
NORD DATA ENTRY SYSTEM
Reference Manual

NORSK DATA AS

NORD DATA ENTRY SYSTEM
Reference Manual

REVISION RECORD

Revision Notes

12/77 0 nal Prin

n two

Publication No. 60.101.02

February 1978

 NORSK DATA A.S.

Lorenveien 57, Postboks 163 @kern, Oslo 5, Norway

-

E
W

N

-

S
O
O
I

E
W
N
D

-

2
2
0

I
O

£
E
W

N
=

-

O

N
O
U
T
U
V
I
V
I
V
U
V
I
U
V
I
U
I
V
I
T
V
I
U
V
I
V
I
V
I
V
I
V
I
V
I
U

V
T

W
M

N

.

M
O

M
D
D

P
O
D
P
O
D
R
P
R
D
P
O
D
N
O
N
N
R
N
O
N
P
O
D
P
O
D
N
D
P
O
D
N
D
O
R
D
N
D
N
D
O
D
N
D
N
O

D
N

N
N

N

UV
N
U
T
O
I
T

V
N
I
V

V
I
T
V
I
T
U
V
T
V
T
U
I
T
U
L

W

N

=

.

W

o
O
T
O
0
O
U

W

-

.
W
W
W
W
w
w

W
b

w
w
w
w
w
w
w

T
S

E
W
N
D

-

TABLE OF CONTENTS

Introduction

NORD Data Entry Compiler

Command Processor . a a6 e .

Description of Compiler Commands . s e < o

HELP . . .

EXIT

LINES « v v v v v ..

COMPILE ST

Notation and Termlnology)

Basic Program Constituents

Character Set A

ldentifiers and Reserved Words .

File Names . . . e e e e e e e e e

Alphameric Constants e e e e e e

Numeric Constants . . e e e e

Data Formats . . . e s s« = . wmw

Programs and Statements N

The PICTURE:FILE Statement

GLOBAL Definitions :

FILE and RECORD Deflnltlons

STRUCTURE Definitions . . .

CALCULATION Specifications . .

Expressions . . . e s e % s e e e s e

The COMPUTE Statement e e e e e e e e

The ACCUMULATE Statement

The SAVE Statement . . i 3

The 1IF, ELSEIF, ELSE, and ENDIF Statements
The LOOP FOR, WHILE, and REPEAT Statements .
The DISPLAY Statement e e e e e e .

The COPY Statement

The WRITE Statemet

The RETRY Statement o e e e e e e e

The STOP Statement

The END Statement

Compiler Error Messages . . . a . . a.,

Collected Syntax of the Language .« e

NORD Data Entry Editor

Starting the Data Entry Editor .
DED Command Processor . . e

Function Keys . . . o e e

Description of DED Commands T

HELP . . . & v v v v v o v e e s ome s e

EXIT . . . ¢ v o o v v v v v o5 @ige & & &

INITIALIZE . .+ v & v v v v v v s w u

MODES e e n e e e e e e e

SET- PARAMETERS e e e e e e

APPEND

INSERT v ¢ v v v v e e e e .

LIST . . . v v %0 v v v v v o 5 @ s

NEXT+ o v o v v ..

ND-60.101. 02

—

O
C
O
W
O
W
O
O
N
O
O
N
U

E
E
F
F
T
w
w
w
w
w

D
N

W
w
w
w
w
w
w
w

U
=

.10

.1
12
.13
Ll
15
.16

PREVIOQUS

DELETE

CHANGE

VERIFY . .

WRITE-DATA-FILE .

READ-DATA-FILE . . .

outTPUT . . . SR

DED Error Messages .

ND-60.101. 02

. 4
. 42
. 2
. 43
. 4}
. by

45
. U6

Sl g e Lagc |
Introduction

Introduction

The NORD Data Entry System is designed to be a very flexible system for
entering and validating data in a NORD-10 SINTRAN III computer system. The
resulting data may be further processed by any of the NORD system
processors such as COBOL, RPG II, SORT, FORTRAN, etc. Alternately, the
data may be sent to a host machine via one of the NORD Remote Job Entry
processors.

The NORD Data Entry System consists of three subsystems:

1. NORD Screen Picture Maintenance System

2. NORD Data Entry Compiler

3. NORD Data Entry Editor

The NORD Screen Picture Maintenance System is used to define screen
picture formats interactively using any video display unit. Many types of
field controls may be defined using this system. A description of this
system will be found in the document "The NORD Screen Handling Systenm",
ND-60.088.01.

The NORD Data Entry Compiler is used when specifying the structure of a
data entry application and various calculations to be performed on the
entered data. The code produced by the Data Entry Compiler is used to
control the way in which the Data Entry Editor is to function for a
specific application. For many applications it is not necessary to use the
Data Entry Compiler.

The NORD Data Entry Editor is the subsystem which is used by the operator
who actually keys in the required data. The editor presents the necessary
forms on the video display unit and allows the operator to enter data,
validate data, inspect data and change previously entered data.

ND-60.101. 02

NORD Data Entry Compiler

NORD Data Entry Compiler

Command Processor

The Data Entry Compiler is started by typing the following:

@6DEC

NORD DATA ENTRY COMPILER V01.01

%

Tae command processor is now ready to accept commands. Whenever the

command processor expects the operator to enter a command it outputs a

percent sign (%). A command consists of a command name followed by zero or

more parameters. Several commands, along with all required parameters, may

be written on the same line.

The command name consists of one or more parts separated by hyphens ("-").

Each part of the command name may be abbreviated as long as the command

can be distinguished from all other command names.

While typing commands and parameters, the editing characters ctrl-A

(backspace one character), ctrl-W (backspace one word), and ctrl-Q (delete

whole 1line) are available. Control may be returned to the command

processor at any time by typing ctrl-L.

The collection of parameters is done in a standardized way as follows:

- Parameters are separated by either a comma or any number of spaces or

a combination of comma and spaces.

- Parameters may be null in which case a default value is assigned.

- When a parameter is missing, as opposed to null, it is asked for and

the command processor expects the user to supply the required

parameter and additional parameters if desired.

- If a parameter syntax error is detected an error message is output and

the parameter is asked for again.

Commands may be given directly to the SINTRAN III command processor by

preceeding them with an @ sign. In this case commands to the local command

processor following the SINTRAN III command are ignored.

ND-60.101. 02

n

o

N

—
—

2.2.3

2.2.4

NORD Data Entr& Cémpiler

Description of Compiler Commands

HELP <command name>

The HELP command lists available commands on the terminal. If <command

name> is null then all available commands are listed. 1f <command name)> is

a legal command name (possibly abbreviated), the command along with its

parameters 1is 1listed. If <command name> is ALL, then all commands along

with their parameters are listed.

EXIT

The EXIT command returns control to the SINTRAN II1I command processor.

LINES <lines per page>

This command enables the user to specify the number of lines per page on

the compiler listing.

COMPILE <source file> <1list file> <application file>

This command compiles the program contained in <source file> with listing

on the <list file> and output to <application file>. The default file type

for <source file> and <list file> is SYMB, and for <application file>

APPL. If no list file is specified, no 1listing is produced but error

messages are printed on the terminal. If no <application file> is

specified, output is written onto the system scratch file (file number

100).

ND-60.101.02

o

=

=

C -0

NORD Data Entry Compiler

Notation and Terminology

The syntax is described in a meta language in which syntactic constructs

are denoted by english words or phrases, not enclosed in any special

marks. These words also suggest the meaning of the construct, and are used

in the accompanying description of semantics. Inside such phrases colons

are substituted for spaces because space signifies concatenation of

constructs. Basic symbols are enclosed within double or single quote

marks, the former being the preferred form. Repetition of an item is

indicated by preceeding it with a dollar sign; e.g., $(recoord:name

1gth), means that the construct within parentheses may occur any

{ ‘ncluding zero) number of times. Optional constructs are enclosed within

square brackets ("[" and "]"), alternatives are separated by slash ("/"),
and groups of items are enclosed within parentheses. The special name

".eol" 1is used to denote end-of-line, and ".blank" to denote space (40
octal).

Basic Program Constituents

Character Set

The character set used is the ASCII character set. All non-printable

characters (0-37 and 377 octal), except tab (11 octal), carriage return
(15 octal), and end-of-file (27 octal) are ignored. Tabs are expanded
according to the standard QED tabsetting (8, 14, 30, 40, 50, 60, 70, 80).
If an end-of-file character is read, an END statement is automatically

generated. Lower case characters may be used but they are considered

equivalent to their upper case versions. The charecter set can be divided

into letters, digits, and special characters.

letter' = "All/ IIB"/ l|C"/ IID"/ IIE"/ "F"/ IIG"/ "H"/

III"‘/ IIJ"/ "Kll/ IILII/ "M"/ "Nll/ IIOII/ llPll/

"Qll/ I|R|l/ "S"/ IIT"/ ||U"/ nvn/ llW"/ IIX"/

"Yll/ |IZ"/ lla"/ "bll/ Ilcll/ Ildl'/ lle"/ llf‘ll/

llgll/ llhll/ "ill/ lljll/ Ilk"/ "lll/ |lm|l/ "n"/

Ilo"/ |lpll/ Ilqll/ llrall/ "S"/ lltll/ "ull/ "V"/

lle/ llxll/ llyll/ llzll;

dlglt = "Oll/ ll‘]ll/ Il2||/ ll3ll/ ")4"/ "5"/ "6"/ "7"/ Il8"/ II9";

Special:char‘acter’ =n "/ ll'll/ I"l/ ll("/ ll)ll/ ll+ll/ "_ll/ "*ll/ "/I'l/

||,ll/ ll-"/ ll:"/ ll;"/ ll("/ "=|l/ ">l|;

The defintion of special:character contains only those characters used by

the language. Other characters (e.g. "#", "%" etc.) can of course be used
in alphameric strings or in comments.

ND-60.101. 02

2.4.2

= . rage >
NORD Data Entry Compiler

Identifiers and Reserved Words

Identifiers are wused to name global variables, fields, records, and
pictures. An identifier can consist of any number of characters, the first
of which must be a letter, and the remainder either a letter, digit, or
the special character colon (":"),

identifier = letter $(letter/ digit/ ":");

A number of identifiers have their meaning fixed in advance and are
regarded as a part of the language. These are called reserved words and
may not be used as programmer defined identifiers. The following is an
alphabetic list of all the reserved words.

ACCUMULATE

ALL

AND

BY

CALCULATION

COMPUTE

COPY

DIRECT

DISPLAY

ELSE

ELSEIF

END

ENDIF

FIELD

FILE

FOR

FROM

GLOBAL

ID:FIELD

IF

IN

LOOP

MOD

NOT

OR

PICTURE:FILE

RECORD

REPEAT

RETRY

SAVE

SEQUENTIAL

STOP

STRUCTURE

TO

WHILE

WRITE

ND-60.101. 02

2.4.3

2.4.r

2.4.5

-— - -

NORD Data Entry Compiler

File Names

A file name denotes either a logical file or a SINTRAN IIi file, A logical

file is a name internal to the program. A logical file must be assigned to

a SINTRAN 1II file when the program is executed. A file name may be up to

64 characters in length. No syntax checking is performed on file names.

file:name = 1$64 <any character>;

A.phameric Constants

An alphameric constant consists of a sequence of characters enclosed

within single or double quote marks (" or '). If the same type of quote
mark which is used to enclose the string is to appear inside it, it must

be written twice.

alpha:constant = '"' $characterl 't/ "in $character2 "'";

character1 = <any character except ">/ '"ht;

character2 = <any character except '>/ "''",

The following are legal alphameric constants:

"string", "ten o'clock", 'ten o''clock'

The two last examples show two different ways of writing the same string.

Numeric Constants

The wusual decimal notation 1is wused for numbers. A number can have a

maximum of 31 digits and 9 decimal positions.

numeric:constant = digit $digit "." $digit;

The following are examples of legal numeric constants

101 201.03 15.

An integer is a decimal number which can be represented in a 16 bit word.

Integers are used to vrepresent quantities internal to the data entry

system, such as lengths and array dimensions.

integer = digit $digit;

ND-60.101. 02

2.4.6

NORD Data Entry Compiler
- —e ¥

Data Formats

The data entry system handles data represented in five different ways.
These are the following:

1. Single integer, -32768<=value<=32767. Negative numbers are represented
in 2's complement format. A single integer occupies one word of
storage.

. Double integer, -2147UB36U48<=value<=2147483647. Negative numbers are
represented in 2's complement format. A double integer occupies two
words of storage.

. Byte, maximum 255 characters or 31 digits. A byte string may represent

either a character string or a number. If it represents a character

string of 1length C, it occupies INT((C+1)/2) words of storage. If it
represents a number two different cases arise depending on whether it

is declared as a signed field or not. If it is declared as a signed

field, the rightmost position is reserved to hold the sign. Its value

is space or minus. If the field is unsigned, no position is reserved
for sign. A number with D digits will occupy INT((D+1)/2) words if it
is unsigned and INT((D+2)/2) if it is signed.

"FORTRAN I5", maximum 31 digits. Each 16 bit word contains a four digit

integer corresponding to four decimal digits. If one or more of the
four digit integers are negative (2's complement), the number is
regarded as negative. A number with D digits occupies INT((D+3)/4)
words of storage.

. BCD, Binary Coded Decimal, maximum 31 digits. Each 16 bit word
represents four decimal digits, each represented in four bits. The

rightmost four bits holds the sign of the number. Binary 1010 means

positive and 1011 means negative. The data entry system only tests the

rightmost bit to determine the sign of a BCD number. A number with D

digits occupies INT(D/4)+1 words of storage.

ND-60.101. 02

2.5

ey S g rage o
NORD Data Entry Compiler

Programs and Statements

A program consists of a sequence of statements. Statements are written one
to a line and in free format. A semicolon (";") indicates that the rest of
the line 1s to be taken as a comment. Comments are reproduced on the
compiler listing but are otherwise ignored. Blank lines are treated in the
same way as comment lines.

A program is divided into several sections which must appear in a certain
order in the source text. The following syntax statement defines the order
1 which they have to appear, and which of the statements are optional or
may appear several times.

program = picture:file:statement

$global:statement

$file:and:record:statement

structure:definition

$calculation:specification

end:statement;

The following sections describe in detail the sections listed above.

ND-60.101. 02

2.5. 1

Aifaser arauia Wliws Yy DY QUG Id&U 7

NORD Data Entry Compiler

The PICTURE:FILE Statement

The PICTURE:FILE statement specifies the SINTRAN III file which contains

the definitions of the pictures to be used for this application.

picture:file:statement = "PICTURE:FILE" file:name .eol;

All of the pictures for an application must be contained within one file.

The file type for the picture file is PICT, which should always be
specified.

Examples:

PICTURE:FILE SALARY:PICT

PICTURE:FILE (SYSTEM)ABC:PICT

ND-60.101. 02

2 .5. 2

ey g rage 11U
NORD Data Entry Compiler

GLOBAL Definitions

The GLOBAL statement is used to specify all variables that are to be used
in the program. Global variables are accessed in the same way as fields
input from the display terminal, but they are allocated storage in a
separate area. All global variables are initialized to zero when a new
application is started. The global area is saved after calculations for a
picture are performed. In this way it is possible to restore the state of
the program at any time if execution has been interrupted or if RETRY is
executed.

Tre syntax of the GLOBAL statement allows for repetition of groups of
variables such that a variable may be referenced by its name and a set of
subscripts. Such repetition can be nested to any level (dimension) and
each group may contain any number of variables. All arrays are indexed
from one.

global:statement "GLOBAL" declaration:list .eol;

declaration:list = variable:group $("," variable:group);

variable:group = variable:definition/
dimension "(" variable:group $("," variable:group) ")";

variable:definition = identifier .blank length ["." decimal:positions];

length = integer;

decimal:positions = integer;

If the construct '"." decimal:positions' is present, the variable is
declared to be numeric else alphameric. For a numeric variable the length
specifies the number of significant digits. The number of decimal
positions must be specified for all numeric variables, even if it is zero.
For an alphameric variable the length specifies the length of the variable
in bytes.

If an array is defined, the length information specifies the length of
each individual element. Array elements are stored in row major order;
that is, in the order (for an array declared by GLOBAL m(n(A 10.0)))

A(1,1),A(1,2),...,A(1,n),A(2,1),...,A(2,n),...,A(m,1),...,A(m,n)

Shown below are some examples of global variable and array declarations.

Examples:

GLOBAL ABC 10, SUM 15.2

GLOBAL 20(ABC 10, NUM 15.6)

GLOBAL 10(NAME 10, 3(NUM 4.0))

ND-60.101. 02

2.5.3

L.
rage 1|

NORD Data Entry Compiler

FILE and RECORD Definitions

The syntax of the FILE and RECORD statements are:

file:and:record:statement =
file:statement record:statement $ record:statement;

file:statement = "FILE" file:name

("DIRECT" record:length/ "SEQUENTIAL"/ nn) .eol;

record:statement = "RECORD" record:list .e0l;

record:list = record:definition $("," record:definition);

record:definition = identifier .blank record:length;

record:length = integer;

The FILE statement is used to specify each output file for the
application. The name, file:name, of the file is an internal name and not
the actual name of the file. The Data Entry Editor will ask for the
appropriate file assignments when the OUTPUT command is executed.

An output file may be either SEQUENTIAL or DIRECT. If no type is
specified, SEQUENTIAL is assumed. A SEQUENTIAL file is a normal symbolic
SINTRAN III file with ASCII variable length records terminated by carriage
return line feed. In the case of a SEQUENTIAL file, the specified record
length is the maximum length. A DIRECT file consists of fixed size
records, each record:length bytes long. DIRECT files are directly
compatible with NORD RPG II. A record always starts on a word boundary.
This means that if an odd number of bytes is specified an extra byte will
be allocated at the end of each record. This must be taken into account
when specifying the record length in another program which is to read the
file.

ND-60.101. 02

g e Lage -
NORD Data Entry Compiler

Each FILE statement must be followed by one or more RECORD statements.
This statement is used to define each possible record type for an output
file. The size of the output record is specified in bytes. A buffer is
allocated for each record type. The record size may not be greater than
that specified in the corresponding FILE statement. If the file is a
DIRECT file all records output will be of the same length, the length
specified in the FILE statement. If the record length for a particular
record is shorter this only means that the rest of the record is unused
for this record type.

i cord names are global in scope which means that they must be unique.
1iis also means that the corresponding file can be determined from the
record name alone.

Example:

FILE FILE1 SEQUENTIAL
RECORD RECORD1 80

FILE F1LE2

RECORD RECORD2 80

FILE FILE3 DIRECT 128

RECORD Rt 10, R2 100, R3 128

RECORD R4 64

ND-60.101. 02

2.5.4

g e e 1

NORD Data Entry Compiler

STRUCTURE Definitions

The STRUCTURE statement specifies that the following statements define the

structure of the application. All pictures and all fields for each picture

are specified. Also, if identification fields are used these are specified
for each picture. The reserved word:- STRUCTURE may be followed by an

arbitrary string which may be used for comments.

structure:definition = "STRUCTURE <arbitrary string> .eol

$picture:definition;

A picture definition consists of a picture name statement followed by

field definition lines.

picture:definition = picture:name:statement $field:statement;

picture:name:statement = integer identifier

["ID:FIELD" field:definition "=" constant] .eol;

constant = alpha:constant/ numeric:constant;

The integer is used to refer to this picture in calculations, and the name

immediately following the integer is the picture name. A picture name must

not be more than eight characters in length and must be the name of one of

the pictures on the picture file. If ID:FIELD is specified the following

field:definition define the identification field of this picture. This

field must be the first field of the picture (uppermost and leftmost). The
rules which apply to the definition of this field are otherwise the same

as for other fields, as described below. The constant following the

field:definition specifies the value which will cause this picture to be

selected.

Either all or none of the pictures may have an identification field. If

identification fields are specified, these fields must all have the same

attributes.

After the picture:name:statement follows =zero or more field:statements

which have the syntax:

field:statement = "FIELD" field:declaration:list .eol;

field:declaration:list = field:group $("," field:group);

field:group = field:definition/

dimension "(" field:group $("," field:group) ")";

field:definition = identifier .blank [length ["." decimal:positions]];

This is essentially the same syntax as for global variables, except that

the length information may be omitted. If it is omitted the required field

attributes are read from the picture file. If the 1length information is

supplied it must agree with the information stored on the picture file.

The number of fields declared (total number of elements if arrays are

ND-60.101, 02

4 gy '

NORD Data Entry Compiler

used) must correspond to the total number of fields in the picture.

The reason for the unusual syntax of array declarations can now be
explained. Imagine a picture with fields distributed as pictured below

Atv B11Y C11 B12 (12 Di
A2 B21 (€21 B22 (22 D2
A3 B31 C31 B32 C32 D3
A4 B41 CH41 BU2 cCch2 DA
A5 B51 (C51 B52 (€52 D5

The fields A1, A2, ... ,A5, B%1, B12, ... B52 etec. are fields with the
same attributes. This is a situation which often arises when defining
pictures to represent tables of information. Also, it is often desirable
to be able to access the As, Bs e¢tc. as array elements. The notation for
this is A(1), B(1,1), B(1,2), etc. In order to achieve this the following
declaration will suffice:

FIELD 5(4A, 2(B, C), D)

In this case the compiler will check each array element against the
picture file. The fields may of course be declared as individual fields if
desired.

Field names are 1local to the current picture, which means that while
processing a picture one cannot access data from another picture. Also,
the same field names may be used on several pictures. Array elements are
stored in row major order in the same way as global arrays. The fields are
stored in memory in the order in which they appear in the source text.
e.g. the declaration

FIELD 5(A, 2(B, C), D)

will result in the following memory layout:

Elements of A (5 elements)

Elements of B (10 elements)

Elements if C (10 elements)

Elements of D (5 elements)

All data items start on a word boundary. This layout is the record layout
which results if a COPY ALL is executed.

ND-60.101. 02

S SR WL S rage 1D
NORD Data Entry Compiler

The following is an example of a STRUCTURE definition with three pictures.

Example:

STRUCTURE FAMILY

1
MALE ID:FIELD ID 1 = 'M!
FIELD NAME 24, AGE 3.0, PERSON:NUMBER 11.0
FIELD STREET 20, CITY 15, COUNTRY 10
FIELD INCOME 8.2

FEMALE ID:FIELD ID 1 = 'F!
FIELD NAME 24, AGE 3.0, PERSON:NUMBER 11.0
FIELD INCOME 8.2

CHILD ID:FIELD ID 1 = 'C'
FIELD NAME 24, AGE 3.0, PERSON:NUMBER 11.0
FIELD INCOME 8.2

ND-60.101. 02

2.5.5

- aeemwaa ssaswa g e .- [J J S

NORD Data Entry Compiler

CALCULATION Specifications

The CALCULATION statement has the following format

calculation:specification = "CALCULATION" integer .eol

e:statements;

where integer specifies the picture to which the following calculations

apply. The CALCULATION statement is followed by one or more executable

statements. These statements are executed when all fields of the current

r ‘cture are read. The possible executable statements are the following.

e:statements = executable:statement $ executable:statement;

executable:statement = compute:statement/

accumulate:statement/

save:statement/

if:statement/

loop:statement/

display:statement/

copy:statement/

write:statement/

retry:statement/

stop:statement;

ND-60.101, 02

— —ee -y —y - ve— ;usc v

NORD Data Entry Compiler

2.5.5.1 Expressions

An expression is built up from operators and operands. An operand may be

one of the following:

. A global variable or array reference.

. A field or field array reference.

. A numeric constant.

. An alyphameric constant.

. An expression enclosed in parentheses. U

W
)

-

The operators, listed in order of decreasing priority, are the following

1 ¥ Multiplication

1 / Division

1 MOD Modulo (remainder)
2 + Addition

2 - Subtraction

3 space Concatenation

b < Less than
y <= Less than or equal to

4 = Equal to

4 <> or X< Unequal to
y >z Greater than or equal to
i > Greater than

5 NOT Logical negation

6 AND Logical and
6 OR Logical or

The operands *, /, MOD, +, and - must have numeric operands and return a

numeric result. Minus (-) may also be used as a unary operator. The

concatenation operator (space or blank) 1is valid only with alphameric

operands. The result of a concatenation must never exceed 255 bytes in

length even if it is for temporary use (e.g. in an IF statement). The
relational operators may have both numeric and alphameric operands, but

the two operands must be of the same type. The result returned is of type

Boolean. such a result cannot be used directly, but only through an IF or

a WHILE statement. The operators NOT, AND, and OR takes operands of type

Boolean and return a result of the same type. An expression involving

these operators is evaluated from left to right until the result (TRUE or

FALSE) can be determined, then evaluation ceases and the appropriate

action is taken without evaluating the rest of the expression.

All numeric operations are performed on numbers represented in BCD format.

If a field is defined to be represented in any other format occurs in an

expression, it 1is converted into BCD in order to perform the required

operations. However the field is still stored in the defined format in the

data area. All numeric global variables are stored in BCD format.

Array indices which are constants, or constant expressions, are checked at

compile time, all other array indices are checked at runtime. An array

which 1is declared as n-dimensional can be accessed by a single index as

long as it is within the array. For information about the order of array

elements in storage, read the section about declaration of arrays.

ND-60.101. 02

NORD Data Entry Compiler

The following is a detailed definition of the syntax of expressions.

expression = locical:term $("OR" logical:term);

logical:term = logical:negation $("AND" logical:negation);

logical:negation = ["NOT"] relation;

relation = concatenation [relational:operator concatenation];

r~lational:operator = NNy Moy Mgy (NHU/ NG oy nyng

concatenation = sum $(.blank sum);

sum = | [(r-"] term $(("+"/ "-") term);

term = primary $(("%n/ w/v/ "MOD") primary);

primary = "(" expression ")"/
alpha:constant/ numeric:constant/

reference;

reference = variable:reference/ field:reference;

variable:reference = simple:reference/ array:reference

{reference to global variable or array>;

field:reference = simple:reference/ array:reference

{reference to field or field array>;

simple:reference = identifier <previously declared>;

array:reference = identifier "(" subscript:list)"

{previously declared>;

subscript:list = expression $("," expression);

ND-60.101. 02

v v Lage 'y

NORD Data Entry Compiler

2.5.5.2 The COMPUTE Statement

The COMPUTE statement which has the format

compute:statement = "COMPUTE" variable:reference "FROM" expression .eol;

is the assignment statement of the language. The value of the expression
to the right is computed and stored in the variable or array element
denoted by variable:reference. This must be a global variable, it is not
possible to change data read from fields in a picture. The variable
reference and the expression must be either both numeric or both
alphameric. Alphameric strings are copied left justified and extended with
spaces to the right if necessary. No check is performed to ensure that the
value will fit in the storage allocated to the variable or that precision
will not be lost.

COMPUTE SUM FROM FIELD1+FIELD2+FIELD9

COMPUTE ARRAY(1,2,J+3) FROM ARRAY(1,1,1)+SUM

2.5.5.3 The ACCUMULATE Statement

The ACCUMULATE statement has the following format:

accumulate:statement =

"ACCUMULATE" field:reference "IN" variable:reference .e0l;

1t is semantically equivalent to the statement

COMPUTE variable:reference FROM variable:reference+field:reference

It provides for a simple way of writing the common operation of
accumulating some field in a global variable.

Examples:

ACCUMULATE FIELD1 IN SUM

ACCUMULTE INCOME IN TOTAL:INCOME

ND-60.101. 02

......... J ~gevew rage cu

NORD Data. Entry Compiler

2.5.5.4 The SAVE Statement

The SAVE statement has the following format:

save:statement = "SAVE" field:reference "IN" variable:reference .eol;

and is semantically equivalent to the statement

COMPUTE variable:reference FROM field:reference

It provides for an easy way of writing the common operation of saving some

field in a global variable for later use.

Example:

SAVE FIELD1 IN SAVE:F1ELD1

ND-60.101. 02

rage <
NORD Data Entry Compiler

2.5.5.5 The IF, ELSEIF, ELSE, and ENDIF Statements

The general form of the conditional statement is:

if:statement = "IF" expression .eol

e:statements

$("ELSEIF expression .eol
e:statements)

["ELSE" .eol

e:statements]

"ENDIF" .eo0l;

The expressions in the IF and ELSEIF statements must return a result of
type Boolean. IF statements can be nested to any desired level. At most
one of the groups of statements (e:statements) is executed every time the
if statements is executed. If none of the conditions are true and no ELSE
clause 1is provided, no statements are executed. If more than one of the
conditions in IF and ELSEIF are true, the statements corresponding to the
first true condition are executed. The following examples show some
possible forms of the IF statement.

Examples:

IF A>B

COMPUTE TEMP FROM A
COMPUTE A FROM B
COMPUTE B FROM TEMP

ENDIF

IF A<B
ACCUMULATE F1 IN SO

ELSEIF A=B
ACCUMULATE F1 1IN St

ELSE

ACCUMULATE F1 IN S2
ENDIF

IF X<=0 OR X>100

COMPUTE X FROM 199
ELSE

COMPUTE X FROM 2%X
ENDIF

IF S1><"YES"
STOP

ENDIF

ND-60.101. 02

2.5.5.6

NORD Data Entry Compiler

THE LOOP, FOR, WHILE, and REPEAT Statements

The general form of a loop is:

loop:statement = "LOOP" .eol

["FOR" variable:reference "=" expression

["TO" expression
["BY" expression]].eol

e:statements]
$("WHILE" expression .eol

e:statements)
"REPEAT" .eo0l;

The LOOP and REPEAT statements delimit the range of the loop. Loops may be

nested to any desired level. Exit from the loop may be achieved by means

of the WHILE statement. When the expression following WHILE, which must

return a result of type Boolean, is no longer true at the time the WHILE

statement is executed control is transferred to the statement immediately

following the corresponding REPEAT statement. A loop may contain several

WHILE statements. The FOR statement causes the loop to be executed as many

times as the control expressions specify. If no BY clause is specified BY

1 is assumed. The expressions are evaluated once for every execution of

the loop. The loop

LOOP

FOR Vi=E1 TO E2 BY E3

REPEAT

is equivalent to the program

Vi:=zE1

L1: IF (V1-E2)*SIGN(E3)>0 GOTO L2

V1:=V1+E3

GOTO L1

L2:

Since the data entry definition language does not contain labels, it is

impossible to implements loops in terms of IFs and GOTOs, hence the

"escape" to another notation. The above program should however be self

explanatory. The function SIGN() returns -1, 0, or 1 depending on whether
the argument is negative, zero, or positive.

ND-60.101. 02

s e ey S s rage &)

NORD Data Entry Compiler

A loop can contain only one FOR statement and no statements may appear

between LOOP and FOR. A loop containing a FOR statement may contain WHILE

statements as explained above. For convenience the FOR and WHILE

statements can be written on the same line as LOOP. If a WHILE immediately

follows a FOR statement it can be written on the same line. The following

forms are possible

LOOP FOR

LOOP WHILE

LOOP FOR WHILE

Some examples of possible forms of loops are shown below.

Examples:

LOOP FOR I=1 TO 10
COMPUTE XX(I1) FROM XX(I)+1

REPEAT

LOOP WHILE XX(I)><J
COMPUTE I FROM I+1

REPEAT

LOOP
FOR I=1 TO 40 WHILE OLD(I)<>0

SAVE OLD(I) IN NEW(I)
REPEAT

LOOP
COMPUTE I FROM I+1

WHILE TABLE(I)><27
REPEAT

ND-60.101. 02

2.5.5.7

2.5.5.8

e A e eaa o a R e v b A -

NORD Data Entry Compiler

THE DISPLAY Statement

The DISPLAY statement is used to display messages on the screen during

data entry. Messages are displayed right justified on the last line of the

terminal. This is the same position that the Data Entry Editor wuses for

error messages. The length of the message is limited to the length of the

screen being used.

During execution of the OUTPUT command in the Data Entry Editor, messages

a: » output to the "error file" together with the work file record number

of the current record.

display:statement = "DISPLAY" expression .eol;

where expression must return an alphameric result.

Examples:

DISPLAY "-0K."

DISPLAY "FIELD(3) = " FIELD(3)

The COPY Statement

The COPY statement is used to copy data from global variables or fields

into specified positions in an output record. Two forms exist, one which

copies an entire record and another which copies a specified data item.

copy:statement = "COPY" ("ALL"™ "TO" identifier/

expression "TO" identifier

(" expression "," expression ")") .eol;

The COPY ALL statement copies the whole record as it is received from the

screen handling system. The order in which the fields will appear is

defined in the section about STRUCTURE definitions. The data is copied to

the record specified by the identifier following ALL. The data is copied

left justified; i.e. the first field will start in position one of the

output record.

1If the item to be copied is either an alphameric or numeric value it is

copied in byte format into the specified record. The two expressions

inside parentheses specify first and last position.

Examples:

COPY ALL TO RECORD1

COPY '01' TO RECORD1(1,2)

COPY FIELD(J) TO RECORD(J,J+3)

ND-60.101. 02

2.5.5.9

2.5.5.10

2.5.5.11

2.5.6

o~ - - Lug. “—o

NORD Data Entr} Compiler

The WRITE Statement

The syntax of the WRITE statement is:

write:statement = "WRITE" identifier .eol:

where the identifier specifies the record to be output. The record name
must be previously defined in &a RECORD statement. Execution of the
statement causes a record of the specified type to be written onto the
corresponding file.

Example:

WRITE RECORD1

The RETRY Statement

The RETRY statement causes immediate termination of calulations for the
current picture. The value of all global variables are restored to the
value they had before calculations started, and the current picture is
read once more. The RETRY statement is intended to be used when an error
is detected in the input data. The cause of the error may be communicated
to the user by immediately preceeding the RETRY statement with an
appropriate DISPLAY statement.

retry:statement = "RETRY" .eol;

The STOP Statement

The STOP statement causes immediate termination of calculations for the
current picture. The action is the same as if the last statement in this
group of executable statements were reached.

stop:statement = "STOP" .eol;

The END Statement

The END statement signals the compiler that all source lines have been
read and compilation is to be terminated. When the compiler listing of the
source program is complete, a list of all variables and fields used in the
program 1is output to the list file. Each variable or field is accompanied
by a description giving its most important attributes. At the end of the
listing the total error count is output. The program is not allowed to run
if one or more compilation errors have been reported.

end:statement = "END" .eol;

ND-60.101. 02

2.6

rage <0

NORD Data Entr} Compiler

Compiler Error Messages

The following error messages may be output from the compiler in command
mode or when entering command mode as a result of a fatal error. Some of
these messages are fatal system errors and should never occur if the
compiler operates correctly. These messages are indicated by an asterisk.

WORKING AREA FULL

FILE ERROR

FATAL ERROR

% K-STACK UNDERFLOW

PICTURE:FILE STATEMENT MISSING

STRUCTURE DECLARATION MISSING

MISPLACED STATEMENT

BAD PARAMETER PATTERN STRING

BAD PARAMETER

10. VALUE OUT OF RANGE

11, ILLEGAL COMMAND

12, AMBIGUOUS

13. STACK OVERFLOW

W

o
o
~

W

N

=

Diagnostic compiler error messages are output on the compiler listing
along with the source lines. Each message is preceeded by three asterisks
(*#%) . If no . list file is specified, error messages are output to the
terminal along with the sequence number of the 1line in which it was
detected. The following is a list of all diagnostic messages.

1. VIOS ERROR nnnn

2. ILLEGAL TERMINATION

3. TOO LONG NAME, TRUNCATED

y, INVALID IDENTIFIER

5. INVALID FILE NAME

6. PICTURE NUMBER USED MORE THAN ONCE

7. SYNTAX ERROR 1IN ARRAY DECLARATION

8. IDENTIFIER DECLARED MORE THAN ONCE

9. LENGTH INFORMATION MISSING

10. LENGTH EXCEEDS MAXIMUM, ASSUME MAXIMUM

11. DECIMAL POSITIONS EXCEEDS MAXIMUM, ASSUME MAXIMUM

12. INVALID PICTURE NUMBER

13. INVALID RECORD LENGTH

14, IDENTIFIER EXPECTED

15. ID FIELDS MUST APPEAR ON ALL OR NO PICTURE STATEMENTS

16. INVALID FIELD REFERENCE

17. IN, FROM, TO, OR BY EXPECTED

18. INVALID GLOBAL VARIABLE REFERENCE

19. INVALID POSITION SPECIFICATION

20. OUTSIDE RECORD

21. ERROR IN IF NESTING

22. ERROR IN LOOP NESTING

23. IDENTIFIER NOT DECLARED

24, ERROR IN FOR

25. FIELD LENGTH DOES NOT AGREE WITH PICTURE FILE

26. DECIMAL POSITIONS DOES NOT AGREE WITH PICTURE FILE

27. TYPE DOES NOT AGREE WITH PICTURE FILE

28. INCORRECT NUMBER OF FIELDS

29. CALCULATIONS ALREADY SPECIFIED FOR THIS PICTURE NUMBER

30. ILLEGAL EXPRESSION

31. INVALID ARRAY REFERENCE

32. INVALID ARRAY SUBSCRIPT

ND-60.101. 02

ss e die e e A sese e) e = =

NORD Data Entry Compiier

33.
34.
35.
36.
37.
38.

INCORRECT NUMBER OF ARRAY SUBSCRIPTS
ILLEGAL OPERATION (TYPE MISMATCH)
OUTSIDE ARRAY BOUNDS
STRING QUOTE MISSING
ALL ID FIELDS MUST HAVE IDENTICAL ATTRIBUTES
ERROR IN ID FIELD SPECIFICATION

ND-60.101. 02

2. 1

BNvse paLvG Liiul Yy oY OUCll rage <o

NORD Data Entry Compiler

Collected Syntax of the Language

program = picture:file:statement

$global :statement
$file:and:record:statement

structure:definition

$calculation:specification

end:statement;

p: .ture:file:statement = "PICTURE:FILE" file:name .eol;

global:statement "GLOBAL" declaration:list .eol;

declaration:list variable:group $("," variable:group);

variable:group = variable:definition/

dimension "(" variable:group

$("," variable:group) ")";

variable:definition = identifier .blank length

["." decimal:positions];

length = integer;

decimal :positions = integer;

file:and:record:statement = file:statement

record:statement $ record:statement;

file:statement = "FILE" file:name

("DIRECT" record:length/
"sequential®™/ "") .eol;

record:statement = "RECORD" record:list .eol;

record:list = record:definition $("," record:definition);

record:definition = identifier .blank record:length;

record:length = integer;

structure:definition = "STRUCTURE" <arbitrary string> .eol

$picture:definition;

picture:definition = picture:name:statement

$field:statement;

picture:name:statement integer identifier

["ID:FIELD" field:definition "=" constant]
.eol;

constant = alpha:constant/ numeric:constant;

field:statement = "FIELD" field:declaration:list .eol;

field:declaration:list field:group $("," field:group);

field:group = field:definition/

ND-60.101. 02

NORD Data Entr& Campiler

field:definition =

calculation:specifications

e:statements =

executable:statement

compute:statement

accumulate:statement

save:statement

if:statement =

loop:statement

display:statement

copy:statement

write:statement

retry:statement

stop:statement

end:statement

expression

FREr L™ «7

dimension "(" field:group $("," field:group) ")";

identifier .blank [length

["." decimal:positions]];

"CALCULATION integer .eol

e:statements;

executable:statement $ executable:statement;

compute:statement/ accumulate:statement/
save:statement/ if:statement/ loop:statement/
display:statement/ copy:statement/
write:statement/ retry:statement/ stop:statement;

"COMPUTE" variable:reference

"FROM" expression .eol;

"ACCUMULATE" field:reference

"IN" variable:reference .eol;

"SAVE" field:reference

"IN" variable:reference .eol;

"IF" expression .eol

e:statements

$("ELSEIF" expression .eol
e:statements)

["ELSE" .eol

e:statements]
"ENDIF" .eol;

"LOOP" .eol

["FOR variable:reference "=" expression

["TO" expression
["BY" expression]] .eol

e:statements

$ ("WHILE" expression .eol

e:statements)
"REPEAT" .eol;

"DISPLAY" expression .eol;

"COPY"™ ("ALL" "TQ" identifier/
expression "TO" identifier

"(" expression "," expression ")")
.eo0l;

"WRITE" identifier .eol;

"RETRYI" .eol;

"STOP" .eol;

"END" .eol;

logical:term $("OR" logical:term);

ND-60.101. 02

NORD Data Entry Compiler

logical:term = logical:negation $("AND" logical:negation);

logical:negation = ["NOT"] relation;

relation = concatenation [relational:operator concatenation];

relational:operator = LRV RCLYAR FL VARG GLVAR DYLD VAR DL VAR DY

concatenation = sum $(.blank sum);

SU 1 = [("-"] term $(("+"/ "-") term);

term = primary $((n#n/ n/n/ uMOD") primary);

primary = (" expression ")"/

alpha:constant/ numeric:constant/

reference;

reference = variable:reference/ field:reference;

variable:reference = simple:reference/ array:reference

<reference to global variable or array>;

field:reference = simple:reference/ array:reference

<reference to field or field array>;

simple:reference = integer;

array:reference = identifier "(" subscript:list ")";

subscript:list = expression $("," expression ")";

ND-60.101. 02

==, = T= o= rage 31
NORD Data Entry Editor

NORD Data Entry Editor

The NORD Data Entry Editor (DED) is used by an operator to enter data for
a specific application. DED replaces the common keypunch machine but is
much more versatile.

An operator using a keypunch machine enters data from a form to
pre-specified columns on a punched card. These cards are then transferred
physically to the host computer where they are read by a card reader.

The Data Entry Editor, on the other hand, presents a picture of the
required form on a video display unit and allows the operator to simply
copy data from the various fields of the original form to corresponding
fields on the video display unit. The operator need not concern himself
with the actual column positions. The Data Entry Editor automatically
moves to the correct field.

In addition, the operator may go back and modify any field that has been
entered incorrectly. In fact, he may at any time go back to previous forms
and make changes, delete whole forms or add new forms.

When the operator has finished entering data for an application he may
write the data onto any SINTRAN III file for further processing by any
subsystem or host computer. A data file produced via a default application
may also be read back into the Data Entry Editor such that additional
corrections may be made.

ND-60.101, 02

3.2

v mma M g g e i s agc Je

Starting the Data Entry Editor

Starting the Data Entry Editor

The NORD Data Entry Editor is started by typing

@DED

to the SINTRAN 111 command processor.

DED, upon initialization, identifies itself and then goes into command

r Je.

ED Command Processor

The Data Entry Editor command processor uses the bottom line of the video

display unit for command input and display of error messages. Commands are

entered on the left part of the line while error messages are output right

justified.

DED outputs an & whenever it expects a command from the operator. A

command consists of a command name followed by zero or more parameters.

Several commands, along with all required parameters, may be written on

the same line.

The command name consists of one or more parts separated by hyphens ("-").

Each part of the command may be abbreviated as long as the command can be

distinguished from all other command names.

While typing commands, the editing characters ctrl-A (backspace one

character), ctrl-W (backspace one word) and ctrl-Q (delete whole line) are
available.

The collection of parameters is done in a standardized way as follows:

- Parameters are separated by either a comma or any number of spaces or

a combination of comma and spaces.

- Parameters may be null in which case a default value is assigned.

- When a parameter is missing, as opposed to null, it is asked for and

the command processor expects the operator to supply the required

parameter and additional parameters if desired.

- If a parameter syntax error is detected an error message is displayed

and the parameter is asked for again.

Control may be returned to the command processor at any time by typing the

"escape character™. The "escape character" is initially ctrl-G but may be

redefined using the SET-PARAMETERS command.

Commands may be given directly to the SINTRAN III command processor by

preceeding them with an € sign. In this case commands to the local command

processor following the SINTRAN II1 command are ignored.

ND-60.101. 02

3.3

............. J Mym v L QA< I

Function Keys

Function Keys

The Data Entry Editor command processor contains a facility whereby the

operator may specify commands with only one key operation. When the

operator presses one of these function keys DED will automatically supply

the corresponding command. The effect of pressing a funtion key is exactly

the same as if the operator types in the complete command name followed by

carriage return. Following is a list of the function keys:

ctrl-H HELP

ctrl-E EXIT

ctrl-A APPEND

ctrl-I INSERT

ctrl-L LIST

ctrl-N NEXT

ctrl-P PREV10US

ctrl-D DELETE

ctrl-C CHANGE

ctrl-v VERIFY

ctrl-0 OUTPUT

ctrl-S SET-PARAMETERS

ND-60.101. 02

Nunu vatda LILry oysuvem rage 34

Description of DED Commands

3.4 Description of DED Commands

Following is a list of the commands interpreted by the Data Entry Editor.

Each command is described in detail in the following sections.

- HELP <command name>

- EX1T

- INITIALIZE

- APPEND <picture address>

- INSERT <picture address>

- LIST <picture address>

- NEXT

- PREVIOUS

- DELETE <picture address>

- CHANGE <picture address>

- VERIFY <picture address>

- WRITE-DATA-FILE <file> <format>

- READ-DATA-FILE <file> <format> <picture address>

- OUTPUT <error file> <assignment 1list>

- SET-PARAMETERS <parameter name> <value>

- MODES

ND+-60.101, 02

3.4.1

3.4.2

Description of DED Commands

HELP <{command name>

The HELP command lists available commands on the display. If

<command name> is null, then all available commands are displayed. If

<command name> is a legal command name {(possibly abbreviated), the command

along with its parameters is displayed. If <command name> is ALL, then all

commands along with their parameters are displayed.

EXIT

The EXIT command returns control to the SINTRAN II1 command processor.

However, all information relevant to the application is stored on the work

file such that the application may be continued at a later time as

described in section 3.1,

INITIALIZE

The INITIALIZE command is used to specify which application is to be

processed by DED. It may be given at any time and will release any current

application before initializing a new one. Any command that requires that

an application be present will automatically call the INITIALIZE command.

The INITIALIZE command requests the following information from the

operator:

WORK-FILE: <file name> or <carriage return>

The name of a disk file should be specified as the file on which

entered data will be stored until it is finally written out onto a

data file. If carriage return is typed the system scratch file will be

used. The default type for work files is :WORK.

WORK-FILE; OLD OR NEW: <text>

1f OLD, or an abbreviation of OLD, is typed then DED will retrieve the

remaining parameters from the work file and then enter the normal

command mode.

If NEW, or an abbreviation of NEW, is typed then DED will initialize

the work file and continue to request the following:

APPLICATION: <file name> or <carriage return>

If the name of an application compiled by the Data Entry Compiler is

typed then that application will be read by DED and thep the normal

command mode will be entered.

If carriage return is typed then DED will initialize the work file as

a default application and continue to request the following:

ND-60.101, 02

NURD Data Entry System Page 36
Description of DED Commands

PICTURE-FILE: <file name>

The picture file containing the relevant picture for this application
must be entered. The picture file will have been produced by the NORD
Screen Picture Maintenance System.

PICTURE-NAME: <name)>

The name of the picture (or form) that is required for the current
application must be entered. The picture must reside on the picture
file specified above.

The application has now been completely specified. All of the parameters
concerning the application are stored on the work file such that the data
entry process may be interrupted at any time and restarted again by
specifying that the work file is OLD.

ND-60.101. 02

3.4.4

AV A uild Alame g M J M Ve

Description of DED Commands

MODES

The MODES command is used to list the status of various parameters that

influence how the Data Entry Editor functions. The following items are

displayed with the MODES command:

APPLICATION <application name>

The <application name> is the name of the current application. NONE is

displayed if an application has not yet been specified. DEFAULT is

displayed if this is a default application.

NO. OF PICTURES <number>

This parameter indicates how many picture records have been entered

into the work file. This parameter is not displayed if <application

name> is NONE.

CURRENT PICTURE <number>

This parameter indicates which picture record is the current picture.

This parameter is not displayed if <application name> is NONE.

TERMINAL-TYPE <terminal name>

This parameter indicates what type of terminal the Data Entry Editor

is connected to. The possible <terminal name>s are currently TDV2000,

TDV2100, VISTA and INFOTON-200.

TERMINAL-MODE <mode>

This parameter indicates what mode the attached terminal is in. The

possible <mode>s are currently ROLL MODE and PAGE MODE.

ESCAPE-CHARACTER <octal value>

This parameter indicates the octal value of the character which is

considered to be the "escape character" used when entering data or

commands.

ND-60.101. 02

L3Vl vl sl Yy iy vl g~ <~

Description of DED Commands

READ-STRATEGY <number>

This parameter defines how individual field reading is terminated and

how return from a "read fields" call is initiated. Refer to "The NORD

Screen Handling System", ND-60.088.01 for more information.

BREAK-STRATEGY <number>

This parameter defines how and when characters typed in on a '"read

fields"™ call are to be handled and echoed. Refer to "The NORD Screen

Handling System", ND-60.088.01 for more information.

APPEND <mode list>

CHANGE <mode list>

VERIFY <mode list>

The <mode list> specifies whether or not the functions specified

therein are to be performed for their corresponding command.

CLBUF=1 indicates that the data record is to be cleared to nulls or

spaces before a "read fields" call.

CFLDS=1 indicates that the fields on the display unit are to be

cleared before a "read fields"™ call.

SREAD=1 indicates that all "field read" bits are to be set before a

"read fields" call. This enables the operator to copy "old

fields" using the appropriate edit functions.

SMUST=1 indicates that all "must read" bits are to be set before a

"pead fields"™ call. This forces the operator to enter all

fields on the picture.

Refer to "The NORD Screen Handling System", ND-60.088.01 for more
information concerning these functions.

SET-PARAMETERS <parameter name> <value>

The SET-PARAMETERS command is used to change the value of the various

parameters described above for the MODES command.

If carriage return is entered instead of <parameter name> then a list of

all the possible <parameter name>s along with their possible <value>s will

be shown on the display unit. Several parameters may be changed at once

simply by adding more <parameter name> <value> groups to the command line.

ND-60.101. 02

3.4.6

Description of DED Commands

APPEND <picture address>

The APPEND command is used to enter data into the work file. The optional

<{picture address> specifies at what point in the work file that the data

should be entered. If <picture address> is null then data is entered at

the end of all other entered data.

The <picture address> may be one of the following:

<number> Specifies the <number>th data record in the work file.

$ Specifies the last data record in the work file.

$-<number> Specifies the <number>th data record preceding the last data

record.

Specifies the current data record, i.e., the one Jjust

APPENDed, LISTed, CHANGed, etc.

.+<number> Specifies the current+<number>th data record.

.=<number> Specifies the current-<number>th data record.

For those familiar with the text editor QED it can be mentioned that the

<{picture address> is exactly analogous to the <line address> in QED. 1In

fact, all of the commands in DED are as similar, in function, to those of

QED, as possible.

When the APPEND command is given, the Data Entry Editor will display the

appropriate picture (form) on the video display unit and expect the

operator to fill in all of the variable fields. The way in which this is

done is described in "The NORD Screen Handling System", ND-60.088.01.

If the current application uses identification fields, then the first

field that is entered is the identification field. If the value: entered

into the identification field identifies the currently displayed'picture,

then registration may continue immediately. If the identification field

specifies another picture type, then that picture will be displayed before

registration can continue.

If the current application does not use identification fields and the

entry of data is terminated by ctrl-L, then the data record read from the

picture will be added to the work file and thereafter the next picture

type will be displayed. If the current picture type is the last picture

type then registration will continue with the first picture type of the

application.

ND-60.101. 02

3.4.7

—y v e -~ v

Description of DED Commands

1f the "escape character" is typed, DED will immediately terminate reading

of the picture and will return directly to the command processor without

adding the data record to the work file. If any other terminating

character is typed the data record will be added to the work file and

another picture record may be entered.

The APPEND command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

1! T"ERT <picture address>

The INSERT command functions exactly as APPEND except that new data

records are entered immediately ahead of the addressed picture record.

The INSERT command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

ND-60.101. 02

3.4.8

3.4.9

3.4.10

Sl MU HAvE Y WY Ve fage “ 0

Description of DED Commands

LIST <picture address>

The LIST command is wused to display a data record along with its

corresponding picture (form). The optional <picture address> specifies

which data record is to be displayed. If <picture address> 1is null then

the current data record is shown on the video display unit. The data

record that is displayed becomes the new current data record. The picture

address of the displayed data record is displayed right justified on the

last line of the display unit.

The LIST command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

NEXT

The NEXT command is used to display the data record following the current

data record. The NEXT command is equivalent to LIST .+1. The data record

that is displayed becomes the new current data record. If the current data

record is the last one in the work file then the errror message END OF

WORK FILE will be displayed.

The NEXT command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

PREVIOUS

The PREVIOUS command is used to display the data record preceeding the

current data record. The PREVIOUS command is equivalent to LIST .-1. The

data record that is displayed becomes the new current data record. If the

current data record is the first one in the work file then the errror

message BEGINNING OF WORK FILE will be displayed.

The PREVIOQOUS command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

ND-60.101. 02

3.4.1

3.4.12

-y e

Description ovaEb Cofimands

DELETE <picture address>

The DELETE command is used to delete a data record from the work file. The

<{picture address> specifies which data record is to be deleted. If

<picture address> is null then the current data record is deleted. The

record preceeding the deleted data record becomes the new current data

record. If the work file is empty the error message NOTHING IN WORK FILE

is displayed.

Ty~ DELETE command requires that an application be present, and will

tnerefore automatically call the INITIALIZE command if necessary.

CHANGE <picture address>

The CHANGE command is used for modifying fields in the data record

specified by <picture address> or the current data record if

{picture address> is null.

The specified data record is displayed on the video display unit as with

the LIST command. Thereafter the operator may position the cursor to any

variable field and change it. The manual "The NORD Screen Handling

System", ND-60.088.01, describes how variable fields may be edited.

When the operator has terminated editing, the new data record replaces the

old one 1in the work file except if editing was terminated by the “escape

character" in which case nothing is changed.

The CHANGE command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

ND-60.101, 02

3.4.13

ERE = o rage 45

Description of DED Commands

VERIFY <picture address>

The VERIFY command is used when the operator wishes to control that
previously input data records were input correctly. The <picture address>
specifies at what point in the work file control reading is to start. If
<{picture address> is null then control reading starts with the current
data record.

When the VERIFY command is specified, the picture (form) corresponding to
the specified data record is displayed on the video display unit. The
variable fields from the data record are not displayed. The operator is
then required to input the fields anew such that they may be compared to
the originally input fields. If a discrepancy occurs, the operator is
informed by a beep. The operator may then choose whether to keep the old
field value or use the new field value. This "control reading" procedure
is described in detail in the manual "The NORD Screen Handling System",
ND-60.088.01. Any new information resulting from the VERIFY operation
replaces the old information in the work file.

After VERIFYing the first specified data record the operator is requested
to "contrel read" the following data records until termination via the
"escape character" occurs, as in the APPEND command.

The VERIFY command requires that an application be present, and will
therefore automatically call the INITIALIZE command if necessary.

ND-60.101. 02

3.4.14

3.4.15

o

Description of DED Commands

WRITE-DATA-FILE <file> <format>

The WRITE-DATA-FILE command is used to output all of the data records in

the work file to the operator-specified <file>. The type of output file is

specified by <format> as follows:

DIRECT Each data record is written onto the output file as a fixed

size block. The block size is determined by the size and

format of the individual fields as specified in the manual

"The NORD Screen Handling System", ND-60.088.01. The output
file 1is terminated with a block containing an end of file

character (27 octal) in the first byte position. The default

file type is :DATA.

SEQUENTIAL This file format should only be used for ASCII data. Spaces

are removed from the end of each data record and carriage

return 1line feed is added such that this type of file will be

compatible with SINTRAN III symbolic files. The file is

terminated with an end of file character. The default file

type is :SYMB.

The WRITE-DATA-FILE command is applicable only to default applications,

and will therefore automatically call the INITIALIZE command if necessary.

READ-DATA-FILE <file> <format> <picture address>

The READ-DATA-FILE command may be used to read data records from the

specified file into the work file at the specified <picture address>. Data

records from the input file are in effect APPENDed after the data record

specified by <picture address>. If <picture address> is null then records

are APPENDed after the last data record in the work file.

The <format> must correspond to the format used to create the input file

with the WRITE-DATA-FILE command.

The READ-DATA-FILE command is applicable only to default applications, and

will therefore automatically call the INITIALIZE command if necessary.

ND-60.101. 02

3.4.16

nUNY pata wniry system rage 4o

Description of DED Commands

QUTPUT <error file> <assignment list>

The OUTPUT command is used to output the final data records specified for

the current application.

The <error file>, which may be null, will contain all error messages

generated during the output process. These error messages may come from

either the Data Entry Editor or user supplied DISPLAY statements.

The <assignment list> specifies the mapping of logical to physical files

and also whether data is to be appended to the physical file or replace

its previous contents.

For each logical file in the application, DED will ask for the following,

if not already supplied on the command line:

ASSIGN <logical file> TO <physical file>

<logical file> is supplied by DED.

<physical file> must be supplied by the operator.

APPEND OR REPLACE: <text>

The operator must supply <text> which should be APPEND, REPLACE or an

abbreviation thereof.

The OUTPUT command requires that an application be present, and will

therefore automatically call the INITIALIZE command if necessary.

ND-60.101. 02

3'5

NUNY vava wiviy LQyouvcu

Description of DED Commands

DED Error Messages

All error messages from the Data Entry Editor are displayed right

justified on the last line of the display unit. Following is a list of all

error messages that may occur:

il FILE ERRROR
2. WORKING AREA FULL
3. NOTHING IN WORK FILE
y, END OF WORK FILE

5. BEGINNING OF WORK FILE

6. ILLEGAL PICTURE ADDRESS

7. NOT AN APPLICATION FILE

8. COMPILATION ERROR IN APPLICATION

9. VALID ONLY FOR DEFAULT APPLICATION

10. NO FILE SUPPLIED
11. NOT A WORK FILE
12. BAD PARAMETER
13. VALUE OUT OF RANGE
14, NOT FOUND
15. AMBIGUOUS
16. STACK OVERFLOW

17. ARRAY INDEX OUT OF RANGE

18. ATTEMPT TO DIVIDE BY ZERO

19. ATTEMPT TO WRITE OUTSIDE RECORD

20. PICTURE NOT IDENTIFIED

ND-60.101. 02

338s 333 33383830 NORSK DATA A.S. 33382.558 $33°°3ss =§o= s s :g:fi“a L¢renveien 57 - Postboks 163, Qkern
eea o8e OSLO 1

COMMENT AND EVALUATION SHEET
Publication No. ND-60.101.02 Nord Data Entry System

Dec ember 1977 Reference Manual

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be specific wherever possible,

FROM

