
NORD File System

System Documentation

NORSK DATA AS

NORD File System

System Documentation

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright @ 1979 by Norsk Data A.S.

ND-60.122.02

PRINTING RECORD

Printing Notes

1 nal Printi

01/80 Second Edition

NORD FILE SYSTEM — System Documentation

Publication No. ND-60.122.02

NORSK DATA A.S
P.O. Box 4, Lindeberg gard
Oslo 10, Norway

iv

Manuals can be updated in twc ways, new versions and revisions. New versions

consist of a complete new manual which replaces the old manual. New versions

incorporate all revisions since the previous version. Revisions consist of one or

more single pages to be merged into the manual by the.user, each revised page

being listed on the new printing record sent out with the revision. The old prin-

ting record should be replaced by the new one.

New versions and revisions are announced in the ND Bulietin and can be ordered

from the Documentation Department as described below.

The reader's comments form at the back of this manual can be used both to

report errors in the manual and to give an evaluation of the manual. Both

detailed and general comments are welcome.

These forms, together with all types of inquiry and requests for documentation

should be sent to:

Documentation Department

Norsk Data A.S

P.0. Box 4, Lindeberg gérd

Oslo 10 :

ND-60.122.02

PREFACE

The Product

This manual gives a detailed description of the NORD File System operations and

design, as implemented under SINTRAN Iil, version 79.07.15A.

The Reader

The manual is addressed to system programmers working with support and

development functions.

Prerequisite Knowledge

The reader of this manual is supposed to possess a general knowledge of file

operations from the user’s viewpoint. He/she should aiso have a broad knowledge

of SINTRAN Il design, and should know segment handling and background

procesor operations particularly well. Recommended manuals supplying this

knowledge are:

SINTRAN Il User’s Guide (ND-60.050)

SINTRAN lli System Documentation (ND-60.062)

The Manual

This manual is part of the course material for a related course, but it may also be

used for self-studies or as reference material for maintenance and development

purposes.

ND-60.122.02

Section:

2.1

22

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3

3.3.1

3.3.2

3.4

3.4.1

3.4.2

3.43

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

3.41

3.5

3.5.1

3.5.2

3.5.3
3.54

3.5.5

3.5.6

3.6.7

3.5.8

vii

TABLE OF CONTENTS

+ o+ o+

INTRODUCTION & siwiin o i aaiesls 5 siominss oa 80 ai

PHYSICAL AND LOGICAL STRUCTURE OF THE FILE

MEDIA . e e

Physical LayoutofDisks

Physical Layout of Floppy Disks

Logical Structure (Directory) on Disks and Floppy

Disks e

Directory Entry ittt s

UserFile

ObjectFilety

BitFile i e

DataFileso

Peripherals i,

FILESYSTEMDESIGNccovinrvniuninaeennn,

Memory Organizationcivuenan

System Disk Organizationo uun..

Interface to Other Parts of SINTRANIIN

File System Monitor Call Handling

File System Command Handling

Data Structuresci e

Memory Map of Data Structures

NameTable

DirectoryTableccuiiiiiiiinnnnnnn

UserFileBufferciiiiiiiiiiisnen

ObjectFileBufferc.cvivuvanann

BitFileBuffers s

SystemSegment i

OpenFileTables ciiiuiunnnn

DeviceBuffers i

File SystemStack0 iinnannn

File System ErrorHandling

File SystemCommandscoviiinnnnnnn

Parameter Collectiono

Create Directoryc.coiiiiiinrennennnn

EnterDirectory i

Create USer .wcmisum am i st s 6% aatese sl i

DeleteUsercoviiiivinnronnnnnnn

Create File

DeleteFile0ciiiiiiiiiiinnnasan

OpenFilet

ND-60.122.02

Section:

3.6

3.6.1

3.6.2

Appendix:

A

viii

File Handling Monitorcalls

RFILE/WFILE

InputByte0ian.

A GUIDETO THE FILE SYSTEM LISTING

ND-60.122.02

INTRODUCTION

The NORD File System is an integrated part of the operating system SINTRAN

itl. Its function is to offer organized structures for storing and retrieving data.

The user of SINTRAN ili may operate on data tnrough ComMmmMdnas and MoNitoy

calls. When a file system command or monitor call is used, SINTRAN HE will

invoke the corresponding routine in the file system.

The file system gives the user simplified functions for accessing data on various

file media. These functions are based on logical structures (directories). The

physical organization, storing and retrieving of data is taken care of by appro-

priate calls to the 1/0 system from the file system. Figure 1.1 illustrates the file

system’s place in SINTRAN Hil

PARTS OF
SINTRAN It

USER FILE 1/0 < >
PROGRAM Lq—f——3{ SYSTEM g o SYSTEM . w

Figure 1.1: File System’s Function

The file system uses a set of internal tables and buffers holding information on the

item (device, user, directory, etc.) being processed. Through reentrant routines

and systematic lock techniques, several users may simultaneously use the file

sytem.

”

ND-60.122.02

2.1

PHYSICAL AND LOGICAL STRUCTURE OF FILE MEDIA

PHYSICAL LAYOUT OF DISKS

The file system supports a number of different disk types with different physical

layout. The general structures, however, are common to all of them and will be

discussed first.

All disk packs consist of one or more platters, providing a number of recordable

surfaces.

Figure 2. 1: Disk Pack

For a given disk, some of the surfaces are used for alignment purposes, while the

rest are available for data. The available surfaces are numbered from O and

upwards. The numbering method is disk dependent.

Each surface has a number of concentric circles, called tracks. The number of

tracks is disk dependent, varying between 400 and 823 for our disk types. The

tracks are numbered from 0 and upwards, starting at the outer track.

Figure 2.2: Surface with Tracks

ND-60.122.02

Each surface has a track number 0, a track number 1, etc. All tracks of a given

number are referred to as a cylinder. Thus, we may speak of cylinder 0 being track

0 on all surfaces.

DISK CYLINDER

CARRIAGE ARM

HOLDING

READ/WRITE HEADS

READ/WRITE

HEADS

Figure 2.3: Disk Cylinder

Physical disk addresses are organized by disk cylinders, i.e., the lowest disk

addresses are in cylinder 0, the next in cylinder 1, etc. This reduces carriage arm

movements when accessing daza at subsequent disk addresses. In each cylinder

the lowest disk addresses are on surface 0, the next on surface 1, etc.

Each track is divided into sectors. The number of sectors per track is 16, 18 or 24

for our disk systems. The sectors are numbered from 0 and upwards.

SECTOR 0

SECTOR 1

SECTOR 2

SECTOR 3

Figure 2.4: Sectors

Each sector consists of a number of 8 bit bytes. In our disk systems this number is

either 256 or 1024. The number of bytes per sector is the same for all tracks on a

disk. Therefore, the tracks closer to the center of the disk have a higher density

than those at the edge.

The file system operates in units of pages (= 1024 words = 2048 bytes). The table

below gives the physical characteristics of the disk types supported by SINTRAN

.

ND-60.122.02

Disk Size Exact| No. of No. of| No. of No. of | No. of | Total capacity

type desig- capacity |surfaces tracks/ | sectors/ bytes/ | pages/ in pages

nation in bytes surface track sector | cylinder

HAWK | 5MB 5,591,040 | 2/pack 405 24 256 6 2,430

SMD |33MB 32,768,000 5 a0| 16 1024| 40 16,000
SMD |66MB 65,536,000! 5 800 16 1024 40 32,000

SMD |37MB 37,969,920 5 412 18 1024 45 18,540

SMD |[75MB 75,847,680 5 823 18 1024 45 37,035

CMD |30MB 30,339,072 2 823 18 1024 18 14,814

CMD |60MB 60,678,144 4 823 18 1024 36 29,628

CMD 90mMB 91,017,216 6 823 18 1024 54 44,442

SMD |(288MB 288,221,184 19 823 18 1024 171 140,733

Figure 2.5: Physical Characteristics of Various Disk Types

The numbering of the surfaces is illustrated in Figure 2.6.

ND-60.122.02

HAWK

SMD 33MB

SMD 66MB

SMD 37MB

SMD 75MB

cmD 30MB
CMD 60MB

CMD S0MB

SMD 288MB

Removable (bMB)

L 0
1
2 Fixed (5MB)
3

1

alignment surface

2

3 4

0

alignment surface

2 (for 60MB and 90MB only)

3 {(for 60MB and 90MB only)

1

alignment surface

4 (for SOMB only)

5 {for 90MB only)

‘
o
‘

alignment surface

10

1

12

13

14

15

16

17 18

Figure 2.6: Numbering of Disk Pack Surfaces

ND-60.122.02

2.2

2.3

NIRECTOR

ENTRY

PHYSICAL LAYOUT OF FLOPPY DISKS

Floppy disks have the same general physical structure as disks (see Section 2.1).

The file system supports only one type of floppy disks, with the following

physical characteristics.

Exact capacity in bytes - 315,392

No. of surfaces —1

No. of tracks —77

No. of sectors/track —8

No. of bytes/sector — 512

Total capacity in pages — 154

LOGICAL STRUCTURE (DIRECTORY) ON DISKS AND FLOPPY

DISKS

All mass storage devices use a page (1K words) as the logical storage unit. From

the file system, devices are addressed using page numbers, and file transfers are

performed in units of 1 page.

A directory on a disk or floppy disk is logically organized as follows:

MASTER BLOCK

OBJECT

FILE

DATA

FILE

 DIRECTORY
NAME

PAGES LEFT USER FILE

BIT FILE

Figure 2.7: Directory

The master block is a 1K block located at the lowest address on the medium,

i.e., page 0. The first part (the shaded region) of the master block may contain a

bootstrap program to load SINTRAN. The remaining part of the master block

{address 1760, - 1777} holds a directory entry.

ND-60.122.02

DIRECTORY ENTRY

The directory entry contains the directory name, pointers to the object file, user

file, and bit file, and the number of unreserved pages on the directory.

The layout of the directory entry is as follows:

0

DIRECTORY

NAME

16 CHAR.

7

10 OBJECT FILE

POINTER

12 USER FILE

POINTER

14 BIT FILE

POINTER

16 PAGES NOT

RESERVED

Figure 2.8: Directory Entry

All pointers on file media are couble word pointers. The two most significant bits

are used to indicate subindexing and indexing as illustrated below.

175 164 0

s|i]

Figure 2.9: Pointer Layout

ND-60.122.02

S — subindexing

| — indexing

The following combinaticns apply:

SF I

0 0 no indexing is used

0 1 indexing is used

1 0 subindexing is used

1 1 error in file structure (this should not occur)

Examples of indexed and subindexed structures follow in the discussion on the

user file, object file and data files.

ND-60.122.02

2-8

2.5 USER FILE

The user file contains information on all the users of the medium. Each medium

may have 256 users. Each user has a 32 word entry in the user file.

The user file is organized as an indexed file, i.e., the user file pointer in the

directory entry points to an inciex block. The index block contains up to 8 double

word pointers to user file pages. This structure is illustrated in Figure 2.10.

USER FILE

PAGES

MASTER USERD
BLOCK

USER 1

USER FILE

INDEX BLOCK

1772

1773
USER 31

000000

000000

USER 32,

000000

USER 63,

USER 22444

USER 2559

Figure 2. 10: User File

Location 1772, in the master block has bit 164 set to indicate that indexing is

used.

The layout of a user file entry is illustrated in Figure 2.11.

ND-60.122.02

17 10 7 0

0 F| ENTERCOUNT U — ENTRY USED
F — USER/OBJECT FLAG (1 = USER)

USER NAME

(16, CHARACTERS)

11 PASSWORD

12
DATE CREATED

14
LAST DATE ENTERED

16 NO. OF PAGES RESERVED

20
NO. OF PAGES USED

22 USER INDEX

23 MAIL FLAG

24 USER DEFAULT FILE ACCESS

UNUSED
/s

30 clalwlr USER INDEX FRIEND TABLE

U — ENTRY USED
D — DIRECTORY ACCESS
C — COMMON ACCESS
A — APPEND ACCESS
W — WRITE ACCESS
R — READ ACCESS

37
Figure 2.11: User File Entry

All dates in the file system are represented in double word elements with the

following layout:

374 20g, 175

| YEAR —1950,, | MONTH | DAY | 1 HOUR | MINUTE | seconD
6 4 5 | 8 6 6

Figure 2. 12: Date Layout

ND-60.122.02

2.6

2-10

OBJECTFILE

The object file contains information on all users’ files on a medium. Each medium

may have 256,, files for each user. Each file has a 32, word entry in the object

file. The first 256,, entries are reserved for user 0, the next 256, entries are

reserved for user 1, etc. |.e., each user has maximum 8 pages of entries.

The object file is organized as an indexed or subindexed file. If the highest user

index is less than 64,,, the object file is indexed, with the structure illustrated in

Figure 2.13.

OBJECT FILE

PAGES

OBject entry O

MASTER

BLOCK

Object entry 1

OBJECT FILE

INDEX BLOCK

000000

1770g| 040000

1771g

Object entry 3

8 ENTRIE

Object entry

000000

000000

Figure 2.13: Object File with Index Block

ND-60.122.02

Bit 164 in location 1770, in the master block is set to indicate indexing.

If a directory contains a user with user index exceeding 63,,, the object file must

be subindexed. (The file system will automatically establish a subindexed

structure when user 64,, is created.) The subindexed structure is illustrated in

Figure 2.14.

OBJECT FILE

MASTER INDEX BLOCK 1

000000

OBJECT FILE

SUB-INDEX BLOC

17708

1771

OBJECT FILE

INDEX BLOCK 2

000000

OBJECT FILE

INDEX BLOCK 3

OBJECT FILE

INDEX BLOCK 4

Figure 2. 14: Object File with Subindex Block

ND-60.122.02

11

13

14

15

16

17

20

2

22

23
24

26

30

32

34

36

Bit 175 in location 1770 in the master block is set to indicate subindexing.

The layout of an object file entry is illustrated in Figure 2.15.

17 7 0

ul wl r[m| [F]

OBJECT NAME

(1610 CHARACTERS)

TYPE {4 CHARACTERS)

POINTER TO OBJECT ENTRY OF NEXT VERSION

POINTER TO OBJ.ENTRY OF PREV{OUS VERSION

Public access ,[Friend access Owner access

 ™ L mlalcli [s]e]T

DEVICE NO. WHEN PERIPHERAL FILE

Term. no. of res. user I User index of res.user

OBJECT INDEX OF THIS OBJECT ENTRY

CURRENT OPEN COUNT (Simultaneous)

TOTAL OPEN COUNT

DATE CREATED

LAST DATE OPENED FOR READ

LAST DATE OPENED FOR WRITE

NO. OF PAGES IN FILE

MAX.BYTE POINTER

1
FILE POINTER

Figure 2. 15: Object File Entry

ND-60.122.02

U — ENTRY USED

W — OPEN FOR WRITE AT PRESENT

R — RESERVED

M — HAS NOT BEEN MODIFIED

{(NOT IN USE)

EACH FIELD IS

FILE TYPE:

T™M — TEMPORARY FILE

L — LIBRARY FILE

M — MAGNETIC TAPE FILE

A — ALLOCATED FILE

C —~ CONTIGUOUS FILE

| — INDEXED FILE

S — SPOOLING FILE

P — PERIPHERAL FILE

T — TERMINAL FILE

S —SUBINDEXED

| —INDEXED

ofclafw]r]

2.7

2-13

BIT FILE

The bit file contains a free/reserved map of the file medium. Each bit in the bit file

corresponds to one page (1K words) of the file medium. The page is free if the bit

is 0, and reserved if the bitis 1.

The bit file is a contiguous file. Its size depends on tne file medium as listed below:

File Medium: Bit File Size (in pages):

Floppy disk 1

Disks:

5MB 1

30MB 2 (1 per unit)

33MB 1

37MB 2

60MB 4 (1 per unit)

66MB 2

75MB 3

90MB 6 (1 per unit)

288MB 9

The bit in the bit file corresponding to a given page is found as follows:

Suppose bits 17, - 0 contain a page number. Then, bits 17, - 4 give word

number in bit file and bits 3 - 0 give bit number in the word, counted from

right to left. This is illustrated in Figure 2.16.

PAGE NO.

17g -_ 43 0

~
0 N\
1 N

BIT FILE

Figure 2. 16: Correspondence between Page Number and Bit File Element

ND-60.122.02

2.8 DATA FILES

Data files contain user data. All data files have a corresponding object entry. If a

data file has any pages, the file pointer of the object entry will point to these

pages (see Section 2.2).

A data file is either indexed or contiguous.

A contiguous file has all its pages located in a contiguous area on the file

medium, as illustrated in Figure 2.17.

OBJECT ENTRY

DATA PAGES

FIRST PAGE

36 000000

-—

SECOND PAGE

LAST PAGE

Figure 2. 17: Contiguous File

ND-60.122.02

An indexed file has its pages arbitrarily located on the file medium. Each page is

referenced by a pointer in an index biock. If the file has less than 513 data pages,

2-15

the structure is as illustrated in Figure 2.18.

36

Figure 2. 18: Indexed File with less than 513 Data Pages

OBJECT EN TRY

 040000

DATA FILE

INDEX BLOCK

DATA PAGES
000000

600000 FIRST PAGE

-

SECOND

PAGE

ND-60.122.02

If an indexed file has more than 512 data pages, a subindex block is used, as

illustrated in Figure 2.19.

OBJECT ENTRY

36| 100000

Y

DATA FILE

SUBINDEX BLOCK

0400600

040000

—

DATA FiLE

INDEX BLOCK 1

000000

 BDATAFILE

INDEX BLOCK 2

0]

— L

000000
—

000000

DATA PAGES

1st

PAGE

 512th

PAGE

513th

PAGE

v

Figure 2.19: Indexed File with more than 512 Pages

The maximum number of data pages in an indexed file is:

512 x 512 pages = 262,144 pages = 512MB

ND-60.122.02

1024th

PAGE

2.9 PERIPHERALS

The file system may support all kinds of peripherals available. Each peripheral

device unit to be supported by the file system must be represented by an object

entry belonging to user SYSTEM on the main directory. Such an object entry is

entered with the SINTRAN commands @SET-PERIPHERAL-FILE and

@SET-TERMINAL-FILE. Consequently, a file is either a mass storage file, a

peripheral file or a terminal file. The object entries of these 3 types of files

compared in Figure 2.20. See also Figure 2.15.

MASS STORAGE FILE PERIPHERAL FILE TERMINAL FILE

0

16 olo [']o [q

17 - Device no, of per. Device no. of terminal

20 - e —

36 FILE POINTER - -

Figure 2.20: Object Entries for a Mass Storage File, a Peripheral File and a

Terminal File

ND-60.122.02

3

3.1

70000

FILE SYSTEM DESIGN

MEMORY ORGANIZATION

The bulk of the file system is placed on a separate file system segment, segment

number 6, with logical address space from 100000, to 173777, (page 40,

through 75;). Some parts of the file system interfacing the 1/O system must be

resident. (This is requirec by the 1/0 system.) Since the file system supports users

of a multi-programming operating system, its services must be available to several

users simultaneously. Therefore, the file system segment contains only reentrant

routines. The data area and some non-reentrant routines needed by a file system

user are allocated on the user’s system segment (if background} or on the fore-

ground data area in resident memory (if foreground). The system segment lies in

the logical

through 37,).

Figure 3.1 illustrates how the parts of the file system fit together.

address

| SINTRAN 111
s

space from

RESIDENT I

|_Parts of file system _|
|
l
I

I Resident
Parts of file system I

System

Segment

System

Segment

Resident

Foreground

Programs’

Data area

100000
|

File System

Segment

{Segment No. 6)
Figure 3. 1: Memory Organization

ND-60.122.02

to 77777, (page

System

Segment

34,

System

Segment

3.2

3-2

SYSTEM DISK ORGANIZATION

On a system disk the code of the file system segment is placed in the

MACM-AREA file, while the code of the system segments is placed on the

SINTRAN file.

If SINTRAN Il is initialized witr the JHENT command in MACM the file system

segment code will be moved from the MACM-AREA file 1o the file system

segment (segment 6) on SEGFILD. Also, the system segments code and constants

will be copied from the SINTRAN file into all system segments in the system.

Figure 3.2 shows a system disk layout with the relevant parts.

MASTER BLOCK

SINTRAN RESIDENT

g SINTRAN: DATA

SYSTEM SEGMENT CODE

AND CONSTANTS

FILE SYSTEM SEGMENT 1 MACHARER: BRI
CODE AND CONSTANTS

/
N

MEMORY IMAGE AREA

FILE SYSTEM iSEGMENT

SEGFILO: DATA

SYSTEM SEGMENT 1

BACKGROUND SEGMENT 1
Figure 3.2: System Disk Layout

ND-60.122.02

3.3 INTERFACE TO OTHER PARTS OF SINTRAN i

The file system is entered because:

— amonitor call invoiving file system functions has been exacuted

— afile system command has been issued

7
/AONITOR

CALL

SINTRAN HI

 ™

REAL-TIME

/////’ MONITOR
 N

A N

MONITOR

CALL DECODER

NS

COMMAND

" BACKGROUND

PROCESSOR T

'

COMMAND

PROCESSOR

FILE

SYSTEM

Figure 3.3: Interface to Other Parts of SINTRAN IlI

The two events are treated differently and will be discussed separately.

ND-60.122.02

3.3.1

34

File System Monitor Call Handling

The monitor call decoder takes different actions for background and foreground

programs. For background programs the routine COMENTRY on the system

segments gets control. This routine calls the routine MMEXY to bring in the fiie

system segment. Then the proper monitor call routine on the file system

segment is called. Upon return to COMENTRY the background segment is

brought back through a new call to MMEXY. This sequence of operations is

illustrated in Figure 3.4.

0! _l o T T T T T |] I | ' fil
| Resident | | | | | I

| SINTRAN | | | | | I

l N | 1 | 1 {
1 Lo l | | l]
' I | | l 1 |

Monitor call | | | I I

decoder I[! | t ! l

| |
Call Comentry } I[l | I[|

| I | |
I ———— i I J = 1 | s .

70000 70000|— _____ '] 70000

System | l

Segment] i

Comentry { l

Call MMEXY | ' |
Call MRSTA l L_____ Call MMEXY

100000

File System

Segment

™ Monitor

call routine

Figure 3.4: File System Monitor Call Handling from Background Programs

Note that both the resident part of SINTRAN and the system segment (with all

tables and buffers) are available when executing the monitor call routine on the file

system segment.

Foreground programs have no corresponding system segment. File system

monitor calls are therefore adminstrated from special file transfer RT programs.

There is one file transfer RT program per device type. The proper file transfer RT

program is started from the monitor call decoder. The RT program has its code in

SINTRAN's resident part. The code contains a call to the routine MMEXY to bring

in the file system segment. Then the proper monitor call routine on the file system

segment is called. Upon return the file transfer RT program terminates itself. These

operations are illustrated in Figure 3.5.

ND-60.122.02

I Resident

| SINTRAN

0T T | 0T TTT or T T T T T
|
|
|

i decoder
1

Start file trans-

fer RT program

| | File transfer RT
[nrogram

Call MMEXY

|
|

- |
Monitor call I I

1

l
|

E—
70000 I File system | | | |

|_data for foregr._l | | | | |

100000

L Monitor call

routine

File system

segment

Figure 3.5: File System Monitor Call Handling from Foreground Programs

Note that the resident part of SINTRAN, including file system data for

foreground programs, is available when executing the monitor call routine on the

file system segment.

ND-60.122.02

3.3.2 File System Command Handling

The command segment contains a command processor. When the command

processor finds a file system command, the routine FILSYS on the system

segment is called. One parameter, the address of the file system command

monitor (CMMON) is transferred in the call. FILSYS exchanges segments by

bringing in the file system segment on the expense of the command segment. The

routine CMMON on the file systam segment (parameter to FILSYS) is then called,

taking care of the file system operations. Upon return to FILSYS, the command

segment is brought back and control is returned to the command processor. These

operations are illustrated in Figure 3.6.

70000 t— ———— 1 70000 70000 |—— —— 7 70000 700001— =

System I | |

| Segment | FILSYS I | l

| Call MMEXY | | |

| | Call CMMON l | Call MMEXY |

| I 1 | |

[I | .

Segment Exchanged Segment E xchanged Segment

il // CMMON \
FILSYS{CMMOM) /

£l

100000 | Command 100000 7 // /] 1poo0o| File System 100900 | N\ \ \\wooofl't:ommand
A

 7

Figure 3.6: File System Command Handling

ND-60.122.02

3.4

3.4.1

DATA STRUCTURES

Memory Map of Data Structures

Figure 3.7 gives an example of the piacement of the most important data

structures used by the fie system. The addresses given are taken from a specific

system and may differ somewhat from one system to another.

13300

16736

41061

41213

70747

71014

71241

74271

 SN

NN

100000

100341

177777

Resident routines, user file buffer

and object file buffer

Device buffers

Open file number table 458 words

Open file table and sequential buffers

30 entries of 1018 words = 30308 words

Name table T
Bit file buffers

Figure 3.7: Data Structures used by the File System

ND-60.122.02

1
N
3
Q
I
S
3
Y

L
N
I
W
O
I
S

LN
3I

WO
3I

S

W
3
L
S
A
S

37
14

W
3
L
S
A
S

3.4.2 Name Table

Figure 3.8 shows an example of a configuration with some mass storage devices.

NORD-10/S

 DISC-10MB-1

DISC-33MB-1 FLOPPY-DISC-1

Figure 3.8: Mass Storage Devices

The name table has one entry per mass storage device type available to a given

SINTRAN system. A name table entry gives some general information on the

corresponding device type. Each entry also has a text string identifying the name

of the device. (The name table is defined in SINTRAN Il listing, part 2, Section

29.13.) The start address of the name table is 100000, Each name table entry

consists of 16, words. Figure 3.9 illustrates the layout of a name table entry (as

defined in the file system listing, Section 1.5). Figure 3.10 illustrates the

complete name table.

0

DVNAM DEVICE NAME

(MAX. 208 CHARACTERS)

10 PAVA1 } .
PAVAI Total no. of pages available

1 PAVA2 on device

12 SECTO Sector size {'no. of words/sector)

13 NFLAG See below

14 PTRNS Address of driver routine

15 NLOCK Logical device no. of file transfer lock

AN & 8‘

5 o & ~ &S &
S&R o

NFLag |] | | [| |

CTBIT — Cartridge disk

DRBIT — Drum

1USER — Single user device

BFLOP — Floppy :disk

Figure 3.9: Name Table Entry

ND-60.122.02

NAMTAB

(1000008) NTLEN

(=1 68)

ENDNT
Figure 3. 10: Name Table

ND-60.122.02

3.4.3 Directory Table

The directory table has one entry per file unit in the system, i.e., there is one

entry corresponding to each device being capable of holding a directory, as

illustrated in Figure 3.11.

DIRTAB DISC-33MB-1 Unit 0

DTLEN DISC-33MB-1 Unit 1

N 258

O FLOPPY-DISC-1

ENDDT

Figure 3.11: Directory Table

Some of the information in a directory table entry is fixed at system generation

(defined in SINTRAN Il listing, part 2, Section 19.14), while some of it changes

dynamically depending on the medium currently mounted, the usage of the

medium, etc. Each directory table entry has 26, words with layout illustrated in

Figure 3.12 (as defined in the File System listing, Section 1.4).

The entries OBFIL, USFIL, BIFIL and BLEFT are double word elements. The

entries LOBFI, LOSFI, LFILE and CFILE used for tapes, are single word

elements, they occupy only the first word in the double word element.

ND-60.122.02

o

S

W
A

-

1

12

13

14

15

17

21

23

24

3-1

DFLAG See below

DUNIT See below

LUNIT See below

DLOCK Logical «device no. of directory lock

DRESE -l Reserve no. for directory

DNAME Directory name (max. 208 characters)

OBFIL (LOBFI) Object file pointer

Tape: Highest object index

USFIL (LUSFI) User file pointer

Tape: Highest user index

BIFIL (LFILE) Bit file pointer

Tape: Last file

PLEFT (CFiLE) Pages left {not reserved) Tape: Current file

{(CRECO) Tape: Current record within file
___________________ 4

S N 4
S 2
o Qo 9 Q

oFrtac [| | | | | FiLE oPEN cOUNT |
17 1615 1413 12 0

DENTE — directory entered

DMAIN — main device

DTAPE — tapeflag

DDAUF — default directory

DTUSE — tape used

DUNIT lPhys. unit I Device no. l

17 14 13 0

LUNIT I Logical unit I Name index

17 107 0

Figure 3. 12: Directory Table Entry

ND-60.122.02

AH
IN
3I

A
H
O
L
O
3
H
I
G

Figure 3.13 illustrates the permanent relationship between a directory table entry

and the name table.

DIRECTORY TABLE ENTRY NAME TABLE

NAMTABY

LUNIT | o ———- -

Figure 3. 13: Directory Table Entry/Name Table Relationship

The broken line indicates an "'implicit’”’ pointer represented by an entry number

used as index to locate the proper entry in the name table.

Operations in the directory table are protected to prevent simultaneous accesses to

common data. All searches for a specific directory are protected through a general

lock semaphore, GLDN. Once the desired directory entry is found, the directory

lock semaphore, DLOCK, of this specific directory entry is reserved, before the

geneal lock semaphore is released.

ND-60.122.02

3.4.4

UEBUF

25

26

36

37

41

43

47

50

51

52

55

0

W

N

-

User File Buffer

3-13

The user file buffer resides in resident memory. It is preceded by a control

information part related to the index block structure of the user file. The buffer

area is used for one user file entry at a tme. The size of the user file buffer and

preceding controf informaition is 654. It has the layout illusirated in Figure 3.14.

ULOCK l.ogical device no. of user file buffer lock

UDIRI Directory index

UPART Current user index in index buffer

UINDP Zirst index no. in index buffer

Tape: Position of current user entry

UINDX Array for 108 indices

Copied from index block

208 words

——————————————————— —

UENTE See below

UNAME User name (max. 208 characters)

108 words

UPASS Password

UDATE Date created

UDENT Last date entered

UPAVA No. of pages available for this user

UPUS1
UPUS?2 UPUSE — No. of pages used by this user

UNDEX User index of this entry

MAILF Mail flag

DFIAC See below

UFREE Free

UFRIE Friend table for 8 friends (see below)

108 words
— e — e —— — — — — — — — — — — — — — f—

ND-60.122.02

43
d4
dn
g

37
14

¥
3
s
S
N

3-14

\>°’<°0 o ¢ O O

UENTE [R\\\.\\\.\\\\\%d 1 Enter Count I

17 10 7 0

UUSED — entryin use flag

UOFLG — user object entry flag (1 = user entry)

ENTER COUNT — gives the number of times this user has been entered

¢ ¥ o

£
DFIAC | Default file access [T |

17 21 0

BROAF — broadcast flag

MESSF — message flag

An entry in friend table has the following layout:

lU ND lc lAlWlRI User Index ‘OJ

17 1615 1413 12 1110 7

U entry used

D directory access

C common access

A append access

W write access

R read access

Figure 3. 14: User File Buffer

Operations on a user file entry takes place when the entry resides in the user file

buffer. The program operating on the buffer has reserved the user file buffer lock,

ULOCK. The locations UDIRI and UPART identify the contents of the buffer. The

array UINDX holds 10, indices (20, words) from the user file index block of the

corresponding directory {see Figure 2.10). This, in fact, is the entire index infor-

mation. Therefore, UINDP, which was supposed to identify which part of the

index block that was present in UINDX, is redundant and is not used.

ND-60.122.02

3.4.5 Object File Buffer

The object file buffer is organized in the same way as the user file buffer. It

3-15

resides in resident memory. The layout is illustrated in Figure 3.15.

H
3
4
4
N
g

37
11
4

1
0
3
r
a
0

OEBUF 0 OLOCK Logical device no. of object file buffer iock

1 QODIRI Directory index

2 OPART Current object index in index buffer

3 OINDP First index no. in index buffer

Tape: position of current object entry

5 OINDX Array for 108 indices

Copied from index block

208 words

25 OFLAG Seebelow . T T T T T/

26 ONAME Object . name (max. 208 characters)

108 words

36 OTYPE File type

40 DNEXT Next version

41 OPREV Previous version

42 OACCE See below

43 OFTYP See below

44 ODEVN Device no. if peripherat file

45 OUSER See below

46 ONDEX Object index of this object entry

47 OCOUN Current open count

50 OOPEN Total open count

51 ODATC Date created

53 ODATR Last date opened for read

55 ODATW Last data opened for write

57 OPAGE No. of pages in file

61 OBYTE No. of bytes in file

63 OPOIN See below

& P& &
&I

g O o O

oftac | [| | | |

17 16 1514 13 0

{continues)

ND-60.122.02

{continued)

OUSED — entry used

OWRTE — opened for write at present

ORESE — reserved

OBACK — has been modified (originally aimed towards backup

systems. Not in use at present)

Public Friend Owner

oacce [[DCAWR |DCAWR [DCAWR |
16 12 1 54 0

D directory name

C common access

A append access

W write access

R read access

A A
& A A AAA % Ao Ao

S ¢’ @Q? SF SEL L O Y5 90 39C o

OFTYP | HREEREEEN
10 76 54 3210

OTMBIT — temporary file

OoLBIT — library file

OMBIT — magnetic tape file

OABIT — allocated file

OCBIT — contiguous file

oIBIT — index sequential file

OSBIT — spooling file

OPBIT — peripheral file

OTBIT — terminal file

OUSER | TERM USER |

TERM — terrninal number of reserving user

USER — user index of reserving user

S & &
OPOIN —-L—l FILE POINTER

SUBIN — subindex pointer

INDX — index pointer

Figure 3. 15: Object File Buffer

ND-60.122.02

3.4.6

3-17

Bit File Buffers

There is one 20; words buffer for each disk or drum directory entry. The buffer

will only hold the current part of the bit file. Each buffer is preceded by 3 words

control information. The layout is illustrated in Figure 3.16.

0 BDIRI 3 Directory index
1 BPART Current 208 word block in buffer

2 BLOCN Logicaf:device no. of bit file buffer lock

3 BBUFF

Bit file buffer

g BBLEN = 23g

Figure 3. 16: Bit File Buffer

The bit file buffers reside on the file system segment (segment 6) from location

BFBUF to location ENDBF.

A bit file is split into logical blocks of 20; words. BDIRI and BPART identify the

block being present in the buffer. Operations on the bit file are protected through

reservation and release of the bit file buffer lock semaphore, BLOCN. To maintain

a high degree of security, the file system attempts to keep directory structures

consistent at all times. As part of this attempt, the file system will always write a

bit file buffer back to the device as soon as possible whenever a change has taken

place.

ND-60.122.02

3.4.7

3-18

System Segment

The first part of every system segment is used by the file system for operations

requested by the corresponding background program. Foreground programs do

not have a system segment. Instead, all foreground programs share a file system

data area in resident memory with the same layout as the system segments. The

logical {and physical) address space of this area corresponds to the logical

address space of the system segments. This has been done to allow similar

operations for background and foreground programs. In the rest of this section

we discuss the layout of system segments. The discussion also applies to the file

system data area for foreground programs.

Each system segment has the layout illustrated in Figure 3.17.

ND-60.122.02

70000

A
W

N
-

oW

70706

70715

70717

70720

70736

70747

70750

71010

71014

71015

71016

71017

71145

USNO

CRTREF

{ OFLCK

STACK

7008 words

ESTCK

7 words

ASTCK

CSTCK

SUBR SPUSH

SUBR SPOP

DV 100

OPTAB

408 words

OPSPO

SPOOL

NPOOL

SDFLAG

3-19

List device no. (=1)

Current user entered (= —1 initially)

User’s default directory

User index in default directory

RTREF of calling program

Logical device no. of open tile table lock

Stack used for data by

routines in the file system

Stack overflow area

A & D registers saved by ENTER

Current stack pointer (= STACK initially)

Push routine for ENTER

Pop routine for LEAVE

Max. no. of files simuntaneously: opened

Open file no. table

Table ¢6 convert from file no. to address of

corresponding file table entry. Used by routine

LOGPH.

Table for spooling entries

Start of free list

Misc. monitor call routines

for INBT and QOUTBT

{continues)

ND-60.122.02

71146

47

50

51

52

53

71253

74302

3-20

(continued)

ADDR

BACKX

BBREG

TTREG

ISASEG

COPSEG
Subroutine to call routines on.

Code

operator communication segment

BPOOL

30308 words
Buffer pool containing open file table

and buffers for sequentially accessed files.

Figure 3. 17: System Segment Layout

There must be at least one 64,, word buffer for each open file (see Section

3.4.8). These buffers are allocated from BPOOL. Each buffer is preceded by a

link cell giving the layout of Figure 3.18. -

77

Figure 3. 18: Buffer Layout

BLINK Buffer link

BDATA

1 008 words

\

Buffer data used for open file table

entries {see Section 3.4.8),

library table entries and sequential buffer data !

ND-60.122.02

3.4.8
3-21

Open File Tables

Open file tables contain information on opened fjles. Open file table entries of

background programs are allocated from the BPQOIOL area on the corresponding

system segment (see Figure 3.17). Open file table gntries of foreground programs

are allocated from the resident file system data arear

[

Each opened file has an associated file number in the range 100, - 121;. The open

file number table, OPTAB, has & pair of entries for each file nurnber. The Jiirst

entry of the pair is used when a file is opened for input, while the second entry is

used when a file is opened for output. Each entry contains the address of the

corresponding open file table entry. OPTAB resides on the system segments (for

background programs) and in the resident file system data area (for foreground

programs). See Figure 3.19. The structure of OPTAB is similar to that of the

logical number tables used by the 1/0 system. Therefore, the routine LOGPH is

used for lookup in both tables.

OPTAB File na. 100g - input

File no. 1004 - output

File no. 1073 -input .|

Fiie no. 1078 - output

BPOOL

Open file table entry

Figure 3. 19: Correspondence between File Number and Open File Table Entry

ND-60.122.02

3-22

The layout of an open file table entry is illustrated in Figure 3.20.

Since a file may be reserved, the first part of an open file table entry may be used

to establish the entry as an element in a reservation queue. This explains the

resemblance with the standard part of data fields.

Cont. file: No. of pages

expanded or no. of

pages in file

0 OFRSL RESLINK 3
1 OFRTR RTRES Corresponds to standard

2 OFRWL RWLINK part of data fields

3 OFTYR TYPRING (See below)

4 RWFIELD Daza field address for monitor calls

b OFACC Opened access code

6 OFFTP File type

7 OFFLG Flag word (see below)

10 OFBUF Buffer pointer

11 OFLIB Library buffer pointer

12 OFCB Current buffer filling into

13 OFNB No. of buffers in buffer queue

14 OFBLZ Logical block size

15 OFDIR Directory index

16 OFOBJ Object index

7 OF IP1 FIP Byte pointer (current)
20 QFI1P2

21 OFOP1

29 OFOP?2 OFOP Byte pointer (max.)

23 QFIND OF10D Peripheral: Input data field /

24 OFOUD {OFPAG)Peripheral: Output data field

25 OFFP File pointer

27 INDX1 Current index in first index buffer

31 INDA1 First index buffer

208 words

51 INDX2 Current index in second index buffer

53 INDA2 Second index buffer

208 words

71

§’ &
S &

OFTYR L l 'l

17 16 0

(continues) ND-60.122.02

3-23

(continued)

OFIOB — opened for sequential access

OFRFI — mass storage file

& A Q-

Q:v :‘ > o \._1 : Y

OFFLG LilJ 111 |
17 1615 1413 12 0

PERMF — permanent opened file

INFLG — change index buffer flag

0 = first buffer last changed

1 = last buffer last changed

OFWRT — file opened for write

INDB1 — write back index buffer one

INDB2 — write back index buffer two

OFSCR — scratchfile

Figure 3.20: Open File Table Entry

Open file table is allocated from BPOOL (declared in file system listing, Sections

1.6.3and 1.2.8) at address 712563;.

ND-60.122.02

3.4.9

3-24

Device Buffers

Device buffers are used for random 1/0. Each device buffer has room for one page

(1K words). The minimum number of device buffers in a systemis:

— one for each floppy unit

— one for each mag. tape unit

— one for each spooling device

— one shared among all disks

If additional device buffers are wanted, this must be specified through a SINTRAN

generation parameter.

if a block oriented device is accessed sequentially, only a %K part of the buffer is

used. This will be indicated in the device buffer header location DNUMB (see

below), and applies to Versatec, mag. tape, floppy disk and spooling devices.

Each device buffer has a corresponding device buffer header. The header contains

descriptive information identifying the contents of the buffer.

The layout of a device buffer header is as given in Figure 3.21.

RESLINK

RTRES

RWLINK Standard data field part

TYPRING

Directory index (see below)

 A

o

o

b

W

N
=

O

}CPAGE (current page in buffer)

7 LNUMB Logical device no. of device buffer lock

10 DZERO Memory address (part one)

1 BUFFER Buffer address

12 DBLOC No. of sectors (words)

13 DBLOA Block address

14 DKFUN Transfer function

15 DPNTO

16 DPNT1
Parameter pointers for ABSTR

17 DPNT2

20 DPNT3

21 D4SIZ No. of 25610 words buffers occupied

DBLEN = 229

15 14 : 0 - 377 fil di

DNUMB Fl Directory Index J 400:) ;i;y;:in:n lljrseectory

Figure 3.21: Device Buffer Header

ND-60.122.02

3-25

The device buffers resice in resident memory from DEVBU to ENDBU (declared

in SINTRAN {ll listing, part 2, Section 29.10) .

Figure 3.22 illustrates some relations-between data structures.

DEVICE
_ BUFFER

OPEN FILE TABLE
ENTRY

OFBUF

OFDIR o+

DIRECTORY
TABLE ENTRY

LUNIT _*]

NAME TABLE
___ENTRY

PTRNS

DRIVER

ROUTINE
 -

Figure 3.22: Some Relations between Data Structures

ND-60.122.02

3.4.10 File System Stack

3-26

Each system segment has a stack (STACK) used for data by routines in the file

system (see Figure 3.18). Foreground programs use a stack in resident memory.

This allows severai background programs and one foreground program to be

inside the file system simultaneously. Figure 3.23 illustrates how the file system

utilizes several stacks simuitaneously.

FILE

SYSTEM

{reentrant)

RESIDENT

MEMORY

STACK STACK

FOREGR,
RT PROG.

STACK STACK

SYSTEM

SEGMENTS

Figure 3.23: File System Stack Usage

ND-60.122.02

 BACKGROUND

SEGMENTS

3-27

Whenever a routine in the file system has been called, an entry in the active

stack (i.e., the stack on the system segment of the active background program

or the stack used for foreground RT programs) is allocated. The size of the entry

varies depending on the called routine. The area is released prior to return from

the routine.

The administration of the file system stack is performed by two sequences of

instructions enclosing ail routines. These sequences (macro expansions) are

called ENTER and LEAVE, respectively. See Figure 3.24.

ENTER % allocate stack entry

% routine code

LEAVE % release stack entry

Figure 3.24: File System Routine Organization

The actual operations on the stack are performed in the routines SPUSH

(allocate) and SPOP (release). These routines are called from ENTER and

LEAVE, respectively. SPUSH and SPOP operate on the current stack pointer,

CSTCK, which always points to the first free location in the stack. See Figure

IN USE

LA

CSTCK

FREE >'7008 words

ESTCK STACK
OVERFLOW 7 words

AREA

Figure 3.25; Stack Organization

ND-60.122.02

3-28

The overflow area is used as stack entry for the error routine in case of stack

overflow,

A stack entry consists of two parts: a 6 word register save area and a variable

length data area. The layout is given in Figure 3.26.

XREG

TREG

AREG

DREG

LREG

BREG

DATA

AREA
- 172 words

Figure 3.26: Stack Entry

ENTER and LEAVE flow charts are illustrated in Figure 3.27 and 3.28, respective-

ly.

ENTER: Enter Sequence

AD = :ASTCK

Stack entry size = :B

CALL SPUSH

Figure 3.27: ENTER

LEAVE: Leave sequence

— STACK ENTRY SIZE =:A

CALL SPOP

Figure 3.28: LEAVE

ND-60.122.02

3-29

The routines SPUSH and SPOP, are described in flow charts in Figure 3.29 and

3.30, respectively. The state of the stack before and after ENTER is illustrated in

Figure 3.31, while Figure 3.32 shows the state before and after LEAVE.

SPUSH: Stack Push

X = :STACK (CSTCK)

AD =:STACK (CSTCK +4)

X+B=:B

B < ESTCK

YES NO

B = :CSTCK STACK OVERFLOW

X=:B \/

T= :STACK(8+1)

ASTCK = : STACK (B +2)

{double word)

STACK (B} = :X

EXIT

Figure 3.29: SPUSH

ND-60.122.02

3-30

SPOP : Stack pop

CSTCK + A =:CSTCK

B=:X

STACK (CSTCK +4) =:L

STACK (CSTCK +5) =:B

STACK {CSTCK +1) =T

STACK (CSTCK +2) = :A

STACK (CSTCK +3) = :D

STACK (CSTCK) =:X

EXIT

Figure 3.30: SPOP

BEFORE ENTER

CSTCK CSTCK

XVAL

TVAL

AV AL

DVAL

LVAL

BVAL

w
m
r

O

Pr
X

-

O
>»

X

REGISTERS
STACK

Figure 3.31: Stack State before and after ENTER

ND-60.122.02

AFTER ENTER

> Stack

entry size

REGISTERS

STACK

3-31

BEFORE LEAVE

XVAL h
IJYAL

CSTCK | AVAL
DVAL

LV'AL

BVAL > Stack

entry size

STACK

Figure 3.32: Stack State before and after LEAVE

ND-60.122.02

CSTCK

XVAL

TVAL

AVAL

DVAL

AFTER LEAVE

FREE

LVAL

@
r
o
»
 X

 BVAL

REGISTERS
STACK

3-32

Due to the systematic stack technique used in the file system, it is possible to

read the dynamic routine call structure out of the stack.

The LREG location in a stack entry always gives the return address from the

corresponding routine. The BREG location in a stack entry always gives the

address of the previous stack entry. See Figure 3.33.

LREG return address

BREG ——

LREG return address

BREG =

LREG return address

BREG — ks

CSTCK E_I_h FREE
Figure 3.33: Stack Showing Dynamic Routine Call Structure

ND-60.122.02

3.4.11

3-33

File System Error Handling

The File System is organized as a set of routines. For a given operation a certain

calling sequence will be performed. With a few exceptions all routine calls have

two return points: an error return and a normal return. The error return is the

instruction following the: call, while the normal return is the second instruction

following the call, therefore referred to as the skip return.

Example from the FOPEN routine (9.5):

CALL FCON

GO ERET % error return

IF.... % normal (skip) return

The called routine (FCON in the example above) has the responsibility of returning

to the proper address. The LREG location in the stack entry (see Figure 3.33) will,

as a result of the SPUSH routine (part of the ENTER macro), contain the address

following the call, i.e., the error return address. LREG is used by the SPOP routine

(part of the LEAVE macro) when a routine wants to return to the caller. When skip

return is desired, the LREG locatin must be incremented by 1 prior to execution of

SPOP. Therefore, the final part of routines usually read:

MIN LREG % increment LREG

*LEAVE % return

The structured error handling design described above, enables the file system to

report an error situation upward in the call hierarchy. An error detected in a routine

at any level can be reported all the way up to the top before it is communicated to

the user. For file system commands the top of the hierarchy is represented by the

routine CMMON on the system segment (see Section 3.3.2). This routine also has

an error return and a normal return. The error return part will call an error routine

which will communicate the error message to the user’s terminal. For monitor calls

the top of the hierarchy is represented by the COMENTRY routine on the system

segment for background programs, and by the COMMON routine called form the

file transfer RT programs (part of the 1/0 system) for foreground programs (see

Section 3.3.1). These routines also have an error return and a normal return. In the

normal return part the P register of the calling program will be incremented by 1, in

the error return part it will not. Thus, the error is reported over to the calling

program where a corresponding error return/normal return technique may be used

to take care of file system errors. The structure of the routines CMMON and

COMENTRY is shown below.

ND-60.122.02

3-34

CMMON:

JPL 0, X % Call some file system routine

CALL ERROR % Error return

*LEAVE % Normal return

COMENTRY:

CALL MRSTA % Call some file system routine (MRSTA is a locationina

% working data field)

GO ERET % Error return

MIN ZPREG % Normal return

% (Increment P register of calling program)

The routine COMMON has a structure similar to that of COMENTRY.

ND-60.122.02

3.5

3.5.1

70000

100000

3-35

FILE SYSTEM COMMANDS

Parameter Collection

When a user issues a file system command, the appropriate routine on the Tile

system segment is entered (see Section 3.3.2). The parameters o the command

will then be collected by calis to the file system routine CLPAR. CLPAR will be

called once for each parameter. CLPAR will then call the routine OPCAL on the

system segment. OPCAL exchanges the file system segment with the command

segment and calls the routine GLPAR on the command segment. GLPAR is the

general parameter collect routine used for all commands. When control is returned

to OPCAL, the original (file system) segment is brought back (exchanged with the

command segment) and control is then returned to the routine CLPAR.

Figure 3.34 illustrates tne sequence of operations involved in parameter collecting.

Note that OPCAL is a general routine taking one parameter, which is the routine to

be called (GLPAR in this case).

l System i i l | I

| sagment i {1 opcaL] | | |

| i | lcALCmmexy] | i | |
| | CALL GLPAR | I CALL MMEXY| ! I

| { i | | |

[e oo

Command / File Systsm

File System Sagment / Segment

Segment Exchangad

GLPAR /
CLPAR
CALL OPCAL |— / CLPAR

Figure 3.34: Parameter Collection

ND-60.122.02

3-36

3.56.2 Create Directory

Below is a flow diagram of the create directory routine. {The number in paren-

theses refers to the section number in the file system listing.)

CRDIR: Create directory {10.2)

*ENTER

Collect Parameters

w« device?

Y

es —_—
No

Is this user SYSTEM?

Yes No

Error: you are

General lock
ot authorized

s
1o do this

Is a directory with this name already

No
gntered? es

Error:

Does unit exist? Directory’

Yos No rad

Is a directory entered on the unit? Error: No such

No
as [logical unit

Error:

Lock directory
unit occupied

General unlock

May this unit be reserved?

No
Yes

Resarve for DUMMY . Reservation

Y Yes —_— % Mo
Floppy disk? ——,

 Error: Device

No |unit reserved for
ecial use Yes

S —

 Set format = 0 in data field
 \

Move 1 param. (directory name) to DNAMLE in directory entry

Clear object and user file printer

Find bit file address, either specified as parameter of defauited to

end of device for drum, middie of device for disk and floppy disk.

Set PLEFT in directory equal to PAVAI in name table entry

{continues)

ND-60.122.02

3-37

(continued)

Test device by writing onto the bit file

Reserve page for master block

Reserve page(s) for bit Read and compare all

file other pages

Read master block

Copy directory entry to master biock

Unlock directory

Write master block

Increment return address

Directory reserved?

Yes No

Release directory

*LEAVE

Figure 3.35: Create Directory

ND-60.122.,02

3.6.3 Enter Directory

ENDIR: Enter directory (10.4)

*ENTER
wa user entered?

Yes
No

\ Wflmrefl

§ No Yes

 Error: No user

Collect parameters

entered

General lock

Directory entered?

No
es

Error: unit

Lock directory
occupied

General uniock

May this unit be reserved?

Yes

Reserve for DUMMY , Reservation ok?

Yes \
No

Floppy disk? Entor: device

unit reserved

Yes
No or special us

Set format = 0 in data field
z

Read master block

Compare 1 par. ({dir. name) with DNAME in

dir. entry. Match.

Yes
No

 wflmo already in use? Error: directory
not on specified

No
\

l‘\lt,

Set up directory entry

|f the contents of the user and/or object buffer is related to this

directory index, indicate that the contents are obsolete. (Beionged

to the previously-entered directory on this unit.)

Indicate that bit file buffer contents are obsolite.

(continues)
ND-60.122.02

3-39

(continued)

For user 0 to user 3778 do

 T

Yes lo

-—._____'-__

For file O to file 3778 do

B Does file exist?
Yes o

Clear “open for write’ bit, “reserved’ bit,

“reserving user” information, and “durrent

open count’ if necessary.

\ f

Is a main directory already entered?

No Yes

For user O to user 3778 do

Does user exist and is
enter count '

Yes No

Clear enter count .

Clear ““main’’ bit and

default bit of this

entry

Set “main* bit and “‘defauit’’ bit of this entry

Set ‘‘entered’’ bit

Increment return address

Unlock directory

* LEAVE
Figure 3.36: Enter Directory

ND-60.122.0 2

3.6.4

340

Create User

CRUSE: Create user (10.10)

Collect parameters and

separate string

General lock

Is directory specified?

Yes No

Get specified Get main

| directory index directory index

Get directory address

Get name table address

Is the device a single

user device?
Yes No

|s this user SYSTEM?

i Yes No

Lock directory
Error: You are

not authorized

repeat until unused usar entry

thi
Main directory / do this

Yes No

Does user exist in main

\ Yes irectory? N

General unjock Error: No
such user in
maindirectory

Read next user entry

and test UUSED bit

Entry found
Yes No

Create new user Error: Too

entry by setting many users

UUSEDbit, copying

user name (parameter)

clearing password,

and setting creation

date

Increment return address

Uniock directory

LEAVE

Figure 3.37: Create User

ND-60.122.02

3.5.5

341

Delete User

DLUSE: Delete user (10.12)

Collect user name

Get directory address

Get name table address

Yes

Single user device

(e.g. floppy)?
No

Yes

Is this user SYSTEM

?
No

Lock directory

Error: You are
not authorized
o do this

Read user entry

No.ofmosusod-r?o

Yes No

Is this on main

directory?
Yes No

Yes Is user logged in?

No

Error: User

entered

for all user entries on this directory do

Is emtry used
Yes ? N¢

for all friend entries do

Is entry usad
?

Yes No

Is friend index=
deleted user

Yes ? Ng

Clear entry

Return reserved pages

to directory

Clear user entry

Increment return address

Uniock directory

LEAVE

Figure 3.38: Delete User

ND-60.122.02

Error: User

has files

3.6.6

3-42

Create File

CRFIL: Create file (10.26)

Collect parameters

1 Create object entry (entries)

indexed file (i.e. Z.yar = ()

No Yes

2 Change ’‘pages used”’ in user entry

3 Search for a contiguous

area, start at high end

of disk addresses

4 Allocate pages by

setting bits in bit file

5 Set file pointer and

number of pages in object

entry

Increment return address

Unlock directory

LEAVE

Figure 3.39: Create File

If a file is to be created in several versions or if the command CREATE-NEW-

VERSIONS is issued, the actions in the boxes numbered 2, 3, 4 and 5 will be

repeated for each version. Also, the box numbered 1 will create one object entry

for each version.

ND-60.122.02

3-43

3.5.7 Delete File

DLFIL: Delete fite (10.31)

Collect parameter (file name)

Get file index

Get directory address

Is this a tape device?
No Yes

Repeat for all versions of the file Error: Illegal

Get next version {version 1 first) on tape device

Get file access

Does this user have directory

Yes access? No

Error: Not

Delete object entry directory access
Write back bit file buffer

Increment return address

Get directory address

Unlock directory

LEAVE

Figure 3.40: Delete File

ND-60.122.02

3-44

3.5.8 Open File

Open file and return file no.

Coliect 1 parameter Collect 2 parameter

(file name) (access)

File connect

Find file to open SOFT Set up open file table entry

{ 93

ROBJE GDIRA WOBJE

8.2 4.1 8.3

Find open file Read object Get directory Get name Get buffer Write object

table entry entry address table address set from pool entry

Figure 3.41: Open file command — Call Hierarchy

ND-60.122.02

3-45

OPENF: Open file {10.38)

Collect parameters

Legal access code combination?

Yes
No

Lock open file table {foreground)
ERS2

CALL FOPEN

(Open file and return file number)

Unlock open file table

Output applied file number

Increment return address

LEAVE

Figure 3.42: Open File Routine — Flow Diagram

The last parameter to the open file command, the access type parameter, is

returned (from GLPAR) as a function value in the A register. The access type is

coded in the 6 rightmost bits as follows:

15 54 3 2 10

[nPiclalwir]

All legal combinations form a set of values. The table below shows the legal

combinations, the corresponding values returned in the A register, and the internal

access codes used by the file system.

Parameter Value returned from GLPAR Internal access code

W 2 0

R 1 1

WX 22 2

RX 21 3

RW 3 4

WA 6 5

wC 12 6

RC 1 7

ND-60.122.02

346

3.6 FILE HANDLING MONITOR CALLS

For a general discusssion on file system monitor call handling see Section 3.3.1.

3.6.1 RFILE/WFILE

RFILE/WFILE: Read file and write file (11.5)

Yes

|s there a file opened with this file number?

o

Is this a mass storage file ?

rror: No file
opened with this

No number

Open for sequential access? Error: Not mass

Current byte pointer (OF IP): =

block address * block size * 2 — 1
Yes

storage file

Yes

Block address # —1 Error: Not
opened for ran-

Yes - No road /wi

WFILE?

No

Max. byte pointer (OFQP): =

current byte pointer (OFIP)

WFILE ?

Yes No

CALL FWRT (mem. ad., no. of

words)

AGTP and current > max.

No Bs

: Error: End of
CALL FREA (mem. ad., no. of words) |giq

MAGTP?

Yes No

Return actual number of words

transferrad

7 y

LEAVE

Figure 3.43: RFILE/WFILE

ND-60.122.02

347

3.6.2 Input Byte from File

This routine is executed on level 4 (INBT/QUTRBT level),

—

FINBT: Inputbyte (11.1)

Is the file empty (max. byte pointer, OFOP, = —1)?

No es

s max. byte pointer < current byte pointer

No FOP . <OFIP)? 5 ,

\
Current buffer empty?

E.rror: End of

Yes NO flle

CALL MRFI

(Read buffer)

Increment current byte pointer (OF IP)

Get byte (return in programs A reg.)

Increment programs P reg. (Skip retumn)

WAIT

Figure 3.44: FINBT

ND-60.122.02

APPENDIX A

A GUIDE TO THE FILE SYSTEM LISTING

The most frequently used routines on the file system segment are placed at its
. . . . B o

beginning in order to reduce swapping overhead.

The routines in the file system listing, however, are organized with respect to

coherent operations. This will not coincide with an ordering based on memory

addresses.

Table A.1 illustrates the correspondence between memory address and file

system section number.

Table A.2 gives the contents of the listing ordered by chapter, while Table A.3

lists all routines ordered by section number. Table A.4 lists all routine names

ordered alphabetically.

ND-60.122.,02

Chapter:

1

2

10

1"

12

Definitions

Buffer routines

Auxiliary routines

Directory routines

Bit file routines

Index block routines and spooling routines

User file routines

Obiject file routines

Open file table routines

Command processing

Monitor call processing

ABSTR, MAGTP, semaphore lock routines, etc.

Table A.2: Chapters of the File System Listing

ND-60.122.02

Address

in resident

14140

14312

15511

15603

15675

16763

16044

16263

16326

16412

16717

16733

16764

17002

17112

17115

17433

17516

1.8-1.9

Section in

Listing

2.0

3.6-3.71

3.9-3.10

41-4.2

9.13 (last part)

9.14-9.15

9.16 - 9.17 (parts)

11.7 (partly)

11.9 (partly)

11.11

11.12

11.14

11.15

12.1

12.2.2-12.3.5
 12.7.4

Address on file Section in

system segment Listing

101300

103267

104416

106421

107013

110356

110500

110550

112026

112233

113410

116322

137102

141206

173331

173645

Address on

21-2.9

16.1-62 |

9.11-8.13

9.16-9.17

11.3-11.14

12.1

9.21

3.1-3.4

3.7.2-3.8

3.11-3.15

4.3-5.8

6.3-9.10

9.18-9.27

10.2-10.63
 12.4-12.6

Section in

system segment Listing

70000

70750

71014

71017

71146

74252

Table A. 1: Memory Address — Section Number

ND-60.122.02

1.6.1

1.6.2

1.6.3

11.1-11.2
 12.8-12.9

3.11
3,11
3.12
3.13
3.14
3.15
4401
4,02
4.03

4,04
4,05
4.06
4,06
4,07
4.08

S.01
5.02
5.03
S.04
5.05
S5.06
5.06
5.07
5,08
6.01
6.01A
6.02
6,03
6.04
6.05
6.05
6,05
6,05
6.06

BOUMP
DUMP
CHANG
SEPST
SEPPA
SEPFS
GDIRA
GNAMA
GDIRI
GNAMI
GOIRE
COLDE
XCOoLD
GMAIN
WDIRE
FBFBU
RBFBL
WBFBL
wBFBU
ALBIT
ALPAG
RLPAG
TPAGF
RSPAG
RINDX
FINDX
WINDX
STARS
STSPL
ABORS
STOPR
STAPR
RESTS
LSPOQ
APPES
DELES
RMSPF
GIVES
TAKES
SPOPL
INPER
FINDQ
DEABB
GFILN
HEAPRINT
TRAPRINT
LOCKQ
UNLCG
READQ
WRITQ
APPEQ
TAKEQ

INITQ
FPERIV
FFILISQ
MSPQENT
SNSPCOPY
FWSPRINT
BSPRINT

FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
RESIDENT
RESIDENT
TILSEGZ
FILSEG2
FILSEG2
FILSEG?2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGI]
FILSEG]
FILSEGL
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEGe
FILSEG?2

ND-60.122.02

DUMP BLOECK ON TERMINAL
DUMP BLOCK ON TERMINAL
CHANGE BLOCK
SEPARATE STRING
SEPARATE FILE STRING
SEPARATE FILE STRING IN THREE
GET DIRECTORY ADDRESS
GET NAME TABLE ADURESS
GET DIRECTORY INDEX
GET NAME INDEX
GET BIRECTORY INDEX
COLLECT DEVICE NAME AND UNILT
COLLECT BEVICE NAME AND UNIT
GET MAIN DIRECTORY INDEX
WRITE DIRECTORY ENTRY
FIND BIT FILE BUFFER ADDRESS
READ BIT FILE BLOCK
WRITE BIT FILE BLOCK
WRITE BIT FILE BUFFER
FIND BIT FILE ADDRESS
ALLOCATE PAGE IN BIT FILE
RELEASE PAGE IN BIT FILE
TEST PAGE FREE
RESERVE FIRST FREE PAGE
READ INDEX BLOCK
READ INDEX BLOCK
WRITE INGEX BLOCK
START SPCOLING
STOP SPOCLING
ABORT SPOOLING PRINT
STOP PRINT
START RRINT
RESTART SPOOLING PRINT
LIST SPOGLING QUEUE
APPEND SPOOLING QUEUE
DELETE SPOOLING FILE
REMOVE FROM SPO0O. QUEUE
GIVE SPOCLING PAGES
TAKE SPOGLING PAGES
NUMBER OF SPOOL. PAGES LEFT
INPUT SPOOLING PERIPHERAL
FIND SPOGLING QUEUE
DEABBREVIATE FILE NAME
GET FILE NAME
PRINT SPCOLING HEADER
PRINT SPCOLING TRAILER
FIND NUMBER OF ELEM. IN QUEUE
UNLOCK QUEUE
READ ONE QUEUE ELEMENT
WRITE ONE QUEUE ELEMENT
APPEND TG QUEUE
TAKE FROM SPOOLING QUEUE
INITIALIZE QUEUE
FIND PERIPHERAL VERSION
FIND FILE IN SPOOL. QUEUE
MOVE SPOCL. QUEUE ENTRY
SET NO. CF PRINT COPIES
FORWARD SPACE PRINT
BACKSPACE PRINT

A—4

Table A.3: Sections of the File System Listing

1.01
1.02
1.03
1.04
1.05
1.06.1

Ta05.0

1o0661
1.06.2
1.0603
1.07

1.08
1.09
1,10
2.00
2,00
2.00
2.00
2.00
2.00

2.00
2.01
2.01A

2.02
2.03
2.03A

2.04
2.04A

2.05
2.06
2.09
3.01.1

3.01.1
3.01.2
3.01.2

3.,01.3
3.01.3

3.01.3

3,01.3
3.02.1
3.02.1

3.03.1
3.03.1
3.03.2

3.04
3.04
3,05
3.05
3.07.1
3,07,.1
3.07.2
3.08
3.09

3.10

AUXTILIARY
MACROES
DEVICE BUFFERS
DIRECTORY TABLE

NAME TABLE
SPOP
SPUSH
SUBR. STACK

CONTEXT BL
BUFFER POOL
BIT FILE BUFFER
USER FILE BUFF
0BJ. FILE BUFF
FILE RT-PROG
G3BUF

G318BUF

G3NWT
GSBUF
R3B8BUF

R3IBUF

R5BUF

GDEVB

F1DBU
RDEVH

RBLOC

RCBLO

wBLOC

WCBLO

PTAPE
WEOT

WTAPE

MOCTA

OCTAL

DECIM

MDECI

DDECI
MDDEC

MTWOD

TWODE
QUTRC

QUTST

LDATE
MDATE
LACCW

INSTR

STRNG
GETCH

PUTCH

ACOPY

COPYS

APPST

COMPS

SETBL
COPYB

DECLARATIONS

DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS

SYSEG
SYSIZG
SYSEG
DECLARATIONS

SYSEG
DECLARATIONS
FILSEG2

FILSEG?2
DECLARATIONS
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT

RESIDENT
FILSEG]
FILSEG]

FILSEG]
FILSEGI
FILSEG]

FILSEG]
FILSEG1
FILSEG]
FILSEGL
FILSEG]
FILSEG2

FILSEG2
FILSEGZ2
FILSEG2

FILSEG2
FILSEG2
FILSEG2

FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ

FILSEG2
FILSEG2
FILSEG2
RESIDENT
RESIDENT
RESIDENT
RESIDENT
FILSEG2
FILSEG2

RESIDENT
RESIDENT

ND-60.122.02

SYMBOL DEFINITIONS
REGISTER DEFINITIONS

POP SUBRCUTINE STACK
PUSH SUEBROUTINE STACK

ENTER/LEAVE STACK
OPEN FILE TABLE

BUFFER FCR USER ENTRY
BUFFER FCR OBJECT ENTRY

GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
GET DEVICE BUFFER
FIND DEVICE BUFFER HEADER
RELEASE BEVICE BUFFER
READ 1K FROM DEVICE
READ AND COMPARE 1K FROM DEVI
WRITE 1K 7O DEVICE
WRITE ANGC COMPARE 1K TO DEVIC
POSITION TAPE
WRITE ENE OF TAPE
WRITE DATA ON TAPE
OUTPUT OCTAL NUMBER ON TERMy
OUTPUT OCTAL NUMBER ON TERM,
OUTPUT DECIMAL NUMBER ON TERM,
OUTPUT DECIMAL NUMBER ON TERM,
OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT DCUBLE DECIMAL NUMBER
QUTPUT TWO DIGITS DECIMAL
OUTPUT TwO DIGITS DECIMAL
QUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
LIST DATE
LIST DATE
LIST ACCESS WORD
INPUT STRING
INPUT STRING
GET CHARACTER FROM STRING
PUT CHARACTER TO STRING
COPY STRING (ALT. PAGE TABLE)
COPY STRING
APPEND STRING TO STRING
COMPARE STRINGS
SET BLOCK CONTENTS
COPY BLOCK

9,15
S.16
9.16'

9.17
9.17
S.18
9.18
S.18
9.18
S.19

9.20
5.21
S.22
9.23
9.24
9.25
9.26
9.27

10.02
10,03
10.04

10.05
10,06
10.07
10.07
10.08
10.06
10.10
10.11
10,12
10.13
10,14
10.15
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24

10,25
10.26
10.26
10.27
10.27
10.28
10.30
10.31
10.32

10.32
10,33
10,34
10.34A
10,35
10.35
10.35

FPUT
FREA
FREA
FWRT
FWRT
RBYTE
RMAXE
SBYTE
SMAXB
SBLOP
SDATF
CDATF
0PSCR
CPFIL
COLF1I
cLouUT
REMOPFI
NBAVA
CRDIR
RNDIR
ENDIR
RLDIR
SDDIR
DIRST
LIDIR
DUDIR
CHDIR
CRUSE
RNUSE
DLUSE
GIUSE
TAUSE
LIUSE
USEST
DUUSE
CHUSE
ENUSE
RLUSE
CHANP
CLPAS
CRFRI
DLFRI
SFRIA
LIFRI
CRFIL
CRNVE
ALFIL
ALNVE
EXFIL
RNFIL
DLFIL
STERF
STMPF
SPERF
SFLAC
SDFIA
DEUFI
FILST
LIFIL

FILSEG]
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEGZ2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ
FILSEGZ
FILSEG2
FILSEGZ
FILSEGZ2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEGZ
FILSEG2
FILSEG?2
FILSEG2
FILSEG?
FILSEG2

ND-60.122.02

PUT BYTE ON FILE
FILE READ
FILE READ
FILE WRITE
FILE WRITE
READ BYTE POINTER
READ MAX POINTER
SET BYTE POINTER
SET MAX POINTER
SET BLOCK POINTER
SET BATAFIELD RESERVED
CLEAR DATAFIELD RESERVED
OPEN SCRATCH FILE
COPY FILE
COLLECT FILE NAME
CLOSE OUTPUT FILE
REMOTE OPEN FILE
WAIT FOR ANSWER ON REMOTE 6R.
CREATE DIRECTORY
RENAME DIRECTORY
ENTER DIRECTORY
RELEASE EIRECTORY
SET DEFAULT DIRECTORY
DIRECTORY STATISTICS
LIST DIRECTORIES ENTERED
DUMP DIRECTORY ENTRY
CHANGE PIRECTORY ENTRY
CREATE USER
RENAME USER
DELETE USER
GIVE USER SPACE
TAKE USER SPACE
LIST USERS
USER STATISTICS
DUMP USER ENTRY
CHANGE USER ENTRY
ENTER USER
RELEASE USER
CHANGE PASSWORD
CLEAR PASSWORD
CREATE FEKIEND
DELETE FRIEND
SET FRIEND ACCESS
LIST FRIENDS
CREATE FILE
CREATE NEW FILE VERSION
ALLOCATE FILE
ALLOCATE NEW FILE VERSION
EXPAND FILE
RENAME FILE
DELETE FILE
SET TERMINAL FILE
SET TEMPCRARY FILE
SET PERIRHERAL FILE
SET FILE ACCESS
SET DEFAULT FILE ACCESS
DELETE USERS FILES
FILE STATISTICS
LIST FILES

6,29

7.01.1
7.01.2
7.02
7.,02A
7.03
7.04
7.05
7.06
7.07
7.08
7.09

7.10
7.11
T.12
7.13

8.01
8,02
8.03
8,04
8,08

8.06
8,07
8.08
8,09
8,10
8.11

8.11
8.12
8.14
8.15

8.16
8.17
8.18
8.19
8.19

5.01
5.02
5.03
S.03A

9004

9.05
9,06

9.06
9,06
3,07

9,07
9.08
95.09
S.10
S.11.1
Se11.1
S.11.2
Se11.3
9ellets

9.12
9.13

9.13
S.14

DSCOND
TUSSY
TUSRT
TUSEN
RUSPW
FUSEB
RUSER

WUSER
RUSEB

GUSE]
GMUSI
COLUN
GUSEN
CUSED
GDEFD
GUSAC
FOBJB
ROBJVE
wOBJE
ROBJB
GOBJI
SEPOB
GFILI
GPREV
GNEXV

COBJE
CHIGV

CNEWYV

CROBJ
DLOBY
CRNEW

GVERS
GFIAC

GCFIL
DLPAG
DLSPA

FFILE
FOFT
SOFT
OFRND
FCON
FOPEN

FCLOS
XFCLOS
XFCLOS

GBUF

GBUFS
RBUF

SBLSZ
SETPO
GPADR
GPREA
WBACK
GPAGE
RESSTAR

REBUF

FLYTT
WRBUF
FGET

A—6

FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEC2
FILSEC2
FILSEGZ
FILSEC2
FILSEC2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2/RESIDENT
FILSEG2
FILSZIG2
FILSZIG2
FILSZG2
FILSZG2
FILSEG2
FILSEG1
FILSEG]
FILSEG]
FILSEG1
FILSEG1
FILSEG!]
RESIDENT
FILSEG1
FILSEG]

ND-60.122.02

DEFINE SPOOLING CONDITIONS

TEST USER SYSTEM
TEST USER RT
TEST USER ENTERED
READ USER PASSWORD
FIND USER ENTRY BUFFER
READ USER ENTRY
WRITE USER ENTRY
RELEASE ULSER ENTRY

GET USER INDEX
GET MAIN USER INDEX
COLLECT USER NAME
GET USER NAME
CHANGE USER SPACE
GET DEFAULT DIRECTORY
GET USER ACCESS
FIND OBJECT ENTRY BUFFER
READ OBJECT ENTRY

WRITE OBJECT ENTRY
RELEASE CBJECT ENTRY BUFFER

GET OBJECT INDEX
SEPARATE OBJECT NAME
GET FILE INDEX
GET PREVIQUS VERSION
GET NEXT VERSION

CREATE OEJECT ENTRY
CREATE NEW HIGHER VERSION

CREATE NEW VERSION
CREATE OBJUECTS
DELETE QBJECT
CREATE NEW VERSION OF FILE

GET VERSION NUMBER
GET FILE ACCESS
GET OR CREATE FILE

DELETE PAGES OF FILE
DELETE PAGES OF FILE
FIND FILE TO OPEN
FIND OPEN FILE TABLE
SET UP OPEN FILE TABLE
OPEN FILE FOR RANDOM ACCESS

FILE CONNECT
FILE OPEMN

FILE CLOSE
CLOSE SPCOLING FILE
FILE CLOSE (NO VERSION CHANGE)

GET BUFFER FROM POOL

GET BUFRER SET FROM POOL
RETURN BLFFER TO POOL

SET "8LOCK SIZE
SET PERMANENT OPEN
GET PAGE ADDRESS OF FILE
GET PAGE ADDRESS FOR READ
WRITE BACK INDEXES
GET PAGE FOR FILE

RESERs SEMAPH, FOR START PHBG

READ BUFFERS FROM FILE
MOVE 100 WORDS
WRITE BUFFERS ON FILE

GET BYTE FROM FILE

11.10
11.10
11.11
11.11
11.12
11.13
11.12
11.15
12.01
12.01
12.01
12.01
12,01
12.02.3
12.03.1
12.03.2
12,03.3
12.03.4
12,03.5
12,04.3
12.04.4
12.04.5
12.05.1
12,06
12.07.4
12.07.4
12.08

ERMSG
QERMS
MROBJ
MROBJ
MRUSE
MPYAT
MRUSE
RSPQE
ELOCK
EULOC
FATAL
LOCK
UNLOC
WHERE
CABST
DRABS
BABST
MABST
FDABS
CMMON
CLPAR
ERROR
INITF
GDATE
SINBT
SOUTBT
OPCAL

FILSEG]
FILSEG1
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG1/RESIDENT
FILSEG]
RESIDENT/FILSEGL
RESIDENT
FILSEG]
FILSEG]
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
RESIDENT
RESIDENT
SYSEG

ND-60.122.02

WRITE ERROR MESSAGE
WRITE ERROR MESSAGE AND STBR
READ OBJECT ENTRY
READ OBJUECT ENTRY
READ USER ENTRY
AD:=A®T
READ USER ENTRY
READ SPCCLING QUEUE ENTRY
ESCAPE LCCK
ESCAPE UNLOCK
FATAL ERROR
LOCK SEMAPHORE
UNLOCK SEMAPHORE
WHERE 1S SEMAPHORE
CARTRIDGE DISC ABSTRANS
DRUM ABSTRANS
BIG DISC ABSTRANS
MAG TAPE ABSTRANS
FLOPPY DISC ABSTRANS
COMMAND NMONITOR
COLLECT PARAMETER
WRITE ERROR MESSAGE
INITIATE FILE SYSTEM TABLES
GET DATE
INPUT BYTE TO FILE SYSTEM
OUTPUT BYTE FROM FILE SYSTEM
CALL ROUTINE ON OP4COM,SEGs

6.05

3.07.1
5.05

10.27
10.27
5.06
6.21
6.07

3.,07.2
1.01

12,03.3
3.11
1.07
6.28
1.06.3

12,03.1
9.21
3.12

10,20
10.55
10.09
8.11

10.37
10,53
10.17

11.08
10.40
9.25
12.04.4

10.21
10.63
10.51
12.04,3
8,11
8.10
4,06
S.24
7.09
3.08

10,39
1.0642

10.57
10.57
3.10
3.07.1

10.50
9.23

10.62
10,02
10,60
10.26
10.22
8.15

Table A.4: Routines in the File System, ordered alphabetically

ABORS

ACOPY
ALBIT

ALFIL
ALNVE
ALPAG
APPEQ
APPES
APPST
AUXILIARY
BABST
BDUMP
BIT FILE BUFFER

BSPRINT
BUFFER POOL
CABST
CDATF
CHANG
CHANP

CHBIT
CHDIR
CHIGV
CHOBJ
CHPAG
CHUSE
CLOFI
CLOSF

cLouy
CLPAR
CLPAS
CLPRY

CLRTF
CMMON
CNEWYV
COBJE
COLDE
COLF1I
COLUN
COMPS
CONNF

CONTEXT BL
COPDI
COPFI
cOPYB
COPYS
CORTF

CPFIL
CPUFIL
CRDIR

CREVOL
CRFIL

CRFRI
CRNEW

FILSEGZ2
RESIDENT
FILSEG2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
DECLARATIONS
RESIDENT
FILSEG2
DECLARATIONS
FILSEG?Z2
SYSEG
RESIDENT
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG]
FILSEGR2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEGZ
FILSEG?Z2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
DECLARATIONS
FILSEG2
FILSEG2
RESIDENT
RESIDENT
FILSEGZ
FILSEG2
FILSEGZ
FILSEGZ2
FILSEGZ
FILSEG2
FILSEGZ2
FILSEG2

ND-60.122.02

ABORT SPCOLING PRINT

COPY STRING (ALT. PAGE TABLE)

FIND BIT FILE ADDRESS

ALLOCATE FILE

ALLOCATE NEW FILE VERSION
ALLOCATE PAGE IN BIT FILE

APPEND TC QUEUE
APPEND SFOOLING QUEUE
APPEND STRING TO STRING

SYMBOL DEFINITIONS
BIG DISC ABSTRANS
DUMP BLOCK ON TERMINAL

BACKSPACE PRINT

CARTRIDGE DISC ABSTRANS

CLEAR DATAFIELD RESERVED
CHANGE BLOCK
CHANGE PASSWORD

CHANGE BIT TABLE
CHANGE BIRECTORY ENTRY
CREATE NEW HIGHER VERSION
CHANGE OBJECT ENTRY
CHANGE PAGE
CHANGE USER ENTRY

CLOSE FILE
CLOSE FILE
CLOSE OUTPUT FILE
COLLECT PARAMETER
CLEAR PASSWORD

CLEAR PARITY IN TAPE LABEL

CLOSE RT FILE
COMMAND MONITOR
CREATE NEW VERSION

CREATE OBJECT ENTRY

COLLECT BEVICE NAME AND UNIT

COLLECT FILE NAME
COLLECT USER NAME
COMPARE STRINGS
CONNECT FILE
OPEN FILE TABLE
COPY DIRECTORY
COPY FILE
COPY BLOCK
COPY STRING
CONNECT RT FILE
COPY FILE
COPY USERS FILES

CREATE DIRECTORY
CREATE VOLUME
CREATE FILE
CREATE FRIEND

CREATE NEW VERSION OF FILE

10.26
8.12

10.10
7.11
3.01.3
6.14
3.01.2
6.08

10.35
1.03
1.04

10.07
10.31
10.23
8.14
8.19
8.19

10.12
12.,03,.2
6.29

10.54
10,08
3.11

10.36
10.52
10.16
12.01
10.04
10.18
11.10
12.04.5
12,01
10,28
12.01
.01
5.06
9.04
12.03.5
€.25
9.01
S.14
2.01A
1.10

10.35
11.01
€.13
€.01A
9.13
8.01
9,02
9.05

11,02
€.24
9,15
S.16
S.16
7.03
S.17
6.28

CRNVE
CROBJ
CRUSE
CUSED
DDECI
DEABB
DECIM
DELES
DEUFI
DEVICE BUFFERS
DIRECTORY TABLE
DIRST
DLFIL
DLFRI
DLOBJ
DLPAG
DLSPA
DLUSE
DRABS
DSCOND
DUBIT
DUDIR
DUMP
DUOBJ
DUPAG
DUUSE
ELOCK
ENDIR
ENUSE
ERMSG
ERROR
EULOC
EXFIL
FATAL
FBFBU
FCLOS
FCON
FDABS
FFILISQ
FFILE
FGET
F1DBU
FILE RT-PROG
FILST
FINBT
FINDQ
FINDX
FLYTT
FOBJB
FOFT
FOPEN
FOUTBT
FPERIV
FPUT
FREA
FREA
FUSEB
FWRT
FWSPRINT

FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEGZ
DECLARATIONS
DECLARATIONS
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
RESIDENT
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG1
FILSEGZ
FILSEG2
FILSEG)
FILSEGZ2
FILSEG]
FILSEG2
RESIDENT
FILSEG2
FILSEG?Z2
FILSEG2
RESIDENT
FILSEGZ2
FILSEGZ2
FILSEG]
FILSEG!L
DECLARATIONS
FILSEG2
SYSEG
FILSEGZ
FILSEG]
RESIDENT
FILSEGZ
FILSEG2
FILSEG2
SYSEG
FILSEG2
FILSEGI
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG2
FILSEG1/RESIDENT
FILSEG2

ND-60.122.02

CREATE NEW FILE VERSION

CREATE ORJECTS
CREATE USER

CHANGE USER SPACE
OUTPUT DOUBLE DECIMAL NUMBER

DEABBREVIATE FILE NAME
OUTPUT DELCIMAL NUMBER ON TERM.

DELE7E SFPOOLING FILE
DELETE USERS FILES

DIRECTORY STATISTICS
DELETE FILE
DELETE FRIEND
DELETE OBJECT
DELETE PAGES OF FILE
DELETE PAGES OF FILE
DELETE USER
DRUM ABSTRANS
DEFINE SFOOLING CONDITIONS
DuMp BIT TABLE
DUMP DIRECTORY ENTRY
DUMP BLOCK ON TERMINAL
DUMP OBJECT ENTRY
OUMP PAGE
DUMP USER ENTRY
ESCAPE LCCK
ENTER DIRECTORY
ENTER USER
WRITE ERROR MESSAGE
WRITE ERROR MESSAGE
ESCAPE UNLOCK
EXPAND FILE
FATAL ERROR
FIND BIT FILE BUFFER ADDRES$S
FILE CLOSE
FILE CONNECT
FLOPPY DISC ABSTRANS
FIND FILE IN SPOOL. QUEUE
FIND FILE TO OPEN
GET BYTE FROM FILE
FIND DEVICE BUFFER HEADER

FILE STATISTICS
INPUT BYTE
FIND SPOCLING QUEUE
READ INDEX BLOCK
MOVE 100 WORDS
FIND OBJECT ENTRY BUFFER
FFIND OPEN FILE TABLE
FILE OPEN
OUTPUT BYTE
FIND PERIPHERAL VERSION
PUT BYTE ON FILE
FILE READ
FILE REAB
FIND USER ENTRY BUFFER
FILE WRITE
FORWARD SPACE PRINT

9.17
2.00
2.00
2.00
2.00

9.07
9.07
8.18

12.06
7.12

2.01
‘.'01

4,05
4‘03

3,05
8,17
8,07
6.15

10,13
6.09
4,07
7.08

4,02
4,04
8,09
8.05
9,11.1
9.11.3

9.11.1
8.08
7.13

7.07
7.10
8.16

€.16
11.01

12.05.1

€.23
6.12
3.04
3.,03.2
3.03.1

10,07
10.35
10.25
10.41
10.41
10.15
10.61
12.01
6,17

€.06
12.03.4
1.02

3.03.1
3.01.3

3.01.2
3.01.1

11.12

FWRT

G3BUF
G3IBUF
G3NWT
GS5BUF
GBUF

GBUFS
GCFIL
GDATE

GDEFD
GDEVB
GDIRA

GDIRE
GDIRI
GETCH

GFIAC
GFILI
GFILN

GIUSE
GIVES
GMAIN
GMUSI
GNAMA

GNAMI

GNEXV
GOBJI
GPADR

GPAGE

GPREA

GPREV

GUSAC

GUSET
GUSEN
GVERS
HEAPRINT
INBT

INITF

INITQ
INPER

INSTR

LACCW
LDATE
LIDIR
LIFIL
LIFRI
LIOPF

LIRTO
LIUSE
LIVOL
LOCK

LOCKQ
LSPOQ
MABST
MACROES

MDATE
MDDEC
MDECT
MOCTA

MPYAT

RESICENT/FILSEG]
RESICENT
RESIDENT
RESIDENT
RESIDENT
FILSEGZ2
FILSEG2
FILSEG?
FILSEGZ2
FILSEG2
FILSEGI]
RESIDENT
FILSEG?Z2
FILSEG2
RESIDENT
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG?
FILSEG?2
RESIDENT
FILSEG2
FILSEG2
FILSEG2
FILSEGL
FILSEG]
FILSEG]
FILSZG2
FILSZG2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ
SYSEG
FILSEG2
FILSEGZ
FILSEGZ2
FILSEG2
FILSEG?2
FILSEGZ2
FILSEG2
FILSEG?2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ
RESIDENT
FILSEG2
FILSEGZ2
RESIDENT
DECLARATIONS
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ2
FILSEG]

ND-60.122.02

FILE WRITE

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER
GET BUFFER FROM POOL

GET BUFFER SET FROM POOL
GET OR CREATE FILE

GEY DATE
GET DEFAULT DIRECTORY
GET DEVICE BUFFER
GET DIRECTORY ADDRESS

GET DIRECTORY INDEX
GET DIRECTORY INDEX
GET CHARACTER FROM STRING

GET FILE ACCESS
GET FILE INDEX
GET FILE NAME
GIVE USER SPACE
GIVE SPOCLING PAGES

GET MAIN DIRECTORY INDEX

GET MAIN USER INDEX

GEY NAME TABLE ADDRESS

GET NAME INDEX
GET NEXT VERSION
GET OBJECT INDEX

GET PAGE ADDRESS OF FILE

GET PAGE FOR FILE
GET PAGE ADDRESS FOR READ

GET PREVIOUS VERSION

GET USER ACCESS
GET USER INDEX
GET USER NAME
GET VERSION NUMBER
PRINT SPCOLING HEADER

INPUT BYTE

INITIATE FILE SYSTEM TABLES

INITIALIZE QUEUE

INPUT SPCOLING PERIPHERAL

INPUT STRING
LIST ACCESS WORD
LIST DATE

LIST DIRECTORIES ENTERED

LIST FILES
LIST FRIENDS
LIST OPENED FILES

LIST RT CPENED FILES

LIST USERS
LIST VOLULME
LOCK SEMAPHORE
FIND NUMBER OF ELEM, IN QUEBUE

LIST SPOCLING QUEUE
MAG TAPE ABSTRANS
REGISTER DEFINITIONS

LIST DATE
OUTPUT DCUBLE DECIMAL NUMBER

OUTPUT DECIMAL NUMBER ON TERM.,

OUTPUT OCTAL NUMBER ON TERM.

ADI=A%T

11.11
11.11
11.12
6.26

11.12
3.01.3
1.05
9.27
1.09
3.01.1
9,03A

11.07
11.07
12.08
10.38
10.51
11,07
11.07
10.49
S.22

11.02
J.02.1
3.02.1
2.05
3.05

11.10
2.00
2,00
2.00
5.02

2.03
5,08
S.18
2,03A
2.02

11.04
11.09
6.19
9,12

10.56
10.47
10,58
9.26

10.46
S.11.4
6.0S

10.58
11.05
6,01

10,05
S5.06

10.19
11.09
9.18
6.08

10,03
10.30
10.11
8.04

MROBJ
MROBJ
MRUSE
MSPQENT

MRUSE
MTWOD

NAME TABLE

NBAVA

0BJ. FILE BUFF

OCTAL

OFRND

oLborP
oLDOP
OPCAL

OPENF

OPENS
OPFIL

OPFIL

OPRTF

OPSCR

oUTBT

OUTRC

QUTST
PTAPE
PUTCH

QERMS
R3BUF
R3IIBUF
RSBUF
RBFSL

RBLOC
RBUF

RBYTE
RCBLO
RDEVS
RDISK
REABT
READQ
REBUF
REGDI
RELFI
RELTU
REMOPF I
RESFI
RESSTAR
RESTS
RESTU
RFILE
RINDX

RLDIR

RLPAG
RLUSE

RMAX

RMAXB
RMSPF
RNDIR

RNFIL
RNUSE

~ROBJB

A-13

FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG1/RESIDENT
FILSEG2
RESIDENT/FILSEG]
FILSEG2
DECLARATIONS
FILSEG?
FILSEGZ2
FILSEG2
FILSEG2
FILSEG1/RESIDENT
RESIDENT/FILSEG]
SYSEG
FILSEG2
FILSEGZ
FILSEG1/RESIDENT
RESIDENT/FILSEG]
FILSEG?2
FILSEG2
SYSEG
FILSEGZ2
FILSEG2
FILSEG!
RESIDENT
FILSEG]
RESIDENT
RESIDENT
RESIDENT
FILSEG2
FILSEG]
FILSEG2
FILSEG2
FILSEG]
FILSEG]
FILSEG]
FILSEGI1
FILSEG2
FILSEG]
FILSEGZ
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ
FILSEG!
FILSEG2
FILSEG2
FILSEG]
FILSEG]
FILSEG2
FILSEG2
FILSEG2
FILSEG1
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2

ND-60.122.02

READ OBJECT ENTRY
READ OBJECT ENTRY
READ USER ENTRY
MOVE SPOOLING QUEUE ENTRY
READ USER ENTRY
OUTPUT TwO DIGITS DECIMAL

WAIT FOR ANSWER ON REMGTE @GP,
BUFFER FCR OBJECT ENTRY
OUTPUT OCTAL NUMBER ON TERM,
OPEN FILE FOR RANDOM ACCESS
OLD GPEN FILE
OLD OPEN FILE
CALL ROUTINE ON OP¢COM¢SEGe
OPEN FILE
OPEN SCRATCH FILE
OPEN FILE
OPEN FILE
OPEN RT FILE
OPEN SCRATCH FILE
OUTPUT BYTE
OUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
POSITION TAPE
PUT CHARACTER TO STRING
WRITE ERROR MESSAGE AND STBR
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
READ BIT FILE BLOCK
READ 1K FROM DEVICE
RETURN BUFFER TO POOL
READ BYTE POINTER
READ AND COMPARE 1K FROM DEVI
RELEASE DEVICE BUFFER
READ DISK
READ BYTE POINTER
READ ONE QUEUE ELEMENT
PEAD BUFFERS FROM FILE
REGENERATE DIRECTORY
RELEASE FILE
RELEASE BEVICE UNIT
REMOTE OPEN FILE
RESERVE FILE
RESER. SEMAPH, FOR START PROG
RESTART SPOOLING PRINT
RESERVE BDEVICE UNIT
READ FILE
READ INDEX BLOCK
RELEASE CIRECTORY
RELEASE PAGE IN BIT FILE
RELEASE USER
READ MAX POINTER
READ MAX POINTER
REMOVE SPOOL. QUEUE ENTRY
RENAME DIRECTORY
RENAME FILE
RENAME USER'
RELEASE CBJECT ENTRY BUFFER

8,02
11.03
5.08

11.15
7.06
T7.04
7.02A

10.59
11.01
10.45
9.19

10.42
9,09

11.02
11.09
9.18

10.44
9,20

10.06
10.34A
3.15

8,06
3.14
3.13

11.09
3.09

11.09
G.10

11.09
11.09
10.34

10.24
12.07.4

11.09
9.18
6.27

9.03
12.07.4
10.33
10.43
1.06.1
€.11
1.0601
6.05
6,03

10.32
10.32
6,05
3.04
6.04
1.06.1

€.22
6,10

10.14
10,56
S.07
6.16
7.02
7.01.2

ROBJE
RPAGE
RSPAG

RSPQE
RUSERB

RUSER

RUSPW

SAVOI
SBINBT
SBLOC
SBLOP

SBLOS
SBLSZ
SBOUTBT
SBSIZ
SBYTE
SBYTP
SDATF
SDDIR
SOFIA
SEPFS
SEPOB
SEPPA
SEPST
SETBC
SETBL
SETBY
SETPO
SETUP
SETW
SFLAC

SFRIA
SINBT
SMAX

SMAXB
SNSPCOPY

SOFT
SOUTBT
SPERF
SPERQ
SPOP
SPOPL
SPUSH

STAPR

STARS

STERF
STMPF
STOPR
STRNG
STSPL
SUBR, STACK

TAKEQ

TAKES
TAUSE
TESOI
TPAGF
TRAPRINT
TUSEN
TUSRT

A-14

FILSEG2
FILSEG]
FILSEGZ2
RESIDENT
FILSEG2
FILSEGZ
FILSEG2
FILSHG2
SYSEG
FILSEG2
FILSEG2
FILSEG2
FILSEG2
SYSEG
FILSEG]
FILSZG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEGZ
FILSEGZ2
FILSEG]
RESIDENT
FILSEG]
FILSEG2
RESIDENT
RESIDENT
FILSEG2
FILSEG2 "
RESIDENT
FILSEGL
FILSEG2
FILSEG2
FILSEG2
RESIDENT
FILSEG2 =
FILSEG2
SYSEG
FILSEG2
SYSEG
FILSEG?2
FILSEGZ2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
SYSEG
FILSEG?
FILSEGZ
FILSEG?
FILSEGZ2
FILSEG2
FILSEG?Z2
FILSEG2
FILSEG2

ND-60.122.02

READ OBJECT ENTRY
READ PAGE
RESERVE FIRST FREE PAGE
READ SPOGCLING QUEUE ENTRY

RELEASE USER ENTRY
READ USER ENTRY
READ USER PASSWORD

SAVE DIRECTORY
INPUT BYTE
SET BLOCK POINTER
SET BLOCK POINTER
SET BLOCK SIZE
SET BLOCK SIZE
OUTPUT BYTE
SET BLOCK SIZE
SET BYTE POINTER
SET BYTE POINTER
SET DATAFIELD RESERVED
SET DEFALLT DIRECTORY

SET BEFALLT FILE ACCESS
SEPARATE FILE STRING IN THBEE
SEPARATE OBJECT NAME
SEPARATE FILE STRING
SEPARATE STRING
SET BLOCK POINTER
SET BLOCK CONTENTS
SET BYTE POINTER
SET PERMANENT OPEN
STRING DESCRIPTOR SET UP
SET WRITE POINTER OF STRING

SET FILE ACCESS
SET FRIEND ACCESS
INPUT BYTE TO FILE SYSTEM

SET MAX ROINTER
SET MAX POINTER
SET NO. OF PRINT COPIES

SET UP OPEN FILE TABLE
OUTPUT BYTE FROM FILE SYSTENM
SET PERIPHERAL FILE
SET PERMANENT OPENED
POP SUBROUTINE STACK
NUMBER OF SPOOL. PAGES LEFT

PUSH SUBROUTINE STACK

START PRINT
START SPCOLING

SET TERMINAL FILE
SET TEMPCRARY FILE
STOP PRINT

INPUT STRING
STOP SPOCQLING
ENTER/LEAVE STACK
TAKE FROM SPOOLING QUEUE
TAKE SPOOLING PAGES
TAKE USER SPACE

TEST OIRECTORY
TEST PAGE FREE
PRINT SPCOLING TRAILER

TEST USER ENTERED
TEST USER RT

T7.01.1
3.01.3
€.18

12,01
1,08

10.15
S.11.2
5.03
S.04
2,04
2.04A

11.09
4,08

11.04
2,06

11.05
10,48
12.02.3
6.02
8,03

11.03
9.13
€.20
2.09

7.05
4,06
9.06

TUSSY
TWODE
UNLCQ
UNLOC
USER FILE BUFF
USEST
WBACK
wBFBL
WBFBU
WBLOC
WCBLO
wCI
WDIRE
WDISK
WEOT
WFILE
WHEF I
WHERE
WINDX
WOBJE
WPAGE
WRBUF
WRITQ
WTAPE
WUSER
XCoLD
XFCLOS

FILSEG2
FILSEG2
FILSEG2
RESIDEN
FILSEG2
FILSEG2
FILSEG]
FILSEG2
FILSEG2
FILSEG]
FILSEG]
RESIDEN
FILSEG2
FILSEG]
FILSEG1
FILSEG]
FILSEG2
RESIDEN
FILSEG]
FILSEG2
FILSEG]
FILSEG1
FILSEG?
FILSEGI
FILSEGZ
FILSEG?2
FILSEG2

A-15

T

T

T

ND-60.122.02

TEST USER SYSTEM
OUTPUT TwO DIGITS DECIMAL
UNLOCK QUEUE
UNLOCK SEMAPHORE
BUFFER FCR USER ENTRY
USER STATISTICS
WRITE
WRITE
WRITE

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WHERE
WHERE
WRITE
WRITE
WRITE

WRITE
WRITE
WRITE
WRITE

BACK INDEXES
BIT FILE BLOCK
BIT FILE BUFFER
1K TO DEVICE
AND COMPARE 1K TO DEVIC
BYTE TO STRING
DIRECTORY ENTRY
DISK
ENB OF TAPE
FILE
IS FILE
IS SEMAPHORE
INBEX BLOCK
OBJECT ENTRY
PACE
BUFFERS ON FILE
ONE QUEUE ELEMENT
DATA ON TAPE
USER ENTRY

COLLECT BEVICE NAME AND UNIT
FILE CLOSE (NO VERSION CHANGE)

1.01
1.02
1.03
1.04
1.05
1.06.2
1.07

1.10
2,01
2.,01A
2.02
2,03
2.03A
2.04
2.04A
2.05

2.06
2.06
€.01
6.01A
6.02
S.11.1
3.11.1
9,.,11.2
9.11.3
9.11e4
9,12
9.13
9.14
S.15
.16
9'17

11.03
11,03
11.04
11.04
11.05
11.05
11.07
11.07
11,08
11.09
11.09
11.09
11.09
11.09
11.09
11.10
11,10
11.11
11.12
11.13
12.01

MEMORY AND

AUXILIARY
MACROES
DEVICE BUFFERS

DIRECTCRY TABLE

NAME TABLE
CONTEXT BL
BIT FILE BUFFER
FILE RT=-PROG

GDEVSB

FI0BU
RDEVB
RBLOC
RCBLO

WwBLOC
WwCBLo

PTAPE
WEOT
WTAPE

RINDX
FINDX

WINDX

GPADR
GPREA
WBACK

GPAGE
RESSTAR
REBUF

WRBUF
FGET
FPUT
FREA
FWRT

RPAGE

WPAGE
RDISK
WDISK
RFILE
WFILE
oLDOP
OPFIL

CLOFI
REABT
RMAX

sBS1Z
SETBC
SETBY

SMAX
ERMSG
QERMS
MROBJ
MRUSE

MPYAT

ELOCK

A-16

SEGMENT M

DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
DECLARATIONS
FILSEG]
FILSEG]
FILSEGI]
FILSEGI1
FILSEGI1
FILSEG]
FILSEG]1
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG!]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG1/RESIDENT
FILSZGl/RESIDENT
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG1/RESIDENT
FILSEG1/RESIDENT
FILSEGI
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEG]
FILSEGL1/RESIDENT
FILSEG1/RESIDENT
FILSEG]
FILSEGI

ND-60.122.02

A p

SYMHOL DEFINITIONS
REGISTER DEFINITIONS

OPEN FILE TABLE

GET DEVICE BUFFER

FIND DEVICE BUFFER HEADER

RELEASE DEVICE BUFFER
READ 1K FROM DEVICE

READ AND COMPARE 1K FROM DEVI

WRITE 1K TO DEVICE

WRITE ANB COMPARE 1K TO DEWIC

POSITION TAPE
WRITE ENC OF TAPE
WRITE DATA ON TAPE

READ INDEX BLOCK
READ INDEX BLOCK
WRITE INCEX BLOCK
GET PAGE ADDRESS OF FILE

GET PAGE ADDRESS FOR READ

WRITE BACK INDEXES

GET PAGE FOR FILE
RESER. SEMAPH., FOR START PHOG

READ BUFFERS FROM FILE

WRITE BUEFERS ON FILE

GET BYTE FROM FILE
PUT BYTE ON FILE
FILE READB
FILE WRITE
READ PAGE

WRITE PACE
READ DISK
WRITE DISK
READ FILE

WRITE FILE
OLD OPEN FILE
OPEN FILE

CLOSE FILE
READ BYTE POINTER
READ MAX POINTER

SET BLOCK SIZE
SET BLOCK POINTER
SET BYTE POINTER

SET MAX POINTER
WRITE ERROR MESSAGE

WRITE ERROR MESSAGE AND STER

READ OBJECT ENTRY

READ USER ENTRY

AD:=A®T
ESCAPE LCCK

12,01
1.08
1.09
3.01.1
3.01.1
3.01.2
3.01.2

3.01.3
3.01.3
3.01.3
3.01.3
3.02.1
3.02.1
3.03.1
3.03.1
3.03.2
3'04

3.04
3.07.2
3.08
3.11
3J.11
J.l2
3.13
J.14
3.15
4,03
4,04
4,05
44,06
4.06
4.07
4.08
5,01
5,02
5.03
5.04
.05
5.06
S.06
S.07
5.08
€.03
6.04
6.05
6.05
€.05
€.05
6,06
6.07
6.08
6.08
6.09
6410
6.11
6,12
6.13
6.14
6.15

EULOC
USER FILE BUFF
0BJ. FILE BUFF
MOCTA

OCTAL
DECIM
MDECI

DDECT
MODEC
MTWOD

TWODE
OUTRC
QUTST
LDATE
MDATE
LACCwW
INSTR
STRNG
APPST

COMPS
BDUMP
DUMP

CHANG

SEPST
SEPPA
SEPFS
GDIRI
GNAMI

GDIRE
COLDE
XcoLp
GMAIN
WDIRE
FBFBU
RBFBL

WBFBL
WBFBU
ALBIT
ALPAG
RLPAG

TPAGF
RSPAG
STARS

STSPL
ABORS
RESTS
STOPR
STAPR

LSPOQ
APPES

DELES
RMSPF

GIVES
TAKES
SPOPL

INPER
FINDQ

DEABB
GFILN

FILSEG]
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
.FILSEGZ2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEG2
FILSEG?
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG?
FILSEGZ2
FILSEG2
FILSEG?

ND-60.122.02

A-17

ESCAPE UNLOCK
BUFFER FCR USER ENTRY
BUFFER FCR OBJECT ENTRY
OUTPUT OCTAL NUMBER ON TERMy¢
OUTPUT OCTAL NUMBER ON TERNy
OUTPUT DECIMAL NUMBER ON TERM,
OUTPUT DECIMAL NUMBER ON TERM.
OUTPUT DCUBLE DECIMAL NUMBER
OUTPUT DOUBLE DECIMAL NUMHBESR
OUTPUT TwO DIGITS DECIMAL
OUTPUT TwO DIGITS DECIMAL
OUTPUT STRING ON TERMINAL
OUTPUT STRING ON TERMINAL
LIST DATE
LIST DATE
LIST ACCESS WORD
INPUT STRING
INPUT STRING
APPEND STRING TO STRING
COMPARE STRINGS
DUMP BLOCK ON TERMINAL
DUMP BLOCK ON TERMINAL
CHANGE BLOCK
SEPARATE STRING
SEPARATE FILE STRING
SEPARATE FILE STRING IN THREE
GET DIRECTORY INDEX
GET NAME INDEX
GET BIREGTORY INDEX
COLLECT BEVICE NAME AND UNIT
COLLECT BEVICE NAME AND UNIT
GET MAIN DIRECTORY INDEX
WRITE DIRECTORY ENTRY
FIND BIT FILE BUFFER ADDRESS
READ BIT FILE BLOCK
WRITE BIT FILE BLOCK
WRITE BIT FILE BUFFER
FIND BIT FILE ADDRESS
ALLOCATE PAGE IN BIT FILE
RELEASE PAGE IN BIT FILE
TEST PAGE FREE
RESERVE FIRST FREE PAGE
START SPOOLING
STOP SPOCLING
ABORT SPCOLING PRINT
RESTART SPOOLING PRINT
STOP PRINT
START PRINT
LIST SPOCLING QUEUE
APPEND SFOOLING QUEUE
DELETE SFPOOLING FILE
REMOVE FROM SPOOL. QUEUE
GIVE SPOOLING PAGES
TAKE SPOOLING PAGES
NUMBER OF SPOOL. PAGES LEFT
INPUT SPGOLING PERIPHERAL
FIND SPOGLING QUEUE
DEABBREVIATE FILE NAME
GET FILE NAME

6.16
6.16
6,17
6.18
6.19
6.20

€.21
6.22
6.23
€.24
6425
6.26
6.27
€.28
6.28
6.29
7.01,1

7.01.2
7.02
7.02A
7,03
Te04
7.05
7.06

7.07
7.08
7,09

7.10
7.11
7.12

7.13

8.01
.02
8.03
8.04
8.05

8.06
B«07
8.08
8.09

8,10
8.11
8.11

8.12
B.la
8.15
8.16
8.17

8.18
.19
8.19
9.01
9,02
9,03
9,03A
9.04

9.05
9,06
9.06

HEAPRINT
TRAPRINT
LOCKQ
UNLCQ
READQ
WRITQ
APPEQ
TAKEQ
INITQ
FPERIV
FFILISQ
MSPQENT
SNSPCOPY
FWSPRINT
ASPRINT
DSCOND
TUSSY
TUSRT
TUSEN
RUSPW
FUSEB
RUSER
WUSER
RUSEB
GUSET
GMUST
COLUN
GUSEN
CUSED
GDEFD
GUSAC
FOBJB
ROBJE
WOBJE
ROBJB
60BJI
SEPOB
GFILI
GPREV
GNEXV
COBJE
CHIGV
CNEWV
CROBJY
DLOBJ
CRNEW
GVERS
GFIAC
GCFIL
DLPAG
DLSPA
FFILE
FOFT
SOFT
OFRND
FCON
FOPEN
FCLOS
XFCLOS

FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSEGS2
FILSEGR
FILSEG2
FILSEG?2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?Z2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSECZ
FILSEGZ
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG?2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEGZ
FILSEGZ
FILSEG2
FILSEG2
FILSEG?
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2/RESIDENT
FILSEG?

ND-60.122.02

PRINT SPCOLING HEADER
PRINT SPCOLING TRAILER

FIND NUMEER OF ELEM. IN QUEVE

UNLOCK QUEUE
READ ONE QUEUE ELEMENT
WRITE ONE QUEUE ELEMENT
APPEND TC QUEUE

TAKE FROM SPCOLING GQUEUE

INITIALIZE QUEUE
FIND PERIPHERAL VERSION

FIND FILE IN SPOOL. QUEUE
MOVE SPOGCL. QUEUE ENTRY

SET NO. OF PRINT COPIES
FORWARD SPACE PRINT
BACKSPACE PRINT
DEFINE SPOOLING CONDITIONS

TEST USER SYSTEM
TEST USER RT
TEST USER ENTERED
READ USER PASSWORD

FIND USER ENTRY BUFFER
READ USER ENTRY
WRITE USER ENTRY
RELEASE USER ENTRY
GET USER INDEX
GET MAIN USER INDEX

COLLECT LSER NAME
GET USER NAME
CHANGE USER SPACE
GET DEFAULT DIRECTORY

GET USER ACCESS
FIND OBJECT ENTRY BUFFER

READ OBJECT ENTRY
WRITE OBJECT ENTRY
RELEASE GBJECT ENTRY BUFFER

GET OBJEGT INDEX

SEPARATE OBJECT NAME

GET FILE INDEX
GET PREVIOUS VERSION
GET NEXT VERSION
CREATE OBJECT ENTRY
CREATE NEW HIGHER VERSION

CREATE NEW VERSION
CREATE OBJECTS
DELETE OBJECT
CREATE NEW VERSION OF FILE

GET VERSION NUMBER
GET FILE ACCESS
GET OR CREATE FILE
DELETE PAGES OF FILE

DELETE PAGES OF FILE
FIND FILE TO OPEN
FIND OPEN FILE TABLE

SET UP OPEN FILE TABLE

OPEN FILE FOR RANDOM ACCESS

FILE CONNECT
FILE OPEN
FILE CLOSE
FILE CLBSE (NO VERSION CHANGE)

9.07
9.07
9.08
9.09
9.10
95.18
9.18
9.18
S.18
9.19
9.20
9.21
.22
9.2‘3

9.24
9.25
9.26
9.27

10,02
10.03
10,04
10,05
10.06
10.07
10.07
10.08
10.09
10.10
10.11
10.12
10.13
10.14
10.15
10.15
10.16
10.17
10.18
10,19
10.20
10.21
10.22
10.23
10.24
10.2S
10.26
10.26
10,27
10,27
10.28
10.30
10.31
10.32
10,32
10.33
10.34
10.34A
10,35
10.35
10,35

GBUF
GBUFS
RBUF
SBLSZ
SETPO
RBYTE
RMAXB
SBYTE
SMAXB
SBLOP
SDATF
CODATF
OPSCR
CPFIL
COLFI
cLouT
REMOPF I
NBAVA
CRDIR
RNDIR
ENDIR
RLDIR
SODIR
DIRST
LIDIR
DUDIR
CHDIR
CRUSE
RNUSE
DLUSE
GIUSE
TAUSE
LIUSE
USEST
DUUSE
CHUSE
ENUSE
RLUSE
CHANP
CLPAS
CRFRI
DLFRI
SFRIA
LIFRI
CRFIL
CRNVE
ALFIL
ALNVE
EXFIL
RNFIL
DLFIL
STERF
STMPF
SPERF
SFLAC
SDFIA
DEUFI
FILST
LIFIL

FILSEG2
FILSEG2
FILSEG2
TILSEG2
FILSEG2
FILSEG2Z
“ILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG?2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?Z
FILSEGZ2
FILSEGZ
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG?
FILSEGZ2
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ2
FILSEG2
FILSEGZ2

ND-60.122.02

GET BUFFER FROM POOL
GET BUFFER SET FROM POOL
RETURN BUFFER TO POOL
SET BLOCK SIZE
SET PERMANENT OPEN
READ BYTE POINTER
READ MAX POINTER
SET BYTE POINTER
SET MAX POINTER
SET BLOEK POINTER
SET BATAFIELD RESERVED
CLEAR DATAFIELD RESERVED
OPEN SCRATCH FILE
COPY FILE
COLLECT FILE NAME
CLOSE OUTPUT FILE
REMOTE OPEN FILE
WAIT FOR ANSWER ON REMOTE ©P.
CREATE DIRECTORY
RENAME BIRECTORY
ENTER DIRECTORY
RELEASE DIRECTORY
SET BEFAULT DIRECTORY
DIREETORY STATISTICS
LIST DIRECTORIES ENTERED
DUMP DIRECTORY ENTRY
CHANGE BIRECTORY ENTRY
CREATE USER
RENAME USER
DELETE USER
GIVE USER SPACE
TAKE, USER SPACE
LIST USERS
USER STATISTICS
DUMP USER ENTRY
CHANGE USER ENTRY
ENTER USER
RELEASE USER
CHANGE PASSWORD
CLEAR PASSWORD
CREATE FRIEND
DELETE FRIEND
SET FRIEND ACCESS
LIST FRIENDS
CREATE FILE
CREATE NEW FILE VERSION
ALLOCATE FILE
ALLOCATE NEW FILE VERSION
EXPAND FILE
RENAME FILE
DELETE FILE
SET TERMINAL FILE
SET TEMPCRARY FILE
SET PERIRPHERAL FILE
SET FILE ACCESS
SET DEFAULT FILE ACCESS
DELETE USERS FILES
FILE STATISTICS
LIST FILES

10.36
10,37
10.38
10.39
10.40
10.41
10,61
10.42
10.43
10.44
10,45
10.46
10.47
10.48
10.49
10.50
10,51
10.51
10.52
10.53
10.54

10,55
10.56
10.56
10.57
10.57
10.58

10.58
10.59
10.60

10.61
10.62

10,63
12.04.3

12,0444
12.04.5
12.05.1
12.06
2.00
2,00

2.00
2.00

2,00
2.00
2.00
3.05
3.05
3.07.1
3.07.1
3.09

3.10
4.01
4002
S.13
9,16
9,17
11.07
11.07
11,09

DUOBY
CcHOBJ
OPENF
CONNF
CLOSF
LIOPF
LIRTO
SBLOS
SPEROC
SBYTP
sB8LOC
RESFI
RELFI
WHEF I
OPRTF
CORTF
CLRTF
OPENS
DUPAG
CHPAG
DUBIT
CHBIT
REGDI
-TESDI
COPDI
COPFI
RELTU
RESTU

SAVDI
CREVOL

LIVOL
CPUFIL

CLPRY
CMMON
CLPAR
ERROR
INITF

GDATE
G3BUF
G31BUF

G3INWT
G5BUF
R3BUF
R3IBUF
RSBUF

GETCH
PUTCH
ACOPY

COPYS
SETBL
COPYB
GDIRA
GNAMA
FLYTT
FREA
FWRT
oLDOP

OPFIL
SETUP

A-20

FILSEGZ
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
Frosee2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEG2
FILSEGZ
FILSEG?2
FILSEG2
FILSEG2
FILSEGZ
FILSEG2
FILSZG2
FILSZG2
FILSZG2
FILSEGZ
FILSEG2
FILSEG2
FILSEGZ
FILSEGZ2
FILSEG?
FILSEG2
FILSEG2
FILSEGZ2
FILSEG?
FILSEG2
FILSEG2
FILSEG2
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESTIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT/FILSEOG]
RESIDENT/FILSEG]
RESIDENT/FILSEG]
RESIDENT/FILSEG]
RESIDENT

ND-60.122.02

DUMP OBJECT ENTRY

CHANGE OBJECT ENTRY
OPEN FILE

CONNECT FILE
CLOSE FILE
LIST OPENED FILES
LIST RT CPENED FILES
SET BLOCK S1ZE
SET PERMANENT OPENED
SET BYTE POINTER

SET BLOCK POINTER
RESERVE FILE

RELEASE FILE
WHERE IS FILE
OPEN RT FILE
CONNECT RT FILE
CLOSE RT FILE
OPEN SCRATCH FILE
DUMP PAGE
CHANGE PAGE
DUMP BIT TABLE
CHANGE BIT TABLE
REGENERATE DIRECTORY

TEST DIRECTORY
COPY DIRECTORY
COPY FILE
RELEASE BEVICE UNIT
RESERVE CEVICE UNIT

SAVE DIRECTORY
CREATE VCOLUME

LIST VOLUME
COPY USERS FILES
CLEAR PARITY IN TAPE LABEL
COMMAND MONITOR

COLLECT PARAMETER
WRITE ERROR MESSAGE
INITIATE FILE SYSTEM TABLES

GET BATE
GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER

GET MASS STORAGE BUFFER
GET MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER
RELEASE MASS STORAGE BUFFER

GET CHARACTER FROM STRING

PUT CHARACTER TO STRING
COPY STRING (ALT. PAGE TABLE)
COPY STRING
SET BLOCK CONTENTS
COPY BLOCK
GET DIRECTORY ADDRESS
GET NAME TABLE ADDRESS
MOVE 100 WORDS
FILE READ

FILE WRITE
OLD OPEN FILE
OPEN FILE
STRING DESCRIPTOR SET UP

11.09
11,09
11.11
11.12
11.15
12,01
12,01
12.01
12.0263
12,03.1
12.03.2
12.03.3
12,03.4
12.03.5
12.07.4
12.07.4
1.06.1
1.06.1
1.06.1
1.06.3

11.01
11.01
11.01
11.02
11.02
11,02
12.08

SETW
WCl
MROBJ
MRUSE
RSPQE
FATAL
LOCK
UNL.OC
WHERE
CABST
DRABS
BABST
MABST
FDABS
SINBT
SOUTBT
SPOP
SPUSH
SUBR. STACK
BUFFER POOL
FINBT
INBT
SBINBT
FouTaT
ouTBT
SBOUTBT
OPCAL

RESIDENT
RESIDENT
RESIDENT/FILSEG]
RESIDENT/FILSEG]
RESIDENT
RESIDENT
RESIDENT
RESIGENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
RESIDENT
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG
SYSEG

ND-60.122.02

SET WRITE POINTER OF STRING
WRITE BYTE TO STRING
READ OBJUECT ENTRY
READ USER ENTRY
READ SPOCLING QUEUE ENTRY
FATAL ERKOR
LOCK SEMAPHORE
UNLOCK S5EMAPHORE
WHERE IS SEMAPHORE
C-RTRIDGE DISC ABSTRANS
DRUM ABSTRANS
BIG DISC ABSTRANS
MAG TAPE ABSTRANS
FLOPPY DISC ABSTRANS
INPUT BYTE TO FILE SYSTEM
OUTPUT BYTE FROM FILE SYSTEM
POP SUBRCUTINE STACK
PUSH SUBROUTINE STACK
ENTER/LEAVE STACK

INPUT BYTE
INPUT BYTE
INPUT BYTE
OUTPUT BYTE
OUTPUT BYTE
OUTPUT BYTE
CALL ROUTINE ON OP.COM.SEGS

NORSK DATA A.S
P.0. Box 4, Lindeberg gard
Oslo 10, Norway

COMMENT AND EVALUATION SHEET
NORD FILE SYSTEM — System Documentation

January 1980

ND-60.122.02

In order for this manual to develop to the point where it best suits your
needs, we must have your comments, corrections, suggestions for
additions, etc. Please write down your comments on this preaddressed
form and mail it. Please be specific wherever possible.

FROM

