

- NORD-10/100

PASCAL Compiler

Tlser’s Gnide

NORSK DATA AS

NORD-10/100

PASCAL Compiler

User’s Guide

NOTICE

The information in this document is subject to change without notice. Norsk Data

A.S assumes no responsibility for any errors that may appear in this document.

Norsk Data A.S assumes no responsibility for the use or reliability of its software

on aquipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not

be photocopied, reproduced or translated without the prior consent of Norsk Data

A.S.

Copyright @ 1980 by Norsk Data A.S.

PRINTING RECORD

rinting Notes

12/80 Version 03

NORD-10/100 PASCAL Compiler — User’s Guide

Publication No. ND-60.124.03

NORSK DATA A.S
P.O. Box 4, Lindeberg gard
Oslo 10, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record should be replaced by the new one.

New versions and revisions are announced in the ND Bulletin and can be ordered
as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department

Norsk Data A.S

P.0. Box 4, Lindeberg gard

Oslo 10

Contents

1. INTRODUCTION

l.l.

1.2.

1.3.

The Pascal compiler

The main machine dependent characteristics

The main extensions

2. THE SOURCE PROGRAM

2.1.

2.2.

2.3.

2.4.

2.5.

2.6'

Identifiers

Keywords

Standard identifiers

Campiler commands
2.4.1. Conditional campilation

2.4.2. Multiple source files

2.4.3. Options
2.4.4. Program listing
2.4.5. Special symbols

g ensions in NORD-10/100 Pascal

Variable initialization

Standard procedures and functions

External procedures and functions

External Pascal routines

External FORTRAN routines

Generic functions

Miscellaneous extensions g
u
m
u
o
t
u
n
o
n
u
u
n

.

~
S
J
o
u
n
b
d
w
i
h
H
e

.

D
D

= = 2 2 entation dependent features

1. Structured types

.2. Packed structures

3. Strings and character arrays

4, Formal procedures N
N

N

.

3. PROGRAM CCMPILATION

3.1. HELP

3.2. COMPILE

ND-60.124.03

10
11
13
13

13
14
14
15
17
18
18
19

19
19
19
19
20

21

21

21

5.

vi

3.3. CLEAR

3.4. OPTIONS

3.5. SET and RESET

3.6. EXIT

3.7. LINESPP

3.8. VALUE

3.9. Program compilation example

PROGRAM LOADING AND EXBECUTION

4.1. Program loading

4.2, Run—-time errors

INPUT/CUTPUT

5.1. File variables
5.1.1. The type TEXT
5.1.2. Standard files

5.1.3. Packed files
5.1.4. Non-TEXT files

5.2. Association to external files

5.2.1. CONNECT
5.2.2. DISOONNECT

5.2.3. Program heading parameters

5.3. Terminal I/O

5.4. Random access I/O

5.5. WRITEEOF

IMPLEMENTATION DESCRIPTION

6.1. Memory layout

6.2. Loader symbols

6.3. Procedure and function calls

ND-60.124.03

23

23

23

23

23

23

24

25

25

25

27

27
27
28
28
29

29
29
30
30

31

32

32

33

33

35

36

vii

6.4. Input/Output

7. REAL~-TIME PROGRAMS

8. OVERLAY PROGRAMS

8.1. Modules

8.2. Compilation of modules

8.3. Loading overlay programs

9. SAMPLE Pascal PROGRAM

APPENDIX B Run-time error messages

37

38

39

39

39

42

44

48

NORD-10/100 Pascal Compiler

PREFACE

The product

This manual describes the NORD-10/100 Pascal compiler. The compiler is
delivered in two versions, depending on the floating point hardware of
the computer the compiler is run on, either 32-bit or 48-bit. The
manual applies to both versions.

The reader

The reader is assumed to know the Pascal language, as this manual
describes only the extensions and differences between NORD-10/100
Pascal and Standard Pascal as described in Jensen and Wirth: Pascal
User manual and Report.

The reader is also expected to have sufficient experience with Sintran-
III to be able to enter a program through an editor, and to load and
execute the campiled program.

The manual

The manual is organized as a reference manual, with the information
ordered according to function. Only differences between Standard Pascal
and NORD-10/100 Pascal are described. For canplete examples of Pascal
programs, refer to chapters 8 and 9. Compiler error messages and run
time error messages are listed in Appendix A and B, respectively.

ND-60.124.03

NORD-10/100 Pascal Campiler

INTRODUCTION

1. INTRODUCTION

The Pascal language was designed in 1971 by Niklaus Wirth. The language
design had two principal aims. The first was to make available a
language suitable to teach programming as a systematic discipline, the
second was to develop implementations of this language which are both
reliable and efficient on presently available computers.

The success of this language design proves tha. Pascal is not "yet

another language". Today Pascal has been implemented on almost all
computers commonly in use, ranging fram the very large camputers to
mini- and micro-computers. It is the first language which shows ability
to bite into damains hitherto reserved for FORTRAN and BASIC. This
ability is not only local, but is apparent on a world-wide scale.

This manual contains the information necessary to compile and execute
Pascal programs on the NORD-10/100. It is assumed that the reader is
familiar with the Pascal language. The uninitiated reader is referred
to the Pascal Report or to an appropriate textbook.

Changes or additions relative to the previous version of this manual

are indicated by a vertical bar in the margin.

The present chapter gives a general description of the NORD-10/100

Pascal system. The specific information necessary for the campilation

and execution of Pascal programs is found mainly in chapters 2 to 4.

Most of the chapters 5, 6 and 7 describe features for the more advanced

use of NORD-10/100 Pascal.

NORD-10/100 Pascal has been implemented according to the definition in

"Niklaus Wirth: The Programming Language Pascal. Revised Report.

(1973)". Hereafter this language definition will be referred to as

Standard Pascal.

NORD-10/100 Pascal is a superset of Standard Pascal, and has several
extensions in relation to it. Especially, extensions have been

introduced to make it convenient to compile and run Pascal programs in

a time-sharing enviromment. There are also facilities for the

generation and execution of real-time Pascal programs. Explicit

extensions of the Standard Pascal language will be noted as such in

this manual. The extensions should be avoided if program exportation is

planned or probable.

1l.1. The Pascal compiler

The NORD-10/100 Pascal compiler was developed fram the Pascal TRUNK

compiler designed at ETH, Zurich. The compiler produces BRF code,

which can be loaded by the Nord Relocating Loader and then executed. A

program may refer to separately ocampiled procedures and functions

written in Pascal, FORTRAN, NPL or assembly language.

ND-60.124.03

6 NORD-10/100 Pascal Compiler

INTRODUCTION

1.2. The main machine dependent characteristics

A NORD-10/100 Pascal program may be run either as a one-bank or a two-

bank program. As a one~bank program, all program and data reside within

64K of memory. As a two-bank program, the program may occupy up to 64K

in the instruction bank, and the data occupy up to 64K in the data

bank. One- or two-bank execution may be selected at campile-time with

the B option, or at load time with the DEFINE NOBKS command.

Large program systems may be overlaid using the standard NRL overlaying

mechanism.

The NORD-10/100 Pascal system has been constructed to run on NORD-

10/100 computers with either 32-bit or 48-bit floating point

arithmetic. Cross compilation is possible by using the compiler R

option.

A variable of type set will by default occupy 8 words, i.e. a set can

have up to 128 elements. The S option can be used to reduce the number

of words occupied by set variables.

1.3. The main extensions

Variables in the main program can be initialized. There is a convenient

syntax for array initialization.

The procedures OONNECT and DISCONNECT enable a program to associate a

pascal file variable with an external file at run—time. CONNECT has

been implemented such that the actual name of the external file easily

can be entered fram the terminal running the program.

Random access I/O can be performed with the routines GETRAND and

PUTRAND.

ND-60.124.03

NORD-10/100 Pascal Compiler 7

THE SOURCE PROGRAM

2. THE SOURCE PROGRAM

A Pascal source file must contain either

1) A full Pascal program, Or

2) One or more procedures, functions or modules.

The source language must be Standard Pascal, with . he restrictions and

possible extensions described in this manual.

A full Pascal program will compile into an executable object program,

while procedures, functions and modules will compile into code that may

be loaded together with a full program. A source file of the latter

kind must be terminated with the character "." (period).

The source file character set must be ASCII, where the lines are

separated by the Carriage Return character, and optionally, the Line

Feed character. Files produced by QED are acceptable as input to the

compiler.

A source input line must not exceed 100 characters. The Pascal

compiler will indicate a longer line as an error.

ND-60.124.03

8 NORD-10/100 Pascal Campiler
THE SOURCE PROGRAM

2.1. Identifiers

An identifier may be of any length, but only the first 8 characters are

significant. Within an identifier, lower and upper case letters will

be treated as distinct, unless the U option is on (see section 2.4.3).

2.2. Keywords

The following are Pascal keywords, and cannot be used as identifiers:

Standard Pascal keywords:

and array begin case
const div do downto
else end file for
function goto if in

label ~ mod not of
or packed procedure program
record repeat set then

to type until var
while with

Extra keywords in NORD-10/100 Pascal:

value module

A keyword may be written with lower and/or upper case characters.

However, within a keyword all lower case characters will be converted

to upper case. Thus,

end END End

are all representations of the keyword end.

2.3. Standard identifiers

Following is a list of the standard identifiers in NORD-10/100 Pascal.

A standard identifier may be thought of as having been defined in a

block enclosing the program, and as such, may be redefined. Normally,

such redefinition should be avoided, since it easily may lead to

confusion.

ND-60.124.03

NORD-10/100 Pascal Campiler 9

THE SOURCE PROGRAM

standard identifiers in Standard Pascal:

ABS ARCTAN BOOLEAN CHAR
CHR QoS DISPOSE EOLN
EOF EXP FALSE GET
INPUT INTEGER IN MAXINT
NEW NIL OobD ORD
OUTPUT PACK PAGE PRED
PUT READ READLN REAL
RESET REWRITE ROUND SIN

SQR SQORT SucC TEXT
TRUE TRUNC UNPACK WRITE

WRITELN

Extra standard identifiers in NORD-10/100 Pascal:

CONNECT COSH DISCONNECT GETRAND
HALT MARK MAXREAL POWER
PUTRAND RELEASE SINH WRITEEOF

All standard identifiers are written with upper case letters.

2.4. Compiler commands

The source program text may contain commands to the campiler. A command

is signalled by the character "$" in position one in a source line. The

rest of such a line is treated as a camand to the compiler, and no

part of it will be included in the proper program text.

The available compiler commands are

$SET
$RESET
$IFTRUE
SIFFALSE
SENDIF
SOPTIONS
SINCLUDE
SEOF
SLINESPP
SPAGE

A compiler comnand may be abbreviated to its shortest unambiguous form.

2.4.1. Conditional compilation

The NORD-10/100 Pascal compiler may be instructed to skip specified

parts of the source text. This may be useful in order to generate

different versions of a program fram the same source file.

ND-60.124.03

10 NORD-10/100 Pascal Compiler
THE SOURCE PROGRAM

The skipping of source text is steered by flags, which are Boolean
variables. The flag identifiers are distinct fram the program
identifiers, therefore no name oonflicts between flag and program

identifiers can occur. A flag identifier can have up to 8 significant
characters. No distinction is made between upper and lower case
characters.

A flag is given the value TRUE by the command

SSET <flag>

A flag is given the value FALSE by the command

SRESET <flag>

The skipping of source text is effected by the cammands

SIFTRUE, SIFFALSE, and $ENDIF

The command

SIFTRUE <flag>

has the effect:

If <flag> has the value TRUUE: No effect.

If <flag> has the value FALSE:
Skip source text up to an $ENDIF <flag> with the same flag name.

The command

SIFFALSE <flag>

has the effect:

If <flag> has the value TRUE:
Skip source text up to an SENDIF <flag> with the same flag name.

If <flag> has the value FAISE: No effect.

If an SIFTRUE or $IFFALSE command has a flag parameter that was not
previously defined, it will become defined and given the value FALSE.

Note that when source text is skipped, compiler commands (such as $SET,

SIFTRUE etc.) will also be skipped.

2.4.2. Multiple source files

The SINCLUDE-command facilitates insertion in a program of source text

from an alternate file. This is useful when a set of programs (within
the same project, say) use a cammon set of type, variable, and
procedure definitions. Also, "standard" data structures and procedures
for handling problems within a specific problem area, can easily be

incorporated in a program with the $INCLUDE-cammand.

ND-60.124.03

NORD-10/100 Pascal Compiler 11

THE SOURCE PROGRAM

The INCLUDE file may be divided into sections by the $EOF-cammand.

The command

SINCLUDE <filename>

has the effect of switching the input stream fram the present input

file to <filename>. When end of file or $EOF on <filename> is reached,

the input stream will be switched back to the previous input file. The

effect is to insert the text in <filename> at the place where the

$INCLUDE-command occurs.

The command

SINCLUDE

has the effect that the next section of the most recent INCLUDE file is

inserted in the program.

SINCLUDE-commands may be nested to a maximum depth of 4.

2.4.3. tions

There is a set of options that affect the output produced by the Pascal

compiler. Each option has a one-letter name.

Some of the options are associated with counters. A counter value

greater than zero means that the option is on, a value equal to or less

than zero means that the option is off. The remaining options are

associated with specific values.

A counter option is increased or decreased by one by writing the option

name followed by "+" or "-" respectively.

The available options are (counter options are indicated by the

character "*"):

Bn Specify n-bank execution of program (n=1 or 2). Default value is

n=1.

Ic Allow c as a legal character in an identifier. ¢ must be in the
Set [l!l'llllll#ill%l'l?l’l I'lll,l\ll.

L* Generate listing. Default value is 1 (on).

M* List generated object code (MAC). Default value is 0 (off).

P* Program code dump. Default value is U (off). This option produces

output which enables a closer inspection of the code generated by

the compiler. This is very useful when tracing a possible error

in the Pascal system. Therefore, whenever there is reason to

believe that a failure is caused by erroneous object code, the

user is requested to submit a listing of a P dump campilation

together with the error report.

ND-60.124.03

12

Rn

Sn

U*

X*

7%

NORD-10/100 Pascal Campiler
THE SOURCE PROGRAM

Specify n-word real (n=2 or 3). Default value is 2 on NORDs with

32-bit floating point arithmetic, and 3 on NORDs with 48-bit

arithmetic. A program that is to be cross-compiled, must not

contain real constants.

Specify n-word sets (n=l1,2,...,8). All variables of type set

will then occupy n words, and can have up to 16n elements. The

option can only be used once in a program, and must appear before

any reference to or use of set is made. n=1 will cause in-line

code to be generated for most of the set operations. Default

value is n=8 (up to 128 elements).

Generate code to check array indices, subrange assignments,

pointer values and arithmetic overflow. Turning this option off

will make the object program smaller and faster, but also unsafe.

Default value is 1 (on).

The T option may be switched on and off at any point in the

program, in order to perform run time checks in selected parts of

the program.

Note that the NORD hardware does not facilitate checking of

overflow on floating point arithmetic operations. Therefore,

Pascal can only detect overflow on integer operations. As a

special case, attempted floating division by zero is detected.

Convert lower case characters outside strings to upper case.

Default is 1 (on).

For each procedure, list local variables in alphabetical order,

with their respective relative addresses and the number of times

each variable is referenced. Default value is 0 (off).

When on, the loader symbols generated as entry point names for

procedures/functions on the outermost level of a main program or

a separately compiled file will be the names given by the

programmer. If the option is off, anonymous entry point names

will be generated for these routines (cfr. section 6.2). Default

value is 1 (on).

Initialize all variables to zero. Default value is 0 (off).

Options may be set within a comment in the source program. The first

character within the comment must be "$". Thereafter, option settings

separated by "," may follow. Options may also be set following the

SOPTIONS compiler command.

Examples:

(*$M+,S3,T-*) means:

M+ List object code.
S3 Sets will occupy 3 words (up to 48 elements) .

T- Do not generate testing instructions.

ND-60.124.03

NORD-10/100 Pascal Compiler 13

THE SOURCE PROGRAM

SOPT Z+,U- means:

7+ Initialize all variables to zero.

Do not convert lower case characters to upper case. a |

2.4.4. Program listing

The command

SLINESPP n

tells the Pascal compiler to print the program listing with n lines per

page.

The command

SPAGE

gives new page in the program listing.

2.4.5. Special symbols

Some of the special symbols in Standard Pascal have one or more

alternate representations in NORD-10/100 Pascal:

Standard Pascal NORD-10/100 Pascal

{ {or (*
} } or *)
[[or (.
]] or .)
T Tore

and and or &
not not or ~

The ~ symbol may have various external representations on different

terminals and printers.

2.5. Extensions in NORD-10/100 Pascal

This section describes most extensions in NORD-10/100 Pascal. Refer to

chapter 5 for I/0O extensions. Real-time programs and overlay programs

are described in chapters 7 and 8, respectively.

ND-60.124.03

14 NORD-10/100 Pascal Compiler
THE SOURCE PROGRAM

2.5.1. Variable initialization

Scalar and array variables in the main program may be initialized.

Initialization is signalled by the keyword value, and must appear after
the var-declarations and before the first procedure or function
declaration, or main program begin.

Records, sets and pointers may not be initialized.

The syntax for initialization is:

<variableinit>::= value {<initialization>;}*
<initialization>::= <variable> = <val>
<val>::= <constant> | (<valuelist>)
<valuelist>::= <aval> { , <aval>}*
<aval>::= <constant> | <count> * <constant>
<count>::= <integer constant>

Examples:

value

X = 2.55;
I =19;
TABLE = (11312*77—1111*0) 7

NAME = ('PASCAL ');

Since a string has the type array of CHAR, a string constant must be

enclosed in parentheses as shown in the last example.

2.5.2. Standard procedures and functions

SINH and COSH

These real functions calculate the arithmetic functions sinh and cosh

respectively.

POWER

POWER is a real function with two parameters x and y which calculates

the function xly. When y is an integer, x}y is (in principle)
calculated by repeated multiplication. When y is real, xly is

calculated by the formula xTy = eTy In(x). Thus, POWER(-1.0,2.0) will

give a runtime error, while POWER(-1.0,2) will give the correct result

1.0.

ND-60.124.03

NORD-10/100 Pascal Compiler 15

THE SOURCE PROGRAM

HALT

HALT is a procedure which takes a string parameter. HALT will write

this string on the terminal and abort the program.

MARK and RELEASE

MARK and RELEASE provide an alternative to DISPOSE for the deallocation

of heap space. In applications where heap space is allocated and

deallocated in a stack fashion, the use of MARK and RELEASE is more

efficient, and may be more convenient, than the use of DISPOSE.

Both procedures take a pointer variable as a parameter. The call

MARK (<ptr>) will assign the address of the current heap top to <ptr>.

The call RELFASE (<ptr>) will deallocate everything on the heap which is

beyond the value of <ptr>.

A program which calls DISPOSE may not call MARK or RELEASE.

2.5.3. External procedures and functions

The Pascal library contains a set of external procedures and functions.

To use one of these, the procedure or function must be declared as

external within the program.

An installation may choose to have a system file containing external

declarations for these external procedures and functions. This file may

then be included in a program with the $INCLUDE compiler command.

TUSED

External declaration:

function TUSED: REAL; extern;

TUSED gives the elapsed CPU time in seconds.

TIME and DATE

External declarations:

procedure TIME(var hour, min, sec: INTHBGER); extern;

procedure DATE(var year, month, day: INTEGER); extern;

TIME and DATE give the current time and date respectively.

ND-60.124.03

16 NORD-10/100 Pascal Compiler
THE SOURCE PROGRAM

BECHCM

External declaration:

procedure ECHOM (echamode: INTEGER) ; extern;

Executes MON 3 with echamode in the A register. This will define the

echo mode for the terminal as specified in the Sintran manual.

BRKM

External declaration:

procedure BRKM (breakmode: INTEGER) ; extern;

Executes MON 4 with breakmode in the A register. This will define the

break mode for the terminal as specified in the Sintran manual.

ERMSG

External declaration:

procedure ERMSG(errorno: INTEGER); extern;

Executes MON 64 with errorno in the A register. This will write the

Sintran error message corresponding to the given error number to the

terminal.

HOLD

External declaration:

procedure HOLD(time: REAL); extern;

Suspends execution of the program in <time> seconds. <time> is accurate

to 20 milliseconds.

VERSN

External declaration:

procedure VERSN(var year, month, day: INTEGER); extern;

Gives the date when the executing program was compiled.

RANDCM

External declaration:

function RANDOM (var X: REAL): REAL; extern;

This function gives a uniformly distributed pseudo randam number in the

interval <0,1>. Each new value is calculated from the value of the

parameter. This new value is also assigned to the parameter variable.

Thus, successive calls on RANDOM with the same variable as a parameter,

produces a uniformly distributed pseudo random number stream.

ND-60.124.03

NORD~-10/100 Pascal Campiler 17

THE SOURCE PROGRAM

NOBANKS

External declaration:

function NOBANKS: INTEGER; extern;

Gives the number of banks (1 or 2) used by the running program.

RUNMODE

External declaration:

function RUNMODE: INTBEGER; extern;

Gives the execution mode of the running program:

0 - interactive

1 - batch

2 - mode

3 - real-time

LUNIT

External declaration:

function LUNIT(var f: <filetype>): INTEGER; extern;

Gives the logical unit number of the (open) file f.

2.5.4. External Pascal routines

The compiler accepts a source file containing procedure and function

declarations only. The file must be terminated with a dot.

The generated BRF file may be loaded with any Pascal main program which

contains extern declarations of one or more of the Pascal routines.

Only those routines which are actually referred, are loaded (each

external Pascal routine contains a LIBR <entrypoint> loader directive).

External routines may use extern declarations to get access to routines

on the outermost level of the main program, provided the main program

was campiled with the X option on.

There is no check of the correspondence between the argument list of

the extern declaration and of the separately compiled procedure.

A file of Pascal routines may be headed by constant, type and var

definitions. The var definitions, if present, will overlap the

variables of the main program. These definitions may be used in

parameter specifications, or within the routines. The user is warned

that Pascal does not check that the definitions are consistent with

ND-60.124.03

18 NORD-10/100 Pascal Campiler
THE SOURCE PROGRAM

corresponding definitions in the main program. It is therefore strongly

recammended to use the S$INCIUDE facility to incorporate global

definitions in an external program module.

2.5.5. External FORTRAN routines

Separately compiled FORTRAN subroutines may be called from a Pascal

program. A FORTRAN routine must be declared in the Pascal program with

a procedure or function heading, and a body consisting of the word

"FORTRAN" . Example:

procedure ROUTINE (var X, y: REAL); FORTRAN;

Parameters of any type and kind, except Pascal procedure or function

names, may be transmitted to the FORTRAN routine; however, no check is

made that the parameters are consistent with the formal parameters of

the FORTRAN routine. Parameters which are specified as var, or which

occupy more than 8 words, are transmitted by reference. Value

parameters occupying 8 words or less are transmitted by value.

FORTRAN routines may only be called from one-bank Pascal programs.

when loading modules for a mix of Pascal and FORTRAN programs, the

following order must be observed:

1) Pascal main program
2) Pascal and FORTRAN external routines

3) FORTRAN library
4) Pascal library

2.5.6. Generic functions

For each scalar type T there is a function T(n) which converts the

integer n to the value of type T with ordinal number n.

Example:

type
Season = (Winter,Spring,Summer ,Autumn) ;

var
S: Season;

s 3= Season(2);

s now has the value Summer.

ND-60.124.03

NORD-10/100 Pascal Campiler 19
THE SOURCE PROGRAM

2.5.7. Miscellaneous extensions

The compiler accepts octal constants. The syntax for an octal constant

is

{a}*aB

where d is an octal digit.

MAXREAL, is a standard real constant with a value equal to the largest
possible floating point value (approximately 1014930 and 10T76 for 48-
and 32-bit floating point numbers, respectively).

2.6. Implementation dependent features

2.6.1. Structured types

Variables of structured types (records and arrays) may be assigned to
and compared, provided the variable type is not packed or contain
packed variables. Variables of type packed array [...] of CHAR are
excepted from this restriction.

2.6.2. Packed structures

Record and array types may be specified as packed. Each single variable
will then occupy a minimum number of bits, and several single variables
may be packed into one computer word. No single variable will cross
word boundaries. Also, a record or an array will always start at a new
word boundary.

The use of packed structures will save data space, but may increase
execution time significantly.

A variable within a packed structure cannot be used as a var parameter
to a procedure.

See chapter 5 for information on packed files.

2.6.3. Strings and character arrays

In Standard Pascal, a string oconstant with n characters is
automatically given the type packed array [l..n] of CHAR. This inhibits
assignment of, or parameter substitution with, a string to a variable
or formal of type array [...] of CHAR where the lower bound is
different from 1. In NORD-10/100 Pascal such assignment or substitution

ND-60.124.03

20 NORD-10/100 Pascal Compiler
THE SOURCE PROGRAM

will be legal provided the length of the string is equal to the length

of the array.

2.6.4. Formal procedures

A formal procedure may only have value parameters. On entry to a formal

procedure, the actual parameters are checked only to see if they occupy

the same number of words as the formal parameters. The user is warned

that the use of formal procedures with pointer parameters is unsafe.

ND-60.124.03

NORD-10/100 Pascal Compiler 21

PROGRAM COMPILATION

3. PROGRAM CCOMPILATION

The Pascal compiler is invoked by the cammand

@PASCAL v

Initially, the compiler enters into a command processing mode, to

enable the user to specify source, list and code files, options etc.

The command processor prompts the user to give a Lew command with the

character "$".

The available commands are:

HELP
COMPILE
CLEAR
OPTIONS
SET
RESET
VALUE
LINESPP
EXIT

A camand may be abbreviated to its shortest unambiguous form.

Note that the SET, RESET, LINESPP, and OPTIONS commands also are

available as compiler commands (cfr. section 2.4).

3.1. HELP

The HELP cammand 1lists the available commands on the user's terminal

(or batch output file). The list includes both the command processor

commands and the compiler commands.

3.2. COMPILE

The COMPILE command orders Pascal to compile the specified source file.

The present setting of flags and options will be used during the

compilation.

The syntax of the CQ™ILE command is

OOMPILE <source file>, <list file>, <~ode file>

The parameter list may be omitted, in which case the command processor

will ask the user to specify the files one by one.

The parameters to COMPILE may either be the actual file names, or the

logical units (octal) of open files.

ND-60.124.03

22 NORD-10/100 Pascal Caompiler
PROGRAM COMPILATION

<source file> contains the program to be compiled.

<list file> is the file on which the listing of the compiled program

will be written. The <list file> parameter may be amitted, in which

case no listing will be generated.

The listing contains:

in column 1: Source line number (decimal).

in column 2: Relative program and variable addresses (octal).

in column 3: A numbering of the begin-end, repeat-until,

case-end, and if-else pairs in the program, to

indicate the nesting structure of the program. Also,

the declaration level for each procedure and function

is indicated.

in column 4: The source program.

The 1listing is divided into pages with a heading on each page

containing: version of compiler, date and time of compilation, and

page number.

The listing will indicate a language syntax error at the exact spot

where it was discovered, together with an error number. If a part

of the source text was skipped as a result of the error, the part

that was skipped will be indicated by a line containing the text

**GKIP* at the left, and hyphens under the skipped text. Lines

containing syntax errors will in addition be written on the

terminal.

At the end of the 1listing a list of the error numbers and an

explanatory text for each error will appear.

A list of all compiler error messages can be found in appendix A.

<code file> is the file on which the BRF output will be written. The

<code file> parameter may be amitted, in which case no object code

will be generated.

In a second or following COMPILE command, only <source file> need be

specified. The previous <list file> and <code file> will be used if

they were specified in a previous COMPILE command. If a new <list file>

or <code file> is specified, the previous file will be closed, and the

new file opened.

Be aware that option and flag values may be affected by a compilation,

and thus may influence the result of a succeeding compilation. Use the

CLEAR command to bring the processor back to its initial state.

ND-60.124.03

NORD-10/100 Pascal Compiler 23
PROGRAM COMPILATION

3.3. CLEAR

The CLEAR command brings the command processor back to its initial

state. The following actions are taken by CLEAR:

Set all options to their default values.

Delete all flags.
Close <list file> and <code file>.

3.4. OPTIONS

The OPTIONS command is used to set compiler options. The command and

the options are described in section 2.4.3.

3.5. SET and RESET

The SET and RESET commands set a flag to TRUE and FAISE, respectively.
These commands, and the use and effect of flags are described in
section 2.4.1.

3.6. EXIT

The EXIT command closes all files and returns control to the operating

system.

3.7. LINESPP

The LINESPP cammand is described in section 2.4.4.

3.8. VALUE

The command

SVALUE OPTIONS

lists the current value of all options.

The command

SVALUE FLAGS

lists the current value of all flags.

ND-60.124.03

24 NORD-10/100 Pascal Compiler
PROGRAM COMPILATION

3.9. Program compilation example

Following is an example showing how a compilation of a program is

performed. User input is underlined.

Terminal input/output Camments

@PASCAL Call Pascal campiler

PASCAL/NORD-10/100 VERSION F 80-11-04 Identifying text

SOPTION B2,T- Campile for 2-bank execution and

suppress generation of test

instructions.

$SET PARIS Generate "PARIS" version of
program. (Assumes source file

contains $IFTRUE and $IFFALSE

tests on flag with name PARIS.)

SCOMPILE Compile

Source f£ile=MYPROG Source is MYPROG

List file=LINE-PRINTER Listing to line printer

Code file=MYPROGCODE BRF code goes to MYPROGCODE

NO ERRORS Message from compiler

24.32 SEOONDS OOMPILATION TIME

SEXIT BExit

@ Control to SINTRAN

ND-60.124.03

NORD-10/100 Pascal Compiler 25
PROGRAM LOADING AND EXECUTION

4. PROGRAM LOADING AND EXECUTION

4.1. Program loading

A compiled NORD-10/100 Pascal program must be loaded by the NRL loader
before it can be executed. The reader should const.t the NRL manual for
details concerning the loader and the loading process. Here we will
just give an example of how a Pascal program is loaded and executed:

Terminal input/output Caomments

@NRL Call loader
RELOCATING LOADER LDR-1935G Identifying text
*[, MYPROGCODE PASCAL~-LIB Load code file and Pascal library
FREE:027433-162504 Free memory area
*RUN Execute program
@ Execution finished

When loading files for a Pascal execution, the main program must always
be loaded first, and the Pascal 1library last. This means that all
external Pascal, FORTRAN or assembly routines and other libraries (i.e.
FINLIBR) must be loaded between the main program and the Pascal
library.

The NRL command PROGRAM-FILE should be used with great care due to
limitiations in the Sintran RECOVER command. Unless special precautions
are taken, a "hole" may remain in the area between code and data. If
there are pages that have never been loaded to (and therefore never
assigned to the file), a Sintran error message: NO SUCH PAGE will be
returned when the program is executed.

Further information on how a running Pascal program utilizes memory,
and how to make an absolute program, can be found in chapter 6.

4.2, Run-time errors

If a program attempts to do an illegal operation, the program will
abort with an appropriate error message. If the error was an illegal
I/0 operation, the name of the file variable involved will be part of
the message. A 1list of all run-time error messages can be found in
appendix B.

The error message will indicate at whici. absolute address (octal) the
error occurred, and, if the T option was on during compilation, which
line number in the source program this address corresponds to.

ND-60.124.03

26 NORD-10/100 Pascal Campiler
PROGRAM LOADING AND EXECUTION

Be aware of the following pitfalls regarding the source program line

number s

1 If the T option was turned off and on one or more times during the
compilation, the source line number may be wrong.

2 If the program calls separately compiled procedures, the source

line number may be that of an external procedure, if that procedure

was compiled with the T option on.

3 If an error occurs within an external FORTRAN subroutine or

function, the Pascal system will not be able to give any

information about the error.

If there is any doubt regarding the source line number given in cases 1l

and 2 above, you should correlate the octal address in the error

message with the octal progam addresses in the listing by the help of a

loader map. The loader map can be acquired by the NRL *ENTRIES-DEFINED

camand.

If the program aborts with the error message STACK-HEAP OVERFLOW, then

your program needs more space for data. If the program was compiled

with the Bl option, you may reload and run the program in two-bank mode

(cfr. section 6.1).

A Pascal main program may contain the declaration of a procedure

procedure FAULT(erno, lino, objad: INTEGER);

begin

end;

The effect is that when a run-time error occurs, FAULT will be called.

The error number, and source line number and object code address of the

error are the actual parameters. The procedure may contain any legal

Pascal code - for example, if the error is considered non-fatal, a jump

to a main program label. If the procedure exits through its end, the

normal error processing will be done.

The error mumbers are found in appendix B.

It is the programmer's responsibility that the declaration of FAULT

follows the rules above, and that a program does not continue execution

after a fatal error has occurred.

ND-60.124.03

NORD-10/100 Pascal Campiler 27

INPUT/OUTPUT

5. INPUT/OUTPUT

Input/output is that part of a programming language which is most

operating system dependent. Several design and implementation decisions
therefore have to be taken by any implementor of Pascal. The reader is
warned that some of the features described in this chapter may not be

implemented, or may work differently, in other Pascal implementations.

5.1. File variables

File types may be used as any other type in a Pascal program, with the

following limitations:

1) file of . . . file of . . . is not allowed.

2) File variables, or structures containing file variables may not be

generated with the NEW constructor.

5.1.1. The type TEXT

There is a standard file type TEXT. A file of type TEXT is assumed to

contain a sequential text, subdivided into lines of maximum 136

characters each.

Note: In NORD-10/100 Pascal, the type TEXT is not equivalent to the

type packed file of CHAR. The latter type will be interpreted as

a sequence of characters where no line subdivision is visible.

The following procedures and functions may be used on files of type

TEXT:

EOLN READ READIN WRITE WRITELN

Oon input, the CR character (value 15 octal) will be taken as a line

separator. An IF character (value 12 octal) following CR will be

ignored. According to Standard Pascal, EOLN(<file>) will become TRUE

when a READ(<file>.c) reads the last character before the CR. When

BOIN (<file>) is TRUE, the next READ(<file>,c) will deliver the space

character (value 40 octal).

On output, WRITEIN will write the two characters CR and LF.

The editing specifications in READ and WRITE are extended to enable I/O

of the octal representation of integers. In READ, an integer parameter

may be followed by a :n specification, while in WRITE, an integer

parameter may have a :n specification after the :<field width>

ND-60.124.03

28 NORD-10/100 Pascal Compiler
INPUT/OUTPUT

specification. In both cases, if n has the value 8, the octal

representation of the integer will be read or written. If n is not

equal to 8, decimal conversion will be performed.

The following table gives the number of character positions used in the

output file when a value needing a minimum of p characters for its

representation is written. In the table, w is the value of <field

width>. A <field width> of value zero gives the default field.

w=0 O<w<p p <=w (1)

integer 6 p W
real 16 (2) 16(2) ,p(3) W
Boolean 5 w (4) W
character 1 W w
string P w (4) w

(1) Blank fill to the left
(2) Floating point representation
(3) Fixed point representation

(4) The initial w characters of the string

("FALSE' and 'TRUE' when Boolean)

5.1.2. Standard files

There are two standard files, INPUT and OUTPUT, both of type TEXT.

These files may therefore be used without declaration.

5.1.3. Packed files

In a GET or PUT-operation on a non-packed file, a whole number of 16—

bit words will always be transferred.

In the declaration

packed file of T,

the key-word packed will have an effect only if values of type T occupy

8 bits or less. In these cases, PUT and GET will operate as follows:

If the values of type T occupy 6,7 or 8 bits:

Transfer one value.

If the values of type T occupy 1, 2, 3, 4 or 5 bits:

Pack (unpack) the maximum number of values in one 16-bit word.

Transfer a word when it is full (PUT) or empty (GET).

Be aware that on reading a file of this kind, it may be the case that

BOF is found too late, if the last word was not completely filled when

the file was written.

ND-60.124.03

NORD-10/100 Pascal Campiler 29
INPUT/OUTPUT

5.1.4. Non-TEXT files

When £ is not of type TEXT,

READ(f,x)

is equivalent to

begin x := £f; get(f) end

and

WRITE (£, x)

is equivalent to

begin £ := x; put(£) end_

5.2. Association to external files

The procedures CONNECT and DISOONNECT have been implemented in NORD- 10/100 Pascal to enable run-time association between a file variable and an external file.

5.2.1. CONNECT

The CONNECT procedure can have up to 5 parameters:

OONNECT (<file>,<filename>, <type>,<access> s<status>)

<file> is the variable name of the file.

<filename> is either an integer giving the logical unit number of
an open file, or a string (or an array of CHAR) containing
the external name of the file.

<type> is a string giving the default file type.

<access> is a string giving the file access mode (W, R, WX, RX, RW,
WA, WC or RT).

<status> is an integer variable whe e status for the CONNECT
operation will be 1left. If the CON.ECT was successful,
<status> will be equal to =zero; if an error occurred,
<status> will be equal to the SINTRAN error number.

The <file> parameter is mandatory. One or more of the remaining
parameters may be omitted, either by leaving the parameter position
empty, or by prematurely closing the parameter list with the right

ND-60.124.03

30 NORD-10/100 Pascal Compiler
INPUT/OUTPUT

parenthesis.

The effect of amitting one of the parameters <filename>, <type> and

<access> is that Pascal will enquire the user to supply the value fram

the terminal.

The effect of omitting the <status> parameter is: If the CONNECT

operation failed, then write the error message to the terminal. Repeat

the CONNECT operation if the file name was specified from the terminal,

otherwise abort the program.

Remember that RESET or REWRITE must be called before I/O on the file

can be performed.

5.2.2. DISCONNECT

The DISCONNECT procedure has one parameter:

DISOONNECT (<file>)

The external file will be disassociated fram the <file> variable. If a

file name was given when <file> was opened, the external file will be

closed. A <file> opened with a logical unit number will not be closed.

A later CONNECT may associate <file> with another external file.

5.2.3. Program heading parameters

The program heading may have file variable names as parameters. For

each of these file variables the compiler will autamatically generate

some code in the beginning of the main program:

For the file INPUT:

OCONNECT (INPUT,0, 'SYMB' , 'R') ; RESET (INPUT) ;

For the file OUTPUT:

OONNECT (OUTPUT, 1, 'SYMB' , 'W') ; REWRITE (OUTPUT) ;

For other file variables F:

OONNECT (F) ;

The effect is that for every user-defined file variable in the program

heading the user is enquired to supply the actual file name, type and

access mode. The files INPUT and OUTPUT will be associated with the

standard input and output files, i.e. the terminal for interactive

jobs, and the appropriate disk or terminal files for mode and batch

jobs. ‘

For all file names in the program heading, except INPUT and OUTPUT, the

call on RESET or REWRITE must be programmed.

ND-60.124.03

NORD-10/100 Pascal Compiler 31
INPUT/OUTPUT

Since CONNECT and DISOONNECT are not part of Standard Pascal, file
variables in programs that are to be ported should appear in the
program heading, instead of being explicitly opened by calls on
CONNECT .

5.3. Terminal I/0

When the actual external file is the terminal running the program,
certain special actions are taken by the I/0 system.

On input, a RESET will not read the first character into the file
window, as specified in Standard Pascal. Instead, RESET will put the
space character into the window, and set EOLN to TRUE. Thus, in the
input from the terminal, an extra initial space will appear. The reason
for this modification is to permit output to the terminal prior to the
first input without program hang-up.

In a READ operation fram the terminal, a number syntax error will not
result in a program abortion. Instead, the message

ILLEGAL NUMBER SYNTAX

will be written to the terminal, and the READ performed anew, such that
the correct number can be retyped.

An input TEXT file associated with the terminal will be given logical
unit number zero. This enables editing of the terminal input with CTRL
A and CTRL Q.

ND-60.124.03

32 NORD-10/100 Pascal Compiler
INPUT/OUTPUT

5.4. Random access I/0

A file variable may be associated with an external random access file.

Random access I/0 may be done on that file with the procedures PUTRAND

and GETRAND. Each of these procedures has two parameters:

<file> and <block number>

PUTRAND writes the current content of the file window to the given

<block number> on the file. GETRAND reads the block in <block number>

on the file into the file window.

The block size is equal to the number of words occupied by the file

component type. This block size is determined when the file is opened

by a call on CONNECT.

RESET and REWRITE have no effect on randam access files.

A random access file cannot be packed, but may contain packed elements.

5.5. WRITEEQF

WRITEEOF takes a file variable as a parameter. The procedure will write

an end-of-file mark on the file, provided this operation is meaningful

for the kind of medium on which the file resides.

ND-60.124.03

NORD-10/100 Pascal Compiler 33

IMPLEMENTATION DESCRIPTION

6. IMPLEMENTATION DESCRIPTION

This chapter will give some information on how the NORD-10/100 Pascal

system works internally to enable more advanced use of the system. Be

aware that most of the features described in this chapter are very

NORD-10/100 and SINTRAN dependent. Therefore, the reader should not

assume that other Pascal implementations work in the same or a similar

manner. Also, the reader is warned that implementation details may

change in future versions of NORD-10/100 Pascal.

6.1. Memory layout

The following figures show how memory is utilized by a running Pascal

program (including the Pascal compiler itself).

One-bank program

address

0 (LOADER)

 177777 SYS DATA

Two—-bank program

— - o - e

(constants) CONSTANTS

(main data) MAIN DATA
 177777 (sys data) SYS DATA

ND-60.124.03

34 NORD-10/100 Pascal Compiler
IMPLEMENTATION DESCRIPTION

PROGRAM The Pascal program together with the necessary library

routines. '

STACK The memory used by procedures and functions that the program

calls. The stack grows fram low towards high addresses.

HEAP The memory used by data allocated with the NEW constructor.

The heap grows fram high towards low addresses.

CONSTANTS The constants referred to by procedures. For each procedure,

a common block containing such data is allocated within the

CONSTANTS area.

MAIN DATA All variables declared in the main program. This area is a

camon block named C.MAIN.

SYS DATA The variables and constants used by the Pascal library

routines. This area consists of two common blocks named 5CRTL

and 5CRID.

The object program and Pascal library are identical in the one- and

two-bank versions. When running, the system detects the actual

execution mode by sensing bit zero in the STATUS register.

The decision whether to run a program in one-bank or two-bank mode may
be postponed till the time when the program is to be loaded. Before

loading, enter the command

*DEFINE NOBKS n

where n is 1 or 2. This will result in one- or two-bank execution

respectively. A definition of NOBKS takes precedence over the compile-

time B option.

One-bank programs

In a one-bank execution, Pascal will place the stack and heap in the

largest of the two areas

a) address zero to first PROGRAM location
b) last PROGRAM location to first CONSTANTS location

To make maximum space for the stack and heap, one may either do an
image load, or use the NRL SET-LOAD-ADDRESS command to minimize area

b) .

Be aware that the area between the last PROGRAM location and the first

CONSTANTS location will occupy space on the :PROG file. If default load

address is used, the size of the :PROG file will be in excess of 50

pages.

To make a minimal absolute version of a program, use the SET-LOAD-

ADDRESS command to minimize area b).

ND-60.124.03

NORD-10/100 Pascal Compiler 35

IMPLEMENTATION DESCRIPTION

Two-bank programs

A two-bank program is loaded exactly as a one-bank program. Before

execution starts, the CONSTANTS, MAIN DATA, and SYS DATA areas are

moved to the data bank. The data will be located at the same addresses

as they had in the instruction bank.

To make a minimal absolute version of a two-bank program, use the SET-

LOAD-ADDRESS command to minimize the space between the PROGRAM and

CONSTANTS areas.

A two-bank program will usually be slower than a one-bank program due

to the necessary ALTON and ALTOFF monitor calls within the Pascal

library.

Forced allocation of stack and heap

The user may determine where to allocate the stack and heap. This can

be done at load-time by entering the following commands before the

Pascal library is loaded:

*DEFINE STACK <value>

*DEFINE HEAP <value>

The starting addresses for the stack and heap will then be the given

values. It is the user's responsibility that the definitions are

consistent, and that no part of the stack-heap area overlaps the

program or common area. The result of doing one of the definitions and

omitting the other is undefined.

6.2. Loader symbols

The compiler generates 7-letter entry point names. The names found in

the loader map are constructed as follows:

Main entry point: The first 7 letters of the name given by the

programmer in the PROGRAM statement.

Modules regardless of declaration level; procedures and functions on

the outermost level of a main program or a separately compiled file:

The name given by the programmer. Note that the loader uses 7-1letter

names, So that these identifiers ought to be distinct within the 7

first letters. The compiler can be ordered to make the procedure and

function names ancnymous by turning the X option off.

Procedures/functions local to other routines or modules, all procedures

and functions when the X option is off: These have the form nnnndd*

where nnnn are the first four characters of the procedure or function

name. dd are two invented characters, to make entry point names

distinct.

Non~local 1labels: These have the form LABLAd+ where dd are invented

characters.

ND-60.124.03

36 NORD-10/100 Pascal Campiler

IMPLEMENTATION DESCRIPTION

External procedures and functions: The name given by the programmer.

Labelled common areas: These have the form nnnndd& where nnnn are the

first four characters of the procedure or function with which this

camon area is associated. dd are invented characters.

6.3. Procedure and function calls

The following information on how procedure and function calls are

handled by Pascal should enable a user to write simple external

routines in MAC or NPL.

For each procedure or function call, Pascal generates an object on top

of the stack to hold system data, parameters, and data local to the

routine. At the time of entry to the routine, the registers and stack

contain the following data:

X Static Link
A Top of new procedure object relative to B

B Dynamic Link (calling procedure object)

L Return Address

Stack:

(A)+(B) -> system loc
system loc
system loc
function value
parameter (1)
parameter (2)

paéar;leter (n)

In a proper Pascal procedure, the three system locations are used to

contain Static Link, Dynamic Link, and Return Address.

The function value occupies 0 words if the object is a procedure; 1, 2,

or 3 words if the object is a function.

parameter (i) can have the following form:

when var parameter reference to actual
when value parameter k-word value if k<=8

reference to actual if k>8

The routine may use 200 octal stack locations without causing stack-

heap overflow.

ND-60.124.03

NORD-10/100 Pascal Compiler 37

IMPLEMENTATION DESCRIPTION

On exit fram a procedure or function, the following sonditions must be

satisfied:

1) The B-register must hold the same value as it had on entry.

2) For a function, the A~, AD-, or TAD-register must hold the function

value.

3) The exit must be to Return Address (= contents of L-register on

entry) .

6.4. Input/Output

To save I/O execution time, the Pascal system buffers access to

sequential files. This is handled autamatically by Pascal, and requires

no intervention by the user. Pascal allocates n buffers of 256 words

for the buffering. The first n disk files which the program CONNECTS

for sequential I/O will then be accessed via buffers.

By default the number of buffers, n, is equal to 3. To redefine this

number, either to save space, or to access more than 3 files via

buffers, enter the command

*DEFINE NOBUF n

before loading the program. The maximum legal value for n is 10.

ND-60.124.03

38 NORD-10/100 Pascal Coampiler
REAL~TIME PROGRAMS

7. REAL~TIME PROGRAMS

Any Pascal program may be run as a real-time program. This requires no
changes to the BRF code generated by the compiler. Thus, the same code
may be used for both regular and real-time execution.

To load a program for real-time execution, enter the command

*REFER~SYMBOL SRTPM

before the Pascal 1library is loaded. This will have the effect of
selecting library routines adapted to real-time execution. 1In
particular, the following effects should be noted:

1. when a run-time error occurs, the following statements will be

executed:
ERMON (50, <Pascal error number>); (*Cfr. appendix B*)

ERMON (51 ,<source line number>);
RTEXT;

2. No terminal will be connected to the program. Thus, to execute a

CONNECT operation where one or more parameters are missing, unit 1

must be reserved prior to the CONNECT.

The Pascal library is not campletely re-entrant. However, several real-

time programs may share the same (re—entrant) sedgment containing

external procedures and/or the Pascal library, provided the real-time

programs have the same COMMON start address.

The STACK-HEAP area will by default be allocated as for background

programs (cfr. section 6.1). The placement and size of this area may be

determined by the user if some other allocation is desired (cfr.

section 6.1).

For a real-time program, RUNMODE is equal to 3 (cfr. section 2.5.3).

In case the real-time program does not access files, space may be saved

by entering the cammand

*DEFINE-SYMBOL NOBUF 0

before loading the program’ (cfr. section 6.4).

Real-time FORTRAN routines may not be called fraom a Pascal program.

ND-60.124.03

NORD-10/100 Pascal Campiler 39
OVERLAY PROGRAMS

8. OVERLAY PROGRAMS

Large program systems written in Pascal may be run as a set of overlaid
programs. The Pascal overlay system is adapted to the NRL overlay
generation facility. The reader is referred to the NRL manual (version
G) for details concerning the overlaying of programs.

8.1. Modules

A Pascal program system which is to be run in overlay mode will consist
of a set of modules. A Pascal main program is the base, or root,
module. All other modules will be procedures or functions. A procedure
or function will become an overlay module when the key-word module
precedes the procedure/function declaration.

Example: module procedure GARP(var w: world); . . .

Modules may be nested. The maximum number of overlay levels is ten.

Modules may appear either

1) within a main program, or

2) 1in a separately campiled file containing external
modules, procedures and functions.

The modules for a program system may be generated in either way, or by
using a cambination of the two.

A module which calls an external, separately compiled module, must
contain an extern declaration of the latter module.

Example: module procedure MADRID(X,y: SPANIARD); extern;

A module may not be forward declared.

A file containing module declarations may be headed by a copy of the
main program const, type and var definitions. This feature allows for
easy communication between modules through main program variables. In a
similar manner, nested modules may be used to allow child modules to
communicate through the local variables of the mother module.

8.2. Campilation of modules

The code for each module must be written on a separate BRF file. The
campiler will prampt the user to specify the BRF file when a module
declaration is encountered in the source file. This means that when
campiling a file of modules only, no code file should be specified in
the SOOMPILE command.

ND-60.124.03

NORD-10/100 Pascal Compiler
OVERLAY PROGRAMS

Example
The following example consists of a main program with modules, and one

external module which the main program calls.

Main program:

PROGRAM EXAMPLE (OUTPUT) ;
VAR A,B,C: ARRAY [1..10,1..10] OF REAL;

I: INTEGER;

PROCEDURE RESULT;

VAR I,J: INTEGER;
BEGIN

FOR I := 1 TO 10 DO
BEGIN

FOR J := 1 TO 10 DO WRITE(C[I,J]:7);

WRITELN
END

END (*RESULT?*);

MODULE PROCEDURE INIT;
VAR I,J: INTEGER;
BEGIN .

FORI :=1TO 10 DO

BEGIN A[I,J] := SQR(I)*J;
B[I,J] := IN(I)*SQR(J)

END;

RESULT
END (*INIT*);

MODULE FUNCTION FACTORIAL(I: INTEGER): INTEGER;

BEGIN
IF I <= 1 THEN FACTORIAL := 1

ELSE FACTORIAL := I*FACTORIAL(I-1)

END (*FACTORIALY*);

MODULE PROCEDURE ACCUM; EXTERN;

BEGIN (*MAIN PROGRAM*)
INIT;

FOR I := 1 TO 10 DO WRITELN (FACTORIAL (I) :10)

ACCUM
END.

ND-60.124.03

NORD-10/100 Pascal Compiler 41

OVERLAY PROGRAMS

External module:

VAR A,B,C: ARRAY i..10,1..10] oF :

I: INTEGER;

MODULE PROCEDURE ACCUM
VAR I, STATUS: -

w8

PROCEDURE RESULT; EXTERN;

PROCEDURE ROW(J: INTEGER) ;

VAR K: INTEGER;
SUM: REAL;

BEGIN SuM := 0.0;

FOR K := 1 TO 10 DO SuM := SUM+A[I,K]1*B[K,J];

IF SiM > 1.0E6 THEN STATUS := 1;

ClI,J] := SIM

END (*ROW*);

MODULE PROCEDURE COLUMN (I: INTEGER) ;
VAR J: INTEGER
BEGIN STATUS := 0;
FOR J := 1 TO 10 DO ROW(J)

END (*COLUMNY);

-e

MODULE PROCEDURE WRITCOOL(I: INTEGER) ;

VAR J: INTEGER;

BEGIN

FOR J := 1 TO 10 DO WRITE(C[I,J]:12);

WRITELN
END (*WRITCOL*);

BEGIN (*ACCUM*)

FOR I :=1 T 10 DO
BEGIN COLUMN(I);

IF STATUS = 0 THEN WRITCOL(I)

ELSE WRITEIN('COLUMN',I:3,' IN ERROR')

END;
RESULT

END (*ACCUMY*) ;

This program contains examples of the following:

- child modules communicate through variables of the mother module

(STATUS)

- Child modules use a procedure within the mother module (ROW)

- A module may be called recursively - in such a case the call is

executed as a normal procedure function call (FACTORIAL)

ND-60.124.03

42 NORD-10/100 Pascal Campiler
OVERLAY PROGRAMS

Campilation of the example programs:

@PASCAL
PASCAL/NORD-10/100 VERSION F 80-11-04

SCOMPILE EXAMPLE LINE-PRINTER "EXAMPLE"

Codefile for module INIT s "INIT"

Codefile for module FACTORIAL : "FACTO! B

NO ERRORS
1.34 SECONDS COMPILATION TIME

SCOMPILE ACCUM LINE-PRINTER

Codefile for module ACCIM : "ACCUM"
Codefile for module COLUMN : "OOLUMN"
Codefile for module WRITOOL : “WRITCOL"

NO ERRORS
1.20 SECONDS CCMPILATION TIME

SEXIT

8.3. ILoading overlay programs

when loading modules to create a system of overlaid programs, the

following points must be noted:

- The wuser must allocate the STACK-HEAP area with the

*DEFINE STACK xxooxx and *DEFINE HEAP xxooxx commands (cfr. section

6.1). It may be necessary to do a trial load of the system in order

to determine the optimum setting of STACK and HEAP.

- The Pascal 1library must be loaded together with the main program,

and with any module which refers routines in the library not

referred to in the main program. To be safe, the library may be

loaded with every module (only those routines not already present

will actually be loaded).

- The modules must be loaded in an order which corresponds to the

overlay tree structure, that is:

1. The main program. Call this the current module.

2. The next module within the current module. This module becomes

the current module. Apply rule 2 recursively.

Be aware when specifying entry point names to the loader that NRL reads

the 1last 7 characters, whereas Pascal will use the 7 first. Therefore,

to avoid problems, never specify longer entry point names than 7

characters.

A file containing an overlay program (:PROG file) should not be renamed

with the Sintran-III RENAME-FILE command, as the absolute program must

contain a record of the file name where the overlay segments are found.

This record is not updated with the RENAME-FILE command.

The file name is recorded exactly as specified in the DUMP command,

therefore, to avoid ambiguity with file names created at a later time,

it is recommended that the file name is not abbreviated. If the user

ND-60.124.03

NORD-10/100 Pascal Compiler 43

OVERLAY PROGRAMS

name is specified, the :PROG file cannot be copied *o other users and

executed. (If the receiving user has access to the original owner's

file, the root segment will be taken fram the receiver and the overlay

segments from the original owner. This is, at best, hazardous.)

Example

Loading of the program example in section 8.2:

aNRL
RELOCATING LOADER LDR-1935G

*IMAGE-FILE 100

*OVERLAY-GENERATION 10

*DEFINE STACK 0

*DEFINE HEAP 150000

*DEFINE NOBKS 2

*[OAD EXAMPLE PASCAI~LIB

FREE: 007534-174625

*QVERLAY-ENTRY (1) INIT

*[LOAD INIT
OVERLAY 1 LEVEL, 1 COMPLETED. AREA: 007534-007655

SLDAT=007534 INIT=007534 HEAP=150000

*QVERLAY-ENTRY (1) FACTORI
*LOAD FACTORI
OVERLAY 2 LEVEL 1 COMPLETED. AREA: 007534-007573
FACTORI=007534
*OVERLAY-ENTRY (1) ACCUM
¥LOAD ACCUM
OVERLAY 3 LEVEL 1 COMPLETED. AREA: 007534-010022
ROW FS*=007534 ACCUM=007700 ACCUFQ&/174615
*OVERLAY-ENTRY (2) COLUMN
*LOAD OOLUMN
OVERLAY 4 LEVEL 2 COMPLETED. AREA: 010023-010057
COLUMN=010023
*OVERLAY-ENTRY (2) WRITCOL
*LOAD WRITOOL
OVERLAY 5 LEVEL 2 COMPLETED. AREA: 010023-010100
WRITCOL=010023
*DUMP "EXAMPLE"
*EXIT

ND-60.124.03

44 NORD-10/100 Pascal Compiler
SAMPLE Pascal PROGRAM

9, SAMPLE Pascal PROGRAM

@PASCAL
PASCAL/NORD~10/100 VERSION F 80-11-21

SCOMPTLE, PASSCAN, TERMINAL, "PASSCAN"

PASCAL/NORD-10/100 VERSION F 80-11-21 80-12-03

1 000000 PROGRAM PASSCAN (OUTPUT) ;

2 000236 (* TIMES THE AVERAGE OF N X N ACCESSES *)

3 000236 CONST MAXARRAY = 1000;
4 000236 CHUNK = 200;
5 000236 VAR X,Y,K : INTEGER;

6 000241 7 ¢ REAL;
7 000244 STIME : REAL;
8 000247 ETIME : REAL;

9 000252 TABIE : ARRAY [1 .. MAXARRAY] OF REAL;

10 006142

11 006142 11 FUNCTION TUSED : REAL; EXTERN;

12 177606
13 000000 Bl BEGIN
14 000000 K := CHUNK;
15 000010 R2 REPEAT

16 000010 B3 FOR X := 1 TO K DO BEGIN

17 000020 STIME := TUSED;

18 000025 FORY := 1 TOK DO 2 := TABLE[Y];

19 000051 ETIME := TUSED;

20 000056 TABIE [X] := ETIME - STIME

21 000066 E3 END ;
22 000076 Z := 0;

23 000103 FORX :=1 TOKDO 2 :=2 + TABLE[X];

24 000152 7 := 7/ K;

25 000163 WRITEIN (' AVERAGE TUSED TO ACCESS ', K ,

26 000177 *'X ', K,' ELEMENTS =',Z2:8:4);

27 000223 K := K + CHUNK;
28 000231 U2 UNTIL K > MAXARRAY;

29 000237 El END.

NO ERRORS
1.46 SECONDS COMPILATION TIME

SEXIT
@NRL
RELOCATING LOADER IDR-1935G
*[OAD PASSCAN PAS-LIB
FREE: 030146-170501

*RUN

AVERAGE TUSED TO ACCESS 200 X 200 ELEMENTS = 0.0072

AVERAGE TUSED TO ACCESS 400 X 400 ELEMENTS = 0.0140

AVERAGE TUSED TO ACCESS 600 X 600 ELEMENTS = 0.0211

AVERAGE TUSED TO ACCESS 800 X 800 ELEMENTS = 0.0287

AVERAGE TUSED TO ACCESS 1000 X 1000 ELEMENTS = 0.0356

ND-60.124.03

NORD-10/100 Pascal Compiler
Compile-time error messages

W
O
~

u
l
d
e

W
b

V
O
O

U
T
O

O
O

H
E
F
E
F
R
E
E
H
E
H
E

b

w
W
N
h
D
R
O
N
M
N
M
H
O
W
V
W
O
D
~
I
O
N
U
L
I
E
E
W
N
E
F
H
O

57

wm

@

59:
101:

102;

103:

104:;

105:

106:
107:
108:

109:

110:

111:

112:
113:

114:

115:

116:

APPENDIX A Campile-time error messag.s

Error in simple type
Identifier expected
'"PROGRAM' expected
')' expected
':' expected
Illegal symbol
Error in parameter list
'OF' expected
'(' expected
Error in type
'[' expected
'] expected
'END' expected
's' expected
Integer expected
'=' expected
"BEGIN' expected
Error in declaration part
Error in field-list

',' expected
'%' expected
Illegal character
Error in constant

':=' expected
'THEN' expected
'UNTIL' expected
'DO' expected
'"TO' /"DOWNTO' expected
'IF' expected
'FILE' expected
Error in factor
Error in variable
Identifier declared twice
Low bound exceeds high bound
Identifier is not of appropriate class
Identifier not declared
Sign not allowed
Number expected
Incompatible subrange types
File not allowed here
Type must not be real
Tagfield type must be scalar or subrange
Incompatible with tagfield type
Index type must not be real
Index type must be scalar or subrange

Base type must not be real
Base type must be scalar or subrange
Error in type of standard procedure parameter

ND-60.124.03

45

46

117:

118:

119:

120:

121:

122:

123:

124:.

125:
126:
127:
128:

129:

130:

131:

132:
133:

134;

135:

136:
137:

138:

139:
140:

141

142;
143:
144:
145:

146:

147:;
148

149:
150
151:

152;

153:
154:

155:

156
157:

158:
159:

160
161:
162:
163:
164:
165:
166:
167:
168
169:
170:
171:

172:

NORD-10/100 Pascal Compiler
Compile-time error messages

Unsatisfied forward reference
Forward reference type identifier in variable declaration
Forward declared; repetition of parameter list not allowed
Function result type must be scalar, subrange or pointer
File value parameter not allowed
Forward declared function; repetition of result type not allowed
Misssing result type in function declaration
F-format for real only
Error in type of standard function parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of parameter function does not agree with declaration
Type conflict of operands
Exepression is not of set type
Tests on equality allowed only
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be Boolean
Set element type must be scalar or subrange
Set element types not compatible
Type of variable is not array
Index type is not compatible with declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter substitution
Illegal type of loop control variable
Illegal type of expression
Tyre conflict
Assignment of files not allowed
Label type incompatible with selecting expression

Subrange bhounds must be scalar
Index type must not be integer
Bssignment to standard function is not allowed
Assigrment to formal function is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Control variable must not be formal or global

Multidefined case label
Too many cases in case statement
Missing corresponding variant declaration
Real or string tagfields not allowed
Previous declaration was not forward
Again forward declared
Parameter size must be constant
Missing variant in declaration
Substitution of standard proc/func not allowed

Multidefined label
Multideclared label

Undeclared label
Undefined label
Error in base set
Value parameter expected
Standard file was redeclared

Undeclared external file

ND-60.124.03

NORD-10/100 Pascal Compiler 47
Campile-time error messages

173:

174

175:

176:

177:

178:

179:
180:
181:

182;

183:

184:

185:

190:

191:

193;

201:

202;

203:
204:
205:

206:
207:

208:

250:

251:;

252:

253:
254:

255:
256

257:

258:

259:

260:

261:

300;
301:;
302:
303;
304;
320:

322:
331:

332:
333:
340:
380:
381:
382:

383:
384:
385;
386:
387:
390:

Fortran procedure or function expected
Pascal procedure or function expected
Missing file 'INPUT' in program heading
Missing file 'OUTPUT' in program heading
Illegal assignment to control variable
Variable used as control variable in outer loop
Read into control variable not allowed
Source line too long
Value of tagfield out of range
Illegal assignment to function name
Forward declared procedure not defined
Illegal jump to label
Variant already defined
Type must be scalar, subrange or array
Value list too long
Modules can not be forward declared
Error in real constant: digit expected
String constant must not exceed source line
Integer constant exceeds range
8 or 9 in octal number
Real number overflow
Real number underflow
Too many decimals
String constant of zero length not allowed
Too many nested scopes of identifiers
Too many nested procedures and/or functions
Too many forward references of procedure entries
Procedure/function too long
Procedure/function has too many long constants
Too many errors on this source line
Too many external references
Too many externals
Too many local files
Expression too camplicated
Procedure/function has too many local variables
Too many nested scopes of overlays
Division by zero
No case provided for this value
Index expression out of bounds
Value to be assigned is out of bounds
Element expression out of range
Internal error (reference out of range)

Internal error (GETOPR)
Internal error (LOADAD - packed address)
Internal error (LOADAD - condition address)
Internal error (MAKEMREG)
Internal error (SELECTREG)
Illegal command
Unknown command
Ambiguous command
Too many flags
Too deep nesting of INCLUDE files
INCLUDE open error
Missing file name in INCLUDE
Codefile open error
EOF encountered on source file

ND-60.124.03

48 NORD-10/100 Pascal Compiler
Canpile~-time error messages

398: Implementation restriction
399: Variable dimension arrays not implemented
400: Internal error (MOAVATTR, RESETGATTRP)

ND-60.124.03

NORD-10/100 Pascal Campiler 49

Run-time error messages

APPENDIX B Run-time error message:.

Run-time error messages

19

20

23

25

21

22

33

17

12

15

16

32

31

ARGUMENT TO EXP TOO BIG

The argument to EXP will cause arithmetic overflow.

ARGUMENT TO IN WAS <= 0

The logarithm of a negative number is not defined.

ARGUMENT TO SIN/COS TOO BIG

Lost accuracy makes the function result meaningless.

ARGUMENT TO SINH/COSH TOO BIG

The argument will cause arithmetic overflow in the result.

ARGUMENT TO SQRT WAS < 0

The square root of a negative number is not defined.

ARITHMETIC OVERFLOW

Overflow caused by
a) integer arithmetic operations,
b) floating division by zero, or
c) conversion of real to integer.

BAD ARGUMENT TO ARCTAN

Lost accuracy makes the function result meaningless.

BLOCK DOES NOT EXIST

Program tried to read non-existing block on a random file.

CONNECT ERROR

Failure in an attempt to CONNECT a file. The SINTRAN error message

will indicate the cause.

EOF ON INPUT

Program tried to read past end-of-file on an input file.

FILE ALREADY CONNECTED

Program tried tc CONNECT an already connected file.

FILE NOT CONNECTED

Program tried to access a non-connected file.

FILE NOT RANDCM
Program tried random access to a sequential file.

FILE NOT SEQUENTIAL
Program tried sequential access to a random file.

ND-60.124.03

50

24

38

34

13

26

37

29

30

28

27

NORD-10/100 Pascal Campiler
Run-time error messages

IIIBGAL, ARGUIMENT(S) TO POWER

Either attempt to raise negative number to a real power, or the

arguments will cause arithmetic overflow.

ILLFGAL CALL ON MARK/RELEASE

MARK or RELEASE was called fram a program which also uses DISPOSE.

ILLEGAL, CASE INDEX

The case label corresponding to the value of the case variable is

not defined.

ILLEGAL FORTRAN CALL

A FORTRAN routine was called from a two-bank Pascal program.

ILLEGAL NUMBER SYNTAX

The number being read did not have the correct syntax.

TLLEGAL. PARAMETERS TO FORMAL PROC/FUNC

The actual parameters to a formal procedure or function did not

correspond in number or type to the formal parameters.

ILLBGAL SUBRANGE ASSIGNMENT

Attempted assignment of a value outside the subrange, or the

controlled variable in a for-loop was of a subrange type and lower

or upper bound of the loop was outside the subrange.

INPUT RECORD TOO LONG

A TEXT file record must not exceed 135 characters.

INTERNAL PASCAL ERROR

Error within the Pascal system. Contact a systems expert.

I/0 ERROR

An I/O operation failed. The SINTRAN error message will indicate

the cause.

NO RESET

Program tried to read from a file without a previous RESET.

NO REWRITE
Program tried to write to a file without a previous REWRITE.

POINTER IS NIL

Attempted access to data via a pointer with the value NIL, or call

on RELFASE with a NIL-valued pointer parameter.

POINTER IS OUTSIDE HEAP

Attempted access to data via a pointer which did not point to data

within the heap, or call on DISPOSE or RELEASE with a pointer

parameter that did not point within the heap.

RESET ON QUTPUT FILE

RESET was attempted on a write only file.

REWRITE ON INPUT FILE

REWRITE was attempted on a read only file.

ND-60.124.03

NORD-10/100 Pascal Compiler 51
Run-time error messages

8

18

11

SET ELEMENT OUTSIDE RANGE

Program attempted to construct a set with an element value not
within the set type.

STACK-HEAP OVERFLOW

The program generated too much data by calling procedures
recursively or with the NEW constructor. Running the program in two
banks (see section 1.2) may solve the problem.

SUBSCRIPT OUT OF RANGE
The index(es) to an array are outside the array oounds.

UNKNOWN LUN

There is no file open on this logical unit.

WRONG I/0 PARAMETER

Illegal specification of the formatting of a number.

ND-60.124.03

52

banks « « ¢« ¢ &+ o o & @

BRKM

character set

code file . « ¢« « + .« &
COMPIIE 5 R .
canpllercamlands...
compile-time errors .
conditional compllatlon
CONNECT . .
QOSH « o o o ¢ o o o s
DATE + « ¢ o o o o o &

DISOONNECT . ¢ « & & &

ECHM « ¢« ¢ « « o o o« o«
ENDIF « ¢« o « o o o s &

FOF &« ¢ o o o o o o o o

ERMSG ¢« o ¢« ¢ ¢ o o o &

EXIT .« ¢ « o o o o o

extensions .+ . . . o .
external procedures . .
FAULT ¢« o« ¢ o o o « o &

file . « « ¢« & o ¢« o &
floating point
formal procedures . . .
FORTRAN + ¢ « =« o o o &

HALT &« ¢« ¢ « o o o o o«

HEAP . . ¢ o ¢ o = o &

HELP ¢ ¢ ¢ o o o o o @

HOID . ¢« « o &+ « o =«
identifier
IFFAISE « o o « « o o

IFTRUE . ¢« ¢ ¢ o « &

implementation
INCLUDE . . . s ma &

INPOT . » . &))

Input/Output
keyword .
LINESPP . .

list file .
LONIT . . .

MARK . . o

MAXREAT, . .

module
multiple source fi
NORANKS . « « «

octal constants

@

o
©

e
o

|[
=l
e

o
o

o
o

s
o

o

(D 0

octal 10
options . « .« & . e
OUTPUT . « . o
packed files . & i
packed structures . . .
PAGE « o o o s o s o o

s
&

*©
8

®
»

@
*

&
=

=
@

e
&

®
©

@&
®©

&
&

.
.

"
&

®
@®

%
®

@®
®w

&
&

@
®

4
&

&
&

@
&

¢
s

»

e

%
&

@
8

®
®

s
&

&
&

8
®

&
»

*
@

@&
@*

&
&

&
=

*»

®
®

%
e

®
=

®
&

®
=

&
&

w
=

.
s

*
.«

e
®

o
.

s

.
®

&
e

®
&

8
s

&
»

.
e

.
@

@
&

@

e
&

8
B

&
@

&
®

*
&

&
&

&
e

&
&

¢
®

©
®

®
e

&
%

@&
®©

@&
=

&
»

=
&

®
@

.

"
&

&
B

&
8

&
®

8
&

e
«

o
%

@
-

@
.

-
-

.
.

-
@

-
.

-
.

-

5
&

&
®

&
&

&
@

-
s

e
%

®
&

%
@

e
e

®
%

&
&

@

"
&

&
e

#%
®

@&

@
@&

®
&

®
®

&
&4

@«
&

&«
=

&
=

&
>

s
@

@
.

«
®»

o
=

@
®

&
&

°
8

=

.
&

@
@

s
%

®
@&

&
®

4
o

=
&

&
8

®
&

*«
&

%
&

@
@8

=
=

.
.

.
.

-

a
8

&
»

e
®

=
%

&

=&
®

°
.

e
%

8
®

.
-

&
&

e

.
«a

=
&

&
®

=
®

o
@

®
=

&
@

&
@&

o
.

.
.

o
8

%
&

®
®

®
®

8
A&

&
e

&©8
&

&
&

=
.

&
-

-
-

®
.

NORD-10/100 Pascal Compiler

e
®

®
®

W
®

®
»

%
@&

@
&

8
&

=
-

s
&

o
%

&

8
s

&
8

«
=&

&
=&

«
&

=
B

°
«

&
&

o
B

=

®
=

e
&

&
=

®
«

@&
®

@&
&

=
&

w®
®

8
©

»

"
e

®
@

e
®

®
&

o

=
®

®
&

@
-

=
-

.
.

*
.

-

e«
®

®
&8

&
®

®
&

®
&

&8
&

w

=
&

e
&8

®»
®

»
@

@
B

e
®

&
&

@
-

=
&

e
®

®
@&

&
@

.6, 33.

.16.
o7
.23,
.21.
.21,
.9.
.45.
a0
.29,
.14.
.15.
.30.
.16.
e
.10.
.16.
.23.
.13,
.15.
.26,
27,
.6.
.20,
.18.
.15.
.33.

. .21,

@
&

°
@&

o
=

e
¥

&
=

@
s

&
=8

=

.16.

.8.

.9.

.33.

.10.

.28.

.27,

.8.

.13,

.21,

.17.

.15,

.19.

19.

37.

23.

.8, 39.
ekl
.17.
.19.
.27.
.11,
.28.
.28.
.19.
.13.

23'

Index

NORD-10/100 Pascal Campiler
Index

POWER . . .
program compilation
program execution . . « . .
program heading . «
program loading . « « « o o
RANDOM o o ¢ ¢ o o o o o

random acCesSS + « o o o & o
real-time programs
REIEASE « &+ ¢ o o o o o o &

RESET +© « ¢ o o s o o = s &
RUNMODE ¢ ¢ « o s o o o & »

run—time errors « + + o o
sample Pascal program . . «
SET command « « « o » = « &
set type .« ¢ ¢ ¢ o o ¢ o

SINH .+ ¢ ¢ o o o o o o = o

source file « o o ¢ o o o
SOUrce program .« « « s o
special symbols . . . o o &
STACK ¢« o o o o o o o o o =

standard files « &
standard identifier
Standard Pascal « « + . « &
standard procedures
SEringS « o o o o o o o s »
structured types+ &
syntax errors « + « s+ o o s

terminal . + ¢ ¢ s e 0 . o
TEXT « ¢« o v o o o o o o @

TIME .« « ¢ ¢ o o o o o & o

TUSED + ¢ « o o o « o s « &
Value « ¢ v « o o s o o o
variable initialization . .
VERSN ¢ ¢ o o o o o s s o &
WRITEEOF ¢ o « o o o o o &

®
®

®
®

&
®

&
@

o
®

@&
@

«
®

=
=&

&
&

@
&

°
e

=
.

*
e

®
=

&
3

@
@

"«
s

@
&

&
e

%
®

@8
&

@&
®

&
®

&
®

=
@

LI
e

w®
-

e
®

o
@

.
-

.
-

®

.
e

=
.

e
®

®
®©®

®
@&

®
®

=
@

e
®&

@&
&

s
&

=
.

.
.

&
8

@
-

«
&

8
8

@

e
&

8
&

o
®

®
@&

@
e

®
@

®
@

@
6

8
e

&
&

@
@

©°
@

s
@&

*
&

@

e
@

®»
®

®
&

8
@

@&
=

o
*

&
®

@&
&

@
&

@®
s

o
®

@8
e

&
®

&
@

«
o

&
8

s
&

®
@

@
@&

8
@

&
w&

@
@

LI
]

"
e

@8
®

@
s

&
®

®
@®

&
@

s
&

®
@

.

«
&

®

@&
&

&
&

@&
&

s
@

e

®&
s

®
&

&
s

e
®©

@
®©

®
&

¥
&

®

*®
e

®
&

@8
8

8
e

.
o

@
.

*«
8

®
@

e
©

&
.

.
.

-
.

.
«

=
@&

&
@

@
®

&
@

*

«a
&

®
©&

©
@&

@
.

.
e

e
&

®
&

®
®

&8
&

e
&

o
@

@
-

«
®

@
@8

8
e

®
&

®
@&

®©
®

8
@

s
=

e
.

a
&

e
&

@
®

.
.

.
s

.

®
&

@
@®

&
®

@
®©

&
&

°
o

e
=

o
e

e
&

»
e

®
%

®
®

@®
8

.
e

o
&

@

&
®

®
®

L]

.
o

*®
&

®
@&

®
®

&
®

e
e

.
@

-
8

&
&

.
s

a8
@

8

.14.

.21.

.25, 33.

.30.

.25, 35.

.16.

.32.

.38.

.15.

.9, 23.

.17.

.25, 49.

.44,

.9, 23.
56l
.14.
.21.
.6.
.13.
.33.
.28.
.8.
= 5k
.14,
.19.
.19.
.22,
.31.
.27,
.15.
.15.
.8, 14, 23.
.14.
.16.
.32,

53

*xxxx%n*xx SENDUS YOUR COMMENTS!!! % % % % % % & % % %

? ? Are you frustrated because of unclear information

$ 5 in this manual? Do you have trouble finding

things? Why don’t you join the Reader’s Club and

send us a note? You will receive a membership

? ? card - and an answer to your comments.

’ ’)

Please let us know if you

* find errors

* cannot understand information

* cannot find information

* find needless information

Do you think we could improve the manual by rearranging the

contents? You could also tell us if you like the manual!! / "

% +x%»%xx HELP YOURSELF BY HELPING US!! # % & % % % % * =

Manual name: Nord-10/100 PASCAL COMPILER Manual number: ND-60.124,03

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual? —

Your name: : _ ____Date:

Company: . . Position:

Address:

What are you using this manual for?

Sendto: Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

Norsk Data’s answer will be found on reverse side

‘Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindeberg Gard

Oslo 10, Norway

