
"TPH SIMULA

REFERENCE MANUAL

Revision

REVISION RECORD

Notes

ND-60. 092. 02

August 1978

(117 200 68585060
Seed 080 sacecead
SFI00D €08 COVPOERITY
Peaesdes® L9 ese
Or90c00ae asa wad
ONe 0I8PS SICAAOung

©0e WSO CI0NDSIO
o 208 V0000 OS

NORSK DATA A.S.

Lorenveien 57, Postboks 163 Qkern, Oslo 5, Norway

Norsk Data A.S. presents

PROGRAMMING SYSTEM FOR THE SIMULA LANGUAGE

NORD-10 SINTRAN III VERSION REFERENCE MANUAL

This manual reflects the software as of version 3.54 of

TPH SIMULA, the April 1978 release.

Copyright 1978 G. P. Philippot.

All rights reserved. Permission to <create and distribute

additional copies of this issue is granted on the condition

that each copy 1is a complete reproduction of the manual,

including this page.

Norsk Data A.S.

Lgrenveien 57

OSLO 5

Norway

The word SIMULA is a registered trademark of the Norwegian

Computing Center. '

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

1.
1.1.
1.2.
1.2.1.
1.2.2.
1.3.

2.

2.1.

2.2.

2.3.

2.4.

2.5.

3.

3.1.

3.2.

3.3.

3.3.1.

3.3.2.

3.4.

4.1.

4.2.

4.3.

4.4.

Contents

Preface & @ ¥ B % @

“ Introduction . « .« .

Nord-10 version . . .

Compiler description .

Extensions

Restrictions

Operating environment

Precompiler

Flags .« ¢ « o o « o &

Options« « «

Conditional compilation

End of file

Alternate source files

Source program . . .« .

Delimiters « « « « + .

Identifiers

Constants

Numeric constants . .

Textual constants . .

Literal declaration .

Procedures and classes

External quantities .

Entrypoint quantities

Assembly code in cooperation

Virtual procedures . .

Standard classes . . .

Input/output

SIMSET « « & « &« o o =«

SIMULATION . . . + « .

ND 60.092. 02

with Simula

W

0O
~J

N

6

O

11

11

12

12

14

14

16

lo6

18

19

19

20

21

22

22

24

25

31

32

32

35

35

NORD-10 SINTRAN III SIMULA Reference

Version 3.54

6. Standard procedures

6.1. Quasi-parallel sequencing .

6.2. Arithmetic and conversion .

6.3. Random draws . . « « & o o &

" 6.4. . System interface« o

6.5. Editing and de-editing . . .

7. _Compilation and execution of

7.1. Elementary compile and execute

7.2. Saving the binary code

7.3. Advanced compiler use . . .«

7.3.1. Console command language . .

7.3.2. Compiler option set

7.3.3. Compilation errors . . « « .

7.4. Run-time system « . .

7.4.1. Debugging command language .

7.4.2. Run—time errors . . « « « &

7.4.3. Run—-time system option set .

8. References . . + ¢ o o & o o &

A, Example on use T B

B. Summary on standard identifiers

c. Compiler error messages . «

D. Run—time error messages . . .

ND 60.092.02

Manual

programs .

procedure

- - . - -

37

37

39

40

40

42

43

43

44

45

45

48

49

50

50

52

52

53

Al

Bl

Cl

D1

NORD-10 SINTRAN III SIMULA Reference Manual 5

Version 3.54

This implementation of the SIMULA language for the NORD-10

minicomputer has been performed by mr. G. P. Philippot of TPH

Data A.S. All marketing rights for the NORD-10 have been

transferred to Norsk Data A.S. in agreement with TPH Data A.S.

The SIMULA language, developed by the Norwegian Computing

Center (NCC), has achieved great acceptance in universities

and computer teaching institutes for the exceptionally good

program and data structuring capabilities, making it

especially suitable in teaching programming techniques. The

list-processing and simulation. capabilities offered by the

SIMSET and SIMULATION system classes make SIMULA a programming

language with capabilities far beyond those normally found

with FORTRAN, COBOL, BASIC, etc.

This implementation of the SIMULA language makes, for the

first time, these programming capabilities available within

low cost minicomputer environments.

All questions and responses concerning the NORD-10 SIMULA

language should be directed to Norsk Data’s Marketing or

Customer Support departments.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 6.

Version 3.54

TPH SIMULA is an implementation of SIMULA, a general-purpose

high 1level 1language defined 1in 1967. SIMULA is defined in

"SIMULA Common Base Language" (Ref. [1]), later referred to as

the Common Base. As no attempt is to be made in the present

manual to teach SIMULA, the reader is assumed tOo posess a

thorough knowledge of SIMULA from the Common Base or other

sources, e.g. [2].

This implementation of 1977 is basically machine independent.

For practical purposes however, the manual is written for

Nord—-10 users. '

. i o i o i 2 i

The version described here compiles and executes programs on

the NORD-10 computer. The compiler occupies 21K words of

program plus dynamically allocated data, minimum 2K. The

brogram consists of several independent phases, varying from 5

to 10 K words, each performing different compilation tasks.

The compiler executes as a reentrant subsystem under the

SINTRAN III/VS operating system, whereby many active users

share common code. Utilizing the virtual storage concept of

the WNORD-10 SINTRAN III/VS only those 1K pages that are

actually necessary get allocated. P

Programs can be written according to any of the DEC, AIBM, or

UNIVAC hardware notations. Unless explicitly requested, lower

case letters in identifiers are considered equivalent to upper

case. The character set for use in program execution is the

ASCII set, having rank values from O to 127 (decimal).

ND 60.092.02

NOKRD-10 SINTRAN III SIMULA Reference Manual 7

Version 3.54

All system dependent details are related to the SINTRAN III

operating system.

Section 7.1 gives a minimum of instruction for new users who

want to run programs without reading the entire manual first.

i i . e i o e i o i

The compiler reads programs written in SIMULA and translates

them to binary relocatable code, binary absolute code, or

instructions directly placed in core, according to user

commands. This section gives a summary of all known extensions

and restrictions. Reasons and details are, in general,

described elsewhere.

i i s i i e i e S o

for easy and efficient definition of symbolic constants, the

literal declaration has been introduced to the hardware

notation. See section 3.4.

External <classes and procedures (in Simula or assembly code)

have been implemented. An external class may be referenced on

any block 1level of a subsequent compilation. A special

compiler command specifies which wuser libraries are to be

searched when looking for external quantities.

The while statement is (of course) implemented.

The hidden protected feature (see SDG recommendation no. 1,

Attribute Protection) is included syntactically, but as vyet

not processed semantically. This was done to allow transfer of

programs without having to delete the protection

specifications.

ND 60.092.02

NOKD-10 SINTRAN III SIMULA Reference Manual 8

Version 3.54

Index to a switch is always checked against the bounds,

causing a run-time error if violated.

Compiler directives, identified by % in column one, include

the conditional compilation feature.

Run—time checks for array bounds, qualifications, and none can

be switched off individually for any part of the program as

desired.

An interactive debugging system is available, allowing

breakpoints and a statement-by-statement execution.

———

Only the first 24 characters of an identifier are registered.

Apart from this, it may have any length up to the end of line.

Source lines have a max imum length of 120 characters. Excess

characters are ignored, as well as non-printable characters.

Carriage return is the end-of-line signal.

Texts (both variable and constant) have a maximum length of

formally 32761 characters, though overall program and data

size may effectively restrict the length further.

Integer variables and constants have a range from -32768 to

32767, inclusive. Real variables and constants can have these

values: From -104920 o —10'4920, exact zero, and from 1074920

to 104220, They have 10 significant digits. '

All matches to a wvirtual procedure should have the same

number, types, and modes of parameters. This restriction is

for efficiency; violation will slow down the procedure calls.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 9

Version 3.54

The number of nested expressions, procedure calls, etc. in

each statement 1is restricted to 64. This number should be

generous but is easily increased upon request.

Prefixing by system classes is only allowed with SIMSET and

SIMULATION, but these prefixes can be used at any block level.

The indices to a multi-dimensional array are not checked

individually. To save time and data space, only the resulting

address is checked against the bounds.

Depending on programming style, the compiler in its present

state can only take approx. 3000 lines of source text. The

problem is wunder investigation. In some cases, however, the

user can use external compilation to split his program. The

combined program size capacity is estimated to be over 4000

lines, a figure which will increase to 8000 when the full 128K

addressing technique has been employed.

An array object may occupy a maximum of 4096 words total.

Allowing for some overhead, this gives approx. 4000 integer

elements, 1300 real elements, or 1000 text elements.

A Dblock object (procedure, «class etc.) may only occupy 128

words at present. Since this is a fairly narrow margin, the

size will be increased to 512 words in a later release. A

compiler error message 1s given 1if the maximum space is

exceeded. Note that the program code allocates temporary calls

and that these can also violate said restriction.
x

s i e e i i i T e S S o

Information in this section is subject to change without

notice. TPH SIMULA under SINTRAN III consists of the following

public files:

ND 60.092.02

ddiy g

NORD-10 SINTRAN III SIMULA Reference Manual 10

Version 3;54

N10-SIMULA:PROG Executable program file for the compiler

SIMUPRE3:SYMB . Simula part of the run—-time system

SIMRT3:S1IM Assembly part of the run-time system

SIMERR:DATA Error messages for use by run-—-time system

SIMBASE3:S5IM Binary relocatable library

SIMSET3:SIM Binary relocatable version of SIMSET

SIMULA3:SIM Binary relocatable version of SIMULATION

All enguiries concerning Simula system results should be

accompanied by the version number printed by the compiler that

was used. The version number must include both the level and

the edition, e.g. 3.54.

For efficient use on a Nord-10, please observe that the

bhysical memory available for swapping must be sufficiently

large to accomodate the Simula system’'s working set, which can

be up to 64K words depending on program size. A computer

running Sintran III/VS will, in most configurations, need at

least 96K words of memory.

The Sintran III/VS host system must allow 128K words of

virtual memory per user. This requires a modification to the

standard system.

ND 60.092.02

NORD—-10 SINTRAN III SIMULA Reference Manual 11

Version 3.54

2 precomsiter
Before reaching the compiler, your source program is inspected

by a macro processor called the precompiler. All 1lines

beginning with % are taken as command lines to this processor

- therefore, take <care so as to avoid e.g. comment lines to

look like macro commands. The simple definition by column 1 of

each line has been made in order to save time spent in

precompiler when most of the program does not use it.

Macro commands serve two purposes: Changing compiler options

from within the source text, and controlling the omission of

specified sections of the program. The latter 1is called

conditional compilation and 1is particularly useful when

compiling the same source text for use on several different

installations. The Simula run—-time system uses the precompiler

in this way.

A flag has the value true or false and 1is identified by an

identifier that may have any length as long as it does not

exceed the source line. (The source line is limited to 120

characters.) The name tables being totally separated, there is

no name conflict with respect to Simula program identifiers. A

tlag identifier may actually consist of any characters, not

only letters or digits. A flag not yet defined, if referenced,

gets the initial wvalue false. There are two commands for

definition of a flag:

3SET identifier The specified flag 1is set to

true. It may have been defined

and/or referenced before, but

the now assigned value is valid

from. now on only.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 12

Version 3;54

$RESET identifier The specified flag 1is set to

false. Scope as explained above.

The use of flags is shown in section 2.3.

Compiler options in this Simula system have values from =-32767

to 32767, rather than the more common false or true. At any

time, a specific option is considered to be set if the value

is greater than zero, the initial value being zero. This

allows selected program sections to be enclosed by

increment/decrement of options, the effect of which can be

controlled from the outside. Option assignments are defined in

ch. 7.3.2. There are two macro commands for changing options:

3SETOPT cccee Increment all options mentioned

' in cccc.

SRESOPT cccce Decrement all options mentioned

in cccc.

These commands correspond exactly to the console commands

>SETOPT and >RESOPT, described in ch. 7.3.1.

———— . i i i e i i o i S i i i i i i

we have now arrived at the precompiler’s main task:

Suppression of selected paragraphs of code, controlled by the

current flag values. A general construction for conditional

compilation looks like:

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 13

Version 3.54-

$IF flag

: Simula source text,

¢ first paragraph

$ELSE flag

¢ Simula source text,

: second paragraph

$FI flag

If the current value of flag is true, the first paragraph is

compiled and the second is skipped. If false, the second is

compiled instead. If either paragraph 1is to be empty, the

corresponding 3IF or %ELSE may be omitted. Within the

paragraphs, other conditional compilations may occur as long

as they do not use the same flag as the enclosing one. Example

of a branch to be executed if flag A and/or B is true:

$ELSE A

$IF B

$FI A

outtext("This is version A or B");

outimage;

$FI B

The construction may seem rather odd and intuitively 'illegal,

but it is based on knowledge of the one-pass operation of the

precompiler, which is governed by these simple rules in its

neutral state:

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 14

Version 3.54

- Any $FI command is ignored.

- Any %IF with a true flag 1is ignored.

- Any %ELSE with a false flag is ignored.

-~ $IF with a false flag causes input scan, ignoring

all lines until $ELSE or %FI with the same flag is

encountered. Note that all references to other flags

are ignored.

- $ELSE with a true flag causes input scan, ignoring

all lines until $FI with the same flag is

encountered.

According to this, the example works as follows: If A is true,

the %IF B 1is ignored and we cbmpile the two statements. The

late %FI B is ignored. If A is false, the $ELSE A 1is 1ignored

and thus the %IF B is checked. If even B is false, all text up

to 3FI B is ignored. This then is the only case where the

statements are suppressed, for a true B would cause %IF B to

be ignored, and as stated above, the stand-alone %FI A and $FI

B do no harm.

i i

The macro command $EOF may be used to terminate the source

file. It has the same effect as 1if end-of-file had Dbeen

encountered. If compiling directly from the console (not

recommended), $EOF is the only way of terminating the source

text. ’

———— i T T o 1 S

At any point of the source text, code from another file may be

inserted by the command

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 15

Version 3.54

$COMPILE filename

subject to suppression by flags if specified. The filename may
be replaced by a 1logical unit number. If the 3COMPILE 1is

honored, a separate precompiler is created for the inclusion,

having no knowledge of or effects on the flags of the

surrounding precompiler. $COMPILE commands may be nested to
any depth, excepting the operating system’s possible limit to

number of simultaneously opened files.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 16

Version 3.54

Your program is to be supplied as lines of maximum 120

printable ASCII characters each. It may follow any of the DEC,

IBM, or UNIVAC notations. This chapter describes the complete

hardware notation and gives other information closely related

to this. The general idea is to reserve a set of 64 words,

contaiping begin, end, integer, and many others, thus

eliminating the need for embedding quotes or other means of

recognition. In consequence, blanks cannot be allowed in

identifiers and are needed between reserved words and user

identifiers. These restrictions, according to most usérs, are

insignificant with respect to the valuable time saved in the

typing of programs. '

To include the DEC notation, a special alfernative for

comments has been allowed: ! outside of a comment, character,

or text constant 1is accepted as start of a comment, thus

replacing the key word comment. This causes no restrictions at

all on source programs, since the symbol ! would otherwise be

illegal.

e s s o

In describing delimiters, we deliberately omit those

represented in Common Base by underlined words, since they are

all simply coded as reserved words. A complete table of

reserved words is given in the next section. We also omit the
A

delimiters used in constants only.

What remains then 1is a set of delimiters represented by

various non-alphabetic symbols 1in the Common Base. Many of

tnese have several alternative representations in TPH SIMULA;

some of them may even be represented by reserved words. Here

is the set:

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 17

Version 3.54

Common Base TPH SIMULA (all alternatives given on the same line)

= = eq

* =/ \= ne
< < 1t

> > gt

< <= le

2 >= ge

=/= =f=

- \ not

and

¥ or

= imp ’

= egv

((

(S A

)) ~

] 1 /))

: i <+ S

+ +

X *

/ /

= //
T * % ~

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 18

version 3.54

—

An identifier begins with a letter (A-Z,a-z) and contains

letters and digits. To improve readability, it may also

contain the underscore character _ in any quantity.

Underscores are significant. NOTE! The otherwise compatible

hardware notation for UNIVAC disagrees on this point, 1i.e.,

the underscores are ignored. The maximum recognizable

identifier length is 24, but any length may be wused in the

source program. '

identifier Letters of an are internally converted to upper

case unless compiler option U has been set. Option U does not

apply to

reserved (regardless of lower or upper case) and may not be

reserved words. The following identifiers are

used for other purroses than those specified in Common Base or

in this manual:

ND 60.092.02

ACTIVATE AFTER AND ARRAY AT

BEFORE BEGIN BOOLEAN CHARACTER CLASS

COMMENT DELAY DO ELSE END

ENTRYPOINT EQ EQV EXTERNAL FALSE

‘FOR GE GO GOTO GT

HIDDEN IF IMP IN INNER

INSPECT INTEGER IS LABEL LE

LIBRARY LITERAL LT NAME NE

NEW NONE NOT NOTEXT OR

OTHERWISE PRIOR PROCEDURE PROTECTED QUA

REACTIVATE REAL REF SIMULA STEP

SWITCH TEXT THEN THIS TO

TRUE UNTIL VALUE VIRTUAL WHEN

WHILE XOR

NORD—-10 SINTRAN III SIMULA Reference Manual 19

Version 3.54

Note the reservation of hidden and protected. They are

included for compatibility reasons, allowing transfer of

programs using a recommended extension to Simula systems.

However, TPH SIMULA does not as yet process such

specifications, it merely tolerates them. There are plans for

implementation, and the wusers will be notified when the

feature is available.

The xor is a logical operator between Boolean expressions. Its

result 1is the exclusive or of the operands, i.e. true if and

only if they are different.

——— i e

Some constants are represented by reserved words - true,

false, none, and notext. Known from Common Base, they are not

covered here. Instead, we will explain the notations for

numeric and textual constants.

T . e S - o T T S P o Dt B e S ey

The standard forms for integer and real constants épply.

Exponent sign for the real constant is &. Some examples of

legal constants:

1l . 2 -1000 5.3 0.0003 125&-3 -1&10

As already mentioned, integer variables and constants have a

range from -32768 to 32767, 1inclusive. Real variables and

constants can have these values: From -104920 o ~-1074920,

exact =zero, and from 1074920 o 104920, They have 10

signiticant digits.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Referqnce Manual 20

Version 3.54

—— T i i A S i T

Character constants are enclosed in single guotes(’). Since

non-printable characters of the source program are ignored,

only the 95 printable ASCII characters are allowed. Examples:

The parameter range for char is O to 127, corresponding to the

7-bit ASCII code set. Codes O to 31 are the non-printable

codes (control codes), codes 40 to 63 are ~ “to “?°, codes 64

to 94 are upper case letters (and sbme symbols), codes 96 to

126 are their lower case equivalents, code 95 is.'_', and code

127 is rubout. Character variables are initialized to code O.

Information given above should not be used by the programmer

who wants a portable program, with the exception that all

ASCII systems can be expected to have the same code

definitions.

Text constants are enclosed in double quotes (") and may

contain the same set as for character constants. A double

quote within a text constant is coded as two double quotes.

Two adjacent text constants (possibly on successive lines) are

automatically concatenated into one. If more than one line is

required for the constant, use of the concatenation feature is

highly recommended. Some examples on text constants:

Source code ‘ Result

"Abc" ’ Abc ’

"Quote: """ Quote: "

"part one, " "part two" Part one, part two

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 21

Version 3.54

o S i S e A i T R i . i i e i

This section describes an extension to the hardware notation,

available wunder TPH SIMULA only. It should be ignored if

future transportation is to remain a possibility. The set of

legal declarations 1is extended by <literal declaration>,

defined thus:

<literal declarationy::=

literal <literal list>;

<literal list>::= <literal item>|<literal item>,<literal list>

<literal item>::= <identifier>=<expression>

Each <literal item> has the following semantics: The

{expression> may be of any type, but it must contain constants

only. The <identifier> becomes a symbolic constant. It has the

usual séope of normal identifiers, with one important

restriction: It 1is only referenceable after its definition,

i.e. in textually succeeding source code. According to this,

one may e.g. define a set of symbolic codes thus:

literal atype=1l,btype=atype+l,ctype=btype+l,dtype=ctype+l;

The main justification for literals is the advantage in code

efficiency over the only other method of generating symbolic

constants: Declaration and 1initialization of variables. The

improvement in readability is of course also of some value.

ND 60.092.02

NORD-10 SINTRAN.III SIMULA Reference Manual 22

Version 3.54

This chapter describes how to create and use separately

compiled modules. Creation is based on the concept

"entrypoint guantities", which means, quantities that are

available outside of the defining module. The corresponding

concept for referencing such quantities 1is called ‘"external

quantities", indicating that the quantities in question are to

be found outside of the referencing module.

At the end of the chapter, some remarks are given concerning

special features of virtual procedures.

Primarily for the benefit of assembly coding, two different

forms of external qguantity have been defined: Body

substitution and complete substitution. For the ordinary user,

only the latter is relevant, meaning the quantity 1is to be

completely defined in an externally compiled module, available

at the time of compiling the referencing module. It 1is the

only form that adheres to the philosophy of total safety in

high level language programming.

Advanced system programmers are allowed access to the body

substitution. It is a means of having the compiler generate a

prototype for a routine whose code 1is external and usually

assembly coded. No responsibility is taken for the results or

disasters of such routines.

FORTRAN- or COBOL- type routine calls are not supported.

One or more external quantities for complete substitution are

declared by the keywords external Simula, followed by class or

procedure (without prefix or type), followed by a 1list of

ND 60.092.02

NORD-=10 SINTRAN III SIMULA Reference Manual 23

Version 3.54

identifiers (separated by commas and terminated by semicolon).

Neither parameters nor body is given. Examples:

external Simula procedure operate;

external Simula procedure abool,bbool,cbool;

external Simula class system;

In addition, within a block or class that has no prefix, any

identifier that has been used for prefixing without being ever

declared at that block or class is implicitly declared

external Simula class. This is-why SIMSET and SIMULATION may

be wused without declaration, as 1in any other SIMULA

implementation.

When encountering an explicit or implicit external Simula

declaration, the compiler starts searching the 1libraries.

These are the system libraries (standard procedures or

classes), followed by any 1library that the wuser may have

specified by the >LIB command (see ch. 7). A library is the

>BRF specified output from an E-option compilation. See sec.

4.2 for description. Upon finding the requested quantity name,

the compiler reads all necessary information concerning

parameter list, type or prefix, and local attributes. Thus all

use of the quantity can be fully checked at compile time, just

as if it had been declared internally.

To maintain the safety of Simula, simply observe the following

rule: Whenever making a change in a library file through an

E-option compilation, recompile all modules that referencé

this file, then all modules that reference files now changed,

etc., until the main program has been recompiled. Never assume

your changes are insignificant for the calling modules. In any

case, complaints where external quantities are involved will

not be investigated unless all source files are submitted for

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 24

Version 3.54

recompilation. Remember that each new Simula release may

invalidate all >BRF produced files, but will not, of course,

affect >BIN files.

i

This ;ection describes how to create an entrypoint quantity

written in Simula. If option E is set during compilation, no

absolute program is produced. Instead, the specified BRF file

becomes a valid wuser library. The source text for an E

compilation wusually consists of one main block containing one

or more entrypoint declarations and no statements. The

entrypvoint declaration 1is any ordinary procedure or class

declaration preceded by the keyword entrypoint. This makes the

quantity, its prefix/type, and parameter list known to a later

compilation with the appropriate >LIB command. If a class, the

local attributes are also known — and so on to any depth of

local classes. Only a gquantity which is itself mar ked

entrypoint is excepted from this recursive tree of

definitions, such a gquantity and its tree being emitted

separately with 1its own identification. Example showing the

most usual user library definition:

begin
entrypoint class prefix; begin

integer a,b,c;

procedure p(i); integer i; begin

real d,e,f; '

end;
class cl; begin

integer g,h;

procedure g; ... ;

end;
end;

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 25

Version 3.54

end;

The main program prefixed by "prefix" now has access to a, b,

C, P, cl, and by remote access or inspect all attributes of

cl: g, h, and g. In other words, exactly and with the same

compile-time checking as if prefix were declared in the main

program.

Caution: Although legal, the use of an external class on a

block level other than that of its E-compilation should be

avoided. If not, the run-time level changes cause about 50%

increase in execution times.

This section is for experts only. It is included in the manual

at this point because the mechanisms involved are similar to

those of external Simula procedures and classes. The average

user is strongly advised to skip to the next section.)

An external guantity for body substitution is declared with

all parameters and a body without statements. Its language is

specified as library. Examples:

external library procedure extrick;;

external library Boolean procedure comp(a,b);

character a,b;:

external library class help; begin

integer alfa,beta;

end;

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 26

Version 3.54

Thus the syntax differs from a normal class or procedure by

its leading external library only.

An assembly coded entrypoint gquantity must contorm to the

Simula BRF format and appear in a »>LIB command. Users are

strongly discouraged from attempting to produce such files.

The assembly code for the body is subject to the following

rules;

- It is headed by a label equal to the procedure or

class name.

- It is terminated by a JPL I (EXIT& instruction. Note

that this makes it hard to produce by means of the

MAC assembler.

- It must not disturb the B register, which points to

the procedure or class object.

' - Its return, parameter, and local variable cells are

‘ found starting at address RT*BODY (see later

definition) relative to the B register. For example,

the standard procedure rank has the following

assembly code:

RANK, LDA RT*BODY+1,B

STA RT*BODY, B

JPL I (EXIT&

) FILL '

For proper automatic inclusion at compilation time, the

assembly body must reside on a BRF formatted file with the

necessary external reference and entrypoint definition

specifications. The file must be mentioned in a >LIB command

prior to >COMPILE (see ch. 7).

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 27

Version 3.54

We will now give the necessary technical information on the

run-time data structures. The wuser 1is warned that all

definitions are subject to change without notice. According to

good programming practice, you should always reference given

displacements by symbols, never by numbers. Cells that are

irrelevant to wusers have been left blank, thus avoiding

unnecessary complicated diagrams.

An object of a block, procedure or class has this format:

RT*PROT= 1 address of prototype

RT*BODY= 2

data section

. .
¢ @ & 8 8 & S 0@ & OO 4B AW O F B W B E S B S S S S e ® SO WS

The data section contains parameters in order of parameter

list appearance, followed by 1local variables in order of

declaration. A parameter by name always occupies two words.

For other parameters and 1local variables, we have the

following requirements:

'ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3. 54

array of any type: 1 word

single variable:

ref

integer

Boolean

character

real

text

word

word

word

word

words

S
W

e
e

words

The text reference and object are formatted as

TX*VAL=

TX*POS=

TX*START=

TX*STOP=

RT*BODY=

TXV*BOD=

2

3

byte address of pos

byte address of 1

 byte address of length+l

 length of main text

-
4 @ % 8 8 % 5 4 & % 8 B A & ® W S P S E S E S s

characters, packed in 8-bit bytes

ND 60.092.02

a4 8 0 88 00

e

NOKD-10 SINTRAN III SIMULA Reference Manual 29

Version 3.54

The byte addresses TX*POS, TX*START, TX*STOP are all given in

bytes relative to the word address kept in TX*VAL.

An array object has the following format:

RT*ABASE= O bias

RT*NODIM= 1

m = number of dimensions

RT*NOWO= 2 n = total number of words

RT*ABODY= 3 B :

RT*ABODY+m—-1 g .

: data section :

l"l"l :..n-c--ooco.ooaoao--ooo;..oo--u--oo:

It will be seen from the above that the data section of a

one-dimensional array starts at RT*ABODY. The data section

contains variables as described for block objects. The

elements are laid out by ascending indices, the 1last index

being incremented first.

To get the effective displacement within the array object, the

bias is added to the product of index and element size (if

multidimensional, things get more complicated). In this way

you may calculate the lower bound (for m=1) as:

(RT*ABODY-bias) /elementsize.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

Finally, we give the format of a prototype:

RT*NOPAR= O number of parameters

RT*SIZE= 2 total length of objects

RT*PREFIX= 4 address of prefix prototype

RT*PDATA= 7

data descriptors

T

30

The prefix address is zero if the prototype is not prefixed.

Each data descriptor is confined to one Or two non-zero words,

formatted as follows:

15 13 11 9

type |kind mode| relative address

® 8 8 9 B S B 8 B S S S0 S S A eSSBS

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 31

Version 3.54

The second <cell 1is present if and only 1if type is ref.

Although some of this information is irrelevant to users, the

full set of codes is listed below.

Type: Boolean Kind: simple variable

character array

integer procedure

class
ref Mode: local variable

text

(untyped)

label

parameter by value

0

il

2

3 real
4

5

6 parameter by reference
7

w
N

H
O

W
N

O

parameter by name

Again, if you insist on using any of these codes, you are in

for trouble unless you give them symbolic names. Good luck!

. i i i i i i S A T

For efficient use of virtual procedures, please note that all

matches to a wvirtual procedure should have compatible

parameter lists. That 1is, corresponding parameter positions

should have same type and transmission mode, and of course the

number of parameters has to be equal.

It is possible to employ the more general call to virtuals. In

the case of non-compatible lists however, the procedure call

will be substantially less efficient.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 32

Version 3.54

This chapter describes the implementation of standard classes,

a set consisting of I/0 classes and the SIMSET/SIMULATION

classes. In the interest of machine independence, they are

written as external Simula classes. Unfortunately, this 1leads

to some minor restrictions which are foreseen by the Common

Base: The I/O classes cannot be wused for prefixing. Rest

assured, however, that the efficiency thus gained ‘justifies

the sacrifice.

e s e o

The class identifier "FILE" has been made accessible to the

user program, a valuable feature for such occasions as passing

file parameters to procedures. Generation of a pure FILE

object is not practical though, since open and close will be

undefined. See [l}].

The image length used for sysin and sysout is 136. If, for

example, a shorter sysout.image 1is wanted, the user will

simply include in his program start the statement

"image:-blanks (100) ;" or whatever he might want.

At file object generation time, NAME is allowed to have two

syntactically different values:

- If its first non-blank character is a digit "or a

minus sign, the wvalue will be interpreted as an

octal logical unit number (lun) of a file already

opened via the operating system.

- In the other case, NAME should represent a legal

file name of the directory, accessible to this user

and not yet opened via the operating system. It will

_ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 33

Version 3.54

automatically be thus opened at the time of calling

the open procedure. At close time it 1is again

closed, contrary to the 1lun specified <case where

user 1is responsible for both open and close versus

the operating system.

The parameter NAME to a FILE may be read afterwards by the

procedure (local to class FILE)

text procedure id; seve..

usually returning a copy of NAME. If, however, NAME was a file

name rather than a lun, that namé is only returned if the file

object 1is currently in the closed state. When open, a text of

8 characters containing the system generated 1lun (in octal,

signed) 1is given. This feature 1is wuseful if several file

objects are to access the same lun, and the Simula system is

supposed to open it as described above.

In communicating directly with terminals, it might be

desirable to operate on a character basis. For this purpose,

the following procedures exist:

procedure directout(c); character c; «ceuie. ;

character procedure directin; ..ee. ;

The procedure directout transmits ¢ to the terminal at once.

If the terminal is in character mode, each <character typed

will Dbe avalilable at once, and it can then be read by calling

directin.

Actual files associated with infile, outfile, or printfile may

be of any type; a directfile must be random accessible unless

used in a purely sequential manner. Concerning the alternate

use of outfile/infile and directfile for the same physical

file, observe:

ND 60.092.02

NORD-10

Version

SINTRAN III SIMULA Reference Manual 34

3.54

On outimage to an outfile, the stripped image is

written (zero length if ©possible) followed by

carriage return, line feed.

On outimage to a directfile, the 1image is not

stripped before writing. All images on the file will

therefore have the same length - equal to

image.length at first call to open, plus carriage

return, line feed.

On inimage to an infile, the mass storage image must

not contain any other characters than spaces in

excess of the infile's_image.length. The terminating

carriage return 1is not included in the count, and

any leading line feed is ignored.

On inimage to a directfile, the mass storage image’s

length must equal the directfile’s image.length as

it was at open time. The image length uniformity is

necessary because otherwise we could not calculate

the parameters for a random-access positioniné based

on a locate call. Following an inimage or a locate,

ENDFILE will be true if LOCATION now points into a

non—-existent mass storage block. This does not mean

inimage is necessarily allowed whenever ENDFILE is

false: The physical mass storage blocks are usually

far greater than the Simula image, so that in

general only part of an existing block may contain

valid imaées. You may object to this seemingly

useless (but perfectly legal, according to Common

Base) definition of ENDFILE, but considering system

overhead, we think that fast operation is more

important for most users.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 35

Version 3.54

The class outfile is extended by

procedure breakoutimage; ;

having ‘the same effect as outimage, except that no carriage

return or line feed is given after the output. Thus having no

spacing effect, the procedure is not virtual.

e

The system class SIMSET is an external Simula class implicitly

availaple from a system library. When used for prefixing, it

is automatically declared local to the block enclosing the

prefixed one. In other words, 1t is used according to the

Common Base.

If more than one block have SIMSET declared 1local to them,

each of these SIMSET versions is at compile time considered

different from all the others. This means you are not allowed

to do assignment between ref(link) variables of different

versions, for example. However, in situations accepted by the

compiler (such as formal procedure calls) the corresponding

run—-time checks will accept, because there is only one SIMSET

at run—time.

Conclusive remark: There 1is nothing special or restrictive

about SIMSET in TPH SIMULA.

—— s o s i i T

All information of the previous section applies to SIMULATION

as well. In a block that has SIMULATION declared (implicitly),

SIMSET is automatically declared by the same technique. The

fact is relevant in cases of many versions of SIMSET and

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 36

Version 3.54

SIMULATION, giving the effect already mentioned.

SIMULATION uses quasi-parallel sequencing. Refrain from wusing

call, detach, or resume to avoid corrupting the SIMULATION

mechanisms. Another caution: If SIMULATION is used as prefix

in other ©blocks than the outermost (or prefixing the entire

program), then expect a 50% increase in execution time. This

is due to administrative overhead in changing block levels

within the same class body.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 37

Version 3.54

Since this 1is no textbook, a complete 1list of standard

procedures is not given here. Instead, we concentrate upon

useful * information as to added procedures or other

implementation defined items. A complete 1list of standard

procedures and classes appears in appendix B.

———————— T o i i i i i i i

The procedures call, detach, and resume are all implemented.

Since there is presently some confusion as to the operation of

detach, our version will be defined here along with the

terminology of quasi-parallel sequencing.

operating object - object that is either the currently

executing one, or dynamically enclosing

it.

attached object - object that is operating and has a return

point to some calling object. This is true

for all procedures, and for class objects

just called by new and not yet returned.

detached object - object that has no return point, but 1is

rather a component of the nearest

enclosing quasi-parallel system and has a

reactivation pdint when non-operating. It

may be operating or non-operating. A

prefixed block is initially (and always)

detached as seen from inside, but of

course has an implicit knowledge of how to

return to its environment.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 38

Version 3.54

terminated object - object that has passed through its final

end. It can never again become operating.

Attempt to make it operating is an error.

‘Otherwise, the terminated objects is

similar to a detached one.

The procedure "detach" is designed to operate on the nearest

statically (textually) enclosing class or prefixed block

(possibly inspected). If that object 1is a prefixed block,

detach is a no-operation. If it is an attached class, the

class becomes detached and control is passed to the return

point of that <class. If it is a detached class, control is

passed to the reactivation point of the nearest enclosing

guasi-parallel system of the class, that 1is, usually after the

last resume statement of that system’s main program. In both

cases the point after the detach statement becomes the

reactivation point of the class.

The procedure "call" has a parameter that must be a detached

and non-operating class object. It causes the object to become

attached at the point of the call statement, then passes

control to the rectivation point of the class object.

The procedure "resume" has a parameter X that must be a

detached and non-operating class object. The nearest enclosing

quasi-parallel system S of that object is sought out. Then the

operating component Y of that system is found, and by previous

definitions the resume statement is dynamically enclosed by Y.

The eftect of the statement is to swap X and Y such that Y

becomes non-operating with a reactivation point after the

resume statement, and X becomes operating. Control 1is passed

to the reactivation point of X.

Above definitions are given for the general case of a number

of enclosing systems of any complexity. In a very simple model

of only one pretixed block (the outermost block of a program,

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 36

Version 3.54

the main program, automatically is) and a few class objects

that execute call, detach, and resume directly and moderately

in their bodies, we may explain in other terms:

A detach has no effect in the main program, in a class object

called by new or call returns to after the new or call, in a

class object restarted by resume returns to the main program’s

last resume (which may or may not be the one that started the

class object).

A call on a class object starts executing following the last

detach (or resume) that the object made, and the next detach

of the object causes return.

A resume on a class object also starts executing following the

object’s last detach or resume, but the object itself (by

detach or resume) elects who’'s next to be executed. Resume

will execute the parameter, while detach will execute the main

progranm.

—— S S i T S

Rank converts from character to integer and may give values

from O to 127. Char converts the other way; its integer

parameter must be of value O to 127. Currently if parameter to

char is out of range, no message occurs but the extra bits are

masked off to make a legal character result. There exists an

extra conversion procedure

character procedure upper (c); character cj ..eev ;

returning ¢ unless ¢ is in the lower case range (greater than

), in which case the upper case equivalent of ¢ 1is returned.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual _ 40

Version 3.54

i e i i i i i S e S o S

According to Common Base, the parameter U to random drawing

procedures 1is of type integer. On a 16 bit computer, this

gives very poor random streams. To obtain better draws, use a

real wvariable initialized within the range O to 1, and call

the extra set of procedures which have an appended r to their

identifiers. For example, randintr is used instead of randint.

Each procedure has to be declared external Simula procedure.

.NOTE: The parameter U must be a simple variable of the correct

type, since it is called by name.

. e . S i

Procedures mentioned 1in this section are all extensions made

for communication with the operating system. They should not

be wused 1if portability is to be retained, though conditional

compilation (ch. 2) may solve that problem. Being

non-standard, they all have to be declared external Simula

procedure. Each procedure 1is described by its Simula

definition, followed by a short explanation. Knowledge of the

operating system is assumed when necessary.

-
 real procedure timeused;

Gives, in seconds, CPU time used by this program up t? now.

text procedure date; ;

Returns a new text object of 8 characters, formatted yy-mm-dd

where yy 1is the current year modulo 100, mm is current month,

and Jdd is current date.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Referpnce Manual 41

Version 3.54

integer procedure clock; 3}

Returns an integer that, if edited as 4 decimal digits, gives

hhmm where hh is current hour and mm is current minute.

procedure timewait(i); integer i; «.... 3

Suspends execution of the program until i*0.1l seconds of wall

clock time have passed. For NORD-10 execution, the maximum

value of i is 32767.

integer procedure getfile(t,a);

text t; integer a; 7

The parameter t 1is the name of a supposedly existing file. The

parameter a is the access mode as defined in [3]. The default

type of the file 1is DATA. If that file is available for

opening, the procedure opens it and returns the logical unit

number (see operating system s manual). If not, O is returned.

procedure relfile(n); integer n; ;

A close request on logical unit n is made to the operating

system.

For example, a file called SEMAPHORE:DATA can be waited for,

opened, and later closed:

integer 1i;

for i:=getexfile ("SEMAPHORE", 4)

while i=0 do timewait (10);

(critical program section)

relfile(i);

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 42

Version 3.54

This ensures that several jobs in the system may run the same

program, even though the critical program section should not

be executed by more than one job at any point of time.

————— T i o i b B e . e

The result of a getint or getfrac must be within the range for

integer (see section 3.3.1), and the result of a getreal must

be within the range for real (same section). Otherwise a

run-time error message is given. On editing (put...) the field

must have enough space for the number, or else a run-time

error message is given. As this action is not in accordance

with Common Base, it will be changed to an asterisk fill and a

warning after program termination. Information on this will

follow the new release.

The exponent given by putreal has the form "&+nnnn", i.e. four

digits are needed because of the wide exponent range of the

Nord-10 hardware.

ND 60.092.02

NORD-10 SINTRAN II1 SIMULA Reference Manual 43

Version 3.54

M

Having called the compiler by the @N1O-SIM command, the user

communicates with Simula through a set of console commands,

each solicited by the pointed bracket >. Special conditions

concerning options, files, etc. may then be set up prior to

compilation.

If the compilation was successful, the produced code normally

resides as instructions in core. (Assuming option V was

specified.) The program will start automatically, and the

run—time system prints: Ready for Simula execution. If on-line

debugging was requested, the Simula system prints an asterisk

and waits for the first debugging command. On passing through

last end, the CPU time used will be printed and control is

passed back to the operating system.

This chapter describes all available compiler commands,

options, and debugging commands.

All editing facilities and file name abbreviations of SINTRAN

III are available during typing of commands and input data to

the compiler, as well as to an executing Simula program.

—— i i i i T o o R M R S i e B e

This section is a quick introduction to use under the SINTRAN

III operating system. To prepare yodr source program, use QED

(Quick EDitor) and write the program text into the editor. Use

any combination of DEC, IBM, or UNIVAC hardware notation, but

no line should start with * in column one as this is used for

certain macro processing facilities. Save your program on a

tile, for example, PROGRAM:SYMB, and exit from QED. Assuming a

listing is wanted, conversation should now proceed as follows

(user “s key-ins underlined):

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 44

Version 3.54

@N10-SIM
TPH SIMULA 2.00140
>SETOPT VS
>LIST L-P
>COMPILE PROGRAM

Your 1listing should now go to the printer. If errors were

found, leave the compiler by >EXIT, then re—enter QED and

correct the PROGRAM:SYMB file.

If your program was compiled without errors, the >COMPILE

command proceeds to assemble the object code into memory. This

will take a minute or so, then the program starts

automatically with the message

Ready for Simula execution

followed by any output your program might generate, or 1if so

programmed, you will now type vyour input to the Simula

program. Input goes to the program only after giving the

carriage return. After program end, the system prints used CPU

time, e.qg.

CPU seconds used: 5.017

Exit Simula

and returns to the operating system.

——— i s iy i i o e i e e

Preparations for saving binary code are besft made by using the

compiler command >BIN BINSIM (say) prior to >COMPILE PROGRAM.

The first execution can proceed as usual, while subsequent

runs should be started thus:

ND 60.092.02

NORD-10 SINTRAN III SIMULA Refergence Manual 45

Version 3.54
'

@PLACE BINSIM:BIN

€GO O

The starting address of the Simula program is O (zero). The

program placed in memory by @PLACE may also be saved for later

executions by the SINTRAN III @DUMP command. By typing the

file name given in the @DUMP command as a command to the

operating system, the program starts execution directly.

This section is intended for Simula experts and other skilled

programmers who only want the strictly formal definitions of

commands and options. The run-time section is similar in aim.

———— i i i i i i T o S R S i e

Currently, this set of commands is implemented:

>SETOPT cccce Increment all compiler options mentioned

in cccc. Option is set when value 1is

greater than zero. Initial value is zero.

See next section for list of options.

>RESOPT ccce Decrement all compiler options mentioned

in cccc. o

>RTS dddd Set to true all run—-time system options

mentioned in dddd. Run-time system options

can only have the values true or false.

See section 7.4.3 for a list of options.

. ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 46

Version 3.54

>LIB lun Logical unit 1lun, presumably containing

BRF code from a previous Simula

compilation of an external module, 1is

registered as a potential library file to

be checked when searching for external

quantities. The user may give any number

of >LIB commands; the most recently

specified file will be searched first.
s 5IM

>ASM lun Specifies that object code (in symbolic

aséembly) go to logical unit lun. This is

mainly for testing purposes.

>BRF lun Specifies that binary relocatable code go

to logical unit lun. This is for use when

compiling external modules, though even a

main program can be saved as BRF code (and

loaded by >LOAD). 0SIM

>BIN lun Specifies that binary absolute code (in

' the standard NORD-10 hardware format) go

to logical unit lun. This 1is the

recommended way of saving the object code.

AN,

>LIST lun Specifies that listing go to logical unit

lun. The listing includes error messages

and byte output, where appropriate.

>RUNOFPF lun Specifies that documentation output go to

logical unit lun. Such output is generated

instead of compilation if option M is set

at >COMPILE time.

>COMPILE 1lun Do full compilation acceording to current

options. Source 1is from 1lun; default

source 1s the terminal. (In batch jobs,

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 47

Version 3.54

the batch input file.) Compilation stops

at end-of-file or the *EOF macro command

(see precompiler chapter). If option V is

specified and no errors were detected, the

program is automatically executed. Note:

Only one »>COMPILE or >LOAD command is

allowed. After such command, D>EXIT |is

performed implicitly unless there 1is an

automatic execution instead.

>LOAD lun Binary relocatable code from lun 1is

loaded, and if V option, executed. eI M

>EXIT Return to job monitor.

Wherever "lun" is specified above, an existing file name may

be used instead. It will be opened automatically, and closed

at >EXIT time. The following default file types are used:

>LIB SIM

>ASH SYMB

>BRF SIM

>BIN BIN

>LIST SYMB

>RUNOFF SYMB

>COMPILE SYMB

>LOAD SIM

NOTE: The binary relocatable files have type SIM. The format

is not compatible with other software because a SIM file

contains Simula attribute information.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Refeqence Manual 48

Version 3.54

—— . i e e e e i . e

The following options are implemented:

)

Array bounds not to be checked at run-time

Cross-reference listing*

Debugging symbol table produced

External compilation

Flags for begin/end are abbreviated and given in

left margin

Generation of symbolic code to file specified by

>ASM

Inhibit the generation of line numbers

Kill the compilation on the first error detected

List all input lines, including macro commands

Produce a RUNOFF document file, rather than

compiling a program

On-line debugging by interaction with run-time

system via terminal

Remove qualification checks

ND 60.092.02

{

NORD-10 SINTRAN III SIMULA Reference Manual 49

Version 3.54

R Remove none checks

S Source listing, suppressing macro commands and the

lines suppressed by such commands (see precompiler

chapter)

T Time and space requirements printed after

compilation

u Upper and lower case in non-reserved words

recognized as being different

v Automatic execution (compile-and-go)

W Warning messages suppressed

X Experimental compilation for system maintenance. Not

to be used by others.

Y Print line number table and loader map (primarily

useful for system maintenance)

*. . .

Not implemented in current release.

In addition, there are some non-letter options which are only

for maintenance of the Simula system. They are described in

the internal technical documentation.

T o T i o T i o

Messages are given along with the source 1listing (syntax

errors) or at the end, identified by line number (semantic

errors). They are believed to be sufficiently instructive so

as to make an explanation here unnecessary. A complete list

appears in appendix C.

ND 60.092.02

, }

NORD-10 SINTRAN III SIMULA Refe;ence Manual 50

Version 3.54

Note: Certain messages are only intended for Simula system

maintenance, i.e. they show the occurrence of error situations

in the compiler itself. Such messages are always preceded by

the word INTERNAL. Please submit a complaint to the Customer

Support department if you encounter such a message.

e o o i s o

————— i o i T i i i e i B A e S e i o S B S

In a program, or part of a program, that has been compiled

with option O set, the run—-time system is given control at end

of each user statement. The line number is printed on the

terminal as follows:

LINE n

*

One of the fdllowing commands may then be given:

* (carriage return only) Execute next statement

*STEP Same as above

*STEP n Execute n next statements unless breakpoint is

reached ‘

*BREAK n Set breakpoint after first statement of line n

*BREAK Remove breakpoint

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 51

Version 3.54

*GO Do not stop until breakpoint (if any) is reached

*GO n Same as:

*BREAK n

*GO

*DYN n Print the dynamic chain. For the ordinary user,

only the column giving the 1line numbers is

significant. Wander ing down this column,

ignoring zero numbers, he will see the chain of

returns from his currently executing block

instance (topmost number) to the main program

(bottom number). A maximum of n lines is

printed. Default n is 20.

*RESTART Close all files that were opened by Simula

run-time system, reset all system data, and

repeat execution of the entire wuser progranm,

beginning with the message Ready for Simula

execution.

*TRACE n m Set up tracing facilities registering, from now

on, each execution of statements from line n to

line m. Compiler option O must have been set for

statements to be registered.

*HJISTO i n m Stop tracing. List the results on printer,

showing line n to m as a bar graph and grouping

i 1lines in each bar. Default i is 1, default n,

m are those of last *TRACE command.

*OBJECT a Dump the object at octal address a on the

terminal. The command is a preliminary aid, and

a must be <correctly specified, or else the

run-time system may blow wup. Thus a must be

found in the "Object" column of *DYN output.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual 52

Version 3.54

*SYSIN lun

*SYSOUT lun

*HELP

Change the sysin file to lun, which may be a

file name or a logical unit number

Change the sysout file to lun

List all of the above commands on the terminal

Other commands than the ones mentioned above give:

ILLEGAL DEBUG COMMAND

e i i ey s i i e i A

In the event of a run-time error, a self-explanatory message

is printed

processor is

on the terminal. Then the debugging command

entered. A carriage return, *STEP, or *GO will

cause final Simula program termination, or, if desirable, the

entire program can be repeated by *RESTART. A list of run—time

‘error messages appears in appendix D.

——— s o

The following

0

i

option is implemented:

On-line debugging mode before program start. The

run—-time system will print "Pre-program

conversation requested.”, then LINE O and the

usual asterisk. The user may then use any number

of debugging commands prior to starting his

program with the *GO command. This feature is

especially useful for changing the input/output

files by *SYSIN and/or *SYSOUT.

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference ilanual

Version 3.54

{11 0.-J. Dahl, B. Myhrhaug, K. Nygaard:

COMMON BASE LANGUAGE (5-22)

Norwegian Computing Center

[2] .G. Birtwistle et al.:

, SIMULA BEGIN
Studentlitteratur

[3] SINTRAN III Users Guide (ND-60.050.06)

Norsk Data A.S.

ND 60.092.02

53

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

Appendix A. Example on use

ND 60.092.02

Al

NORD=10 SINTRAN III SIMULA Reference Manual ‘ Bl

Version 3.54

All standard procedures and classes are listed, sorted

alphabetically on their names. Those that are not part of the

Common Base (or recommended extensions) are marked by an

asterisk in the "Extra" column. Note: SIMSET and SIMULATION

and their attributes have not been included in the list, since

they are fairly well concentrated 1in their Common Base

definitions. Types have been abbreviated: integer to int,

Boolean to Bool, character té char.

Type Name Local to Parameters Extra

real abs ‘ real

real arctan real

real arctanz real,real *

text blanks int

breakoutimage outfile *

call ref (any class)

char char) int

Bool checkset int,int *

int clock DN

close file

text copy text

real cos real
real cosh real

text date *

detach

Bool digit char

file class directfile

char directin directfile *

char directin infile *

directout directfile char *

directout outfile char *

int discrete real array,int

Bool draw real,int
eject printfile int

_ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual B

Version 3.54

Bool

Bool

real

real

real

class

char

int

int

int

int

real

int

int

text

char

char

int

file

int

int

int

int

int
int

real

real

text

texE

text

Bool

Boo;

clasg

endfile

endfile

entier

erlang

exp

file

getchar

getfile

getfrac

getint

getoct

getreal

histd

histo

iand

id

inchar

inchar

incommand

infile

infrac

infrac

inimage

inimage

inint

inint

inoct

inoct

inreal

inreal

inrest

intext

intext

lastitem

lastitem

directfile

infile

text

text

text
text

text

file

directfile

infile

infile

directfile

infile

directfile

infile

directfile

infile

directfile

infile

directfile

infile

infile

directfile

infile

directfile

infile

ND 60.092.02

real

real ,real,int

real

text

text,int *

real array,int

real array,real array,real,:

int,int *

*

text array,int,ref(outfile)

*

int
int

NORD-10 SINTRAN III SIMULA Reference Manual " B3

Version 3.54

int

int

Bool

int

real

real

int

text

int

Bool

Bool

real

real

file class

int

length

length

letter

line

linear

linesperpage

In

locate

location

longidiv

main

mod’

more

more

negexp

normal

open

outchar

outchar

outfile

outfix

outfix

outfrac

outfrac

outimage

outimage

outint

outint

outoct

outoct

outreal

outreal

outtext

outtext

poisson

file

text

printfile

printfile

directfile

directfile

text

file

text

file

directfile

outfile

directfile

outfile

directfile

outfile

directfile

outfile

directfile

outfiie

directfile

outfile

directfile

outfile

directfile

outfile

~ND 60.092.02

char

real array,real array,int

int

real

int

int,int,int,int,int

*

int,int

real,int

real,real,int

text

char
char

real,int,int

real,int,int
int,int,int

int,int,int

int, int
int,int
int, int *
int, int *
real,int,int
real,int,int

text

text

real,int

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

int

int

outfile class

int

int

int

int

Bool

real

real

text

text
ref(infile)

ref (printfile)

int

real

pos file

pos text

printfile

putchar text

putfix text

putfrac text

putint text

putoct text

putreal text

putzint text

ralb

randint

rank

raub

relfile

resume

rtoff

rton

rtopt

setpos file

setpos text

sign

sin

sinh

sintran

spacing printfile

sqrt

strip text

sub text

sysin

sysout

tablook

timeused

timewait

trickreal

ND 60.092.02

B4

char

real,int

int,int

int

int *

real,int

int *

real array *

int,int,int
char
real array *

int *

ref (any class)

char *

char *

char *

int

int

real

real

real

text *

int

real

int,int

text array,int,text

*

*

int *

NOEKD-10 SINTRAN III SIMULA Refe{ence Manual

Version 3.54

text tricktext _ int,int,int,int

text trim text

real uniform real,real,int

char upper char

ND 60.092.02

B5

NORD-10 SINTRAN III SIMULA Reference Manual cl

Version 3.54

In the texts shown below, "..." indicates that some identifier

is inserted in the message when printed. A leading "INTERNAL"

indicates that a Simula system error has occurred, possibly

due to other errors. The following messages can be given at

compile time:

INCORRECT PROGRAM START

GARBAGE AFTER LAST END IGNORED

MISSING STATEMENT AFTER OTHERWISE

MISSING FOR ELEMENT

MISSING WHILE EXPRESSION

:= WITH STEP NOT ALLOWED

MISSING STEP EXPRESSION

MISSING UNTIL

MISSING UNTIL EXPRESSION

IF EXPRESSION MISSING

USELESS ELSE

MISSING THEN

INSPECT EXPRESSION MISSING

MISSING DO/WHEN

MISSING LABEL

MISSING FOR VARIABLE

DOUBLE DECLARATION OF ...

INTERNAL: WANTED IDENTF, GOT ...

UNKNOWN QUALIFICATION: ...

ILLEGAL QUALIFICATION: ...

UNKNOWN OR CIRCULAR PREFIX: ...

INTERNAL: CANNOT FORMTYPE ...

WRONG TYPE, I EXPECTED TO SEE ...

MISSING DECLARATION OF ...

MISSING SPECIFICATION OF ...

MISSING PROCEDURE/ARRAY IDENTIFIER

THIS IS NOT PROCEDURE OR ARRAY IDENTIFIER: ...

UNIMPLEMENTED FEATURE USED

ND 60.092.02

NORD-10

Version

INTERNAL:

INTERNAL:

INTERNAL:

SINTRAN III SIMULA Reference Manual

3.54

GENERATE/GENEREF PARA=...

NO FREE RT REGISTER

GETSINT FAILURE

NOT REFERENCE BEFORE DOT

INTERNAL: RDETACH ON LOCKED REG

NO ATTRIBUTE CALLED ...

RUN-TIME REGISTER SHORTAGE

CANNO? EVALUATE ...

MISSING

MISSING

ILLEGAL

FOR ASSIGNMENT

bo

GOTO

WRONG NUMBER OF PARAMETERS TO ...

UNDEFINED OPERATION '

INTERNAL: GENERATE/GENEREF WILD DISPLAY NO.

ILLEGAL

MISSING

USE OF QUA

LITERAL EXPRESSION

INTERNAL: LOST LITERAL

ILLEGAL EXPRESSION FOR LITERAL

NO EXPRESSION AFTER ASSIGNMENT

MISSING

MISSING

MISSING

EXTRA (

MISSING

MISSING

MISSING

MISSING

SERIOUS

GARBAGE

MISSING

TYPE ON

ILLEGAL

DOUBLE

THEN - EXPRESSION

ELSE - EXPRESSION

OPERAND

)

CLASS 1D

REMOTE ID

PARAMETER

SYNTAX ERROR. - REST OF STATEMENT IGNORED

IN VIRTUAL LIST

IDENTIFIER

SWITCH/LABEL SPECIFICATION

VIRTUAL SPECIFICATION

MODE SPECIFICATION

DOUBLE TYPE SPECIFICATION

SPECIFICATION ILLEGAL FOR CLASS

SPECIFICATION FOR NON-EXISTENT PARAMETER ...

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual c3

Version 3.54

GARBAGE IN PARAMETER SPECIFICATION

MISSING COLON AFTER VIRTUAL

NO VIRTUAL SPECIFICATIONS GIVEN

GARBAGE AFTER BODY

MISSING ARRAY BOUND

MISSING BOUND DELIMITER

MISSING RIGHT BRACKET
GARBAGE AFTER DECLARATION

INCOMPATIBLE TYPES IN EXPRESSION, ASSIGNMENT, OR PARAMETER
INCONSISTENT PARAMETER LISTS TO VIRTUAL PROCEDURE ‘

MISSING EXPRESSION IN ACTIVATE STATEMENT

WRONG NUMBER OF SUBSCRIPTS TO ARRAY ...

(INTERNAL, WARNING ONLY) LEFT OVER TEMPORARY ...

MISSING := AFTER SWITCH |

MISSING TO
INTERNAL: WILD INTERPASS 2-3 BYTE

MISSING KEY WORD: PROCEDURE/CLASS

ILLEGAL THIS

LARGE INTEGER CONSTANT CONVERTED TO REAL

*%% .INTERNAL *** UNDEFINED INTERNAL SYMBOL IN PASS 3 A

INTERNAL: FATAL SINTRAN III INTERFACE ERROR

NO SPACE IN BLOCK OBJECT FOR THE VARIABLE ...

NO SPACE IN BLOCK OBJECT FOR ALL THE TEMPROARIES THAT ARE NEEDED

THIS IDENTIFIER IS UNACCESSIBLE IN QUICK PROCEDURE: ...

ILLEGAL ASSIGNMENT TO PROCEDURE IDENTIFIER ...

LIBRARY FILE DID NOT CONFORM TO SIMULA BINARY FORMAT

EXTERNAL CLASS/PROCEDURE DOES NOT APPEAR AS SUCH ON THE LIBRARY FILE

EXTERNAL CLASS/PROCEDURE NOT FOUND ON ANY LIBRARY

LIBRARY FILE CONTAINS EXTRA DEFINITION OF ...

NO LIBRARY FILE DEFINES ...

Some of these messages may be obsolete, thus impossible to

evoke. There are a few warning messages included in the 1list;

the message 1is then accompanied by "WARNING:" rather than

"ERKOR:". Most of the internal error messages can never be

evoked by user programming, as they require erroneous

ND 60.092.02

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

conditions that are possible only in the test version.

ND 60.092.02

C4

NORD-10 SINTRAN III SIMULA Reference Manual

Version 3.54

File already closed at calling CLOSE

File not open at calling SAVE

File not open at INIMAGE

ENDFILE is true at INIMAGE

Image of

Lastitem

Lastitem

Lastitem

File not

File not

infile is too short

is true

is true

is true

open at

open at

at ININT

at INFRAC

at INREAL

OUTIMAGE

LOCATE

Wrong physical directfile image length

Too large directfile image

"~ File not open at EJECT

zero or negative parameter to LOCATE

Attempt to passivate last process

Evtime called for idle process

Reactivate caused passivation of last process

ND 60.092.02

D2

NORD-10 SINTRAN III SIMULA Reference Manual D1

Version 3.54

The following messages can be given at run-time:

Illegal parameter to LN

Illegal parameter to EXP

Illegal parameter to SQRT -

Illegal parameter to ARCTAN

Illegal parameter to SIN or COS

Illegal parameter to SINH or COSH

Illegal operands to **

No numeric item found in text

Illegal number syntax ,

Illegal parameter to editing or de—edifing routine

Ref before dot was equal to none

Left side of text assignment has too short text object

No match to virtual attribute in this class

Parameter to CALL or RESUME was terminated

Parameter to CALL or RESUME was already operating

Too'large array declared (max. is 4096 machine words)

You have exchanged lower and upper bounds in array declaration

Illegal goto from detached object or to inspected object

Array or switch index out of range

Object in reference assignment or qua was of wrong class

Too small field for editing

Wrong number of parameters to formal or virtual procedure

Actual parameter to formal or virtual procedure is of wrong kind

Actual parameter to formal or virtual procedure is of wrong type

Sorry, we just ran out of memory spéce for your data '

Wrong number of actual dimensions in array parameter

MORE 1s false in GETCHAR

MORE is false in PUTCHAR

SUB parameter (s) out of range

No numeric item found in text

File not closed at calling OPEN

Requested file is busy or non—existent

ND 60.092.02

Seemagess Setisas NORSK DATA A.S.
20092400 ©8D aee) .
8230038 goe cne Le¢renveien 57 - Postboks 163, Qkern
o0 o859 O9PNBO6N
o8 209 00AN008 OSLO 1

COMMENT AND EVALUATICN SHEET

ND-60. 092.0.2 " TPH SIMULA Reference Manual

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, suggestions

for additions, etc. Please write down your comments on this pre-
addressed form and post it, Please be specific wherever possible,

FROM

