

XEILM=

XEIPN=

XEPRV=

XEPVR=

XERNA=

XEROV=

XEXBF=

XELOK=

XENDP=

XEITL=

XEIDP=

XEILR=

XENOS=

XENSE=

XERND=

R

-1
-2
-y
-5
-6
-7
-10
-11
-12
-13
~14
-15
-16
i
=20

=21

-22
_23

-2l
-25
26
-27
-30

-31
_32

-33
_3)4

-35
-36
=37
-40
-l
42
43 3

R

3
W

B
3
R

3
R

W
3
R

3
Q

3
2

3
0

3
R

3
W

3
A

3

3
N

3
2

23
R
3
0

3
W

2
0

3
0

3
Q

3

3
R

T

JI
W
3
R

U
W

3

3
N

2

2

Appendix D

XMSG -Symbol Table

ERROR SYMBOLS (Returned in T-reg)

No more XT-blocks free

Non-local remote port illegal here

Task is not allowed any more memory

Facility not yet implemented

Illegal message buffer pointer

Message buffer not yours

Illegal service program calling

No more ports available

Function not available to drivers

No default message

Message is already chained

Message is in a queue.

XMSG Kernel already initialised

XMSG crash (Info in Basefield)
Write Not Allowed (Indirect buffer)
No Valid Indirect buffer defined

Illegal function code in monitor call

Invalid magic number

Message space full

Illegal message size

Illegal port number

Privileged function called without privilege.
Privilege request refused

Remote machine not available

Remote task space overflow

Message already has XMSG buffer (XFDUB)
XMSG locked

No port open (so ‘default port’ param invalid)
Illegal transfer length for read/write
Illegal displacement in read/write

Illegal use of reentrant segment in XFDIB

Indirect Buffer not on valid segment

Network sequencing error
Remote machine not defined

ND-60.134.02

Appendix D

XMSG -Symbol Table

%

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
S YMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
‘SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

XROUT

XSNUL=100

XSLET=101

XSNAM=102

XSCNM=103

XSGNM=104

XSGNI=105

XSREM=106

XSGMG=107

XSCMG=110

XSDRN=111

XSDMC=112

XSGMC=113

XSLKI=114

XSTIN=115

XSTCL=116

XSTDC=117

XSCRS=120

XSNSP=121

119

SERVICE VALUES

Null command returns 0 status to sender

Send a letter

Give name to this port

Clear name of this port

Get name of port (param: MAGNO)

Get name (param: MC/PORTNO)

Get remote magic number (LOC, REM NAME, MC)

Get magic number (PRIV)
Clear magic number (PRIV)
Define remote name (PRIV)
Define routing for machine N (PRIV)

Get routing info for machine N

Start up specified link

Initialise tracing (open file, ..)
Close tracing

Define tracing conditions

Create connection port

Increment number of free connections

XSMAX=XSNSP % Maximum legal service value

XROUT ERRORS

Error values returned in byte 1 of return message.

XRISN=1

XRUNN=2

XRDDF=3

XRNSP=4

XRIPT=5

XRMMP=6

XRUNM=7

XRMTL=10

XRSMF=11

XRPRV=12

XRIMC=13

XRNRO=14

XRICL=15

XRIPI=16

XRNXM=17

XRILN=20

XRNXL=21

XRNXD=22

XRNTR=23

XRTRA=2Y4

XRTRP=25

XRTFE=26

XRTRT=27

XRTIS=30

XRBLK=31

XRMCD=32

XRNLM=33

XRTRE=34

XRRNA=35

+
2

3
L

=

2
R

3

2
L

T
A

T
R

3

I

W
T
A

3

IR

3
W

3
2
R

3
R

3
W

W

QA
W
I
W

W

W

AR Illegal service number

No open port has this name

Another port already has this name

No space left for names

Illegal parameter type

Missing mandatory parameter

Unknown magic number

Resulting message too long

Standard message format not handled

Caller was not privileged

Illegal machine number parameter

Cannot access remote XROUT

Illegal cluster number parameter

Illegal PIOC number parameter

Invalid service request - no multi-me XMSG

Illegal/Reserved Log. unit no. for link

No more XL-Blocks (Link Descriptors)

Not enough XD-Blocks for LKINI

No trace generated

Trace already active

Trace passive

Trace file open error (see param 1)

Trace RT-prog (XTRACE) not found
Illegal system number

Bad link - open unsuccessful

Attempt to redefine local machine no

Local machine number not yet defined

% Too many remote names to this machine

4 01d letter calls (service 2) cannot use XMSGM

ND-60.134.02

120 Appendix D

XMSG -Symbol Table

SYMBOL XRBUS=36 % All connections with this name busy

SYMBOL XRNSE=37 % This is not a connect port

SYMBOL XRRPN=U40 % Remote port statically declared.

% XMSG Crash Codes (on System Console and saved in Basefield)

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

SYMBOL

@DEV 1

XXETIE=1
XXIOW=2
XXBIN=3
XXMCE=4
XXIEN=5
XXIFL=6
XXIRT=7
XXNBF=10
XXRIN=11
XXNMM= 12
XXNIM=13
XXCLS= 14
XXCHE=15
XXNOR=16
XXICM=17
XX100=20
XXMON=21
XXMMC=22
XXFBI=23
XXPER=24
XXILN=25
XXROU=26
XXHER=27
XXR02=30
XXTAS=31

S
R
R

s

s

s

%

T
R

IR

3
W

3
N
 T
2

W

3R

3
N

W

WU
D
U

3

W

F
W

W

3
R

3
R

W

¥R

Illegal entry ptr to XCRMG

Illegal owner of buffer

Memory alloen. inconsistency

Message queue length inconsistency

ZRALL gave port not in XQTAB

INIT: ZFUNC Function >XFMX1

Illegal RT-Description add used.

INIT: No Buffer space available

Inconsistency in resource allocation

More memory released than owned

Not implemented (Canhnot recover)
Inconsistency in port chain in CLOSE

Double chaining attempted

No XMSG-RESIDENT found by POF

Inconsistency in XMPRT/XPCMS Pair
This can only be done on ND-100°S
Inconsistency in level 5 monitor gqueues

Multimachine XMSG not implemented/generated

Frame buffer handling inconsistency

Protocol error in communications system

Tllegal LOG NO for HDLC (bad LOGPH)

No legal routing port defined

Error in HDLC Driver or interface to it

Fatal error in XROUT - see XROUT basefield

Task handling (wait,resume) error

ND-60. 134.02

APPENDIX E

HDLC -Error Codes from the Monitor Call HDLC

ND-60.134.02

122

These errors (octal)

Appendix E

HDLC ~Error Codes from the Monitor Call HDLC

related to the DCB transfer part. The A-

register contains the code on a non-skip return.

ERROR CODE MEANING

The LDN is not reserved by the calling

program

Illegal LDN used. Not known by SINTRAN

No DCB in receiver queue

No vacant buffer for DCB

Illegal DCB-usize

Illegal LDN, Not to be used by MON HDLC

DCB-msize less than DCB-usize

Illegal function

Fatal error. The table is inconsistent

ND-60.134.02

APPENDIX F

HDLC -Status Codes in the DCB

ND-60.134.02

124 Appendix F

HDLC -Status Codes in the DCB

These codes (octal) are issued by the driver, and found in the STATUS

word in the DCB when returned from the driver,

STATUS

0
100
101
102
103
104

105
106
107
110

111

112
113

114
115

116
117
120

MEANING

Operation completed sucessfully

Interface not cleared before initiation

Interface not initiated before transfer

Underrun

Timeout, no output interrupt

Command timeout. Probably a hardware

error,

Illegal command used in DCB

Hardware failure in initiation

DCB overflow. Receiver list is full

Untreated DCB due to Device Clear or

Reset

Input LDN stopped. Possible errors are

over=-run, cre-error or lack of

buffer space.

Illegal parameter in DCB

Frame data part of DCB greater than max.

frame-size.

DCB is too small for expected data or info.

Attempt to transfer a frame containing

less than 2 bytes

Connection broken by X.21

Illegal displacement specification

Link locked

ND-60. 134,02

APPENDIX G

HDLC -Example of use

ND-60.134.02

126 Appendix G
HDLC -Example of use

PROGRAM HDLCT, 30

THE PROGRAM SENDS FRAMES OF DATA TO A REMOTE COMPUTER, AND

ASSUMES THAT THE DATA IS RETURNED UNALTERED,

THE REMOTE MACHINE MAY BE SIMULATED BY OPERATING THE

INTERFACE IN MAINTENANCE MODUS.

Q
O
O
0

INTEGER HDLC
INTEGER IDCB(106)
INTEGER SDCB,RDCB,OLUN,ILUN,BC
INTEGER DEVCL,DEVINI,TRANS,LUNSTA
INTEGER FRSIZ,DCBSIZ,MAINT,MAXERR,LISTM
INTEGER CFRSIZ,CMAXER
INTEGER FDPLX,COUNT,MAXDCB
INTEGER COMAND,STAT,HSTAT,FRDAT,MODUS

HDLC PARAMETER DEFINITIONS

a
0

SDCB
RDCB
OLUN
ILUN

o

1

753
752

C DCB ARGUMENT SYMBOLES

COMAND 1
STAT = 2
HSTAT
FRDAT "o =

W

MODUS

FRSIZ

MAXERR

LISTM n
u
w

n
n
n

o

O

U
l

I

a
Q
Q

DCB ARGUMENT VALUES

TRANS =

DEVCL =

DEVINI

LUNSTA

CFRSIZ

DCBS1Z

MAINT

CMAXER

COUNT = 0O

=

5
100
CFRSIZ+6
2
2

a
o
n

RESERVE LDN

CALL RESRV (OLUN,0,0)
CALL RESRV (ILUN,0,0)

Q SEND DEVICE CLEAR TO INTERFACE

ND-60.134.02

Appendix G 127

HDLC -Example of use

IDCB(COMAND) = DEVCL
ISTATE = HDLC (SDCB,OLUN,IDCB,6,6)
IF (ISTATE .LT. 0) GO TO 2000

Q

GET DRIVER RESPONSE TO DEVICE CLEAR

Q
o

ISTATE = HDLC (RDCB,OLUN,IDCB,BC,1)

IF (ISTATE .LT. 0)GO TO 2000

IF (IDCB(STAT) .NE, 0) GO TO 3000

C DEVICE CLEAR SUCCESSFULLY DONE, DO DEVICE INITIALIZATION

IDCB(COMAND) = DEVINI

IDCB(MODUS) MAINT

IDCB(FRSIZ) CFRSIZ

IDCB(MAXERR) = CMAXER

ISTATE = HDLC (SDCB,OLUN,IDCB,12,12)

IF (ISTATE .LT. 0) GO TO 2000

GET DRIVER RESPONSE TO DEVICE INITIALIZATION

a
a
a

ISTATE = HDLC (RDCB,OLUN,IDCB,BC,1)
IF (ISTATE .LT. 0) GO TO 2000
IF (IDCB(STAT) .NE. 0) GO TO 3000

DEVICE INITIALIZATION SUCCESSFULLLY COMPLETED.

START THE RECEIVER (INPUT) PART OF THE INTERFACE.

TO PREVENT OVERRUN SUPPORT THE DRIVER WITH SOME BUFFER SPACE

FIRST WE HAVE TO FIND THE MAXIMUM BUFFER SPACE (NUMBER OF

IDCBS) THE DRIVER MAY HANDLE.

O
O

a
f

IDCB(COMAND) = LUNSTA
ISTATE = HDLC (SDCB,ILUN,IDCB,20,20)
IF (ISTATE .LT. 0) GO TO 2000
ISTATE = HDLC (RDCB,ILUN,IDCB,BC,1)
IF (ISTATE .LT. 0) GO TO 2000
IF (IDCB(STAT) .NE. 0) GO TO 3000
MAXDCB = IDCB(8)

THE MAXIMUM NUMBER OF DCBS HELD BY INPUT DRIVER IS "MAXDCB"

SO GIVE THEM TO HIM

O
O
0

IDCB(COMAND) = TRANS
DO FOR I = 1,MAXDCB

ISTATE = HDLC (SDCB,ILUN,IDCB,6,DCBSIZ)
IF (ISTATE .LT. O) GO TO 2000

ENDDO

SEND A FRAME OF DATA TO REMOTE COMPUTER

O
O
0

00 COUNT=COUNT+1

IDCB(4)=COUNT

IDCB(COMAND) = TRANS

ISTATE = HDLC (SDCB,OLUN,IDCB,DCBSIZ,DCBSIZ)

IF (ISTATE .LT. 0) GO TO 2000

ND-60.134.02

128
=

0
O
0
O
0
Q
0
0
O
0
n

000

N
O
O
Q
O
O

o o o

W

a
a
o
a
o

000

e
O
O
0

O

o

O

o

O

o

Appendix G

HDLC -Example of use

ANY REACTION FROM THE DRIVER? IF NOT CALL RTWAIT

FIRST CHECK INPUT PART

ISTATE = HDLC (RDCB,ILUN,IDCB,BC,0)
IF (ISTATE .GT. 0) THEN

TF (IDCB(STAT) .EQ. 0) THEN
IF (IDCB(Y4) .NE. COUNT) GO TO 4000
IDCB(COMAND) = TRANS
ISTATE = HDLC (SDCB,ILUN,IDCB,6,DCBSIZ)
IF (ISTATE .LT. 0) GO TO 2000
GO TO 900

ELSE
GO TO 3000

‘ ENDIF
ELSEIF (ISTATE .NE. -3) GO TO 2000
ENDIF

S0, CHECK THE OUTPUT PART

ISTATE = HDLC (RDCB,OLUN,IDCB,BC,0)

IF (ISTATE .GT. 0) THEN
IF (IDCB(STAT) .EQ. 0) THEN

GO TO 1000
ELSE

GO TO 3000
ENDIF

ENDIF
IF (ISTATE .NE. -3) GO TO 3000
CALL RTWT
GO TO 1000

ERROR IN DCB TRANSFER

CALL ERMON (2H50,ISTATE)

GO TO 9999

DRIVER ERROR

CALL ERMON (2H51,IDCB(STAT))
GO TO 9999

ERROR IN DATA TRANSFER

CALL ERMON (2H52,IDCB(4))

END

ND-60.134.02

APPENDIX H

X.21 -Facility Bits

ND-60.134.02

130 Appendix H

X.21 -Facility Bits

In the facility parameter each bit (FACILITY BIT) has a special
meaning. By setting a specific bit, the corresponding facility will be
requested.

FACILITY BIT FACILITY REQUESTED

0 Charging requested

1 Called line identification

2 Direct call

3 Connect when free

ND-60.134,02

APPENDTIX I

X.21 =Call Progress Signals

ND-60.134.,02

132 Appendix I

X.21 =Call Progress Signals

CODE FUNCTION

00 Reserved for further use

01 Terminal called

02 Redirected call

03 Connect when free

20 No connection

21 Number busy

22 Selection signal Procedure error

23 Selection signal Transmission error

41 Access barred
4o Changed number
43 Not obtainable
by Out of order
ué Uncontrolled not ready
h7 DCE power off
L8 Invalid facility request
ug Network fault in local loop
50 Controlled not ready

51 Call information service

52 Incompatible user class of service

61 Network congestion

71 Long term network congestion

72 RPOA out of order

81 Registration/Cancellation confirmed

82 Redirection activated
83 Redirection deactivated

From the user’s point of view, group 0 means wait; group 2 and 6 mean

try again, next try may result in a call set upj groups 4 and 5 and 7

mean there is no reason for a new try, because the answer will be the
same for a longer time. As group 8 is the result of a procedure

between the DTE and the network, no further action needs to be taken.

ND-60.134.02

APPENDIX J

Error Codes

ND-60.134.02

134 Appendix J
Error Codes

These errors (octal) are related to the DCB transfer part. The code

will be in the A-reg when the monitor call X.21 gives non skip return.

ERROR CODE FUNCTION

-1 The LDN is not reserved by the calling program

=2 Illegal LDN used. Not known by SINTRAN

-3 No DCB in receiver queue

-4 No vacant buffer for DCB
-5 Illegal DCB-usize

-6 I1legal LDN. Not to be used by MON X.21

-7 DCB-msize less than DCB-usize

-10 Illegal function

ND-60.134.02

APPENDIX K

X.21 -Status Codes in the DCB

ND-60.134.02

The codes

Appendix K

X.21 -Status Codes in the DCB

(octal) are given by the Driver, and found in the STATUS

word in the DCB when returned from the driver,

STATUS

32

33
35

FUNCTION

Operation sucessfully completed

Too small message for appropriate information

Illegal LDN used in CONNECT

Illegal command

I1legal command in data phase

Different hardware device numbers for ILDN and OLDN

ILDN or OLDN not reserved

No matching ident entry found in ident table

Network error, is modem power on? (state 1)
No incomming call, ready state terminated.

No LDN previously connected

Missing terminator in selection signals

"No charge" received for last call

Call progress signals received

Multiple call progress signals received

X.21 LDN already connected

Call terminated

Call with facility "CONNECT WHEN FREE" unsuccessfully

terminated

Network timout (in state 2)
Network timout (in state 3)
Network timout (in state 5)

ND-60.134.02

Appendix K 137

X.21 -Status Codes in the DCB

Numbers shown as x) are references to notes shown on next page

< Function — >|<—mag. tape——>|Phil-|Versa-|Floppy |NORNET |Dynamic
Code. Name C. F.|Tandb. ,Hew- ,STC |lips }tec Disk jcaommun|lLogical

1) }Pertec{Pack. Cass. 25) 26) |chan. |Dev. No

0 |Read record c x X b4 b4 X X X

1 |Write record d X X X X X X X X

2 |Read odd num— c X X X

bers of bytes
3 |Loop write to X

read in FCU
4 |Read one rec. X

backwards
5 |Unlock and b X

stop
6 |Lock cassette b X

7 |Erase tape b X

10 [Advance b X X X X X

through EOF 29}
11 |Reverse b X X X X

through EOF 30]
12 |Write EOF b X X X X 17)
13 |Rewind b b4 X X x 18)
14 [Write 4 inch b X X X

erase gap
15 |Backspace rec. b b4 X X x 19)

16 |Advance rec. b X X X x 20)

17 |Unload b X X X

20 |Read status 27] a x 11) [x 12) [x 11) 14) |x 15)
21 |Clear device b x2) |[x 2)|x 2) X x 3)

22 |Clear device a X X X X

w/error exit
23 |Select parity e x 5) X 6)

and density,or
Select density

4)
24 |Read last a x 11) |x 12) |x 11) 14) |x 15) x 16)

Status 28)
25 |Read tape i X X X

status
26 |Read byte rec. c X X X
27 |Write byte d X X X

rec.

ND-60.134.02

138 Appendix K

X.21 -Status Codes in the DCB

< Function
Ccde. Name

 >
c. F.

<——mag. tape———->
Tandb.
Pertec Pack.

Phil-

lips
Cass.

Versa—

25)

Floppy
Disk

26)

NORNET

chan.

Dynamlc
Logical
Dev. No

30

31

32
33

34

35
36
37

Set alphanum|
mode
Set graphic
mode

Give form feed
Clear selected
unit

Set diagnostic
mode
n.a.
n.a.
n.a.

o
T
U

o

U

X 7)

40

41
42

43

44

45
46

Set floppy
form

Format floppy
A)read density
B)read parity

and density
C)read format

Read deleted
record
Write deleted
record
n.a., 13)
Get current

disk address

Q
o

x 9) X

8)

21)

22)
10)

x 23)

24)

(x)

ND-60.134.02

APPENDIX L

Index

ND-60.134.02

140 Appendix L
Index

This index includes terms which are not complete headings. For names
of commands and monitor calls, the reader should first check with the
table of contents.

Backus Normal Form (BNF)..ceeeesoooooosaooocesssonssssas 6563
bacKkground ProOgraM..ccceecesescesssssccscccccscsssosasosans 2
basefield

De AddresSSeeeeeeeseeceascsssssossssecacssoooossssssoss 4.5
XMSG basefield.eseseecosssacsoesosanncaasonnsnnsacee BoB.U,

batch

be input file..iieeeeeeeeeonooscosoosonssenccssocensnsss 3.2
local b. gupemssnanss fasssossi iebesennsese v eseemevenese 3ol
remote b. CONSOle..sesseeseeoseseococcocccoocoonssnosssns 3ol

BNF see Backus Normal Form
bounce message

See under message

break character....cuiseieecesesscsssseneonconsssnasssssne 2e201
break Strategy.ceeeesseeseeecseseccescnessccesacssssnanse 2541

CCITT.-o.onn-ooo.-o.oo;oooo-utloo.--no-ot.-ncol-ooooootalco

ChANNE L. sttt ceeseraseesosesasosenaneasesssnsnososonascssss

6.1

2.2.1
reservation of C. swecwessesnieoseiisinianeseveeeeociins 2edel

communication frame....ecieseescosseccssonnsnssnsooscnnne 20241
communication line ...veeveseessoconoosennssossnnsonnnsss 20241
current message length

See under message

Data Circuit Equipment (DCE) wwsweususie sesenas weisies sasss bl
data network connection

see under network
Data Terminal Equipment (DTE)...veeeevecocescesscvocesaanse 6a1
data transfer..ieeieeseeeecseseessssenosacssscsnsscensss 1, 2.1
DCB see Driver Control Block

DCE see Data Circuit

Equipment

default message

see under message

density, appendix A

direct task see under task
driver Sevasies e s et e nsssnan et se s vesesas coenesnee Lol
Driver Control BloCK..eeeueeseeeseeesseesssoseossoneses 5.1, 6.1
DTE see Data Terminal

Equipment
duration of Call...ieiiiieereainsessosoceccssesonsanancs 6.3.2.6

ND-60.134,02

Appendix L 141
Index

echo strategy seeeeees seeenssssassessssesssssansssseessess 30241

emulator

inter‘active e. 8BRS A SRR RS RS EERS R E R eeeae .

RJE €. # B s s BB SR NSRS B 48 8 0 5 8 B 60 E B8 EE s EEEE e

€rror (AN HDLC) iieeeeeroeocoossososcssonsssasconcsssoss 5u3. N
 —a
-
 3

3.
2

file NUMbE . vieesssteeesssssssosnsccassssosscasasssanassss

fixed length record...cceeeccacescasssscssscnsasannanss Sl
floppy disk

appendix A

FOrWArdinge e o e s e e oo oais siene e sesss e sanswns saness $a3nal
fUll dUpPleXecesesscossessscsscssosssoansnssonsnsnssnssss Deduiyl

4.3.1
k1.2

half QUPleXueesssssesoessssassecccssssssassssnssscsssssoss De3:2.2

Hewlett-Packard mag. tape

see under magnetic tape

high priority message

see under message

IDT, see NORD Intelligent

Data Terminals

interactive emulator

see under emulator

international alphabet.ccceeceeeccscsccccsacsoscscassssss Do3
interrupt level.iieeeeeeecsescscensasasaccsscnscccsssnsns M.i.

w

O

—

IO—Wait............-..................-...........-....... .

LDN see Logical Device Number

local batch see under batch

lock on the message system

see under message

Logical Device Number (LDN)..sseseseseesssssasssacsosans 2424
LRB (Load Register Block) 4.5

ND-60,134.02

142 Appendix L
Index

Magic NUMbEr....veeseessscssscaaceessas 4.3.2.8, 4.3.2.13, U 4
magnetic tape

Hewlett-Packard m. t.

appendix A

Pertec m. t. appendix A

STC m. t. appendix A

Tandberg m. t. appendix A

maintenance Mode..seeeeseessccassssscossscsccsssaaseaanss D03.,2.2

memory allocation.seececsccscscsccccccscnsssasaansscscsaasss Hol

message

bouNnee M. aavewssanas saiate i ste e ieie i e aeues b e s we e

current m. length sesesasasesstdesassseanadnnaas

default m. B ol oFs 5l TWWN: IW: 51, SRR G2 o 51 SHNNL B 31, SN,

high priority m. essicsasesn segesisesssisinesasasssses

lock on the m, system .iceesceencenancsssossosnesssn

. . .

. -

-
.

g
 N

 g

L
L

.
.

»
-

-

W

e

L
W
L
W
W

E
T
W
w
w
w
W
w

.
. »

Me DU e receeeereesecscccscscasacaosscssssssasncnssas

M, header.seeeeecescscscssscsssssncsscssssscssssassacss

Me length.veeeereeceecessasoenseersssescsscssascasans

m. orientented..cceceecececsosscscssosscscscsnscscssas

. .

.
.

D
D

N
D
N
N

-
-

-
.

N
0
V

=

U
1

=

U
1

0
0
0
0

0
o

m, Size...............................--.....-.....

. .
N
N

e

.

y
secur‘e ml 8PS R A SRS AR SRS SRR E SRR e eSS E R 4

monetar‘y char‘ges @ 8 6 0 0 & F AN S S E B SRR SRS 5

nesting remote connections

see under remote

HEEWORKA & 31 05 MNTaly i 51s THNGMYT, [iTs 5 GNWT, i 51 JGTT, fs 3o 5 SVa¥s ¥, o131 4T3

data N. CONNECLION. v reeeecacssccransosasasessssss 0.2,
NORD Intelligent Data

Terminals (IDT)eeeeeeeceeacasaccseccssstsccncocsnnnanns 3o
Nordic Public Data Network (NPDN)...eeeeecccecaascssossosss D
NPDN see Nordic Publiec

Data Network

6.1
1.4

—_

Paging Off.ieeeececcssnsssnsessssss H4.6.2, 4,9.,3, 4,10, 4.10.1
Paging sStatuS.ceeeseesovsesonescosssssocssscsacsssosss Uoabo2,.1

parity, appendix A

Pertec mag. tape

see under magnetic tape

Philips casette tape

see under casette tape

PIE, see Program Interrupt
Enable

POF see Paging Off

POrt . ceeeeeesacsanensacscsnascaosnssasssassncnssssssennsns ol
destination p. teesssesacessscccossnrsssascnosssssese 4.1
P. 2ddresS/NUMDer..veeessseccsosoassscconsssssaase H.3.2.13
De NUMDEI . eeeeossosssssssccncnnnanseeasssess Ba3.1, 4.3,1.3
sending p. R G R SR R e s e eiea R sew Be3

ND-60.134.02

Appendix L

Index

QISR o + exe1e o1+ 1= sae & 12 sas Moo s =2 a s sy ekl i 5, ST 510 L 5, Ha 1

real-time

RT descriptiONeeccccccasecasescsscscsassscsscccscsssccnssss

RT pProgram.sccacseacssosssacssessssocssscsccsscssssaasssns

USEY RT.eeeesvescscecsossssscanscscososocscsascsssnsnsosscss

reCeIVE QUEUEC..cstsessocssssssasscssscssosccsssesoscsss Do

reference NUMDE . .eeeeesecssssocsssscssassssasassessas He

remote

nesting r. connection...ceveeeeecesossccscsssccacacse 2.3

Pz DatEh 2.5 . o5 G¥a 5 51 ¥ SHe¥e oT: 57e1 oT51 « S = » [45] « 3] oHole [oXe [s sl @ &) @ (sKe [s ol sNol s Ble

r. batch CONSO0le.ceesessesoscnasssscsssssccscncscssssses 3

see under batch

r. command MOGC..esessoessssssasacossasossonsnssssssone 2o

Y. file BCCESS.iecerssscacsscssscsscccsssossssssssscosssss

r. file NABMe..cseseececssoscsesssscsssossssnscscssssasasns

r. poptl.t.ulo.uu.uloo...-.cooo..ooll..to.'!...l.l.c..

e PrOCESSOleucsesstscccssssssssssssnsossnaccsnsosnssssse 2o

r. terminal communication ..cccseccevcccssocssscssssncen

reservation of channels

see under channel

RJE emulator

see under emulator

RT see real-time
RTHT (MON 135).eceececcacsccocscccccsssasassesass D.2.3, 6.2.3

3.5

2.1

2.4

Poe 1080ceeceescacasscasoscsossssnssancssssssssncsssossscse 2ol

4.3
3.5
2.1

secure message

see under message

SENAd GUEUC.eeessacsosasssssscssssssssssscssssosssossscsse Delele3

sending port see under port

SErvice NUMDEIr..ceeeesocscsecssscsacsasssnssaas AU T, U, 6.6.6
STC mag. tape

see under magnetic tape

SUDECTH DE i GW¥z ofs 31 <¥5) o (¥e ¥a ¥3) W5 o ¥a 13 5] o¥5) o [S¥o FA¥E1 5] o WHe [$X1 @ (1 » [aHo (oW o¥e) cxe1 (oo
SYyNneronizatioN.ceceecescscssescoosssssacssacsccsssssccoscsasasse

task s. R .
syncronous modem interface......ecececessesssscesssasssces O

SYStem SUPErvViSOr.ceeesscccssessccsassssscssasensssssssnne 2

ND-60.134.02

143

1uy Appendix L

Index

Tandberg mag. tape

see under magnetic tape

Ba8Ke st etereeaeeeneoseecsossssssonsssssssscnssannnnsoanes Uyl
direct t. SRR AR e dia cesnssresssssnssseass N1
t. current message

see under message

t. syncronisation

see under

syncronization

temporary port

see under port

tightly coupled.ecceeeeeeeeescssconossessasaanaases 4.2, 4,6,2.9

user RT see under real-time

WACK see Wait Acknowledge
Wait Acknowledge (WACK)..i:ieeeeeoooeoeeooensonnnnosness
wait state...eiiiuienneeneeeceeoononssccosctsaneconcnnns

whole-message-read flag cvesecesacesscessasss 4.3.2.2, 4,

2.5.1
2.5.2

3.2-6

XMSG basefield

see under bhasefield

XT-bloCK.eseteaeoeeeneonnsonsnsss 4.2.1, 4,5,9, 4.5,10, 4.6.1.5

ND-60.134.02

xxxxxxx*x SENDUS YOUR COMMENTS!!! % % % % % % % % *

? : KP Are you frustrated because of unclear information

< 9 b in this manual? Do you have trouble finding

things? Why don’t you join the Reader’s Club and

’ send us a note? You will receive a membership

/? 9 card - and an answer to your comments.

» e

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless information

Do you think we could improve the manual by rearranging the

contents? You could also tell us if you like the manual!! /

% %% % % % % + + HELP YOURSELF BY HELPING US!! # * % % % % % % &

Manual name: SINTRAN Iif Communication Guide Manual number; ND—60.134.02

What problems do you have? (use extra pages if needed)

 Do you have suggesticns for improving this manual?

Y our name: Date:

Company: Position:

Address:

What are you using this manual for?

Send to: Norsk Data A.S.

Documentation Department

P.O. Box 4. Lindeberg Gard ' ——)

Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

