
    

NORD—10 COBOL 

Reference Manual 

   



  

O NORD—10 CGBOL 

Reference Manual 

 



A e var v 

REVISION RECORD 

evision Notes 

Version two, s re revious issue 

  

    
Publ No. ND-60.089. 03 
May 1979 

  

      

  
  

  

    

o0 oo sacsssse 
000 €30 900000000 NORSK DATA "A.S. 

? 

900000080 @CO o0e . 

s 

ees’sasss So3esesed 
838 9283 $3secee” Larenveien 57, Postboks 163 Dkern, Oslo 5, Norway    



o sk ot i G e e s A a - - i, 3 o i T x b et B et st Sl i 5 it il . 
  

iv 

NOTICE 

Norsk Data A.S believes that the information described in this manual is accurate 

; and reliable, and much care has been taken in its preparation. However, no 

i responsibility, financial or otherwise, is accepted for any consequences arising 

! out of the use of this material. The information herein is subject to change without 

notice. 

i Norsk Data A.S assumes no responsibility for the use or reliability of its software 

| on equipment that is not furnished or supported by Norsk Data A.S. 

The information described in this document is protected by copyright. It may 

' ' not be photocopied, reproduced or translated without the prior consent of 

f Norsk Data A.S. 

i e Copyright (C) 1978by Norsk DataA.S. 

ND-60.089.03 

2 o
 
—
—



s 
s 

ACKNOWLEDGEMENT 

"Any organization interested in reproducing the COBOL report and 
specifications in whole or in part, using ideas taken from this report as the basis 
for an instruction manual or for any other purpose, is free to do so. However, all 
such organizations are requested to reproduce this section as part of the 
introduction to the document. Those using a short passage, as in a book review, 
are requested to mention ‘COBOL’ in acknowledgment of the source, but need 
not quote this entire section. : 

COBOL is an industry language and is not the property of any company or group 
of companies, or of any organization or group of organizations. 

No warranty, expressed or implied, is made by any contributor or by the COBOL 
Committee as to the accuracy and functioning of the programming system and 
language. Moreover, no responsibility is assumed by any contributor, or by the 
committee, in connection therewith. 

Procedures have been established for the maintenance of COBOL. Inquiries 
concerning the procedures for proposing changes should be directed to the 
Executive Committee of the Conference on Data Systems Languages. 

The authors and copyright holders of the copyrighted material used herein: 

FLOW-MATIC (Trademark of Sperry Rand Corporation), 
Programming for the UNIVAC (R) | and Il, Data Automation 
Systems copyrighted 1958, 1959, by Sperry Rand Corporation; 
IBM Commercial Translator, Form No. F28—8013, copyrighted 
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by 
Minneapolis-Honeyweil 

have specifically authorized the use of this material in whole or in part, in the 
COBOL specification in programming manuals or similar publications.”’ 

— —from the ANSI COBOL Standard (X3.23—1974) 

ND-60.089.03



i i . o s i i b s s i s ——— A ——— A 

vii 

TABLE OF CONTENTS 
+ + + 

Section: . Page: 

1 FUNDAMENTAL CONCEPTS OF COBOL 1-1 

1.1 Character Set . 1-—1 
1.2 Punctuation 1-2 
1.3 Word Formation 1-2 
1.4 Coding Rules 1-3 
15 Format Notation 1-3 
1.6 Level Numbers and Data-Names 1-5 
1.7 File-Names 1—6 
1.8 Condition-Names 1-6 
1.9 Mnemonic-Names 1—6 
1.10 Literals 1-7 
1.1 Figurative Constants 1-8 
1.12 Structure of a Program 1-9 
1.13 Qualification of Names 1—11 
1.14 The COPY Statement 1-M1 

2 IDENTIFICATION DIVISION 2—1 

3 THE ENVIRONMENT DIVISION 3—1 

3.1 Configuration Section 3-2 
3.2 Input-Output Section 3-2 

3.2.1 File-Control 3-3 

3.2.1.1 General Format 3-3 
3.21.2 Definition of Sequential File Organization 3-5 
3.2.1.3 Definition of Relative File Organization 3-56 
3214 Definition of Indexed File Organization 3-6 

3.2.2 I-O Control Paragraph 3—6 

4 THE DATA DIVISION 41 

4.1 Data Types 4—1 
4.2 The Data Description Entry 4-3 
4.3 Formats for Elementary Items 4-4 
4.4 USAGE Clause 4-5 
4.5 PICTURE Clause 4—6 
4.6 VALUE Clause 4—11 
4.7 REDEFINES Clause 4—-12 
4.8 OCCURS Clause 4—13 
4.9 SYNCHRONIZED Clause 4—-14 
4,10 BLANK WHEN ZERO Clause 4-14 
4.11 JUSTIFIED Clause 4—14 
4,12 SIGN Clause 4-—-15 
4.13 Level 88 Condition-Names 4—-16 
4,14 Level 66 (RENAMES Clause) 4—-18 
4.15 Organization of the Data Division 4—-19 

4.15.1 General Format 4--19 
4,15.2 File Section 4—-19 

ND-60.089.03



Section: 

A
p
p
a
n
 

—
I
-
l
_
l
-
—
\
.
—
l
 

ao
 

o
n
o
o
o
 

rw
 

D
O
N
N
N
 

N
P
W
N
 =
 

e
 

—
 

—
—
h
 

D
W
=
 

o
 

P
P
 
P
O
D
P
P
P
P
E
D
P
®
 

® 
N
N
N
N
 

No
 

o
o
o
o
 

s
 

wW
w 

W
b
 

H
W
N
 =
 

Q
O
O
O
O
o
O
a
O
O
I
O
O
O
O
g
I
a
a
o
 

o 
C
a
g
a
o
 

o
 

o
a
o
o
o
 

o
o
 

o
o
 

o
o
o
n
 

O 

L
D
L
a
L
L
h
L
a
v
o
N
O
O
 

A
W
 

viii 

FD Entries 

BLOCK-Clause 
RECORD-Clause 

LABEL-Clause 
DATA —RECORD(S)-Clause 

Working Storage Section 
Linkage Section 

THE PROCEDURE DIVISION 

Statements, Sentences, Procedures-Names 
Organization of the Procedure Division 
Inter-Program Communication 

General - 

USING List Appendage to Procedure Header 

DECLARATIVES and the USE Sentence 

Arithmetic Statements 

General 
SIZE ERROR Option 
ROUNDED Option 
GIVING Option 

Relative Indexing 
File Processing 

Definition of Sequential File Organization 
Definition of Relative File Organization 
Indexed Organization File Processing 
File Status Reporting For Indexed Files 

COBOL Verbs 

ACCEPT Statement 
ADD Statement 
ALTER Statement 
CALL Statement 
CLOSE Statement 
COMPUTE Statement 
DELETE Statement 
DISPLAY Statement 
DIVIDE Statement 
EXHIBIT Statement 

EXIT Statement 

GO TO Statement 
|F Statement 
INSPECT Statement 
MOVE Statement 
MULTIPLY Statement 
OPEN Statement 
PERFORM Statement 
READ Statement 
REWRITE Statement 

ND-60.089.03 

Page: 

4—-19 
4-—-20 
4-20 
4—-20 
421 

421 
4--21 

(1
] L 

Tr
T 

w
w
 

W
N
 

= 
7T
 

Ty
 

o
o
 

! 
| 

J 
| 

|
|
 

a
n
a
 

©®
O©
 

O
~
N
~
N
O
 

O
b
 

a
 

0
1
0
1
\
'
.
"
1
0
'
\
 

o
o
 

P
 

S 
Y 
<
)
 

! - o



ix 

5.8.21 SEARCH Statement 
5.8.22 SET Statement 
5.8.23 SORT Statement 
5.8.24 START Statement 
5.8.25 STOP Statement 
5.8.26 STRING Statement 
5.8.27 SUBTRACT Statement 
5.8.28 UNSTRING Statement 
5.8.29 WRITE Statement 

Appendixes: 

A NORD-10 COBOL SYNTAX 

B RESERVED WORD LIST 

Cc ASCII CHAACTER SET 

D DIAGNOSTIC WORD MESSAGES 

E ADVANCED FORMS OF CONDITIONS 

F NESTING OF IF STATEMENTS 

G TABLE OF PERMISSIBLE MOVE OPERANDS 

H RELATED DOCUMENTATION 

S 

ND-60.089.03 

  

Page: 

535 
537 
5—38 
5—41 
5—42 
5—43 
5—44 
5—45 
5—47 

Page: 

A—1 

B—1 

c—1 

D—1 

E—1 

F—1 

G—1 

G—1



i i e b e Ll e s e b 

INTRODUCTION 

NORD-10 COBOL is based upon American National Standard X3.23-1974. 

Elements of the COBOL language are allocated to twelve different functional 

processing "modules”. 

Each module of the COBOL Standard has two non-null “levels” -- level 1 

represents a subset of the full set of capabilities and features contained in level 2. 

In order for a given system to be called COBOL, it‘must provide at least level 1 of 

the Nucleus, Table Handling and Sequential I/O modules. 

The following summary specifies the content of NORD-10 COBOL with respect 

to the Standard. 

Module Features Available in NORD-10 COBOL 

Nucleus All of level 1, plus these features of level 2: 

Levels 77, 01-49, 66, 88. 

Value series or range, level 88 conditions. 

Use of logical AND/OR/NOT in conditions. 

Use of algebraic relational symbols for equality or 

inequalities. 

Implied subject, or both subject and relation, in relational 

conditions. 

Nested IF statements; parentheses in conditions; sign 

test. 

ACCEPTance of data from DATE/ DAY/TIME 

STRING and UNSTRING statements 

Procedure-names consisting of digits only 

COMPUTE with multiple receiving fields 

PERFORM VARYING one index 

Mnemonic-names for ACCEPT or DISPLAY devices 

Qualification of Names (Procedure Division) 

The ALL-form of figurative-constants. 

Sequential {/0 All of level 1 plus these features of level 2: 

RESERVE clause 

Multiple operands in OPEN & CLOSE, with individual 

! options per file. 

Variable used to specify print file ADVANCING LINES. 

Relative 1/0 All of level 1 plus: 

RESERVE clause 

DYNAMIC access mode (with READ next) 

START (with key relations EQUAL, GREATER, or NOT 

LESS). 

Indexed 1/0 1 key only. All of level 1 plus: 

RESERVE clause 

DYNAMIC access made (with READ NEXT) 

START (with key relations EQUAL, GREATER or NOT 

LESS) 

ND-60.089.03 

O



o
 

    

Library 

Inter-Program 
Communication 

Table 
Handling 

Debugging 

Sort 

xi 

Level 1 

Level 1 

All of level 2, except the "DEPENDING ON" 
form of OCCURS clause 

Conditional compilation: lines with "D in column 7' are 
bypassed unless WITH DEBUGGING MODE. 
READY TRACE, RESET TRACE, EXHIBIT. 

Level 2; up to 5 sort-file keys. 

ND-60.089.03



  

  

  

1.1 

—a e e i . Wil o s B S | W A Bl e st . il e e A U e e e et A ———— — 

FUNDAMENTAL CONCEPTS OF COBOL 

CHARACTER SET 

The COBOL source language character set consists of the following characters: 

Letters A through Z 
Blank or space 
Digits 0 through 9 
Special characters: 
+ Plus sign 
- Minus sign 

* Asterisk 
= Equal sign 
> Relational sign (greater than) 
< Relational sign (less than) 
S Dollar sign 

) Comma 
: Semicolon 

Period or decimal point 
Quotation mark 
Left parenthesis 
Right parenthesis 

~ Apostrophe (alternate of quotation mark) 
Slash 

) 

Of the previous set, the following characters are used for words: 

0 through 9 
A through Z 

- {hyphen) 

The following characters are used for punctuation: 

( Left parenthesis A 
) Right parenthesis 
‘ Comma 
. Period 
; Semicolon 

The following relation characters are used in simple conditions: 

< 

> 

ND-60.089.03



    

1.2 

1.3 

PUNCTUATION 

The following general rules of punctuation apply in writing source programs: 

1. A period, semicolon, or comma, when used, should not be 

preceded by a space, but must be followed by a space. 

2. A left parenthesis should not be followed immediately by a space; 

a right parenthesis should not be preceded immediately by a 

space. 

‘3. At least one space must appear between two successive words 

and or literals. Two or more successive spaces are treated as single 

space, except in non-numeric literals. 

4. Relation characters should always be preceded by a space and 

followed by another space. 

5. When the period, comma, plus, or minus characters are used in 

the PICTURE clause, they are governed solely by rules for report 

items. . 

6. A comma may be used as a separator between successive 

operands of a statement, or between two subscripts. 

7. A semicolon or comma may be used to separate a series of 

statements or clauses. 

WORD FORMATION 

A word is composed of a combination of not more than 30 characters, chosen 

from the following set of 37 characters: 

0 through 9 (digits) 5 
A through Z (letters} 
- (hyphen) 

A word must begin with a letter or a digit; it may not end with a hyphen. A word 

is ended by a space, or by proper punctuation. A word may contain more than 

one embedded hyphen; consecutive embedded hyphens are also permitted. All 

words are either reserved words, which have preassigned meanings, or 

programmer-supplied names. If a programmer-supplied name is not unique, 

there must be a unique method of reference to it by use of name qualifiers, i.e. 

TAX-RATE IN STATE-TABLE. Primarily, a non-reserved word identifies a data 

item or field, and is called a data-name. Other cases of non-reserved words are 

file-names, condition names, mnemonic-names, and procedure-names. 

ND-60.089.03



  

  
  

  

1.4 

1.6 

CODING RULES 

Since NORD-10 COBOL is a subset of American National Standards Institute 
(ANSI) COBOL, programs are written on standard COBOL coding sheets, and 

the following rules are applicable. ’ 

1. Each line of code could have a six-digit sequence number in 
columns 1-6, such that the punched cards are in ascending order. 

Blanks are also permitted in columns 1-6. 

Reserved words for division, section, and paragraph headers must 
begin in Area A (columns 8-11). Procedure-names must also 
appear in Area A (at the point where they are defined). Level 

numbers may appear in Area A, 

All other program elements should be confined to columns 12-72, 
governed by the other rules of statement punctuation. If a slash (/) 
appears in column 7, the associated card is treated as comments 
and will be printed at the top of a new page when the compiler 

lists the program. 

Columns 73-80 are ignored by the compiler. 

Explanatory comments may be inserted on any line within a source 
program by placing an asterisk in column 7 of the line. Any 
combination of characters may be included in Areas A and B of 
that line. The asterisk and the characters will be produced on the 
source listing but serve no other purpose. See also Section 1.7 for 
using column 7 in continuation lines for non-numeric literals. 

FORMAT NOTATION 

Throughout this publication, basic formats are prescribed for various clauses or 
statements. These generalized descriptions guide the programmer in writing his 
own statements. They are presented in an uniform system of notation, explained 

in the following paragraphs. 

1. All words printed entirely in capital letters are reserved words. 
These are words that have preassigned meanings. In all formats, 
words in capital letters represent an actual occurrence of those 

words. 

All underiined reserved words are required unless the portion of 
the format containing them is itself optional. These are key words. 
If any key word is missing or is incorrectly spelled, it is considered 
an error in the program. Reserved words not underlined may be 
included or omitted at the option of the programmer. These words 
are optional words; they are used solely for improving readability 

of the program. 

The characters > < = when appearing in formats, although not 
underlined, are required when such formats are used. 

ND-60.089.03



10. 

1. 

12. 

et e il Rk i s | b S [PV EDUIMPRER SR 

All punctuation and other special characters represent the actual 

occurrence of those characters. Punctuation is essential where it is 

shown. Additional punctuation can be inserted, according to the 

rules for punctuation specified in this publication. In general, 

terminal periods are shown in formats in the manual because they 

are required; semicolons and commas are not shown generally 

because they are optional. 

Words printed in lower-case letters in formats represent generic 

parts (i.e. data-names) of which a valid representation must 

appear. 

Parts of a statement of data description entry which are enclosed 

in brackets are optional. Parts between matching braces {h 

represents a choice of mutually exclusive options. 

Certain entries in the formats consist of a capitalized word(s) 

followed by the word ""Clause” or “Statement’’. These designate 

clauses or statements that are described in other formats, in 

appropriate sections of the text. 

In order to facilitate reference to them in the text, some lower-case 

words are followed by a hyphen and a digit or letter. This 

modification does not change the syntactical definition of the 

word. 

Alternate options may be explained by separating the mutually 

exclusive choices by a vertical stroke, see following example: 

AREA 

AREA | AREASisequivalentto {AREAS 

The ellipsis (...) indicates that the immediately preceding unit may 

occur once, or any number of times in succession. An unit means 

either a single lower-case word, or a group of lower case words 

and one or more reserved words enclosed in brackets or braces. If 

a term is enclosed in brackets or braces, the entire unit of which it 

is part must be repeated when repetition is specified. 

Comments, restrictions, and clarification on the use and meaning 

of every format are contained in the appropriate portions of the 

manual. 

In generalized formats, where optional elements are depicted, their 

optionality may be indicated by parentheses instead of brackets, 

provided the lack of formality represents no substantial bar to 

clarity of comprehension. 

ND-60.089.03 

et il il B, ki Sl A 

 



g 

@ 

1.6 

et i i i i e A i o — A ——— e o e S r——— —— e it e = 

LEVEL NUMBERS AND DATA-NAMES 

For purposes of processing, the contents of a file are divided into logical records, 

with level number 01 specifying a logical record. Subordinate data items that 

constitute a logical record are grouped in a hierarchy and identified with level 

numbers 02 to 49. Level number 77 identifies a ‘'stand-alone’’ item in Working- 

Storage. A level number less than 10 may be written as a single digit. 

Levels allow specification of subdivisions of a record necessary for referring to 

data. Once a subdivision is specified, it may be further subdivided to permit more 

detailed data reference. This is illustrated by the following weekly timecard 

record, which is divided into four major items: name, employee-number, date, 

and hours, with more specific information appearing for name and date. 

- LAST-NAME 
NAME —éFIRST-INIT 

MIDDLE-INIT 
EMPLOYEE-NUM 

TIME-CARD———— 
MONTH 

WEEKS-END-DATE <DAY-NUMBER 
YEAR 

HOURS-WORKED   
Subdivisions of a record that are not themselves further subdivided are called 

elementary items. Data items that contain subdivisions are known as “group 

items. When a Procedure statement makes reference to a group item, the 

reference applies to the area reserved for the entire group. 

--Less inclusive groups are assigned numerically higher level numbers. Level 

numbers of items within groups need not be consecutive. A group whose level is 

k includes all groups and elementary items described under it until a level number 

less than or equal to k is encountered. - 

Separate entries are written in the source program for each level. To illustrate 

level numbers and group items, the weekly timecard record in the previous 

example may be described (in part) by Data Division entries having the following 

level numbers, data-names and Picture definitions. 

Levels 66 (RENAMES) and 88 (condition-names) are special cases of non- 

hierarchical levels, and are explained elsewhere in this manual. 

01 ° TIME-CARD. 
02 NAME. 

03 LAST-NAME PICTURE X(18). 
03 FIRST-INIT PICTURE X. 
03 MIDDLE-INIT PICTURE X. 

02 EMPLOYEE-NUM PICTURE 99999. 
02 WEEKS-END-DATE. 

05 MONTH PIC 99. 
05 DAY-NUMBER PIC 99. 
05 YEAR PIC 99. 

02 HOURS-WORKED PICTURE 99Vv9. 

ND-60.089.03



  

et i R VR i s i SR b - ke 

1.7 

1.8 

1.9 

s i o . o 
i e 

A data-name is a word assigned by the user t0 identify a data item used in a 

program. A data-name always refers to a region of data, not to a particular value; 

the item referred to often assumes a number of different values during the 

course of a program. 

A data-name must begin with an alphabetic character. A data-name or the key 

word FILLER must be the first word following the level number in each Record 

Description entry, as shown in the following general format: 

level number data name. 
FILLER } 

This data-name is the defining name of the entry, and is the means by which 

references to the associated data area (containing the value of a data item) are 

made. 

If some of the characters in a record are not used in the processing steps of a 

program, then the data description of these characters need not include a data- 

name. In this case, FILLER is written in lieu of a data-name after the level 

number. 

FILE-NAMES 

A file is a collection of data records, such as a deck of punched cards or a reel of 

magnetic tape, containing individual records of a similar class or application. A 

file-name is defined by a FD entry in the Data Division's File Section. FD is a 

reserved word which must be followed by an unique programmer-supplied word 

called the file-name. Rules for composition of the file-name word are identical to 

those for data-names (Refer to Section 1.3). A sort-file description is defined by 

a SD entry in the File Section. 

CONDITION-NAMES 

A condition-name is defined in level 88 entries within the Data Division. Rules for 

formation of name words are specified in Section 1.3; explanations of condition- 

name declarations and procedural statements employing them are given in the 

chapters devoted to Data and Procedure divisions. 

MNEMONIC-NAMES 

A mnemonic-name is assigned in the Environment Division for reference in 

Accept or Display statements. A mnemonic-name is composed according to the 

rules in Section 1.3. 

ND-60.089.03



  

  

  

1.10 

bt e i £ o ot R+ = L = - s : oy 

LITERALS 

A literal is a constant that is not identified by a data-name in a program, but is 
completely defined by its own identity. A literal is either non-numeric or numeric. 

NON-NUMERIC LITERALS 

A non-numeric literal must be bounded by matching quotation marks or 
apostrophes and may consist of any combination of characters in the ASCII set, 
except quotation marks or apostrophe, respectively. All spaces enclosed by the 
quotation marks are included as part of the literal. A non-numeric literal must not 
exceed 120 characters in length. 

The following are examples of non-numeric literals: 

"ILLEGAL CONTROL CARD” 

‘CHARACTER-STRING’ 

"DO'S & DON'T'S” 

Each character of a non-numeric literal (following the introductory delimiter) may 
be any character other than the delimiter. That is, if the literal is bounded by 
apostrophes, then quotation {’') marks may be within the literal, and vice versa. 
Length of a non-numeric literal excludes the delimiters; length minimum is one. 

A succession of two "‘delimiters” within a literal is interpreted as a single 
representation of the delimiter within the literal. 

Only non-numeric literals may be "continued’’ from one line to the next. When a 
non-numeric literal is of a length such that it cannot be contained on one line of a 
coding sheet, the following rules apply to the next line of coding (continuation 
line): 

1. A hyphen is placed in column 7 of the continuation line. 

2; A delimiter is placed in Area B preceding the continuation of the 
literal. : 

3. All spaces at the end of the previous line and any spaces following 
the delimiter in the continuation line and preceding the final 
delimiter of the literal are considered to be part of the literal. 

4, On any continuation line, Area A shouid be blank. 

ND-60.089.03



  

1.1 

NUMERIC LITERALS 

A numeric literal must contain at least one and not more than 18 digits. A 

numeric literal may consist of the characters 0 through 9 (optionally preceded by 

a sign) and the decimal point. It may contain only one sign character and only 

one decimal point. The sign, if present, must appear as the leftmost character in 

the numeric literal. If a numeric literal is unsigned, it is assumed to be positive. 

A decimal point may appear anywhere within the numeric literal, except as the 

rightmost character. If a numeric literal does not contain a decimal point, it is 

considered to be an integer. 

The following are examples of numeric literals: 

72 + 1011 3.14159 —6 —-.333 0.5 

By use of the Environment specification DECIMAL-POINT IS COMMA, the 

functions of characters period and comma are interchanged, putting the 

European’’ notation into effect. In this case, the value of “pi’’ would be 3,1416 

when written as a numeric literal. 

FIGURATIVE CONSTANTS 

A figurative constant is a special type of literal: it represents a value to which a 

standard data-name has been assigned. A figurative constant is not bounded by 

quotation marks. 

ZERO may be used in many places in a program as a numeric literal. Other 

figurative-constants are available to provide non-numeric data; the reserved 

words for various characters are as follows: 

SPACE the blank character represented by "octal’” 40 

LOW-VALUE the character whose “'octal’’ representation is 00 

HIGH-VALUE the character whose ""octal”’ representation is 177 

QUOTE the quotation mark, whose “octal’” representation is 

42 (7-8 in punched cards). 

The plural forms of these figurative constants are acceptable to the compiler. A 

figurative constant represents as many instances of the associated character as 

are required in the context of the statement. 

Another form of figurative-constant consists of the reserved word ALL followed 

by a one-character non-numeric literal, or followed by one of the above 

figurative-constant reserved words. 

ND-60.089.03 

 



  

1.12 STRUCTURE OF A PROGRAM 

Every COBOL source program is divided into four divisions. Each division must 

be placed in its proper sequence, and each must begin with a division header. 

The four divisions, listed in sequence, and their functions are: 

IDENTIFICATION DIVISION, which names the program. 

ENVIRONMENT DIVISION, which indicates the computer 
equipment and features to be used in the program. 

DATA DIVISION, which defines the names and characteristics of 

data to be processed. 

PROCEDURE DIVISION, which consists of statements that direct 
the processing of data at execution time. 

The following skeletal coding defines program component structure and order. 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[AUTHOR. comment-entry...] 

[INSTALLATION. comment-entry ...] 

[DATE-WRITTEN. comment-entry ...] 

[DATE-COMPILED. comment-entry ...} 

[SECURITY. comment-entry ...] 

[REMARKS. comment-entry ...] 

ENVIRONMENT DIVISION. 

_CONF|GURATION SECTION. 

[SOURCE-COMPUTER. NORD-10.] 

[OBJECT-COMPUTER. NORD-10.] 

[SPECIAL-NAMES. entry.] 
— 

[INPUT-OUTPUT SECTION.] 

[FILE-CONTROL. entry ...]     fl-!}CONTRO L.entry...] 

DATA DIVISION. 

ND-60.089.03



e A A AN, 4 A . i e .1 i e St e i e SR . it W B ATl i 3 550 Wl W N e i .30t Yl S A Bl L L b rih 0 i 5O S 

FILE SECTION. 

{file description entry 

record description entry ...} 

1l 

  

—WORKING~STORAGE SECTION. 

L[data item description entry] ... 

[ LINKAGE SECTION. . i 

[data item description entry] ... 

PROCEDURE DIVISION [USING identifier-1...]. 

DECLARATIVES. ] 

{section-name SECTION. USE Sentence. 

  

{paragraph-name. {sentence}...}... }... ‘ 

END DECLARATIVES.     
{ section-name SECTION. 

{paragraph-name. {sentence} ...} ...} ... 

ND-60.089.03 9



  

1.13 

1.14 

QUALIFICATION OF NAMES 

When a data-name, condition-name or paragraph name is not unique, 
procedural reference may therefore be accomplished uniquely by use of qualifier 
names. For example, if there were two or more items named YEAR, the qualified 
reference: 

YEAR OF HIRE-DATE 

might differentiate between year fields in HIRE-DATE and TERMINATION- 
DATE. 

Qualifiers are preceded by the word OF or IN; successive data-name or 
condition-name qualifiers must designate lesser-level-numered groups that 
contain all preceding names in the composite reference, i.e., HIRE-DATE must 
be a group item {or file-name) containing an item called YEAR. Paragraph-names 
may be qualified by their containing section-name. 

The maximum number of qualifiers is one for a paragraph-name, five for a data- 
name or condition-name. File-names and mnemonic-names must be unique. 

A qualified nhame may only be written in the Procedure Division, or in a level 66 
entry. 

THE COPY STATEMENT 

The statement COPY text-name provides a means of incorporating into a source 
program a body of standard COBOL code maintained in a "COPY Library" as a 
distinctly named (text-name) entity. A COPY statement must be terminated by a 
period. A COPY statement may appear anywhere except within the copied entity 
itself. 

The effect of copying is to augment the source stream processed by the compiler 
by insertion of the copied entity in place of the COPY statement, and then 
resuming processing of the primary source of input at the end of the copied 
entity. 

After the text-name operand of COPY the remainder of the source card must be 
blank {up to column 72 inclusive). 

The text-name consists of a file-description as defined in the NORD File Manual 
(ND-60.052) in the form: 

(directory-name : user-name) file-name : type;version 

where names can be up to 16 characters in length, type up to 4 characters, and 
- version a number ranging from 1 to 256. 

Only file-name is mandatory, and default type is :SYMB denoting a COBOL 
source-file. : 

Please refer to the mentioned manual for further information concerning file- 
name conventions. 

ND-60.089.03



  

IDENTIFICATION DIVISION 

Every COBOL program begins with the Identification Division. This division 
identifies both the source program and the resultant output listing. In addition, 
the user may include the date the program is written, the date the compilation of 
the source program is accomplished and such other information as desired under 
the paragraphs shown below: 

IDENTIFICATION DIVISION 

PROGRAM-ID. Program-name. 

[AUTHOR. [comment-entry] ] 

[INSTALLATION. [comment-entry] ] 

[ DATE-WRITTEN. [comment-entry] ] 

[ DATE-COMPILED. [comment-entry] | 

[SECURITY. [comment-entry] ] 

[HEMARKS. [comment-entry] ] 

Only the PROGRAM-ID paragraph is required; it must be the first paragraph. 
Program-name is any alphanumeric string of characters, the first of which must 
be alphabetic. Only the first 6 characters of program-name are retained by the 
compiler. 

The DATE-COMPILED paragraph, if present and if placed from column 8, causes 
the first line of its comment-entry to be replaced by the current date and time 
during program compilation. 

The contents of any other paragraphs are of no consequence, serving only as 
documentary remarks. 

ND-60.089.03



o e LA et b 1 i oA e e e e s b B i   e« i TR b T 2K A LA ek 9 (20 " 

3 THE ENVIRONMENT DIVISION 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION, ] 

[ SOURCE-COMPUTER.  NORD-10  [WITH DEBUGGING MODE]. | 

[ 0BJECT-COMPUTER.  NORD-10. ] ' 

SPECIAL-NAMES. 

[ CONSOLE IS mnemonic name ] 

[ cURRENCY SIGN IS literal |   @ [ DECIMAL-POINT IS COMMA ]. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

{ file-control-entry } . 

1-0-CONTROL. 

[ sSAME AREA FOR {file name}. . ] . .. 

L
1
 

| 

    

3 ND-60.089.03



3.1 

3.2 

ettt B e e S L e S 

3-2 

CONFIGURATION SECTION 

The CONFIGURATION SECTION, which has three possible paragraphs, is 

optional. The three paragraphs are SOURCE-COMPUTER, OBJECT- 

COMPUTER, and SPECIAL-NAMES. The contents of the first two paragraphs 

are treated as commentary, except the phase WITH DEBUGGING MODE, if 

present, enables normal processing of source lines naming "'D"" in column 7. 

In case the currency symbol is not supposed to be the Dollar Sign, the user may 

specify a single character non-numeric literal in the Currency Sign clause. 

However, the designated character may not be a quote mark, or any of the 

characters defined for Picture representations. 

The “European’” convention of separating integer and fraction positions of 

numbers by the comma character is specified by employment of the clause 

DECIMAL- POINT IS COMMA. 

Note that the reserved word IS is required in entries for currency sign definition 

and decimal-point convention specification. 

INPUT-OUTPUT SECTION 

The second section of the Environment Division is mandatory (unless the 

program has no data files); it begins with the header: 

INPUT-OUTPUT SECTION. 

This section has two paragraphs: File-Control and 1-O-Control. In the former, the 

programmer defines the file assignment parameters, including specification of 

buffering. 

ND-60.089.03



3.2.1 

3.2.1.1 

FILE-CONTROL. 

  

File-Control 

General Format 

The general format of the FILE-CONTROL paragraph is shown on the following 
page: 

SELECT file name ASSIGN TO { Hprcl file pame s ype; "e's'°"} 
data name 

  

EESEHVE integer { AREA 
R AREAS 

[ORGANIZATION IS SEQUENTIAL] [ACCESS MODE IS SEQUENTIAL] [FILE STATUS IS data namel]. \ 

ORGANIZATION IS RELATIVE | ACCESS MODEIS{{ RANDOM 

    

SEQUENTIAL [RELATIVE KEY IS data name] 
[FILE STATUS IS data name]. 

RELATIVE KEY IS data name 

SEQUENTIAL 
ORGANIZATION IS INDEXED |[ACCESS MODEIS 4 RANDOM RECORD KEY IS dataname [FILE STATUS IS data nameb 

DYNAMIC   
For every program file, a Sentence-Entry (beginning with the reserved word 
SELECT) is required in the FILE-CONTROL paragraph. 

In the Select Sentence-Entry, device is written as a non-numeric literal enclosed 
in matching quotation marks or apostrophes. The contents of this literal must be 
written to conform to SINTRAN I1I/VS file-name conventions. 

The user may express the device as a literal whose contents are of the form: 

{directory:user) file-name: type;version 

for generalized access to any files available to a SINTRAN t11/VS user. Examples: 

SELECT MASTER-FILE ASSIGN "CARD-READER" ... 
SELECT FILE-1 ASSIGN "XPDATA:SYMB" ... - 
SELECT IN-PUT ASSIGN TO "(JENSEN) FILE17:REC" ... 

If the file-name assignment is not a constant, then device may be written as a 
data-name, defined later in the program; its value at OPEN-time must contain a 
character string representing a valid SINTRAN Il file-name reference as 
discussed above. 

ND-60.089.03



  

Ga e ARme e e kel K inman i < henai o St i S i A LA o et 5 i bt A S N P L5 

If the Reserve clause is not present, the compiler assigns buffer areas. An integer 

number of buffers specified by the Reserve clause may be from 1to7. 

If the FILE STATUS entry, data-name-1 defines a two-character Working- 

Storage item into which the run-time data management facility places status 

information after an 1-O statement. The left-hand character of data-name-1 

assumes the values: 

‘0’ for successful completion 
‘1’ for End-of-File condition 

'3’ for a non-recoverable {1-O) error 

The right-hand character of data-name-1 is set to ‘0’ if no further status 

information exists for the previous I-O operation. The following combinations of 

values are possible: 

File Status Left  File Status Right Meaning 

‘0’ ‘0’ 0.K. 
1’ ‘0 EOF 

'3 ‘0’ Permanent error 

'3 ‘4’ Disk space full 

Both the Access and Organization clauses are optional for sequential input- 

output processing. For Relative files, alternate formats are available in the 

Environment Division. 

ND-60.089.03 

 



3.2.1.2 

3.2.1.3 

Definition Of Sequential File Organization 

Sequential organization is allowed on all types of hardware devices that COBOL 
can communicate with. The only access mode is sequential. 

Defintion Of Relative File Organization 

Relative organization is restricted to disk-based files. Records are differentiated 
on the basis of a relative record number which ranges from 1 to 999,999, or to a 
lesser maximum for a smaliler file. Unlike the case of an Indexed file, where the 
identifying key filed occupies a part of the data record, relative record numbers 
are conceptual, and are not embedded in the data records. 

A relative-organized file may be accessed either sequentially, dynamically or 
randomly. In sequential access mode, records are accessed in the order of 
ascending record numbers. 

In random access mode, the sequence of record access is controlled by the 
program, through the means of placing a number in a relative key item. In 
dynamic access mode, the program may inter-mix random and sequential access 
verb forms at will. 

In the Environment Division, the SELECT entry must specify ORGANIZATION IS 
INDEXED, and the Access clause format is: 

ACCESS MODEIS SEQUENTIAL | RANDOM | DYNAMIC. 

Assign, Reserve, and File Status clause formats are identical to those used for 
sequentially- or indexed-organized files. 

In addition to the usual clauses in the SELECT entry, a clause of the form: 

RELATIVE KEY IS data-name-1 

is required for random or dynamic access mode, or if a START statement exists 
for such a file, even if access mode is sequential. 

Data-name-1 must be described as an unsigned external decimal integer item not 
contained within any record description of the file itself; its type may not be 
binary. 

ND-60.089.03



  

3.2.1.4 

3.2.2 

Definition Of Indexed File Organization 

An indexed-file organization provides for recording records of a “data base’’ and 

also keeping a directory (called the control index) of pointers that enable direct 

location of records having particular unique key vaiues. An indexed file must be 

assigned to disk-files only. 

A file whose organization is indexed can be accessed either sequentially, 

dynamically or randomly. 

Sequential access provides access to data records in order of ascending values 

of the record key. 

In the random access mode, the order of access to records is controlled by the 

programmer. Each record desired is accerssed by placing the value of its key in a 

key data item prior to an access statement, 

In the dynamic access mode, the programmer’s logic may alter from sequential 

access to random access, and vice versa, at will, 

In the Environment Division, the SELECT entry must specify ORGANIZATION 1S 

INDEXED, and the Access clause format is: 

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC. 

Assign, Reserve, and File Status clause formats are identical to those specified in 

Section 3.2.1.1 of this manaual. 

The format of this clause, which is required, is: 

RECORD KEY IS dfiata-name-1 

where data-name-1 is an item defined within the record descriptions of the 

associated file description, and ios a group item, an elementary alphanumeric 

item or a decimal field. A decimal key must have no P characters in its Picture, 

and it may not have a SEPERATE sign. No record key may be subscripted. 

If random mode access is specified, the value of data-name-1 designates the 

record to be accessed by the next Delete, Read, Rewrite or Write statement. 

Each record must have a unique record key value. 

/-0 Control Paragraph 

The specification permits the programmer to enumerate files that are open only 

at mutually exclusive times, in order that they may share the same I-O buffer 

areas, which conserves the utilization of memory space. 

The format of the Same Area entry (which designates files that all share a 

common |-O area) is: 

SAME AREA FOR {file-name } ... 

No file may be listed in more than one Same Area clause. To conserve space, 

SAME AREA entries should be used wherever possible (each entry designating 

files open at mutually exclusive times). 

ND-60.089.03



4.1 

Py 5 B - @ ks ads i s B e i R e N b b s 0 sl i . o ek e R A S 

THE DATA DIVISION 

Several types of data items can be described in COBOL programs. These data 

items are described in the following section. 

DATA TYPES 

Group Items 

A group item is defined as one having further subdivisions, so that it contains 

one or more elementary items. In addition, a group item may contain other 

groups. An item is a group item if, and only if, its level number is less than the 

level number of the immediately succeeding item. If an item is not a group item, 

then it is an elementary item. The maximum size of a group item is 4095 

characters. ' 

Elementary Items 

An elementary item is a data item containing no subordinate items. 

Alphanumeric Iltem 

An alphanumeric item consists of any combination of characters, making a 

character string” data field. If the associated picture contains "editing"”’ 

characters, it is an alphanumeric edited item. 

Report (Edited) Item 

A report item is an edited numeric item containing only digits and/or special 

editing characters. It must not exceed 30 characters in length. A report item can 

be used only as a receiving field for numeric data. L 

Numeric Items 

External Decimal ltem: An external data item is one in which one computer 

character (byte) is employed to represent one digit. A maximum number of 18 

digits is permitted; the exact number of digit positions is defined by writing a 

specific number of 9-characters in the Picture description. For example, 

PICTURE 999 defines a 3-digit item. That is, the maximum decimal value of the 

item is nine hundred ninety-nine. 

If the Picture begins with the letter S, then the item also has the capability of 

containing an ‘‘operational sign”. An operational sign does not occupy a 

separate character (byte), unless the “"SEPARATE" form of SIGN clause is 

included in the item’s description. Regardiess of the form of representation of an 

operational sign, its purpose is to provide a sign that functions in the normal 

algebraic manner. . 

ND-60.089.03



v i Aot i o e e i T - 2 
aia ——— — e e i 

The ""Usage’ of an external decimal item is DISPLAY (see Usage clause). 

Internal Decimal Item: An internal decimal item is stored in packed decimal 

format. It is attained by inclusion of the COMPUTATIONAL-3 Usage caluse. 

A packed decimal item defined by n 9's in its picture occupies [(n + 2)/2] bytes 

in memory. All bytes except the rightmost contain a pair of digits, each digit 

being represented by the binary equivalentof a valid digit value from 0 to 9. 

In the rightmost byte of a packed item is found both the item’s low-order digit 

and the operational sign. For this reason, the compiler considers a packed item 

to have an arithmetic sign, even if the original Picture lacked an S-character. 

Binary Item: A binary item uses the base 2 system to represent an integer not in 

excess of 32,767. It occupies one 16-bit word. The leftmost bit of the reserved 

area is the operational sign, usage is COMPUTATIONAL, and picture must be of 

form S9(n) where n cannot exceed 5. No picture clause is required. 

index Item: An index item has no picture; usage is INDEX. 

Index Names And Index Items 

An-index name is declared not by the usual method of level number, name, and 

data description clauses, but implicitly by appearance in the “INDEXED BY index 

name’’ appendage to an OCCURS clause. Therefore, an index name is 

equivalent to an index item, although defined differently. 

An index name must be uniquely named. An index item may only be referred to 

by a SET statement, a CALL statement’s USING list, a Procedure header USING 

list, as the variation item in PERFORM VARYING, or in a relational condition; in 

all cases the process is equivalent to dealing with a binary word integer 

subscript. 

ND-60.089.03 

 



I i bbb A AT il B e 

4.2 

e e e . bl e e b s o e e il e 0 Sl i .y ¢ i 

THE DATA DESCRIPTION ENTRY 

A Data Description entry specifies the characteristics of each field (item) in a 
data record. Every item must be described in a separate entry in the same order 
in which the item appears in the record. Each Data Description entry consists of 
a level-number, a data-name, and a series of independent clauses followed by a 
period. 

The general format of a Data Description entry is: - 

data-name 

} (REDEFINES-clause) (JUSTIFIED-clause) level-number FILLER 

(PICTURE-clause) (USAGE-clause) (SYNCHRONIZED-clause) 

(OCCURS-clause) (BLANK-clause) (VALUE-clause) (SIGN-clause). 

When this format is applied to specific items of data, it is limited by the nature of 
the data being described. The allowable format for the description of each data 
type appears below. Clauses which are not shown in a format are specifically 
forbidden in that format. Clauses that are mandatory in the description of certain 
data items are shown without parentheses. 

Group !tem Format 

data-name 
level-number FILLER } (REDEFINES-clause) (USAGE-clause) 

{OCCURS-clause). 

Example: 

01 GROUP-NAME. - 
02 FIELD-B PICTUREX. 
02 FIELD-CPICTURE X. 

Note: 

The USAGE clause may only be written at a group level to save repetitious 
writing of it at the subordinate element level. 

ND-60.089.03 

AP



4.3 FORMATS FOR ELEMENTARY ITEMS 

Alphanumeric Item (also called a character-string item) 

data-name 
level-number { FILLER } (REDEFINES-clause) (OCCURS-clause) 

PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-clause) 

(VALUE IS non-numeric-literal). 

Examples: 

02 MISC-1 PIC X(53). 
02 MISC-2 PICTURE BXXXBXXB. 

Report Item (also called a numeric-edited item) 

data-name 
level-number FILLER } (REDEFINES-clause) {OCCURS-clause) 

(USAGEIS DISPLAY)  (BLANK WHEN ZERQ) (PICTURE IS report form). 

Example: 

02 XTOTAL PICTURE $999,999.99-, 

Decimal Item 

data-name } 

level-number FILLER (REDEFINES-clause) (OCCURS-clause) 

PICTURE IS numeric-form  (SIGN-clause) 

(VALUE IS numeric-literal). {USAGE-clause) 

Examples: 

02 HOURS-WORKED PICTURE 99V9, USAGE IS DISPLAY. 
02 HOURS-SCHEDULED PIC S99V9, SIGN IS TRAILING. 

11 TAX-RATE PIC S99V999 VALUE 1.375, COMPUTATIONAL-3. 

ND-60.089.03



  

4.4 

Binary Item 

data-name 

level-number FILLER } (REDEFINES-clause} (OCCURS-clause) 

USAGE IS COMPUTATIONAL/COMP/INDEX 

{(VALUE IS numeric-literal). 

Examples: 

02 SUBSCRIPT COMP, VALUE ZERO. 
02 YEAR-TO-DATE COMPUTATIONAL. 

USAGE CLAUSE 

The USAGE clause describes the form in which numeric data is represented. 

The USAGE clause may be written at any level. If USAGE is not specified, the 
item is assumed to be in “DISPLAY" mode. The format of the USAGE clause is: 

COMPUTATIONAL 
USAGEIS INDEX 

DISPLAY 
COMPUTATIONAL-3 

INDEX is explained in the Chapter on Table Handling. COMPUTATIONAL usage 
defines an integral binary field. COMPUTATIONAL-3, which may be abbreviated 
COMP-3, defines a packed (internal decimal) filed. 

ND-60.089.03



4.5 

et o o et e e i AN S A e iy TR R R SR il sl i e e e it N B e 1 

PICTURE CLAUSE 

The PICTURE clause specifies a detailed description of an elementary level data 

item and may include specification of special report editing. The reserved word 

PICTURE may be abbreviated as PIC. 

The general format of the PICTURE clause is: 

an-form 

PICTURE IS numeric-form 
report-form 

There are three possibie types of pictures, as explained in the ensuing 

paragraphs. 

An-Form Option 

This option applies to alphanumeric {(character string) items. The PICTURE of an 

alphanumeric item is a combination of data description characters X, A, or 9 

and, optionally, editing characters B, 0 and /. An X indicates that the character 

position may contain any character from the computer's ASCIl character set. A 

Picture that contains at least one of the combinations: 

(a) Aand9,or 
(by Xand9,or 
{c) XandA 

in any order is considered as if every 9, A or X character were X. The characters 

B, 0 and / may be used to insert blanks or zeros or slashes in the item. 

Numeric-Form Option 

The PICTURE of a numeric item may contain a valid combination of the 

following characters: : 

CHARACTER MEANING 

9 The character 9 indicates that the actual or conceptual digit 

position contains a numeric character. The maximum number of 

9'sin a Picture is 18. 

Vv The character V indicates the position of an assumed decimal 

point. Since a numeric item cannot contain an actual decimal 

point, an assumed decimal point is used to provide the compiler 

with information concerning the scaling alignment of items 

involved in computations. Storage is never reserved for the 

character V. Only one V, if any, is permitted in any single Picture. 

S This character indicates that the item has an operational sign. It 

must be the first character of the Picture. 

ND-60.089.03



  

P The P indicates an assumed decimal scaling position, and is used 
to specify the location of an assumed decimal point when the 
point is not within the number that appears in the data item. The 
scaling position character P is not counted in the size of the data 
item. Scaling position characters are counted in determining the 
maximum number of digit positions {18) in numeric edited items or 
in items that appear as operands in arithmetic statements. 

The scaling position character P may appear only to the left or 
right of the other characters in the string as a continuous string of 
P’s within a PICTURE description. The sign character S and the 
assumed decimal point V are the only characters which may 
appear to the left of a leftmost string of P‘s. Since the scaling 
position character P implies an assumed decimal point (to the left 
of the P’s if the P’s are leftmost PICTURE characters and to the 
right of the P’s if the P’s are rightmost PICTURE characters), the 
assumed decimal point symbol V is redundant as either the left- 
most or rightmost character within such a PICTURE description. 

Report-Form Option 

This option describes an item suitable as an "edited’” receiving field for 
presentation of a numeric value. The editing characters that may be combined to 

describe a reportitem are as follows: 

9V.ZCRDB,S+*B0—P/ 

The characters 9, P and V have the same meaning as for a numeric item. The 
meanings of the other allowable editing characters are described in the following 

text. 

CHARACTER MEANING 

The decimal point character (.) specifies that an actual decimal 
point is to be inserted in the indicated position and the source item 
is to be aligned accordingly. Numeric character positions to the 
right of an actual decimal point in a PICTURE must consist of 

characters of one type. 

Zand* The characters Z and * are called replacement characters. Each 
one represents a digit position. Leading zeros to be placed in 
positions defined by Z or * are suppressed, becoming blank or *. 
Zero suppression terminates upon encountering the decimal point 

(. or V) or a non-zero digit. Z or * may appear to the right of an 
actual decimal point only if all digit positions are the same. 

CRandDB CR and DB are called credit and debit symbols and may appear 
only at the right end of-a picture. These symbols occupy two 
character positions and indicate that the specified symbol is to 
appear in the indicated positions if the value of a source item is 
negative. |f the value is positive or zero, spaces will appear 
instead. CR and DB and + and — are mutually exclusive. 

. The comma specifies insertion of a comma between digits. Each 
insertion character is counted in the size of the data item, but does 
not represent a digit position. The comma may also appear in 
conjunction with a floating string, as described below. 

ND-60.089.03



A floating string is defined as a leading, continuous series of either S or + or —, 

or a string composed of one such character interrupted by one or more insertion 

commas and/or decimal point. For example: 

SS,SSS,S85S 
++++ 

+1{8). + + 
SS,8SS,SS 

A floating string containing n + 1 occurrences of S or + or —defines n digit 

positions. When moving a numeric value into a report item, the appropriate 

character floats from left to right, so that the developed report item has exactly 

one actual S or + or — immediately to the left of the most significant non-zero 

digit, in one of the positions indicated by S or + or — in the PICTURE. Blanks 

are placed in all character positions to the left of the single developed S or + 

or —. If the most significant digit appears in a position to the right of positions 

defined by a floating string, then the developed item contains S or + or — in the 

rightmost position of the floating string, and non-significant zeros may follow. 

The presence of an actual or implied decimal point in a floating string is treated 

as if all digit positions to the right of the point were indicated by the PICTURE 

character 9. In the following examples, b represents a blank in the developed 

items. 

PICTURE Numeric Value Developed Item 

S$S5S999 14 bbS014 
--,---,999 -456 bbbbbb-456 
SSSSSS 14 bbbS14 

A floating string need not constitute the entire PICTURE of a report item, as 

shown in the preceding examples. Restrictions on characters that may follow a 

floating string are given later in this description. 

When a comma appears to the right of a floating string, the. string character 

floats through the comma in order to be as close to the leading digit as possible. 

CHARACTER MEANING 

+ and — The character + or — may appear in a PICTURE either singly or in 

a floating string. As a fixed sign control character, the + or — 

must appear as the last symbol in the PICTURE. The plus sign 

indicates that the sign of the item is indicated by either a plus or 

minus placed in the character position, depending on the algebraic 

sign of the numeric value placed in the report field. The minus sign 

indicates that blank. or minus is placed in the character position, 

depending on whether the algebraic sign of the numeric value 

placed in the report field is positive or negative, respectively. 

B Each appearance of B in a PICTURE represents a blank in the final 

edited value. 

/ Each slash in a PICTURE represents a slash in the final edited 

value. 

0 Each appearance of 0 in a PICTURE represents a position in the 

final edited value where the digit zero will appear. 

ND-60.089.03 

e
t



  

Other rules for a report (edited) item PICTURE are: 

1. The appearance of one type of floating string precludes any other 
floating string. 

There must be at least one digit position character. 

The appearance of a floating sign string or fixed plus or minus 
insertion character precludes the appearance of any other of the 
sign control insertion characters, namely, +, —, CR, DB. 

The characters to the right of a decimal point up to the end of a 
PICTURE, excluding the fixed insertion characters +, —, CR, DB 
(if present), are subject to the following restrictions: 

a. Only one type of digit position character may appear. 
That is, Z * 9 and floating-string digit position characters 
S + -— are mutually exclusive. 

b. If any of the numeric character positions to the right of a 
decimal point is represented by + or — or S or Z, then all 
the numeric character positions in the PICTURE must be 
represented by the same character. 

The PICTURE character 9 can never appear to the left of a floating 
string, or replacement character. 

Additional notes on the PICTURE clause: 

1. 

2. 

A PICTURE clause must only be used at the elementary level. 

An integer {m} enclosed in parentheses and following X9 S Z P * 
B — or + indicated the number of consecutive occurrences of the 
PICTURE character. Except for pictures of the form X(m), the 
maximum value of m is 255, unless other limits apply (i.e. max. 18 
digits). 

Characters V and P are not counted in the space allocation of a 
data item. CR and DB occupy two character positions. 

A maximum of 30 character positions is allowed in a PICTURE 
character string. For example, PICTURE X(89) consists of five 
PICTURE characters. 

A PICTURE must consist of at least one of the characters AZ * X 
9 or at least two consecutive appearances of the + or — or S 
characters. 

The characters . S V CR and DB can appear only once in a 
PICTURE. 

When DECIMAL-POINT IS COMMA is specified, the explanations 
for period and comma are understood to apply to comma and 
period, respectively. 

The examples below illustrate the use of PICTURE to edit data. In each example, 
a movement of data is implied, as indicated by the column headings. (Data value 
shows contents in storage; scale factor of this source data area-is given by the 
PICTURE.) 

ND-60.089.03



Source Area 

PLCTURE 

9(5) 
9(5%) 

9(5) 

9(4)ve 

v9(5) 
$9(5) 
$9(5) 

S9(5) 
S$9(5) 

9(5) 
9(5) 
$9(5) 

$999v9Y 

$999v99 

Data 

Value 

12345 
00123 
00000 
12345 

12345 
100123 

~-00001 
00123 
00001 
00123 
100123 
12345 

02345 

00004 

Receiving Area 

PICTURE 

$$$,8%$9.99 
§$5,$%9.99 
$65$,889.99 
$$%$,$%9.99 
$$$,889.99 
------- .99 

-+, 99 

------- .99 
kkk*xk&*x QQCR 

72272N27 

ZLZINZY. 

ND-60.089.03 

- Edited Data 

$12,345.00 
$123,00 

$0,00 
$1,234,50 

$0.12 
123,00 
-1.00 

+123.,00 
1,00 

4+123.00 
123,00 

*%12345,00 
2345 

04



  

4.6 

i . e e i A Nt . L S e i e s i el st Sl e b Sl   

4-11 

VALUE CLAUSE 

The VALUE clause specifies the. initial value of working-storage items. The 

format of this clause is: 

VALUE IS literal 

The size of a literal given in a VALUE clause must be less than or equal to the 
size of the item as given in the PICTURE clause. The positioning of the literal 
within a data area is the same as would result from specifying a MOVE of the 
literal to the data area. The type of literal written in a VALUE clause depends on 
the type of data item, as specified in the data item formats earlier in this text. For 
edited items, values must be specified as non-numeric literals. 

When an initial value is not specified, no assumption should be made regarding 
the initial contents of an item in Working-Storage. 

The VALUE clause may be specified at the group level, in the form of a correctly 
sized non-numeric literal, or a figurative-constant. (A form used in level 88 items 
is explained in Section 3.15.) The VALUE clause must not be written in a Data 
Description entry that also has an OCCURS or REDEFINES clause, or in an entry 
that is subordinate to an entry containing an OCCURS or REDEFINES clause. 

ND-60.089.03



4.7 REDEFINES CLAUSE 

This clause specifies that the same area is to contain different data items, or 

provides an alternative grouping or description of the same data. The format of 

the REDEFINES clause is: 

REDEFINES data-name-2 

When written, the REDEFINES clause should be the first clause following the 

data-name that defines the entry. ' . 

When an area is redefined, all descriptions of the area remain in effect. Thus, if B 

and C are two separate items that share the same storage area due to 

redefinition, the procedure statements MOVE X TO B or MOVE Y TO C could be 

executed at any point in the program. In the first case, B would assume the value 

of X and take the form specified by the description of B. In the second case, the 

same physical area would receive Y according to the description of c: 

For purposes of discussion of redefinition, data-name-1 is termed the subject, 

and data-name-2 is called the object. The levels of the subject and object are 

denoted by s and t, respectively. The following rules must be obeyed in order to 

establish a proper redefinition. 

1. s must equal t. 

2. The object must be contained in the same record (01 group level 

item), unlesss=t=01. 

3. Prior to definition of the subject and subsequent to definition of 

the object there can be no level numbers that are numerically less 

thans. 

4. Prior to definition of the subject and subsequent to definition of 

the object, if there are other levels equal 1o s, then they must also 

redefine the object. 

The length of data-name-1, multiplied by the number of occurrences of 

data-name-1, may not exceed the length of data-name-2, except if the level of 

data-name-1is 1 (permitted only outside the File Section). 

ND-60.089.03 

   



4.8 

  

—
 

-
 
—
—
—
—
 

g
 

. 
s 
—
 

4-13 

OCCURS CLAUSE 

The OCCURS clause is used in defining related sets of repeated data, such as 

tables, lists and arrays. It specifies the number of times that a data item with the 

same format is repeated. Data Description clauses associated with an item 

whose description includes an OCCURS clause, apply to each repetition of the 

item being described. When the OCCURS clause is used, the data name that is 

the defining name of the entry must be subscripted whenever it appears in the 

Procedure Division. If this data-name is the name of a group item, then all data- 

names belonging to the group must be subscripted whenever they are used. 

The OCCURS clause must not be used in any Data Description entry having a 

tevel number 01, 66, 77 or 88. The OCCURS clause has the following format: 

QCCURS integer TIMES [INDEXED BY index-name...] 

Note: 

The maximum integer permissible is 4095. (The maximum associated record size 

is 4095.) 

A subscript is a positive non-zero integer whose value determines to which 
element a reference is being made within a table or list. The subscript may be 
represented either by a literal or a data-name that has an integral value. Whether 
the subscript is enclosed in parentheses and appears after the terminal space of 
the name of the element. A subscript must be a decimal or binary item. (The 
fatter is strongly recommended, for the sake of efficiency.) 

At most three OCCURS clauses may govern any data item. Consequently, one, 
two, or three subscripts may be required. Multiple subscripts are separated by a 

comma, i.e. ITEM (I, J). 

Example: 

01 ARRAY. 
03 ELEMENT, OCCURS 3, PICTURE 9(4). 

The above example would be allocated storage as shown below. 

ELEMENT (1) 
ARRAY, consisting of twelve 

ELEMENT (2) characters; each item has 
4 digits. 

ELEMENT (3} 

A data-name may not be subscripted if it is being used for any of the following 
functions: o 

1. When it is being used as a subscript. 

2. When it appears as the defining name of a data description entry. 

3. When it appears as data-name-2 in a REDEFINES clause. 

ND-60.089.03



4.9 

4.10 

4:11 

et ittt Al s . e e i A - = b e o - 

4-14 

SYNCHRONIZED CLA USE 

The SYNCHRONIZED clause is designed in order t0 allocate space for data in an 

efficient manner, with respect to the computer word organization of its central 

"memory”’. In this compiler, the SYNCHRONIZED specification is treated as 

commentary only. 

The format of this clause is: 

SYNC | SYNCHRONIZED ~ LEFT | RIGHT 

BLANK WHEN ZERO CLAUSE 

The clause BLANK WHEN ZERO may be written to specify that a report {edited) 

field is to contain nothing except blanks if the numeric value moved to it has a 

value of zero. 

JUSTIFIED CLAUSE 

The JUSTIFIED RIGHT clause, which is only applicable to unedited character 

string items, signifies that values are stored in a right-to-left fashion, resulting in 

space fill on the left when a short field is moved to a longer Justified field, or in 

truncation on the left when a long field is moved t0 @ shorter Justified field. The 

Justified clause is effective only when the associated field is employed as the 

“receiving” field ina Move statement. 

The word JUST isa permissible abbreviation of JUSTIFIED. 

ND-60.089.03 

  

 



  

4.12 SIGN CLAUSE 

For an external decimal item, there are four possible manners of representing an 

operational sign; the choice is controlled by inclusion of a particular form of the 

SIGN clause, whose general form is: 

[SIGNIS] TRAILING | LEADING [SEPARATE CHARACTER] 

The following chart summarizes the effect of various forms of this clause. 

SIGN Clause Sign Representation 

TRAILING Embedded in rightmost byte 

LEADING Embedded in leftmost byte 

TRAILING SEPARATE Stored in separate rightmost byte 

LEADING SEPARATE Stored in separate leftmost byte 

When the above forms are written, the Picture must begin with S. 

If no S appears, the item is not signed (and is capable of storing only absolute 

values), and the SIGN clause is prohibited. 

When S appears at the front of a Picture but no SIGN clause is included in an 

item’s.description, the "’default’’ case SIGN IS TRAILING is assumed. 

The SIGN clause may be written at a group level; in this case the clause specifies 

the sign’s format on any signed subordinate external decimal item. 

ND-60.089.03



4.13 

e el e N ks et i e R A o s - St e it . et e e — b e, Sl b B 

LEVEL 88 CONDITION-NAMES 

The level 88 condition-name entry specifies a value, list of values, or a range of 

values that an elementary item may assume, in which case the name condition is 

true, otherwise false. The format of a level 88 item's value clause is: 

literal-1 literal-2...] 

VALUEIS ' 
literal-1 THRU literal-2 

A level 88 entry must be preceded either by another level 88 entry (in the case of 

several consecutive condition-names pertaining to an elementary item) or by an 

elementary item. Every condition-name pertains to an elementary item in such a 

way that the condition-name may be qualified by the name of the elementary 

item and the elementary item’s qualifiers. A condition-name is used in the 

Procedure Division in place of a simple relational condition. A condition-name 

may pertain to an elementary item {a conditional variable) requiring subscripts. In 

this case, the condition-name, when written in the Procedure Division, must be 

subscripted according to the same requirements as the associated elementary 

item. The type of literal in a condition-name entry must be consistent with the 

data type of the conditional variable. In the following example, PAYROLL- 

PERIOD is the conditional variable. The picture associated with it limits the value 

of the 88 condition-name to one digit. 

02 PAYROLL-PERIOD PICTUREISS. 

88 WEEKLY VALUEIS 1. 

88 SIMI-MONTHLY VALUEIS 2 

88 MONTHLY VALUEIS 3. 

Using the above description, one may write the procedural condition-nahe test: 

IF MONTHLY GO TO DO-MONTHLY. 

An equivalent statement is: 

|F PAYROLL-PERICD = 3,GOTO DO-MONTHLY. 

For rn edited elementary item, values in a condition-name entry must be 

expressed in the form of non-numeric literals. 

The user may not write a VALUE clause containing both literals in a series and a 

range. 

ND-60.089.03 

¢



  

  

4.14 LEVEL 66 (RENAMES CLAUSE) 

The RENAMES clause, whose use is restricted to special definition entries having 

level number 66, permits alternative names to be defined for overlapping fields. 

The format of an entry of this type is: 

66 data-name-1 RENAMES data-name-2 [THRU/THROUGH 

data-name-3.] 

RENAMES is permissible only when the defining level is 66; such entries must all 

follow immediately at the end of the record to which they pertain, and the 

referenced items data-name-2 and data-name-3 must be defined in the foregoing 

record at a level between 02 and 49, inclusive. 

No OCCURS clause may govern data-name-2 or data-name-3. 

An entry whose level is 66 may be followed only by another level 66 or 01, or by 

another FD, SD, Section or Procedure Division. 

The following chart illustrates the scope of areas involved in renaming. 

Data-name-2 Data-name-3 Data-name-1 

Elementary ¢ Elementary item with same description 

as data-name-2. 

Group Group - - alternative name. for 

data-name-2. 

Elementary Elementary Group including all the 

Elementary Group contiguous space allocated 

Group Group data-name-2 through data-name-3.* 

* Data-name-3 must begin to the right of item data-name-2; data-name-3 

cannot be subordinate to data-name-2. 

Examples of RENAMES: 

01 TAB. 
03 A. 

05 A1PICX. 
05 A2PIC XXX. 
05 A3PIC XX. 
05 A4PIC XX. 

03 X 
05 X1PIC XX, 
05 X2PIC X(6). 
05 X3PIC X(8). 

66 CRENAMES A. (A1THRU A4) 
66 D RENAMES A1 THRU A3. 
66 ERENAMES A4 THRU X2. 
66 FRENAMES A2THRU X. (A2 THRU X3) 
66 G RENAMES A THROUGH X. (A1 THRU X3) 

ND-60.089.03



4.15 

4.15.1 

4.15.2 

4.15.2.1 

bk e 4 

ORGANIZATION OF THE DATA DIVISION 

General Format 

The following gives the general format of the sections in the Data Division, and 

defines the order of their presentation in the source program. 

DATA DIVISION. 

FILE SECTION. 

file-description-entry 

sort-file-description-entry 

e 

— 
LINKAGE SECTION   

File Section 

FD Entries 

In the FILE SECTION of the Data Division, a FD e 

WORKING-STORAGE SECTION. | 

77-level-description-entry 

record-description-entry |~ *° 

77-level-description-entry 

L_ record-description-entry |" " 

{record-description-entry} L 

“_'] 

  —— 

[record-description-entry] co ] 

ntry (file definition) must 

appear for every selected file. This entry precedes the descriptions of the file’s 

record structurel(s). 

The general form of a FD entry is: 

FD file name LABEL-clause 

[DATA RECORD(S)-clause ] [BLOCK-clause ] [RECORD-clause ]. 

ND-60.089.03 

  

.fi 

 



AR AR e L |t e e e b b 

    

4.15.2.2 

4.15.2.3 

4.15.2.4 

4--19 

BLOCK-Clause 

The BLOCK CONTAINS clause is used to specify the size of a physical record. 

  

CHARACTERS | 
BLOCK CONTAINS 
integer-1 RECORDS 

The BLOCK CONTAINS clause is used to specify characteristics of physical 

_records in relation to the concept of logical records. 

In order to describe a file that was created by the source editor QED, the user 

must specify BLOCK CONTAINS 0 RECORDS; this has the interpretation of 

logical record delimitation by Carriage Return and Line Feed. Otherwise, records 

are delimited on the basis of record sizes. 

When the BLOCK CONTAINS clause is omitted, it is assumed that records are 

not blocked. When neither the CHARACTERS or the RECORDS option is 

specified, the CHARACTERS option is assumed. 

When the RECORDS option is used, the compiler assumes that the block size 

provides for integer-1 records. 

RECORD-Clause 

Since the size of each data record is defined fully by the set of data description 

entries constituting the record (level 01) declaration, this clause is always 

optional. The format of this clause is: 

RECORD CONTAINS integer-2 CHARACTERS 

LABEL-Clause 

The format of this required FD-entry clause is: 

LABEL RECORD |RECORDS IS |ARE OMITTED | STANDARD 
  

The OMITTED option specifies that no labels exist for the file. It must be 

specified for files assigned to unit-record devices. It may be specified for files 

assigned to magnetic tape unit. 

The STANDARD option specifies that labels exist for the file and that the labels 

conform to system specifications. 

ND-60.089.03



      

4.15.2.5 

4.15.3 

4.15.4 

4--20 

DATA-RECORD(S)-Clause 

The optional DATA RECORDS clause identifies the records in the file by name. 
Its format is: 

RECORD IS 
DATA data-name-1 [data-name-2. . . ] 

RECORDS ARE 

The presence of more than one data-name indicates that the file contains more 
than one type of data record. That is, two or more record descriptions may apply 
to the same storage area. These records need not have the same description. 
The order in which the data-names are listed is not significant, 

Data-name-1, data-name-2, etc., are the names of data records, and each must 
be preceded in its record description entry by the level number 01. 

Working-Storage Section 

The second section of the DATA DIVISION begins with the header WORKING- 
STORAGE SECTION. 

Data description entries in this section may employ level numbers 01-49, as in the 
File section, as well as 77. Value clauses, prohibited in the File section (except for 
level 88) are permitted throughout the Working-storage section. 

Linkage Section 

The third section into which the Data Division may be divided is defined by use 
of the header LINKAGE SECTION. In this section, the user describes data by 
name and attribute, but storage space is not allocated. Instead, these "dummy”’ 
descriptions are applied (through the mechanism of the USING list on the 
Procedure Division header) to data whose addresses are passed into a 
subprogram by a call upon it from a separately compiled program. Consequently, 
VALUE clauses are prohibited in the Linkage Section, except in level 88 
condition-name entries. Refer to Section 5.3 for futher information. 

ND-60.089.03 

  
S 

  

A M e AT A el A 0 

 



  

5.1 

e i e s B i e S i s e R A i B . 408 e, S 5, ! s . B . bbbt 

THE PROCEDURE DIVISION 

in this chapter, the basic concepts of the Procedure Division are explained. 

Advanced topics (such as Indexing of tables, Sort, Inter-program 
communication and Declaratives) are discussed in subsequent chapters. 

STATEMENTS, SENTENCES, PROCEDURE-NAMES 

The Procedure portion of a source program specifies those procedures needed to 
solve a given EDP problem. These steps (computations, logical decisions, etc.) 
are expressed in statements similar to English, which employ the concept of 
verbs to denote actions, and statements and sentences to describe procedures. 

The Procedure portion must begin with the words PROCEDURE DIVISION. 

A statement consists of a verb followed by appropriate operands {data-names or 
literals) and other words that are necessary for the completion of the statement. 
The two types of statements are imperative and conditional. 

IMPERATIVE STATEMENTS 

An imperative statement specifies an unconditional action to be taken by the 
object program. An imperative statement consists of a verb and its operands, 
excluding the IF conditional statement, the READ statement and any 1/O 
statement which has an INVALID KEY clause. ’ 

CONDITIONAL STATEMENTS 

A conditional statement stipulates a condition that is tested to determine 
whether an alternate path of program flow is to be taken. The IF statement 
provides this capability. READ statements, and any 1/O statement having an 
INVALID KEY clause, are also considered to be conditional. When an arithmetic 
statement possesses a SIZE ERROR suffix, the statement is considered to be 

conditional rather than imperative. 

SENTENCES 

A sentence is a single statement or a series of statements terminated by a period 

and followed by a space. 

PARAGRAPHS 

A paragraph is a logical entity consisting of one or more sentences. Each 
paragraph must begin with a paragraph-name. 

Paragraph-names and section-names are procedure-names. Procedure-names 
follow the rules for name-formation. In addition, a procedure-name may consist 
only of digits. An all-digit procedure-name may not consist of more than 18 
digits; if it has leading zeros, they are ali significant. 

SECTIONS 

A section is composed of one or more successive paragraphs, and must begin 
with a section-header. A section header consists of a section-name conforming 
to the rules for procedure-name formation, followed by the word SECTION and a 
period. A section header must appear on a line by itself. Each section-name must 
be unique. . 

ND-60.089.03



i kb 

5.2 

i b e s e Al i 8 5 e B N i i 5 o S A i . 4 

ORGANIZATION OF THE PROCEDURE DIVISION 

Discounting the Declaratives region of this division, the PROCEDURE part of a 

program may be subdivided in three possible ways: 

1. The non-Declaratives portion of the Procedure Division consists of 

only paragraphs. 

2. The non-Declaratives portion of the Procedure Division consists of 

a humber of paragraphs followed by a number of sections {them- 

selves each subdivided into one or more paragraphs). 

3. The non-Declaratives portion is entirely subdivided into sections 

{themselves each subdivided into one or more paragraphs). 

The DECLARATIVES portion of the Procedure Division is optional; it provides a 

means of designating a procedure to be invoked in the event of an I/0 error. 

ND-60.089.03



  

5.3 

5.3.1 

5.3.2 

INTER-PROGRAM COMMUNICATION 

General 

Separately compiled COBOL program modules may be combined into a single 

executable program. Inter-module communication is made possible through the 

use of the LINKAGE Section of the Data Division (which follows the Working- 

Storage Section) and by the CALL statement and the USING list appendage to 

the Procedure Division header of a subprogram module. The Linkage section 

describes data made available in memory from another program module. Record 

description entries in the LINKAGE section provide data-names by which data- 

areas reseerved in memory by other programs may be referenced. Entries in the 

LINKAGE section do not reserve memory areas because the data is assumed to 

be present elsewhere in memory, in a CALLING program. 

Any Record Description clause may be used to describe items in the LINKAGE 

Section as long as the following rules are adhered to: 

1. The rules concerning contiguous and noncontiguous storage 

specified for the Working-storage section. 

2. The VALUE clause may not be specified for other than level 88 

items. 

3. Level 01 items are assumed to start on a8 computer word boundary. 

It is the programmer’s responsibility to ensure proper alignment 

between an argument (pointer to data) in a CALL statement and 

the corresponding data-name in a USING list on a subprogram 

Procedure header. 

Using List Appendage To Procedure Header 

The Procedure Division header of a CALLable subprogram is written as: 

PROCEDURE DIVISION USING data-name. . . 

Each of the data-name operands is an entry in the Linkage Section of the 

subprogram, having level 77 or 01. Addresses are passed from an external CALL 

in one-to-one correspondence to the operands in the USING list of the 

Procedure header so that data in the calling program may be manipulated in the 

subprogram. ' 

ND-60.089.03



5.4 

5-4 

DECLARATIVES AND THE USE SENTENCE 

The Declaratives region provides a method of including procedures that are 

executed not as part of the sequential coding written by the programmer, but 

rather when a condition occurs which cannot normally be tested by the 

programmer. 

Although the system automatically handles checking and creation of standard 

labels and executes error recovery routines in the case of input/output errors, 

additional procedures may be specified by the COBOL programmer. 

Since these procedures are executred only at the time an error in reading or 

writing occurs, they cannot appear in the regular sequence of procedural state- 

ments. They must be written at the beginning of the Procedure Division in a 

subdivision called DECLARATIVES. Related procedures are preceded by a USE 

sentence or with the key words END DEC LARATIVES. 

The key words DECLARATIVES and END DECLARATIVES must each begin in 

Area A and be followed by a period. No other text may appear on the 

Declaratives at the front of the Procedure Division. 

PROCEDURE DIVISION. 

DECLARATIVES. 

section-name SECTION. USE sentence. 

[paragraph-name. [sentence ] ... ] 

END DECLARATIVES. 

The USE sentence defines the applicability of the associated section of coding. 

A USE sentence, when present, must immediately follow a section header in the 

Declarative portion of the Procedure Division and must be followed by a period 

followed by a space. The remainder of the section must consist of one or more 

procedural paragraphs that define the procedures to be used. The USE sentence 

itself is never executed; rather, it defines the conditions for the execution of the 

USE procedure. 

The format of the USE sentence is: 

ERROR 
USE AFTER STANDARD {EXCEPflON PROCEDURE ON 

file-name ... ... | INPUT | QUTPUT | 1-0. 

The words EXCEPTION and ERROR may be used interchangeably. The 

associated declarative section is executed (by the Perform mechanism) after the 

standard.1-O recovery procedures for the files designated, or after the invalid key 

condition arises on a statement lacking the INVALID KEY clause. A given file- 

name may not be associated with more than one declarative section, but more 

than one file-name may be associated with one USE sentence. 

ND-60.089.03 

s b LA LT b b A2 oo AR e s 

   



Within a declarative section there must be no reference to any non-declarative 
procedure. Conversely, in the non-declarative portion there must be no reference 
to procedure-names that appear in the declaratives section, except that 
PERFORM statements may refer to a USE procedure, or to procedures 

associated with it. 

An exit from a declarative section is inserted by the compiler following the last 
statement in the section. All logical program paths within the section must lead 

to the exit point. 

ND-60.089.03



5.5 

5.5.1 

5-6 

ARITHMETIC STATEMENTS 

General 

There are five arithmetic statements: ADD, SUBTRACT, MULTIPLY, DIVIDE 

and COMPUTE. Any arithmetic statement may be either imperative or 

conditional. When an arithmetic statement includes an ON SIZE ERROR 

specification, the entire statement is termed <conditional, since whether or not 

the size-error condition arises is data-dependent. 

An example of a conditional arithmetic statement is: 

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO 

RECORD-COUNT, DISPLAY ""LIMIT 99 EXCEEDED". 

Note that if a size error occurs (in this case, it is apparent that RECORD-COUNT 

has Picture 99, and cannot hold a value of 100}, both the MOVE and DISPLAY 

statements are executed. Otherwise, the MOVE and DISPLAY statements are 

not executed. 

The three statement components that may appear in arithmetic statements 

(GIVING option, ROUNDED option, and SIZE ERROR option) are discussed in 

detail later in this section. 

Basic Rules for Arithmetic Statements 

1. All data-names used in arithmetic statements must be elementary 

numeric data items that are defined in the Data Division of the 

program, except that operands of the GIVING option may be re- 

port items. Index-names and index-items are not permissible in 

these arithmetic statements. 

2. Decimal point alignment is supplied automatically throughout the 

computation. 

3. Intermediate result fields generated for the evaluation of arithmetic 

expressions assure the accuracy of the result field, except where 

high-order truncation is necessary. 

ND-60.089.03



5.5.2 

5.5.3 

e . i o il e e e e - FERESS S ST T e 

SIZE ERROR Option 

If, after decimal-point alignment and any low-order truncation, the value of a 

calculated result exceeds the largest value which the receiving field is capable of 

holding, a size error condition exists. 

The Size Error option is written immediately after any arithmetic statement, as an 

extension of the statement. The format of the Size Error option is: 

ON SIZE ERROR imperative statement ... 

If the SIZE ERROR option is present, and a size error condition arises, the value 

of the resultant data-name is unaltered and the series of imperative statements 

specified for the condition is executed. 

If the SIZE ERROR option has not been specified and a size error condition 

arises, no assumption should be made about the final result. 

An arithmetic statement, if written with a SIZE ERROR option, is not an 

imperative statement. Rather, it is a conditional statement and is prohibited in 

contexts where only imperative statements are allowed. 

ROUNDED Option 

If, after decimal-point alignment, the number of places calculated for the result is 

greater than the number of places in the data item that is to be set equal to the 

calculated result, truncation occurs unless the ROUNDED option has been 

specified. 

When the ROUNDED option is specified, the least significant digit of the 

resultant data-name has its value increased by 1 whenever the most significant 

digit of the excess is greater than or equal to 5. . 

Rounding of a computed negative result is performed by rounding the absolute 

value of the computed result and then making the final result negative. 

The following chart illustrates the relationship between a calculated result and 

the value stored in an item that is to receive the calculated result, with and 

without rounding. 

Item to Receive Calculated result 

Calculated PICTURE Value After Value After 

Resuit Rounding Truncating 

—12.36 S99v9 —12.4 —12.4 

8.432 9vo 8.4 8.4 

35.6 99v9 35.6 35.6 

65.6 S99V 66 65 
.0055 SVv999 .006 .005 

Nllustration of Rounding 

ND-60.089.03



5.5.4 

5-8 

GIVING Option 

If the GIVING option is written, the value of the data-name that follows the word 

GIVING is made equal to the calculated resuit of the arithmetic operation. The 

data-name that follows GIVING is not used in the computation and may be a 

report item. 

ND-60.089.03 é;



  

  

e et 

5.6 

5.7 

5.7.1 

i b i s vt i e b8 B .l i e . o 4 i il i i . i e it 

RELATIVE INDEXING 

A user reference to an item in a table controlled by an OCCURS clause may be 
expressed with a proper number of subscripts, separated by commas, and the 
whole enclosed in matching parentheses. See the following example: 

TAX-RATE (BRACKET, DEPENDENTS) 
XCODE(1,2) 

where subscripts are ordinary integer decimal data-names, or integer constants, 
or binary integer (COMPUTATIONAL or INDEX) items, or index-names. 

A further case exists, called relative indexing. In this case, a ““subscript’” may be 
expressed as follows: 

+ . 
name __ integer constant 

where a space must be on either side of the plus or minus, and “name” may be 
any proper index-name or index-item. See the following example: 

XCODE(l +3,J—1). 

FILE PROCESSING 

Definition Of Sequential File Organization 

Sequential organization can be used on all types of files. Records are 
differentiated on the basis of their physical position. 

A sequential-organized file may only be accessed sequentially. Records are 
accessed in the order of physical position. 

ND-60.089.03



e e e e B o e R it e e il 

5.7.2 

i i i i b b Nt e et e 17 

Definition Of Relative File Organization 

Relative organization is restricted to disk-based files. Records are differentiated 

on the basis of a relative record number which ranges from 1 to 999,999, or to a 

lesser maximum for a smaller file. Unlike the case of an Indexed file, where the 

identifying key field occupies a part of the data record, relative record numbers 

are conceptual, and are not embedded in the data records. 

A relative-organized file may be accessed either sequentially, dynamically or 

randomly. In sequentiai access mode, records are accessed in the order of 

ascending record numbers. 

In random access mode, the sequence of record access is controlled by the 

program, through the means of placing a number in a relative key item. In 

dynamic access mode, the program may inter-mix random and sequential access 

verb forms at will. 

In the Environment Division, the SELECT entry must specify ORGANIZATION IS 

RELATIVE, and the Access clause format is: 

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC. 

Assign, Reserve, and File Status clause formats are identical to those specified in 

Section 3.2.1.1 of this manual. 

In addition to the usual clauses in the SELECT entry, a clause of the form: 

RELATIVE KEY IS data-name-1 

is required for random or dynamic access mode, or if a START statement exists 

for such a file, even if access mode is sequential. 

Data-name-1 must be described as an unsigned external decimal integer item not 

contained within any record description of the file itself; its type may not be 

binary. 

OTHER SYNTAX CONSIDERATIONS 

The FD entry for a Retative file is the same as for any other file assigned to disk 

(and therefore possessing standard labels). 

Within the Procedure Division, the verbs Open, Close, Read, Write, Rewrite, 

Delete and Start are available. 

ND-80.089.03 

e e e e = S i i bt S s LA e NG it



  

5.7.3 

e - —_— e e e L e el R S il bt 

Indexed Organization File Processing 

DEFINITION OF INDEXED FILE ORANIZATION 

An indexed file organization provides for recording records of a ""data base’ and 

also keeping a directory {called the contro/ index) of pointers that enable direct 

location of records having particular unique key values. An indexed file must be 

assigned to disk-files only. 

A file whose organization is indexed can be accessed either sequentially, 

dynamically or randomly. 

Sequential access provides access to data records in order of ascending values 

of the record key. 

In random access mode, the order of access to records is controlled by the 

programmer. Each record desired is accessed by placing the value of its key in a 

key data item prior to an access statement. 

In the dynamic access mode, the programmer’s logic may alter from sequential 

access to random access, and vice versa, at will. 

SYNTAX CONSIDERATIONS (ENVIRONMENT) 

In the Environment Division, the SELECT entry must specify ORGANIZATION IS 

  

INDEXED, and the Access clause format is: 

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC. 

Assign, Reserve, and File Status clause formats are identical to those specified in 

Section 3.2.1.1 of this manual. 

RECORD KEY CLAUSE 

The format of this clause, which is required, is: 

RECORD KEY IS data-name-1 

where data-name-1 is an item defined within the record descriptions of the 

associated file description, and is a group item, an elementary alphanumeric item 

or a decimal field. A decimal key must have no P characters in its Picture, and it 

may not have a SEPARATE sign. No record key may be subscripted. 

If random mode access is specified, the value of data-name-1 designates the 

record to be accessed by the next Delete, Read, Rewrite or Write statement. 

Each record must have a unique record key value. 

ND-60.089.03



  

  

5-12 

PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES 

The syntax of the OPEN statement (See Section 5.8.17) also applies to Indexed 
organized files, but WITH NO REWIND is prohibited. 

The following table summarizes the available statement types and their 
permissibility in terms of Access mode and Open option in effect. Where X" 
appears, the statement is permissible, otherwise it is not valid under the 
associated Access mode and Open option. 

  

ACCESS Procedure Open Option in Effect 
  

MODE IS Statement Input Output I-0 
  

READ X 
" WRITE X 

SEQUENTIAL REWRITE 
START 
DELETE 
  

READ X 
WRITE X 

RANDOM REWRITE 
START 
DELETE 

e 
B 

D4
 

D 
4 

  

READ X 
WRITE X 

DYNAMIC REWRITE 
START X 
DELETE           P

4
 

P
4
 
bd
 

G|
 

    

In addition to the above statemnts, CLOSE is permissible under all conditions: 
the same format shown in Section 5.8.5 is used, but the reserved word options 
(LOCK, REMOVAL, NO REWIND, REEL, UNIT) are all irrelevant. 

ND-60.089.03



  

  

5.7.4 

et i AL i s e N 

5-13 

File Status Reporting For Indexed Files 

s i e A e A w o N 

Every ISAM call returns a status, it is a word which contains 2 characters, the 
following table summarizes the possible settings: 

  

  

  

  

  

  

                        

LEFT CHARACTER RIGHT CHARACTER 

< i 2 8 

: g | ¢l ¢ | | 
el 8| 2| 3 2l 3| . 5 

- [ N o o 

£ o| X o S| 2| g £ o b=t Q 

el 5| 2| B 5| 5| 5| & | ¢ 
gl § _‘_é g| °| =| = o | @ 

o g g ol ® 2@ q'>; = E @ 

21818 5|9l 5% 3| gk 
ol ~| & | <] W] ©|] ~|] ®| o 

Successful 0 X X 

At end 1 X 

Invalid key 2 X| XXX 

Permanent error 3 X 

Other 9 X X | XX | X|X   
  

The "’00” return status is the normal one 
the ""98" return status depends on the call executed: 

for OPEN 
for CLOSE 
for START 

the other settings are self-explanatory. 

ND-60.089.03 

file does not correspond to given description 
file already closed 
function code is invalid



COBOL VERBS 

The COBOL verbs described below are described in the following sections: 

ACCEPT MULTIPLY 
ADD OPEN 
ALTER PERFORM 
CALL READ ! 
CLOSE REWRITE 
COMPUTE SEARCH 
DELETE SET 
DISPLAY SORT 
DIVIDE START 
EXHIBIT STOP 
EXIT STRING 
GO SUBTRACT 
IF UNSTRING 
INSPECT WRITE 
MOVE 

ND-60.089.03



  

5.8.1 

s e . s e i b A —— s 

5-15 

ACCEPT Statement 

The Accept statement is used to enter data into the computer on a low volume 

basis, from either punched cards or operator key-in at the computer console. 

The format of the Accept statement is: i 

ACCEPT data-name [FROM mnemonic-name] 

Omission of FROM mnemonic-name implies that input is from the terminal. One 

line is read, and as many characters as necessary (depending on the size of the 

named data field) are moved, without change, to the indicated field. 

When input is to be accepted from the console, a system-generated message 

code is typed automatically, execution is suspended, and then after the operator 

enters a response, the program stores the acquired data in the field designed by 

data-name, and normal execution proceeds. 

Following is an example of a form of the ACCEPT statement used to acquire the 

current date, day or time: 

ACCEPT DATE/DAY/TIME Staterment 

The standard date, day or time value may be acquired at execution time by a 

special form of ACCEPT statement: 

O AT 
ACCEPT data-name EROM 4 DAY 

TIME 

m
 

The formats of standard values DATE, DAY and TIME are: 

DATE - a six digit value of the form YYMMDD (year, month, day). 

Example: July 4, 1976 is 760704. 

DAY - a five digit "Julian date” of the form YYNNN where YY is the two 

low order digits of year and NNN is the day-in-year number 

between 1 and 366. 

TIME - an eight digit value of the form HHMMSSFF where HH is from 00 

to 23, MM is from 00 to 59, SS is from 0 to 59, and FF is from 00 

10 99; HH is the hour, MM is the minutes, SS is the seconds, and 

FF represents hundredths of a second. 

The Picture of data-name should be 9(6), 9(5) or 9(8), respectively, for DATE, 

DAY or TIME acquisition, i.e., all the source values are integers. If not, the 

standard rules for a move govern storage of the source value in the receiving 

item (data-name). 

ND-60.089.03 

s Sl it e . e e A A 5 e 8 e 8 8 s s M iy s 5 5 b W By i N -



A L L ameaal A Ll e AN A AL A aa b st 

5.8.2 

5.8.3 

ADD Statement 

The ADD statement adds together two or more numeric values and stores the 

resulting sum. The ADD statement format is: 

{ numeric-literal 

ADD data-name-1 

10 ' : 
{GIVlNG} data-name-n [ROUNDED][SIZE-ERROR-clause] 
  

When the TO option is used, the values of all the data-names {including data- 

name-n) and literals in the statements are added, and the resulting sum replaces 

the value of data-name-n. At least two data-names and/or numeric literals must 

follow the word ADD when the GIVING option is written. 

Examples of proper ADD statements are: 

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED 

ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY. 

The first statement would result in the total sum of INTEREST, DEPOSIT and 

BALANCE being placed at BALANCE, while the second would result in the sum 

of REGULAR-TIME and OVERTIME earnings being placed in item GROSS-PAY. 

ALTER Statement 

The ALTER statement format is: 

ALTER paragraph TO [PROCEED TQ]procedure-name 

and it is used to modify a simple GO TO statement elsewhere in the Procedure 

Division, thus changing the sequence of execution of program statements. 

Paragraph (the first operand) must be a COBOL paragraph that consists of only a 

simple GO TO statement; the ALTER statement in effect replaces the former 

operand of that GO TO by procedure-name. Consider the ALTER statement in 

the context of the following program segment. 

GATE. GO TO MF-OPEN 
MF-OPEN.  OPEN INPUT MASTER-FILE 

ALTER GATE TO PROCEED TO NORMAL. 

NORMAL. READ MASTER-FILE, AT END GO TO EOF-MASTER. 

Examination of the above code reveals the technique of "shutting a gate”, 

- providing for a one-time initializing program step. 

ND-60.089.03



  

  

Q 

5.8.4 

5.8.5 

5-17 

CALL Statement 

The CALL statement format is: 

CALL literal USING data-name... 

Literal is a subprogram name defined as the program-id of a separately compiled 

program. Data names in the Using list are made available to the called 

subprogram by passing addresses to the subprogram; these addresses are 

assigned to the Linkage section items declared in the using list of that 

subprogram. Therefore the number of data-names specified in matching CALL 

and Procedure Division Using lists must be identical. 

Note: 

Correspondence between caller and callee lists is positional, not by identical 

spelling of names. 

CLOSE Statement 

Upon completion of the processing of a file, a CLOSE statement must be 

executed, causing the system to make the proper disposition of the device. 

Whenever a file is closed, or has never been opened, READ or WRITE 

statements cannot be executed properly. 

LOCK 
NO REWIND 

For convenience in processing parts of multi-reel tape files, the file-name may be 

followed by the reserved word REEL or UNIT, in order to advance to the next 

reel without waiting to do so automatically upon encountering the end of the 

current reel of tape. If a file is closed with the REEL or UNIT modifier, further 

input or output is permitted; this type of statement is a reel swap, not a true 

close-down of file access. 

The format of the CLOSE statement is: 

CLOSE file-name J | REEL WITH 

UNIT FOR REMOVAL 

Suffixes and their interpretation are as follows: 

WITH LOCK: further use of the file is prohibited. 

FOR REMOVAL: the reel is disrfiounted from the computer 

WITH NO REWIND: the reel is left mounted, and is available for 

re-opening at a subsequent time. 

However, the reserved word options (WITH NO REWIND or WITH LOCK) are 

not meaningful for files with Relative or Indexed organization. 

ND-60.089.03



5.8.6 

. il b e e e S i T e A s A 

5-18 

COMPUTE Statement 

The COMPUTE statement evaluates an arithmetic expression and then stores the 

result in a designated numeric or report item. 

The format of the COMPUTE statement is: 

COMPUTE data-name-1... [ROUNDED]= 

data-name-2 

numeric-literal [SIZE-ERROR-clause] 

arithmetic-expression 

An example of such a statement is: 

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY * 

(1 + 1.5* (HOURS — 40) / 40). 

An arithmetic expression is a proper combination of numeric literals, data- 

names, arithmetic operators and parentheses. In general, the data-names in an 

arithmetic expression must designate numeric data. Consecutive data-names (or 

literals) must be separated by an arithmetic operator, and there must be one or 

more blanks on either side of the operator. The operators are: 

+ for addition 

— for subtraction ) 

* for multiplication 

/ for division 

Parenthesization may be specified when the normal order of operations is not 

desired. Consider the following expression: 

A+B/(C—D"E) 

Evaluation of the above expression is performed in the following ordered 

sequence: 

1. Compute the product D times E, considered as intermediate result R1. 

2 Compute intermediate result R2 as the difference C — R1. 

3.  Divide B by R2, providing intermediate result R3. 

4 The final result is computed by addition of A to R3. 

Without parentheses, the expression 

A+B/C—-D"E 

is evaluated as: 

R1=B/C 
R2 = A + R1 
R3=D*E 
final result = R2 — R3 

ND-60.089.03 

e Al



sl i i s it it B b n e . e e b s . 

5-19 

When parentheses are employed, the following punctuation rules should be 

used: 

1. A left parenthesis is preceded by one or more spaces. 

2. A right parenthesis is followed by one or more spaces. 

The expression A — B — C is evaluated as (A — B) — C. Uniary operators are 

permitted, see the following example: 

COMPUTEA = +C + —4.6. 
COMPUTEX = —Y 
COMPUTEA, B(l) = C — D (3) 

ND-60.089.03



5.8.7 

5.8.8 

5-20 

DELETE Statement 

DELETE Statement (Relative I-O) 

The format of the DELETE statement is: 

DELETE file-name RECORD 

[INVALID KEY imperative statement . 

For a file in a sequential access mode, the immediately previous action must 

have been a successful READ statement; the record thus previously made 

available is logically removed (or made inaccessible). 

For a file with dynamic or random access mode declared, the removal action 

pertains to whatever record is designated by the value in the RELATIVE KEY 

item (data-name-1). If no such numbered record exists, the Invalid Key condition 

arises. 

DELETE Statement (Indexedl-O) 

The DELETE statement logically removes a record from the Indexed file; the 

format of the statement is: 

DELETE file-name RECORD 

[INVALID KEY imperative statement o 

For a file in the sequential access mode, the last input-output statement 

executed for file-name must have been a successful Read statement; that record 

is deleted. 

For a file having random or dynamic mode access, the record deleted is the one 

associated with the record key; if there is no such matching record, the invalid 

key condition exists, and control passes to the imperative statements in the 

INVALID KEY clause, or to an applicable USE Declaratives section if no 

INVALID KEY clause exists. 

DISPLAY Statement 

The DISPLAY statement provides a simple means of outputting low-volume data 

without the complexities of File Definition; the maximum total number of 

characters to be output is 132. 

The format of the DISPLAY statement.is: 

data-name} 

DISPLAY literal [UPON mnemonic-name] 

When the UPON suffix is omitted, it is understood that output is destined to be 

printed on the standard display device. 

Values output are either literals, figurative constants (one character), or data 

fields; if a data item operand is packed, it is displayed as a series of digits 

followed by a separate trailing sign. 

ND-60.089.03 

(
"
\
 

 



  

5.8.9 

5.8.10 

5-21 

DIVIDE Statement 

The DIVIDE statement computés a quotient of two numeric values and stores it. 

The format of the Divide statement is: 

data-name-1 data-name-2 

DIVIDE { numeric-literal- 1} { |NTO}{ numeric-literal-2 

  

[GIVING data-name-3][ROUNDED][SIZE-ERROR-clause] 

The BY-form signifies that the first operand (data-name-1 or numeric-literal-1) is 

the dividend (numerator), and the second operand (data-name-2 or 

numeric-literal-2) is the divisor, or denominator. If GIVING is not written in this 

case, then the first operand must be a data-name, in which the quotient is 

stored. 

The INTO-form signifies that the first operand is the divisor and the second 

operand is the dividend. If GIVING is not written in this case, then the second 

operand must be a data-name, in which the quotient is stored. 

Division by zero always causes a size-error condition. 

EXHIBIT Statement 

The execution TRACE mode may be set or reset dynamically. When set, 

procedure-names are printed in the order in which they are executed. 

Execution of the READY TRACE statements sets the TRACE mode to cause 

printing of every section and paragraph name each time it is entered. The RESET 

TRACE statement inhibits such printing. Possession of a printed list of procedure 

names in the order of their execution is invaluable in detection of a program 

malfunction; it aids in detection of the point at which actual program flow 

departed from the expected program flow. Another debugging feature may be 

required in order to reveal critical data values at specifically designated points in 

the procedure. The EXHIBIT statement provides this facility. 

The statement form 

literal 

EXHIBIT NAMED data-name} 

produces a printout of values of the indicated literal, or data items in the format 

data-name = value. 

Statements EXHIBIT, READY TRACE and RESET TRACE are extensions to 
ANS-74 standard COBOL designed to provide a convenient aid to program 

debugging. 

Programming Note: It is often desirable to include such statements on source 

lines that contain D in column 7, so that they are ignored by the compiler unless 

WITH DEBUGGING MODE is included in the SOURCE-COMPUTER paragraph. 

ND-60.089.03



o o O e S A S P 

5.8.11 

5.8.12 

5-22 

EXIT Statement 

The EXIT statement is used where it is necessary to provide an end-point for a 

procedure. 

The format for the EXIT statement is: 

paragraph-name. EXIT. 

EXIT must appear in the source program as a one-word paragraph preceded by a 

paragraph-name. An exit paragraph provides an end-point to which preceding 

" statements may transfer control if it is decided to bypass some part of a section. 

EXIT PROGRAM STATEMENT 

The statement EXIT PROGRAM, appearing in a called subprogram, causes 

control to be returned to the next executable statement after CALL in the calling 

program. This statement must be a paragraph by itself. 

Programming Note: Any caller to a COBOL subprogram must assure that 

argument pointers (to be used as pointers to the subprogram’s linkage items) are 

proper word addresses. 

When a COBOL CALL is executed, the arguments (or parameters) must be word 

aligned items; the caller receives the effective word addresses as developed by 

the COBOL run-time routines. 

GO TO Statement 

The GO TO statement transfers control from one portion of a program to 

another. It has the following general format: . 

GO TO procedure-name [... DEPEN DING ON data-name] 

  

The simple form GO TO procedure-name provides the basic means of 

transferring the path of flowto a designated paragraph or section. 

The more general form designates n procedure-names as a choice of n paths to 

transfer to, if the value of data-name is 1 to n, respectively. Otherwise, there is 

no transfer of control and execution proceeds in the normal sequence. 

ND-60.089.03



  

    

5.8.13 

5-23 

IF Statement 

The IF statement permits the programmer to specify a series of procedural 
statements to be executed in the event that a stated condition is true. Optionally, 
an alternative series of statements may be specified for execution if the condition 
is false. The general format of the IF statement is: 

NEXT SENTENC 
IF condition { statement(s)-1 e [ELSE statement(s)-2 ...] 

Examples of IF statements: 

1. IF BALANCE = 0 GO TO NOT-FOUND. 

2. IFX<1.743 MOVE ‘M’ TO FLAG. 

3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 
TO SKIP-COUNT ELSE GO TO BYPASS. 

The first series of statements is executed if, and only if, the designated condition 
is true. The second series of statements is executed if, and only if, the 
designated condition is false. The second series (ELSE part) is terminated by a 
sentence-ending period. If there is no ELSE part to an IF statement, then the first 
series of statements must be terminated by a sentence-ending period. Refer to 
Appendix F for discussion of nested IF statements. 

Regardless of whether the condition is true or false, the next sentence is 
executed after execution of the appropriate series of statements, unless a GO TO 
is contained in the imperatives that are executed, or unless the nominal flow of 
program steps is superseded because of an active Perform statement. 

A condition is either a simple condition or a compound condition. A compound 
condition may not be parenthesized explicitly. A simple relational condition has 
the following structure: 

operand-1 relation operand-2 

where ""operand”’ is a data-name, literal, or figurative-constant. 

A compound condition may be formed by connecting two conditions by the 
logical operator AND or OR, e.g. A< B OR C = D. Refer to Appendix E 
for further permissible forms involving parenthesization, NOT, or ""abbreviation”. 

The term relation has three basic forms, expressed by the relational symbols 
equals, less than, or greater than (i.e., = or <or >). 

Another form of relation that may be used involves the reserved word NOT, 
preceding any of the three relational symbols. In summary, the six relations in 
conditions are: 

Relation Meaning 

= is equal to 
< is less than 
> is greater than 
NOT = is not equal to 
NOT < is greater than, or equal to 
NOT > is less than, or equal to



5-24 

The reserved words AND or OR permit the specification of a series of relational 

tests, as follows: 

a. Individual relations connected by AND specify a compound condition 

that is met {true) only if all the individual relationships are met. 

b. Individual relations connected by OR specify a compound condition that 

is met (true) if any of the individual relationships are met. 

The following is an example of a compound condition containing both AND and 

OR connectors. Refer to Appendix E for formal specification of evaluation rules. 

IFX = YAND FLAG = 'Z’ OR SWITCH = 0 GO TO PROCESSING. 

In the above example, execution will be as follows, depending on various data 

values. 

Data Value Does Execution go 

X Y FLAG SWITCH to PROCESSING? 

10 10 Z' 1 Yes 

10 1 2’ 1 No 

10 11 ‘Z' 0 Yes 

10 10 ‘p’ 1 No 

6 3 'p’ 0 Yes 

6 6 p’ 1 No 

Usages of reserved word phrasings EQUAL TO, LESS THAN, and GREATER 

THAN are accepted equivalents of = < > respectively. Any form of the relation 

may be preceded by the word IS, optionally. 

Methods of Performing Comparisons 

Numeric Comparisons: 

The data operands are compared after alignment of their decimal 

positions. The results are as defined mathematically, with any negative 

values being less than any positive value. An index-name or index item 

may appear in a comparison. 

Character Comparisons: 

Non-equal length comparisons are permitted, with spaces being 

assumed to extend the length of the shorter item, if necessary. 

Relationships are defined in the ASCII code; in particular, the letters A-Z 

are in an ascending sequence, and digits are less than letters. Refer to 

Appendix C for all ASCII character representations. 

ND-60.089.03 

il e el eyl ot B e M T et e AN A S R



el i A b ket o et 

  

  

  

    

5-25 

Returning to our discussion of simple conditions, there are three additional forms 

of a simple condition, in addition to the relational form, namely: class test, 
condition-name test (88}, and sign test. 

A class test condition has the following syntactical format: 

' NUMERIC 
data-name IS [NOT] ALPHABETI 

This condition specifies an examination of the data item content to determine 
whether all characters are proper digit representations (when the test is for 
NUMERIC} or only alphabetic or blank space characters exist (when the test is 
for ALPHABETIC). The NUMERIC test is valid only for a group, decimal, or 
character item. The ALPHABETIC test is valid only for a group or character item 
(Picture an form). 

A sign test has the following syntactical format: . 

data-name IS [NOT] {NEGATIVE |ZERO | POSITIVE} 

This test is equivalent to comparing data-name to zero in order to determine the 
truth or falsity of the stated condition. 

A condition-name test is expressed by the following syntactical format: 

condition-name 

where condition-name is defined by a level 88 data division entry. 

ND-60.089.03



5.8.14 INSPECT Statement 

The INSPECT statement enables the programmer to examine a character-string 
item. Options permit various combinations of the following actions: 

(a) counting appearances of a specified character, 

{b) mapping a specified character into an alternative. 

“{c) qualifying and limiting the above actions by keying those actions 
to the appearance of other specific characters. 

The format of the INSPECT statement is: 

INSPECT data-name-1 [TALLYING-clause][REPLACING-clause] 

where TALLYING-clause has the format 

CHARACTERS 
TALLYING data-name-2 FOR ALL | LEADING operand-3 

[BEFORE | AFTER INITIAL operand-4] 

and REPLACING-clause has the format 

CHARACTERS 
REPLACING ALL | LEADING | FIRST operand-5f BY operand 6 
  

BEFORE | AFTER INITIAL operand-7} 

In the above formats, operand-n may be a quoted literal of length one, a 
figurative constant signifying a single character, or a data-name of an item 
whose length is one. 

Tallying-clause and Replacing-clause may not both be omitted; if both are 
present, Tallying-clause must be first. 

Tallying-clause causes character-by-character comparison, from left to right, of 
data-name-1. When an AFTER INITIAL operand-4 subclause is present, the 
counting process begins only after detection of a character in data-name-1 
matching operand-4. If BEFORE INITIAL operand-4 is specified, the counting 
process terminates upon encountering a character in data-name-1 which 
matches operand-4. 

Replacing-clause causes replacement of characters under specified conditions. If 
BEFORE INITIAL operand-7 is present, replacement does not continue after 
detection of a character in data-name-1 matching operand-7. If AFTER INITIAL 
operand-7 is present, replacement does not commence until detection of a 
character in data-name-1 matching operand-7. 

When both TALLYING and REPLACING clauses are present, the two clauses 
behave as if two INSPECT statements were written, the first containing only a 
TALLYING clause and the second containing only a REPLACING clause. 

In developing a TALLYING value, the final result in data-name-2 is equal to the 
tallied count plus the initial value of data-name-2. In the first example below, the 
item COUNTX is assumed to have been set to zero initially. 

ND-60.089.03 

 



  

  

5-27 

INSPECT ITEM TALLYING COUNTX FOR ALL "L REPLACING LEADING "A” 
BY "E"" AFTER INITIAL"'L". ' 

Original (ITEM): SALAMI ALABAMA 
Result (ITEM): SALEM!  ALEBAMA 
Final (COUNTX): 1 1 

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION 

Original (WORK-AREA): NEW YORK N Y (length 16) 
Original (DELIMITER): {space) 
Original (TRANSFORMATION): . (period) 
Result (WORK-AREA): NEW.YORK..N.Y... 

ND-60.089.03



5.8.16 

5-28 

MOVE Statement 

The MOVE statement is used to move data from one area of main storage to 

another and to perform conversions and/or editing on the data that is moved. 

The MOVE statement has the following format: . 

MOVE data-name-1 TQ data-name-2 [data-name-3...] 

literal . 

The data represented by data-name-1 or the specified literal is moved to the area 

designated by data-name-2. Additional receiving fields may be specified 

(data-name-3 etc.) When a group item is a receiving field, characters are moved 

without regard to the level structure of the group involved and without editing. 

Subscripting or indexing associated with data-name-2 is evaluated immediately 

before data is moved to the receiving field. The same is true for other receiving 

fields (data-name-3, etc., if any). But for the source field, subscripting or 

indexing (associated with data-name-1) is evaluated only once, before any data is 

moved. 

Toillustrate, consider the statement 

MOVE A (B) TO B, C (B), 

which is equivalent to 

MOVE A (B) TO temp 
MOVE temp TO B 
MOVE temp TO C (B) 

where temp is an intermediate result field assigned automatically by the 

compiler. 

The following considerations pertain to moving items: 

1. Numeric (external or internal decimal, binary, numeric literal, or 

ZERO) or alphanumeric to numeric or report: ’ 

a. The items are aligned by decimal points, with generation 

of zeros or truncation on either end, as required. 

b. When the types of the source field and receiving field 

differ, conversion to the type of the receiving field takes 

place. Alphanumeric source items are treated as unsigned 

integers with Usage Display. 

c. The items may have special editing performed on them 

with suppression of zeros, insertion of a dollar sign, etc., 

and decimal point alignment, as specified by the receiving 

area. 

ND-60.089.03



  

5-29 

2. Non-numeric source and targets: 

a. The characters are placed in the receiving area from left to 
right (unless justified right applies). 

b. If the receiving field is not completely filled by the data 
being moved, the remaining positions are filled with 
spaces. 

c. If the source field is longer than the receiving field, the 
move is terminated as soon as the receiving field is filled. 

3. When overlapping fields are involved, results are not predictable. 

4. Appendix G shows, in table form, all permissible combinations of 
source and receiving field types. 

Examples of Data Movement (b represents blank): 

Source Field Receiving Field 

PICTURE Value PICTURE Value before Value after 

MOVE MOVE 

99va9 1234 S99v99 9876 — 1234 + 
99va9 1234 99Vv9 987 123 
S9vV9 12— 99Vv999 98765 01200 + 
XXX A2B XXXXX YOX8W A2Bbb 
8va9 123 99.99 87.65 01.23 

ND-60.089.03



  

  

5.8.16 

5.8.17 

5-30 

MULTIPLY Staterment 

The MULTIPLY statement computes the product of two numeric data items and 
stores it. 

The format is: 

data-name-1 
MULTIPLY { numeric-literal-1 

data-name-2 [GIVING data-name-3] 
BY { numeric-literal-2  GIVING data-name-3 

[ROUNDED] [SIZE-ERROR-clause] 

When the GIVING option is omitted, the second operand must be a data-name; 

the product replaces the value of data-name-2. For example, a new BALANCE 
value is computed by the statement MULTIPLY 1.03 BY BALANCE. {Since this 
order might seem somewhat unnatural, it is recommended that GIVING always 
be written.) 

OPEN Statement 

The OPEN statement must be executed prior to commencing file processirig. The 
format of an OPEN statement is: 

INPUT 
OPEN |- O file-name ... 

OUTPUT 

For an INPUT file, opening initiates reading the file's first records into memory, 
so that subsequent Read statements may be executed without waiting. 

For an OUTPUT file, opening makes available a record area for development of 
one record, which will be transmitted to the assigned output device upon the 
execution of a Write statement. 

Failure to precede (in terms of time sequence) file reading or writing by the 
execution of an Open statement is a serious execution-time error which will 
cause abnormal termination of a program run. 

An |-O opening is valid only for a random mass-storage file; it permits use of the 
REWRITE statement for modified records. 

ND-60.089.03



    

5.8.18 

o A A e W ool AL At e bl 0.2 e i b K e i R e Bl T A 

5-31 

PERFORM Statement 

The PERFORM statement permits the execution of a separate body of program 
steps. Two formats of the PERFORM statement are available: 

Option 1 

integer 
PERFORM range [{ data-name} TIMES] 

Option 2 

PERFORM range [VARYING data-name FROM 
amount-1 BY amount-2 UNTIL] condition. 

In the above syntactical presentation, the following definitions are assumed: 

a. Range is a paragraph-name, a section-name, or the construct 
procedure-name-1  THRU procedure-name-2. (THROUGH is 

synonymous with THRU.) 

b. The generic operands amount-1 and amount-2 may be a numeric 
* literal or data-name. In practice, these amount specifications are 
frequently integers, or data-names that contain integers, and the 
specified data-name is used as a subscript within the range. 

In Option 1, the designated range is performed (i.e., executed remotely) a:fixed 
number of times, as determined by an integer or by the value of an integral data- 
item. 

In Option 2, the range is performed a variable number of times, in a step-wise 
progression, varying from an initial value of data-name = amount-1, with 
increments of amount-2, until a specified condition is met. 

In an Option 2 Perform, evaluation of the next value of data-name is done on a 
dynamic basis so that, at least in theory, amount-2 might be different from time 
to time (only if changed within the designated range, of course). 

The condition in an Option 2 Perform is evaluated prior to each attempted 
execution of the range. Consequently, it is possible to not Perform the range, if 
the condition is met at the outset. 

At run-time, it is illegal to have concurrently active perform ranges whose 
terminus points are the same. 

ND-60.089.03



  

-
 

5.8.19 READ Statement 

READ Statement (Sequential I-O) 

The format of READ statement is: 

READ file-name RECORD [INTO data-name] 
[AT END imperative statement ...] 

The READ statement makes available the next logical data record of the 
designated file from the assigned device. 

Since at some time the end-of-file will be encountered, the user should include 
the AT END clause. The reserved word END is followed by any number of 
imperative statements, all of which are executed only if the end-of-file situation 
arises. The last statement in the AT END series must be followed by a period, to 
indicate the end of the sentence. If end-of-file occurs but there is no AT END 
clause on the READ statement, an applicable Declarative procedure is 
performed; if neither AT END nor Declarative exists, a run-time 1/Q error is 
considered to have occurred. 

When there does exist a data record to be read, successful execution of the 
READ statement is immediately followed by execution of the next sentence. 

When more than one 01 is subordinate to a file definition, the user must be able 
to distinguish between the types of records that are possible, in order to 
determine exactly which type is currently available. This requirement can be 
achieved by a data comparison, using an IF statement to test a field which has a 
unique value for each type of record. 

The INTO option permits the user to specify that a copy of the data record is to 
be placed into a designated data field immediately after the READ statement. 
The data-name must not be defined in the file itself. 

In the case of a blocked input file, not every READ statement performs a physical 
transmission of data from an external storage device; instead, READ may simply 
obtain the next logical record from an input buffer. 

ND-60.089.03



  

e . B LA A kAL e 

5-33 

READ Statement (Relative I-0O) 

Format 1: 

READ fite-name [NEXT] RECORD {INTO data-name] 
[AT END imperative statement ... ] 

Format 2: 

READ file-name RECORD [INTO data-name] 
[INVALID KEY imperative statement ....] 

Format 1 must be used for all files in sequential access mode. The NEXT phrase 

must be present to achieve sequential access if the file's declared mode of 

access is Dynamic. 

Format 2 is used to achieve random access (declared mode of access either 

Random or Dynamic). 

If a Relative Key is defined (in the file's SELECT entry), successful execution of a 

format 1 READ statement updates the contents of the RELATIVE KEY item 

(""data-name-1"') so as to contain the record number of the record retrieved. 

For a Format 2 READ, the record that is retrieved is the one whose relative 

record number is pre-stored in the RELATIVE KEY item (’data-name-1"}). If no 

such record exists, however, the “Invalid Key” condition arises, and is handles 

b y 
(a) the imperative statements given in the INVALID KEY portion of the READ, or 

(b) an associated Declarative section, or (c) by the run-time error handler if 

neither of the above is specified. 

READ Statement (Indexed I-O) 

Format 1 (Sequential Access): 

READ file-name [NEXT] RECORD [INTQ data-name] 
[AT END imperative statement ...] 

Format 2 (Random or Dynamic Access): 

READ file-name RECORD [INTO data-name] [KEY IS data-name-2] 
T [INVALID KEY imperative statement ...] 

Format 1 with the NEXT option is used for sequential reads of a DYNAMIC 

access mode file. The AT END clause is executed when the logical end-of-file 

condition arises. If this clause is not written in the source statement, an 

appropriately assigned USE Declarative section is given control at end-of-file 

time. 

In Format 2, the INVALID KEY clause specifies action to be taken if the access 

key value does not refer to an extant key in the file. 

The "KEY IS” clause designates the record key (declared in the file’s SELECT 

entry) as the "current key of record™. If no "KEY 1S" clause is written in a READ 

statement, then the (prime)} record key is assumed to be the key of record, for 

non-sequential access. The user must ensure that a valid key value is in the 
designated key field prior to execution of a random-access Read. 

ND-60.089.03 

e e kAL i e B s et AN e et . i . e e s s e ——— ot i



e e B e e T s e b i ) . 1 S SN i, P . A b SRS 

5-34 

5.8.20 REWRITE Statement 

REWRITE Statement (Sequential I-O) 

The REWRITE statement replaces a logical record on a sequential disk file. The 

format is: 

REWRITE record-name [FROM data-name] 

At the time of execution of this statement, the file to which record-name belongs 

must be open for |-O operations {See OPEN Statement, Section 6.8.17). 

If a FROM part is included in this statement, the effect is as if MOVE data-name 

TO record-name were executed just prior to the REWRITE. Execution of 

REWRITE replaces the record that was accessed by the most recent READ 

statement, said prior read must have been completed successfully, as indicated 

by the File Status indicator. (The file status indicator is updated by execution of 

REWRITE.) : 

REWRITE Statement (Relative I-O) 

The format of the REWRITE statement is: 

REWRITE record-name [FROM data-name] 
[INVALID KEY imperative statement] 

For a file in sequential access mode, the immediately previous action must have 

been a successful READ: the record thus previously made available is replaced in 

the file by executing REWRITE. 

For a file with dynamic or random access mode declared, the record that is 

replaced by executing REWRITE is the one whose ordinal number is pre-set in 

the RELATIVE KEY item {(data-name-1). If no such item exists, the "Invalid Key” 

condition arises. 

REWRITE Statement (IndexedI-O) 

The REWRITE statement logically replaces an existing record, the format of the € 

statement is: - 

REWRITE record-name [FROM data-name] 
[INVALID KEY imperative statement ...] 

The last READ statement must have been successful in order for a REWRITE 

statement to be valid. If the value of the record key in record-name (or 

corresponding part of data-name, if FROM appears in the statement) does not 

equal the key value of the immediately previous read, or if that previous read was 

unsuccessful, then the invalid key condition exists and the imperative statements 

are executed, if present; otherwise an applicable USE Declaratives section is 

executed. 

ND-60.089.03 é



  

5.8.21 

b At e i i S e i S . S Bt NI e T T Al 

5-35 

SEARCH Statement 

A linear search of a table may be done using the SEARCH statement; its general 
formis: 

SEARCH table [VARYING identifier | index-name] 

[AT END imperative-statement-1] 

{ WHEN condition-1 NEXT SENTENCE } 
{ imperative-statement-2 } 

"Table” is the name of a data-item having an OCCURS clause that includes an 
INDEXED-BY list; “"'table”” must be written without subscripts or indexes because 
the nature of the SEARCH statement causes automatic variation of an index- 
name associated with a particular table. 

There are four possible “'varying”’ cases: 

(a) NO VARYING phrase — — the first-listed index-name for the table 
is varied. 

(b} VARYING index-name-in-a-different-table — — the first-listed 
index-name in table’s definition is varied, implicitly, and the index- 
name listed in the VARYING phrase is varied in like manner, 
simultaneously. 

{c) VARYING index-name-defined-for table —— this specific -index- 
name is the only one varied. 

{(d) VARYING integer-data-item-name — — both this data-item and 
the first-listed index-name for table are varied, simultaneously. 

The term variation has the following interpretation: 

1. The initial value is assumed to have been established by an earlier 
statement such as SET. 

2. If the initial value exceeds the maximum declared in the applicable 
OCCURS clause, the SEARCH operation terminates at once, and 
if an AT END phrase exists, the associated imperative statement-1 
is executed. 

3. If the value of the index is within the range of valid indexes (1, 2, 
. up to and including the maximum number of occurrences), 

then each WHEN-condition is evaluated until one is true or all are 
found to be false. If one is true, its associated imperative state- 
ment is executed and the SEARCH operation terminates. 

If none is true, the index is incremented by one and step (3} is 
repeated. Note that incrementation of index applies to whatever 
item and/or index is selected according to rules a-d. 

The logic of a SEARCH is depicted in the following chart. 

ND-60.089.03



5--36 

   
    

o 
7 ’ 

j/ may be / 

/7 null / 
/ ! 

/ . / 
  

imperative- 

statement-1 [ 7 
      

  

   
    

   

WHEN- 

condition-1 

imperative- Sl Next 

statement-2 I~ Verb 

      

       
    

   

WHEN - 

condition-2 

- 
Increment 

indexes 

imperative- . 
statement-3 

      

F 

      
    
  

SEARCH ALL STATEMENT 

Another form of the SEARCH statement (SEARCH ALL) operates on ordered 

tables of information. An ordered table is one whose description includes an 

OCCURS clause containing a KEY clause: 

OCCURS integer TIMES 

ASCENDING 
{ DESCENDING KEY IS data-name... e 

INDEXED BY index-name.... 

Technically, the ASCENDING or DESCENDING KEY clause is required for a 

non-linear search of a table to be able to exploit the known ordering of data 

using an optimum "'binary search” method however, in NORD—10 COBOL the 

key clause is not mandatory. 

The SEARCH ALL statement is different from the other form in the following 

respects: 

1. Only one WHEN clause is permitted. 

2. On the WHEN condition, the only relational operator permitted is 

= or {IS) EQUAL TO. 

3. On the WHEN condition, the only {ogical operator permitted is 
AND; use of OR is prohibited. 

ND-60.089.03



i P sl 

  

5.8.22 

ESTF PRSSCPEP e i o L i e R A S i b, i i K s st il b 0 i o M, Al i it .+ 

5--37 

4, On the WHEN condition, if condition-names are included, they 

must be only single-valued (the compiler does not enforce this ruie 

— — itis a user response). 

5. The first index-name associated with named “table” is set to 1 

automatically at the beginning of the SEARCH ALL process. 

To summarize, format 2 of the SEARCH statement is: 

SEARCH ALL table [AT END imperative-statement] 

WHEN simple-condition-2 [AND simple-condition-3] 

{NEXT SENTENCE | imperative-statement-2 ...} 

SET Statement 

The SET statement permits the manipulation of index-names, index items, or 
binary subscripts for table-handling purposes. There are two formats: 

  

Format 1: 

index-name-1 index-name-2 
SET index-item-1 .10 index-item-2 

data-name-1 data-name-2 
integer-2 

Format 2: 

index-name-4 
index-name-3 UPBY index-item-4 

SET index-item-3 (...]DOWN BY_ data-name-4 
integer-4 

Format 1 is equivalent to moving the ""TO” value (i.e. integer-2) to muitiple 
receiving fields written immediately after the verb SET. 

Format 2 is equivalent to reduction (DOWN) or increase (UP) applied to each of 
the quantities written immediately after the verb SET: the amount of the 
reduction or increase is specified by a name or value immediately following the 

word BY, 

In any SET statement, data-names are restricted to binary items, except that an 
integer decimal item may precede the word TO. 

ND-60.089.03



5.8.23 SORT Statement 

One of the most fundamental and frequently required business data processing 
techniques is file sorting, for often data is collected or produced in one order but 
required to be processed or reported in a different order. The COBOL SORT 
feature necessitates a sort-file-definition in the File Section and a SORT state- 
ment in the Procedure Division. If required, two special statements may also be 
used to build a file to be sorted or to retrieve ordered records at the final stage of 

sorting. 

Interacting with the SORT subsystem, a COBOL object program may modify, 
insert, delete or summarize records during the initial or final phases of the sorting 

operation. 

To use the SORT feature, the programmer provides sort-file definitions (having 
the special level indicator SD). There must be a SELECT sentence in the 
Environment Division for any SD-file. In a SD-entry, only the RECORD 
CONTAINS and DATA RECORDS clauses may appear. In the Procedure 
Division, the executable SORT statement initiates a sorting operation. 

The format of this statement is: 

ASCENDING 
SORT sort-file-name ON {DESCENDING} KEY {data-name}... 

USING fite-name-1 
INPUT PROCEDURE IS range-1 } 

GIVING fite-name-2 
OUTPUT PROCEDURE IS range-2 

where ranges are defined as section-name-1[THRU section-name-2]. The 
following discussions define the syntatic components of the SORT statement. 

ASCENDING AND DESCENDING KEYS 

ASCENDING and DESCENDING specify whether the records are to be sorted 
into an ascending or descending sequence based on one or more sort keys. The 
sequence specified is applicable to all sort keys immediately following the 
keyword ASCENDING or DESCENDING. Both ASCENDING and DESCENDING 
may be specified in the same statement for different keys. Example; 

SORT SFILE ASCENDING DEPARTMENT, DESCENDING RATE ... 

Sort keys must not be goverened by an OCCURS clause {which would 
necessitate subscripting). The appropriate collating sequence, depending on key 
type, is used for each key. Sort keys are those data-names contained in the KEY 
clause of the SORT statement; all such names must be defined in record(s) 
subordinate to the sort-file-name. The major sort key is the first one in the KEY 
clause. Up to five sort keys may be defined per SORT. Every record which is 
listed in the DATA RECORDS clause of the sort-file must contain within its 
Record Description the KEY item data-name-1, data-name-2, etc.; each of the 
KEY items must have the same relative position in every one of the records. No 
two sort keys should overlap. A pamcular data item may be used once only in 

the KEY description. 

ND-60.089.03



  

5-39 

SORT USING FILE-NAME-1 

USING indicates that the records to be sorted are those of the files named in the 

USING clause and that they are all to be passed to the sorting operation as one 

input file. These filels) will be automatically opened, read, and closed; the 

programmer must not attempt to do so himself. File-name-1 is defined by a FD 

entry, not a sort-file-definition. 

SORT INPUT PROCEDURE 

INPUT PROCEDURE indicates that the programmer has written an input 

procedure to process records before sorting and has included the procedure in 

the Procedure Division in the form of one or more distinct sections. The input 

procedure passes records one at a time to the SORT system after it has 

completed its processing. In other words, the file to be sorted is built up by 

procedural statements in the specified range. The input procedure can include 

any statements needed to select, create, or modify records. Control must not be 

passed to the input procedure except by a SORT statement, because RELEASE 

statements (see below) have no meaning unless they are controlled by a SORT 

statement. The input procedure must not contain any SORT statements and 

must be fully “’self-contained”, in the sense that execution is not passed outside 

the range except to revert to the SORT system. The input procedure must 

incorporate three specific functions: 

1. It must build the records that are to be sorted, one at a time, in the 

data record that has been described for the sort-file. This can be 

accomplished by using statements such as READ ...INTO ...or 

MOVE. If the input is to come initially from a file, the program 

must open that file prior to executing the SORT statement. 

2. Once a record has been built, the input procedure must make that 

record available to the sorting operation by means of the 

* RELEASE statement, after which the record just built is no longer 

available. Either step 1 or step 3 is next. 

3. When all the records have been released, control must pass to the 

last statement in the procedure in order to terminate the 

procedure. The EXIT statement provides a means of achieving this 
return to the SORT subsystem. 

RELEASE STATEMENT 

The RELEASE statement, which can only appear in an input procedure, causes 

one record to be transferred to the sorting operation. If an input procedure is 

specified, the RELEASE statement must be included in that procedure. The 

format of the RELEASE statement is: 

RELEASE record-name [FROM data-name] 

where record-name is one of the data records in a sort-file-definition. 

ND-60.089.03



5-40 

SORT GIVING FILE-NAME-2 

GIVING indicates that, after the records have been sorted, they are to be written 
as a file on file-name-2. If the programmer specifies the GIVING option all 
records that have been sorted will be placed on one file. This file will be 
automatically opened, written, and closed by the SORT system, the programmer 
must not attempt to do so himself. File-name-2 is defined by a FD entry, not a 

sort-file definition. 

SORT OUTPUT PROCEDURE 

OUTPUT PROCEDURE indicates an output procedure to process records after 
they have been sorted and are available finally in merged order. The output 
procedure returns the records one at a time from the SORT system after they 
have been sorted. In this case, the specified procedure retrieves the records in 
the order implied by the sort keys. The output procedure may consist of any 
statements needed to select, modify, or copy records being returned (one at a 
time, in sorted order) from the sort-file. Control must not be passed to the output 
procedure except by a SORT statement, since RETURN statements are meaning- 
less unless controlled by a SORT statement. The output procedure must not 
include any SORT statements and must be self-contained. The programmer 
must write the output procedure so that it incorporates three specific functions: 

1. It must obtain sorted records, one at a time, by means of the 
RETURN statement. Once a record has been returned, the 
previously returned record is no longer available. 

2. It performs suitable output operations on each record returned. In 
order to produce an output file, the output procedure must 
properly open, written, and close it. 

3. When the SORT system has returned all records and the output 
procedure attempts to execute another RETURN statement (as in 
Step 1), the AT END clause of the RETURN statement is 
executed. The imperative statement in the AT END clause must 
ultimately pass control to the last statement of the output 
procedure in order to terminate the entire SORT operation. The 
EXIT statement is the usual means of achieving this termination. 

RETURN STATEMENT 

The RETURN statement causes individual records to be obtained from the 
sorting operation after all the records have been sorted, and it indicates what 
action is to be taken with regard to each. The format of the RETURN statement 

is: 

RETURN sort-file-name [INTO data-name] 

[ATEND imperative-sta.tement o] 

Note that, as in the READ statement, data is obtained by referring to the file- 
name. Data processing (as required in Step 2, above) employs appropriate 
record, group, and elementary item names contained in the sort-file record 

definition. 

ND-60.089.03



5.8.24 

5-41 

START Statement 

START Statement (Relative -0} 

The format of the START statement is the same for a Relative file as for an 

Indexed file: 

GREATER THAN 
START file-name KEY IS NOT <K data-name 

EQUALTO 
NOT LESS THAN 

[INVALID KEY imperative statement ...] 

Execution of this statement specifies the beginning position for reading 

operations; it is permissible only for a file whose access mode is defined as 

sequential or dynamic. Data-name may only be that of the previously declared 

RELATIVE KEY item. When executing this statement, the associated file must be 

currently openin INPUT or I-O mode. 

START Statement (Indexed [-O) 

The START statement enables an Indexed organized file to be positioned for 

reading at a specified key value. This is permitted for files open in either 

sequential or dynamic access modes. The format of this statement is: 

GREATER THAN 
START file-name | KEYIS NOT LESS THAN | data-name 

EQUALTO 
NOT < 

[INVALID KEY imperative statement ....] 

Data-name must be a declared record key and the value to be matched by a 

record in the file must be pre-stored in it. When executing this statement, the file 

must be open in the input or I-O mode. 

If the KEY phrase is not present, equality between a record in the file and the 

record key value is sought. If key relation GREATER or NOT LESS is specified, 

the file is positioned for next access at the first record greater than, or greater 

than or equal to, the indicated key value. 

If no matching record is found, the imperative statements in the Invalid Key 

clause are executed, or an appropriate USE Declarative section is executed. 

ND-60.089.03



5.8.25 

5-42 

STOP Statement 

The STOP statement is used to terminate or delay execution of the object 
program. 

The format of this statement is: 

RUN 
sTOP literal 

STOP RUN terminates execution of a program, returning control to the 
operating system. 

The form STOP literal causes the specified literal to be displayed on the console, 
and execution to be suspended. Execution of the program is resumed only after 
operator intervention. Presumably, the operator performs a function suggested 
by the content of the literal, prior to resuming program execution. 

ND-60.089.03 

 



e £ i s e e b b B L i et W s W St b o T i bt e o i b e e e o i i 

  

5-43 

5.8.26 STRING Statement 

The STRING statement allows one to concatenate multiple sending data item 

values into a single receiving item. The general format of this statement is: 

operand-2 

STRING operand-1.. DELIMITED BY 
SIZE 

INTO identifier-1 [WITH POINTER identifier-2] 

[ON OVERFLOW imperative-statement] 

In this format, the term operand means a literal, figurative-constant, or data- 

name. "ldentifier-1" is the receiving data-item name. 

If no POINTER phrase exists, the default value of the logical pointer is one. The 

@ logical pointer value designates the beginning position of the receiving field into 

which data placement begins. During movement to the receiving field, the 

criteria termination of an individual source is controlled by the 

“DELIMITED BY "’ phrase: 

DELIMITED BY SIZE: the entire source field is moved (unless the 

receiving field becomes full). 

DELIMITED BY operand-2: The character string specified by operand-2 

is a "Key” which, if found to match a like-numbered succession of 

sending characters, terminates the function for the current sending 

operand (and causing automatic switching to the next sending operand, 

if any). 

If at any point the logical pointer {which is automatically incremented by 
one for each character stored into identifier-1) is less than one or greater 
than the size of identifier-1, no further data movement occurs, and the 
imperative statement given in the OVERFLOW PHRASE IS EXECUTED 

{if any). 

There is no automatic space fill into any position of identifier-1 — — that 

‘ is, unaccessed positions are unchanged upon completion of the 

STRING statement. 

Upon completion of the STRING statement, if there was a POINTER 
phrase, the resultant value of identifier-2 equals its original value plus the 
number of characters moved during execution of the STRING 

statement. 

  

ND-60.089.03



  

5.8.27 

et = ot it B b B A ks T 0 e 1 & e r— R 

544 

SUBTRACT Statement 

The SUBTRACT statement subtracts one or more numeric data items from a 

specified item and stores the difference. 

The SUBTRACT statement format is: 

FROM 
data-name-1 

{ numeric—litera|-1} SUBTRACT 
  

data-name-m  GIVING data-name-n 
{ numeric literal-m  GIVING data-name-n } 

[ROUNDED][SIZE-ERROR-clause] 

The effect of the SUBTRACT statement is to sum the values of all the operands 

that precede FROM and then to subtract that sum from the value of the item 

following FROM. 

The result (difference) is stored in data-name-n, if there is a GIVING option. 

Otherwise, the result is stored in data-name-m. 

ND-60.089.03



  

5.8.28 

  
  

5-45 

UNSTRING Statement 

The UNSTRING statement causes data in a single sending field to be separated 
into subfields that are placed into multiple receiving fields. The general format of 

the statement is: . 

UNSTRING identifier-1 

[DELIMITED BY [ALL] operand-1[OR [ALL] operand-2] ...] 

INTO {identifier-2 [DELIMITER IN identifier-3] [COUNT IN identifier-4]} ... 

[WITH POINTER identifier-5] 

[TALLYING IN identifier-6] 

[ON OVERFLOW imperative-statement] 

Criteria for separation of subfields may be given in the "DELIMITED BY" phrase. 

Each time a succession of characters matches one of the literals or data-item 

values named by operand-1, the current collection of sending characters is 

terminated and moved to the next receiving field specified by the INTO clause. 

Identifier-1 must be a group or character string (alphanumeric) item. When a 
data-item is employed as any operand-1, that operand must also be a group or 

character string item. 

Receiving fields (identifier-2) may be any of the following types of items: 

(a) an unedited alphanumeric item 

(b) a character-string item 

{c) a group item 

(d) an external decimal item (numeric, usage DISPLAY) whase 
Picture does not contain any P character. 

If there is a “DELIMITED BY’ phrase in the UNSTRING statement, then there 

may be "DELIMITER IN” phrases following any receiving item (identifier-2) 
mentioned in the INTO clause. In this case, the character(s) that delimit the data 

moved into identifier-2 are themselves stored in identifier-3. Furthermore, if a 

COUNT IN" phrase is present, the number of characters that were moved into 

identifier-2 is moved to identifier-4. 

If there is a "POINTER” phrase, then identifier-5 must be an integral numeric 

item, and its initial value becomes the initial logical pointer value (otherwise, 
logical pointer value one is assumed). The examination of source characters 

begins at the position in identifier-1 specified by the logical pointer; upon 

completion of the UNSTRING statement the final logical pointer value will be 

copied into identifier-6 as a ""feedback’’ value. 

If at any time the value of the logical pointer is less than 1 or exceeds the size of 

identifier-1, then overflow is said. to occur and control passes over to the 

imperative statements given in the "ON OVERFLOW"' clause, if any. 

ND-60.089.03



  

5-46 

Overflow also occurs when all receiving fields have been filled prior to exhausting 

the source field. 

During the course of source field scanning (looking for matching delimiter 

sequences), a variable length character string is developed, which, when 

completed by recognition of a delimiter or by acquiring as many characters as 

the size of the current receiving field can hold, is then moved to the current 

receiving field in the standard MOVE fashion. 

If there is a "TALLYING IN" phrase, identifier-6 must be an integral numeric 

item. The number of receiving fields acted upon, plus the initial value of 

identifier-6, will be produced in identifier-6 upon completion of the UNSTRING 

statement. 

Note: 

If an operand reference in either a STRING or UNSTRING statement is variably 

subscripted, the effective address for that component is evaluated just once, 

prior to beginning the process of stringing or unstringing. 

ND-60.089.03



  

5.8.29 

5-47 

WRITE Statement 

WRITE Statement (Sequentiall-O) 

The format of a WRITE statement is: 

WRITE record-name [FROM data-name-1] 

[{ BAET(-)E:E} ADVANCING {amOLg_cli\lE(S) }] 

Ignoring the Advancing option for the moment, we proceed to explain the main 

functions of the WRITE statement. 

in COBOL, all file output is achieved by execution of the WRITE statement. 

Depending on the device assigned, “written’” output may take the form of 

printed matter, magnetic recording on tape or disk. The user is reminded also 

that you READ file-name, but you WRITE record-name. 

Record-name must be one of the level 01 records defined for an output file. 

If the data to be output has been developed in Working-Storage or in another 

area (for example, in an input file's record area), the FROM suffix permits the 

user to stipulate that the designated data (data-name-1) is to be copied into the 

record-name area and then output from there. 

The Advancing option is restricted to line printer output files, and permits the 

programmer to control the line spacing on the paper in the printer. In the above 

format, amount may be either an unsigned integer literal or an integer numeric 
data-item having a value; run-time values from 1 to 60 are permitted: 

Integer Carriage Control Action 

1 Normal single spacing 
2 . Double spacing 
3 Triple spacing 

Normal single spacing is assumed (after 1 line) if there is no BEFORE or AFTER 

option in the WRITE statement. 

Use of the key word AFTER implies that the carriage control action precedes 
printing a line, whereas use of BEFORE implies that writing precedes the carriage 

control action.



548 

WRITE Statement (Relative I-0) 

The_format of the WRITE statement is: 

WRITE record-name [FROM data-name} 
[INVALID KEY imperative statement ...] 

  

If access mode is (defined as or defaulted to) sequential, then completion of a 

WRITE statement causes the relative record number of the record just output to 

be placed in the RELATIVE KEY item (data-name-1}. 

If access mode is random or dynamic, then the user must pre-set the value of 

data-name-1in order to assign the record an ordinal (relative) number, 

The Invalid Key condition arises if there already exists a record having the 

specified ordinal number, or if the allocated disk space is exceeded. 

WRITE Statement (Indexed /-O) 

The WRITE statement releases a logical record for an output or input-output file; 

its general format is: 

WRITE record-name [FROM data-name-1] 
[INVALID KEY imperative statement ...} 

Just prior to executing the WRITE statement, a valid (unique) value must be in 

that portion of the record-name (or data-name-1 if FROM appears in the 

statement) which serves as RECORD KEY. 

In the event of an improper key value, the imperative statements are executed, if 
the INVALID KEY clause appears in the statement; otherwise there must be ap- 
propriate USE Declarative section. The invalid key condition arises if: 

a. the key value is not unique; 
b. the allocated disk space is exceeded. 

ND-60.089.03



  

i S Ll o 

APPENDIXES 

ND-60.089.03 

e . B e B A e AR 3 2 Y



  

Section: 
I 

&6 
m 

m 
O 

O 
@ 

> 

— e e i i e Ml ST s e B R S Sl 

DETAILED CONTENTS 
+ o+ o+ 

NORD-10 COBOL SYNTAX 

RESERVED WORD LIST 

ASCH CHARACTER SET 

DIAGNOSTIC MESSAGES 

ADVANCED FORMS OF CONDITIONS 

NESTING OF IF STATEMENTS 

TABLE OF PERMISSIBLE MOVE OPERANDS 

RELATED DOCUMENTATION 

ND-60.089.03 

Page: 

A-—1 

B—1 

c-1 

D-1 

E—1 

F—1 

G—1 

H-—1 

e



el —————e ot 

A-1 

APPENDIX A 

  

NORD-10 COBOL SYNTAX 

H "[3Q0W 
SNIDOSNE3A 

HLIM] 

  

) Ts_s_ou 
SI INIOd-IVIID3a 

H 

Tmu__w._zo_w 
>02mmm:o_ 

TEmc 
swowsuw 

S} FTOSNOD 
_ 

"
S
I
N
V
Y
N
-
T
V
I
O
I
L
S
 

fi 
0
L
-
Q
H
O
N
 

.mm._.Dn_S_Oo-._.Um_flmOu 

 
 

0
L
-
Q
H
O
N
 

"
H
3
1
N
d
W
O
J
-
3
0
H
N
O
S
 

'NOILO3S 
N
O
I
L
V
H
N
O
I
A
N
O
D
 

"NOISIAIQ 
L
N
I
W
N
O
H
I
A
N
I
 ]   

H 
[Anua 

wawwoo] 
"‘SNHVINIY 

_” 
[Anua 

Juawwoo] 
"ALIHNO3S 

_” 
[Annus 

uawiwoo] 
‘@311dW0J-3LVa 

 
 

H 
[Anus 

Justuwoo] 
‘NILLIIM-I1va 

H 
[Anus 

Juawiwoa] 
‘NOILVTIVISNI 

fi 
[Anua 

wawwos] 
"
H
O
H
I
N
V
 

*sweu 
weisboid 

"
A
F
N
V
Y
H
D
0
H
d
 

‘NOISIAIG 
N
O
I
L
V
I
I
d
I
L
N
3
a
l
 

) ed e ) ) el 

ND-60.089.03



.l i 

  

\
l
l
 

A   
“[oweu 

e1ep 
51 

SALVIS 
314 

 
 

 
 

 
 

 
 

S
 

foweuen) 
404 V34V 

INVS 
| 

“J081INOD-01 

SIWVNAQ 
‘[sweu 

eiep S1SAIVIS 
3114] 

 eweu elep S| A3 
GHOOIY 

NOGNVE & 
S13Q0W 

SS300V | 
G3X3ANI 

SINOLLVZINVOHO 
TVILNINO3S 

 
 
 
 

a
w
e
u
 
eiep 

§1 
A
3
¥
 
3
A
I
L
V
I
3
Y
 
 
 

I
W
O
A
N
Y
H
 

| 
[SI3A0OW 

S
S
3
0
0
V
 

J
A
N
I
V
1
3
Y
 

SI 
N
O
I
L
V
Z
I
N
V
O
H
O
 

o_fiqz\éw 

[weu 
eep 

S 
AIN 

TAILVI3E] 
TVILNINO3S 

 
 

 
 

[oweu 
eep 

g1 SAIVIS 
311d] 

 [TVIININO3S 
S1300W 

§S300V] 
 [VIININD3S 

SINOCILVZINYOHO) 

Sv3dyv 
—
 

V
I
H
Y
 

JeBayur 
3
A
H
3
I
S
I
Y
 

aweu 
elep 

W 
0L 

NOISSV 
sweusy 

153135 
,,8dAl 

:aweu 
ajy 

p1ON 

T
O
Y
L
N
O
O
-
3
T
d
 

"
N
O
I
L
D
3
S
 
L
1
N
d
1
N
O
-
L
N
d
N
I
 

ND-60.089.03 

  
 



L ve 
o 

AJjua-uondiiossp-pi0odal 

-[eAsI-10 
A
n
u
a
-
u
o
n
d
u
o
s
s
p
-
j
a
a
s
i
-
£
L
 

 
 

"NOILO3AS 
A
O
V
I
I
N
I
 | 

A
i
j
u
a
-
u
o
n
d
u
o
s
a
p
-
p
i
o
o
a
l
 

-jeAal-L0 

A
n
u
a
-
u
o
n
d
u
o
s
s
p
-
1
8
A
s
|
-
£
 L 

 
 

  
  

"NOILJ3S 
3
I
D
V
H
O
L
S
-
O
N
I
A
E
O
M
 

! 

    

Anua-uoiduosap-piodai-|gAs|-1( 

. T
E
S
 

elep 
S| 

g40034 
VIVa 

u 

_”wmm._.o<m<Iu 
JaBajul 

S
N
I
V
L
N
O
D
 
4
0
2
3
y
 

H_ 

aweusjy 
gS 

*+ 
{A13ua-uondiiosap-pi00as-aAsl-1 0} 

 
 

 
 

 
 

. 
Jyv 

Sagoodd| 
| 

L
e
u
 

e
l
e
 

| 
e 

Pl 
s| 

@goo3y | 
V4va 

GaITWo| 
(3uv 

Souooas | —
 

| 
guvanvis(] 

SI 
 Guoo3g [ 

138Vl 

7
5
6
<
m
<
:
o
 

19681u1 
SNIVLNOD 

G40D3H 
_ 

-— 

S
H
3
L
O
V
H
V
H
D
 

S
A
4
Y
0
3
3
4
 

L4 

 
 

Jebaiul 
S
N
I
V
L
I
N
O
D
 
¥
2
0
1
9
   

  
sweualy 

g3 

‘
N
O
I
L
I
3
S
 
311 

‘NOISINIg 
V
1
v
a
     

ND-60.089.03



e 

A4 

 
 

[l 
3
N
T
V
A
 | 

[OH3Z NaHMINVTE 
| 

e 
Tm_u.:. W

 

w
a
_
 

SNAS 
tm._ 

‘GIZINOWHONAS 

ONITIVHL 
—
 

k
a
o
<
m
<
:
o
 

31vH3d3s 
_ 

@
%
‘
w
 

T_ 
NOIS 

 
 

Il 

 
 

X3ANI 
s 

AVI1dSIa 
€-dINOD 

£ 1
Y
N
O
I
L
V
L
N
d
W
O
D
 

7_ 
39vSN 

g 
H3ILNdWOD | 

I
V
N
O
I
L
V
I
N
J
N
O
D
 

B 
-
 

 
 

 
 

34N.LOId   
B
u
s
-
i
a
i
o
e
i
e
y
d
 

gy 
M 

Jld 
i 3 E 

—
 

Tsm:-smu 
mm_z_umomfi 

EERRIE] 
aweu-e1Ep 

e
 
e
l
 
N
N
 
N
S
N
S
 
N 

Asua-uoRduOSap-PI023I-[A3)-L0 

10 

“[resom 
s 
I
M
V
A
 | ] 

?
E
N
 
NIHM 

J
N
V
8
 

Isnr 
A
N
 

*om_m;w: L
 

 
 

I
H
O
M
 

I
N
A
S
 

537 
D
w
N
“
Z
O
m
_
I
U
Z
\
f
w
 

___. 
|5Nmivel 

[4310v¥VHO 
TIVE34TS 

| 
fiw|z_aqm:“v 

*
 

_‘ 

 
 

X
3
A
N
I
 

A
V
d
s
i
d
 

'€-dINOD 

m
 
T
Y
N
O
I
L
V
Y
L
N
d
I
N
O
D
 

_”w_ 
3
9
v
s
S
n
 

”_ 

______dwo 
I
V
N
O
I
L
V
L
I
N
d
W
O
D
 

B
u
m
s
-
1
e
1
0
e
1
R
Y
d
 

G| 
A
fi
 U
_
m
v
 

 
 

3
d
N
L
I
I
d
 

“
H
3
T
d
 

aweu-elep 

A
n
u
a
-
u
o
n
d
i
u
o
s
a
p
-
1
o
A
s
l
-
£
/
 

T
E
E
 

eiep 
mmz_“_mom_m.u 

 
 

 
 

  

ND-80.089.03 

 



R S 

A-5 

|eisd| 

s+« 
|+ | 

aweu-elep i 

  
 
 N
Y
H
L
 

swieu-elep 
S
J
N
V
N
I
Y
 

oweu-ele 
H
O
N
O
Y
A
L
 

P 
S
I
N
V
Y
N
I
Y
H
 

p 

 
 

N
Y
H
L
 

monooaL[ 
=
M
 
| 

= 
_ 

<+ 
7 

{jeseu} 
S
I
3
M
1
V
A
 

S
w
e
u
-
u
o
p
p
u
o
d
 

g8 

m
e
—
 

* [resem 
S13MIVA 
u
 

 
 

 
 

I—l 

?
E
N
 
NIHM 

N
V
 5
3
1
 

SIS 
T
E
.
E
:
L
 

IBI 
* 

3NAS 

 
 

 
 

 
 

1437 
Q
3
Z
I
N
O
Y
H
I
N
A
S
 

I‘-*':i 

5
 

fl 
-+ 

{eweu-xepur} 
A8 

omxmoz; 
] 

—
 

SNIGNI0SIa 
_urr 

{joufe:E8Rh 
S A 

A 
oz_ozwumL 

S3IWIL 
JeBsiul 

S
H
N
D
J
0
 | 

 
 
 
 

ONIIVEL 
I
 

31DVHVHD 
w.cqmmnmm_ 

%
_
o
fl
w
 

T_ 
zo_m_ 

—
 

 
 

 
 

X3aNI 
AVidsia 
€-dWN0D 

€ 1VNOLLY 
LNdINOD 

T
_
w
o
<
w
3
 

Y3LNdNOD 
IVNOILVINdWO0D 

 
 

 
 

—
 

 
     

mc_bm-_mwom._mco 
gl 

fiwm:hwuu_ 

T
E
E
 

elep 
m
w
z
_
m
w
n
m
_
m
 

437114 
swieu-elep 

 
   

ND-60.089.03



v_oOJ 

G
N
I
M
3
H
 
O
N
 

J<>o_>mmmo“* 
:
z
a
o
s
m
c
-
m
_
l
 

Tz_\smm% 
_.E>L 

133 
v 

i1 
38010 

H
L
I
M
 

 
 

 
 

 
 

H
 

[ aweu-eep 
‘] 

oweu-elep 
_
 
e
y
 

TIVD 

 
 

O
N
 

aweu-ainpad0id 
fl
o
.
_
(
 

a33noud 
H
_
 1 

ainpadoid 
{
3
V
 

_mhmw__ 
a
7
 

W
 

._wc_EoU_ 
aa 

 
 

 
 

 
 

{wuswaleis-annesadus 
O
H
Y
3
 

NO] 
[
G
3
a
N
N
O
y
]
 
saiuap! 

M
 

JWIL 

A
V
a
 

3
1
v
a
 

 
 

[
s
w
e
u
-
o
w
o
w
s
u
w
 
N
O
Y
4
]
 | 

Jeynuap! 
1
4
3
0
0
V
 

S
i
u
s
l
l
e
l
e
l
s
 

104 
1BULIO} [B1BUSD) 

 
 

 
 

 
 

 
 

07| 
IndIno 

| INani 
| - * * sweu-aly NO 

TGNA3I08d 
Afizo_hm%w_% 

QUVANVLS 
5313V 

35N 

g N
 

N
 
N
N
 
N
N
 
N
S
 

90UBIUSS-3ANEIE|[DaP 

mela] 
S 

*
 

* 
* [ aousiuas] 

"aweu-ydeibeied } 
H
.
a
 

BWEBU-UOII03S 
_ 

=
=
 

 
 

"
S
I
A
L
L
Y
H
V
I
O
3
A
 
AN3 

e
 

i 
_” 

- 
+ [ sousiuas] 

.mEmc.:nm._mEmm_ 

BOUBIUBS 
—
 

7 
—
—
—
—
—
—
 

[ 
-onpesejpop 

35N | 
'NOILD3S 

ouwieu-uonoss   
hl 

"
S
3
A
L
L
V
H
V
Y
I
I
3
d
 

 
 

m. 
- 

- {sweu-erep} 
ONISN 

_ 
NOISIAIQ 

3
4
N
A
3
2
0
4
d
 

ND-60.089.03



 
 
 
 

[e23] 
IVILINI 

Y314V 
[esaal] 

T
 

SNIDV 1434 
1911uBp! 

350439 
soynuspl{ 

 Ag 
fi 

_92_@ 
fio NIaval 

._ a
j
n
u
a
p
!
 

T
V
 

 
 

o) 
v
l
 

[ .m..m_h_L 
SEILOVHVHD 

| 57 
soynuapt SNIATIVL 

Jayuapl 
G
m
O
u
m
 

jesay 
O
N
I
a
V
3
1
 

J
a
i
n
u
a
p
l
 

T
V
 

 
 

Jaynuapl 
1
2
3
4
S
N
I
 

 
 

 
 

 
 

 
 

* 
INGWIIVIS 

IXaN3sH3 
* 

3ON3LINIS 
1X3 zv 

uoRIpUOS I 
j
u
a
w
a
l
e
l
s
 
3
5
7
3
 

j
u
s
w
a
l
e
l
s
 

 
 

 
 

 
 

 
 

fioc_E%_ 
NOONION3d3a" 

" ° 
?w:hw_cfimwwm%a 

w 
0105 

" [ WvE504d] 
3
 

[
W
a
w
a
l
e
s
-
a
n
n
e
s
a
d
u
s
 
m
w
m
%
w
%
w
w
m
“
 

_“ 19131U8p1 
H
N
I
A
I
D
 

_m._op__u_w__“wfl._%“_u.__ 
Q
M
 

_Emu__u_w__wflflfih 
3JAIAIQ 

[ sweu-owowsuw 
NOJIN] 

* 
* 
=
 

w 
AV1dSia 

1aynuapl 

 
 

[ Juawazers-aanesaduwi 
A3N 

QITVANI] 
Q
U
O
J
3
Y
 
sweu-ay 

3
1
3
7
3
0
 

[ 
3
u
s
w
a
l
e
s
s
-
a
a
n
e
i
a
d
w
i
 
Y
O
Y
Y
3
 

3ZIS 
NO] 

uoissaidxas-onswyile 
= 

{ [ GIANNGH] 
Jeunuept} 

IINAWOD 

 
 

 
 

 
 

ND-60.089.03 <23 

 



e ks 

 
 

 
 

 
 

~ 
3
O
N
3
L
I
N
3
S
 
I
X
3
N
 

.« 
fi
*
c
m
&
m
w
m
u
m
I
O
Z
w
s
t
E
_
 

u
o
m
i
p
u
o
d
 

N
I
H
M
 

 
 

 
 

ficmESmm-mZEonE_ 
_ 

sweu-xapul 
18133U8p! 

“
u
p
.
o
z
N
E
 

woynuop 
| 

ONIKGA | 
seypuopt 

 FOEV3S 

 
 

 
 

[ wawareis-annesadun 
A3 

GIVANI) 
[ Joytuap! 

NOHS] 
sweu-piodal 

31IHM3Y 

 
 

 
 

wawareis-annesedun 
GNI 

LY 
[ J8yauspi 

O1NI] 
A
H
O
J
3
Y
 

sweu-aly 
 NYN13Y 

 
 

[ 1aynuapi 
NOYd] 

eweu-piodoas 
3ISVIN3IH 

 
 

[ suswaieis-aneseduwt 
A3y 

GAVANI] 
[ aweu-eiep 

S1 X3N] 
[ Jeynuspt 

GINI] 
AHOO3Y 

oweu-ayy 
GVIE 

[ awaress-ennesadwi 
GNI 

1v] 
[ eynuepi 

GINI] 
@403y 

[ IGN] 
. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
 

 
 

uonIpuUod 
e
l
 

o= 
(2o 

aweu-xapul 

MPUOdTILNN 
soynuspl{ 

A8 
SUlE U xepLl 

Wog3 
Jouuap! 

SNIAHVA 

1aynuapt 
1ebarun 

SanWIL 
isggiiah) 

N
Y
H
L
 

s
w
e
u
-
a
i
n
p
a
s
o
a
d
 

a
w
e
u
-
a
m
p
a
s
o
i
d
 

pa: 
H
D
N
O
U
H
L
 

p 
W
H
0
4
4
3
d
 

ol 

©
 

{oweu-ayy} 
Indino 

N3dO 
L
N
d
N
I
 

—_— 
1
9
4
u
s
p
I
 

ONIAID 
[B191[-OUBWNY| 

 
—
 

jesal| 
ouawnu 

| 
—
—
—
 

[wswalels 
sanessdwi 

FOUHS 
3215 

NO] 
[GIANNOY] 

[oy3usp! 
SNIATS] 

124Buspl 
Ag 

hmu_flc%w 
AT&ILNW 

—
 

jesaly 
—_— 

{raynuep} 
OL 

?:_Ewu_ 
w 

IAOW 

ND-60.089.03



  

aWeU-uoNIas 

s
w
e
u
-
u
o
n
d
o
s
s
 

fi
 

|esayy| 
._mc_ucm 

_mhmu 
sayuapl 

o
l
 

ny I.% 
alWEeU-UOI09s 

H
O
N
O
Y
H
L
 

= 
Sl 

o
L
1
v
N
n
o
3
 

sl 

|
|
D
.
E
 

mEm:-coaoom 
H
O
N
O
H
H
L
 

: 

 
 

 
 

S
1
3
4
N
A
3
0
0
H
d
 
LNdNI 

aweu-3)3 
 HNIAID 

 
 

S
1
3
4
N
A
3
0
0
4
d
d
 
LNdNI 

aweu-3jly 
 ONISN 

 
 
 
 

ONIGN30S2a 
—
 

o
 

.« 
« { 

3
W
R
U
-
B
)
E
 

a
w
e
u
-
3
 

{ 
1ep} 

A3 
s
z
_
o
z
m
_
o
m
d
u
 

NO 
sweu-3)y 

ITHOS 

JabBa1ui 

_mc_wcou_ 

 
 

m
 

l\,mblfl_@w 
+se 

{ 
Sweu-xapui} 

138 

19623u1 
; 

—_— 
aweu-xapul 

—_— 
aweu-xapui 

oL 
°-- 

JOLIUEPI 
13S 

sa1ynuBpY 
S
 

: 
196331 

. 
- 

—
 

aweu-xapul 
] 

 ——— 
aweu-xapul 

OL 
¢ 

-
 

135 

salynuap) 

 
 

fi 
J
O
N
I
L
N
I
S
-
1
X
3
N
 

1 

 
 

uswalels-aanesaduwil 

s
w
e
u
-
u
o
n
i
p
u
o
d
 

 
 

8WeU-uolIpuod 

 
 = 

Sl 
V
N
D
3
 

Si 

anNv 

aweu-elep 

 
 

Z 
w 
I 
3 

awieu-giep 

[ 
u
s
w
a
l
e
l
s
-
a
a
n
e
s
a
d
u
w
l
 
d
N
T
 
1v] 

seynuspl 
T
V
 
H
O
H
U
V
A
S
 

ND-60.089.03



A-10 

uawayels-aanesadwn 
A
3
 
QITVANI 

 
 

 
 

3
9
v
d
 

[ soynuspl 
W
O
Y
]
 

aweu-piodal 
 3LIHM 

 
 

D
O
N
I
O
N
V
A
Q
Y
 

H3l4Vv 

SINNM 
1abajul 

3
4
0
4
3
8
 

aNn| 
 (ueynuep! 

m
c
m
E
m
E
«
m
 -annesadwl 

\NOT13H3A0 
NO 

H 
Jaynuapt 

Nl 
O
N
I
A
T
I
V
L
 

1933UspIBIINIOd 
H
L
I
M
]
 

03] 
[ J
e
y
n
u
a
p
!
 

N 
GILIWT3A) 

+eynuspt 
} 

GINT 

 
 

 
 

 
 

  
 
 

o
o
 

[ 
4a13nuspt 

N1 
I
N
N
 

 
 

 
 

_m‘_mu__ 
|
|
|
|
I
.
 

_Emu__ 
I
 

T
E
E
%
_
 

[TIv] 
"0 

T
E
E
S
_
 

3
.
_
<
_
>
m
c
m
t
_
>
_
:
m
o
s
_
,
,
_
E
%
_
w
z
_
E
m
z
:
 

[ awsaleis-aanesadwr 
§ouy3 

3ZIS 
NOJ 

 
 

 
 

 
 

 
 

.
_
m
_
t
a
c
m
v
_
o
z
_
>
_
o
_
m
.
_
3
_
_
o
:
m
E
:
 

|
|
|
 

E
m
:
_
o
:
m
E
:
c
 

[a3annoy] 
[ Joynuop 

SNIAD] 
ac_E%w 

WOd4 
s_sc%w 

o
v
e
i
a
n
s
 

 
 

 
 

[ wswaleis-aanesadwi 
M
O
T
4
8
3
A
0
 

NOJ 
[4e3nuspi 

H3 LNIOd 
HLIM] 

Jaynuspt 
OLNI 

 
 

 
 

 
 

 
 

 
 

3zIs 

ks 
[essy 

e
 

[esay| 

FENLIVET] 
A8 

G
I
L
I
W
I
M
3
A
 

_
m
c
a
c
m
u
 

O
N
I
H
L
S
 

m
.
.
w
«
_
 

_z:L 
d015 

N
V
H
1
 
S
S
3
7
.
1
O
N
 

> 
10N 

0
L
T
V
N
O
3
 

[ awareis-anpesadwi 
A
3
 

AINVANI] 
| 

sweu-eiep 
u 

o
7
5
5
 | 

ewevey 
V
I
S
 

= 
1ON 

N
V
H
L
 
H31Vv3dD < 

 
 

ND-60.089.03



    

S 

B-1 

APPENDIX B 

RESERVED WORD LIST 

051 
080 
0512 
037 ANVANCENG 
035 AFTER 
022 AL 

  

CO3E ALPHABRETIC 

048 ALTER 
031 AN 
108 ARE 

  

  
013 Hlflwh 

08% ®LLOCK 

QA BY 
0454 DAl 

123 l“nhfifrlfi 

087 Gk TS 

044 CLOBE 

099 COMMA 

Q14 COMP 

s Coe-3 

014 DOMPUTATTONAL 

055 COMPUTATLIONAL -3 

Q6% COMPUTE 

Ld COMFTEURATION 

051 CONSOLLE 

086 CONTAING 

L2 CoryY 

154 COUNT 

106 CURRENCY 

D6 ATAH 

15% DATE 

199 DATE-COMPTLED 

199 DATE-WRITTEN 

L7 Y 

Las LESUGETING 

NO8 NECTMAL-POINT 

117 UlllfilfirTUr“ 

        

060 NTUTTE 
ND-60.089.03 

007 

O3 

074 

0H3 

046 

Q4% 

034 

047 

114 

089 

061 

) 

004 

003 

0&6Y 

109 

009 

Q25 

073 

029 
088 

C 05 

036 

Q08 

008 

Q3@ 

102 

(&4 

050 
104 

0l1L4 

Q20 

Q04 

OXY 

068 

042 

199 

G030 

045 

21 

018 

018 

040 

08y 

023 

17 

036 

111 

042 

042 

e s e et Bk i s B 

QIUrSTON 

DoWN 

HYNaHMLeo 

ELL S 
ENT 
NG ERONMENT 
EGRUAL 
E R ROR 
EXCERTLON 
EXHIRILT 

EXILT 
E 

Fn 

  

IUR 

FROM 
GIVING 

(L) 

Gl A TE R 

  

HT GH- AL UE 
HT GH-UALUES 
10 
L0 DONTREL 
TOEMTIFTCATTOM 
1F 
TN 
THIE Y 
THIE KED 
THITIAL 
TRELT 
TNEUT-OUTRUT 
ITNGPECT 
THETALLATTION 
TNTO 
IHVAL LD 
T 
JUST 
JUSTIFIED 

  

AREL 
mALING 

JZET 
E89 

  

“IN" 
LIS 

 



Q0% 

120 

007 

GO7 

Qe 

Qa7 
QuY 

1L 

200 
130 

074 

033 

Q3E4 

197 

OLL 

104 

103 

QR0 

Qa7 

Qa7 

032 

Q7R 

039 

148 

110 

124 

Q%4 

0.2 

012 

149 

201 

OO 1 

Qa3 

127 

202 

009 

009 

083 

044 
043 

0g4 

LIS 

084 

010 

Q20 

073 

199 

044 

174 

O&l 

072 

043 

074 

Lils 

yay 

L INKAGE 
LOCK 
LOW~DALUE 
LOW-VALUES 
MOTIE 
MOWE 
MULTERLY 

Nk 
NEGATIVE 
MEXT 
M0 
NOT 
PUMERTC 
ORJECT-COMPUTER 

DCCURS 
0OF 
O 
CHELTTED 
QN 
AREN 
0k 
ORGANTZATZON 

QUTEUT 

ORVERFLOW 
UNN'I 

  

IleURE 
FOINTER 
IU 'IJUF 

  

thflrfiM 

FrOGREAM- 1D 

QUOTE 

QUIDTES 

RANTOM 

READ 

RE ALY 

RE GO 

H-(U|4|N 

  

LLLLfi%L 
REMARKS 

REMOVAL 
FEMAMES 
REFLAGCTING 

  

"ll;!il.. 

ND-60.089.03 

D18 BIOHY 

QU ROUNDET 
0462 RUM 
101 i 
LA & 
Q83 4 
Q06 1 
199 
070 
132 
'33 i 

03y 
Tl 

  

   

      

NTl“[r 

ARATE 

SEGRUEMT AL 

o867 BE 

106G ¢ 
040 n' 

072 (]f\ T 

1351 QUULbE”CDfiPUTER 

Q06 SRali 

005 SPACES 

100 SPECTIAL-NAMES 

ORY STANDARI 

O&A8 START 

107 STaTUS 

Q&2 STOM 

O7% STRIMG 

058 SURTRACT 

017 SYNQ 

017 BYNCHRONTZED 

OSF Tal LY THG 

Q52 THAM 

057 THROUGH 

057 THRL) 

154 TTMF 

  

   

  

023 7T l\f\J.LuJ.thi 

O7% UNSTRIMG 
024 LINTIL 
o4l UF 
O5% UPQON 
017 USAGE 

OFQ SR 

124 LS TMG 
013 VAl 

054 VARY TN 

V1S WHEN 
118 WITH 
D02 WORKING-STORAGE 

    

0% !llffl



  

APPENDIX C 

ASCII CHARACTER SET 

Character 

A 

N
<
X
§
<
C
—
I
(
D
3
0
'
O
O
Z
§
I
-
7
<
¢
-
I
G
)
'
“
I
'
“
O
O
W
 

Octal Value 

101 
102 
103 
104 
105 
106 
107 
110 
m 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
3N 
132 

Character 

W
O
N
O
N
H
W
N
—
=
O
 

Blank (SPACE) 

S 
r 

( 
) 

+ 

Plus-zero (zero with embedded positive sign); 
Minus-zero {zero with embedded negative sign); 

ND-60.089.03 

173 
175 

Octal Value



el i 

e
 ® 

o e S A A €83 S 

S
C
C
 
O
O
0
 

O
O
 

W
 

»
O
 

40
 

vo
 

20
 

o4
 

es
 

o4
 

oo
 

a4 

N
o
U
T
d
L
I
R
r
O
o
O
Q
Y
O
N
U
D
2
E
W
H
 

06
 

00
 

26
 

95
 

20
 
e
 

S&
 

40
 

96
 

G
 

++
 

Co
 

%o
 

Ge
 

G6
 
o
 

. 
oo
 i 
W 
W
G
 
L
G
R
S
 

E
 
N
N
 

N
 

@
 

- 

D < ..
 

41 
423 
433 
443 
458 
461 
473 
482 
49 

a
g
i
G
a
a
g
a
a
 

O
 
O
N
D
U
 

D
 

WE 
-
 

e
 

*e
 

90
 

24
 

o2
 

04
 

06
 

0o
 

co
 

o5
 

oo
 

G
G
 

LA ki s o sl U i il il sk ol R s 

APPENDIX D 

DIAGNOSTIC MESSAGES 

FILE SECTION ASSUMELN HERE. 
OFERAND OUTFUT AS INTEGER., 

DATA DIVISION ASSUMED HERE. 
AREA-A VIOLATION; RESUMFTION AT NEXT FARAGRAFPH/SECTION/LDIVISION/VERE., 
ERRONEOUS DEVICE ASSIGMMENT. _ 
ERROR IN SELECT-SENTENCE; RESUMFTION AT NEXT SELECT OR AREA-A. 
ELEMENT NOT DEFINED, 
ERRONEOUS RERUN-ENTRY IS IGNORED. 
ERRONEOUS FILE-NAME IS IGNORED., 
BLANK WHEN ZERO IS DISALLOWED. 
STATEMENT DELETED DUE TO ERRUNEOUS SYNTAX. 

. RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS, LATTER SIZES FREVAIL. 
FILE NOT SELECTELNs ENTRY RYFASSED. 
RELUNDANT FDII FROCESSED AS IS. 
INVALILI ERLOCKING IS IGNORED. 
INVALID RECORD SIZE(S) IGNORED, 
UNIT-RECORD FILE ELOCKING IS IGMNORED. 
INCOMFLETE FILE DESCRIFTION, 
SUESCRIFY OR INDEX-NAME IS NOT UNIQUE. 
SOURCE EYFASSED UNTIL NEXT FO/SECTION. 
FROCEDURE DIVISION ASSUMED HERE. 
OMITTED WORD SECTION IS ASSUMED HERE. 
MISORDERED/REDUNIANT SECTION FROCESSED AS IS, 
ERRONEOUS SURSCRIFTING; STATEMENT DELETED., 
ERRCMEOUS QUALIFICATION; LAST LECLARATION USELD. 
ITEM ASSUMEL TO RE RINARY. 
REDUNDANT CLAUSE IGNORED., . 
NAME OMITTED; ENTRY EBYFASSED. 
IMPROFER REDEFINITION IGNORED. 
OCCURS DISALLOWED AT LEVEL 01/77» OR COUNT TOO HIGH. 
INVALID VALUE IGMNORED. 
WORKING-STORAGE ASSUMED HERE. 
LEVEL 01 ASSUMED. 
FICTURE IGNORED FOR INDEX ITEM., 
FERIOD ASSUMEL AFTER FROCEDURE-NAME DEFINITION. 
GROUF ITEM» THEREFORE FIC/JUST/RLANK/SYNC IS IGNORED. 
FI-VALUE IGNORED SINCE LARELS ARE OMITTELD. 
STATEMENT DELETED DUE TO NON-NUMERIC OFERAND. 
STATEMENT DELETED RECAUSE INTEGRAL ITEM IS REQUIRED. 
LITERAL TRUNCATED TO SIZE OF ITEM. 
EXCESSIVE OCCURS CLAUSE NESTING IS IGNORED. 
DATA RECORDS CLAUSE WAS INACCURATE. 
GROUF SIZE > 40953 LENGTH SET 70 1. 

_REQUIRED ['ATA SFACE EXCEEDS MAX. AVAILAELE. 
"DATA-NAME "IN ASSIGN CLAUSE IS UNIEFINED OR WRONG TYFE. 
IMFROFER USE OF 66 (RENAMES). 
A FARAGRAFH DECLARATION IS REQUIRED HERE. 

USING-LIST ITEM LEVEL MUST EE 01/77/WORL-ALIGNELD. 
VALUE DISALLOWED DUE TO OCCURS/REIEFINES/TYFE CONFLICT, 
CLAUSES OTHER THAN VALUE DELETED. 
SURSCRIFT O OR OVER MAX. NO. OCCURENCES$ 1 USED, 
RIGHT FARENTHESIS REQUIRED AFTER SUBSCRIFTS. 
MISSING FROGRAM-IN/FROGRAM-NAME. DIEFAULT FROGRAM NAME = MAINCE. 
EXTERNAL DECIMAL ITEM IS UNSIGNED. 
LAEEL RECORDS OMITTED ASSUMED FOR UNIT-RECORD FILE. 
INCOMPLETE (OR TOO LONG) STATEMENT LELETED. 
TERMINAL FERIOD ASSUMED ARQVE. 
VARYING ITEM MAY NQT RBE SURSCRIFTED, 
SINGLE-SFPACING ASSUMED DUE TO IMFROFER ADRDVANCING COUNT, 
FROCEDURE-NAME IS UNRESOLVABLE. 
KEY LOECLARATION OF THIS FILE IS NOT CORRECT. 

ND-60.089.03



  

413 

b23 
6318 
643 

458 
66 
672 
683 
69 

703 

713 
723 

733 
74: 
758 

80:¢ 

82: 

83: 
841 

853 
863 
88: 

STATEMENT DELETED BECAUSE OFERAND IS NOT A FILE-NAME. 

*COMFP® IGNORED FOR NECIMAL ITEM. 

KEY MUST E£ DECIMAL OR CHARACTER ITEMs MAX. 2835 BYTES. STATEMENT 

FICTURE CLAUSE IS BAD FORMED. FIC X ASSUMEI. 

CONDITIONAL I/0 STATEMENT DISALLOWED WITHIN *IF®, 
EAD! SORT/RELEASE/RETURN USAGE. 
COFY FILE CANNOT BE FOUND. 
CONTINUATION LINE DISALLOWEDR HERE, 
ILLEGAL CHARACTER IN COLUMN 7. 

CONTINUATION LINE, THEREFORE COL 8-11 MUST RE SFACES, 

ILLEGAL CHARACTER., IGNUOREL, 

FAULTY QUOTED LITERAL. 
ERRONEOUS FUNCTUATION, REQUIRED RLANKS ASSUMED., 

ELEMENT IS MALFORMED, 
QUOTED LITERAL/NUMERIC ELEMENT/NAME IS TOO LONG. 

ILLEGAL MOVE OR COMFARIGSON IS DELETED. 
DISFLAY LIMIT IS 132 CHARACTERS (CONSOLE/FRINTER). 

FILE NEVER OFENED. 

FILLE NEVER CLOSEL, 
INCONSISTENT REAL USAGCE. 

INCONSISTENT WRITE USAGE. 
*NELETE® NOT VALID FOR NON-ORGANIZED FILE. 
KEYS MAY ONLY AFFLY TO AN INDEXED/RELATIVE FILE. 

ND-60.089.03 

DELETEL.,



e e 

APPENDIX E 

ADVANCED FORMS OF CONDITIONS 

EVALUATION RULES FOR COMPOUND CONDITIONS 

1. Evaluation of individual simple conditions is done first. 

2. AND-connected simple conditions are next evaluated as a single 
result. 

3. OR and its adjacent conditions (or previously evaluated results) are 
then evaluated. 

Examples: 

{fa) A<BORC =DORENOT>F 

(b) 

{c) 

The evaluation is equivalent to (A < B) OR (C = D} OR (E, F) 
and is true if any of the three individual parenthesized simple 
conditions is true. 

WEEKLY AND HOURS NOT = 0 

The evaluation is equivalent, after expanding level 88 
condition-name WEEKLY, to 

(PAY-CODE = 'W’) AND (HOURS #0) 

and is true only if both the simple conditions are true. 

A=1ANDB =2ANDC> -3 

OR P NOT EQUAL TO ""SPAIN" 

is evaluated as 

[(A = 1)AND (B = 2) AND (G > —3)] 

OR (P #“SPAIN") 

If P = "SPAIN"”, the compound condition can only be true if 
all three of the following are true: 

(c.1) A=1 
{c.2) B=2 
(c.3) G>-3 

However, if P is not equal to “SPAIN”, the compound 
condition is true regardless of the values of A, B and G. 

ND-60.089.03



  

  

PARENTHESIZED CONDITIONS 

Parentheses may be written around a condition or parts thereof in order to take 

precedence in the evaluation order. Examples: 

IFA = BAND(A =50RA =1) 
PERFORM PROCEDURE —44. 

In this case, PROCEDURE —44 is executed if A = 5 OR A = 1 while at the same 

time A = B. 

ABBREVIATED CONDITIONS 

For the sake of brevity, the user may omit the "subject” when it is common to 

several successive relational tests. For example, the condition A = 5 OR A=1 

may be written A = 5 OR = 1. This may also be written A = 5 OR 1, where 

both subject and relation being common are implied. 

Other examples: 

IFA=BORCORY 

is a shortened form of 

IFA=BORA=CORA=Y 

Caution: Abbreviations in which the subject and relation are implied are only 

permissible in relation tests; the subject of a sign test or class test cannot be 

omitted. 

NOT, THE LOGICAL NEGATION OPERATOR 

in addition to its use as a part of a relation (i.e. IF A IS NOT = B), "NOT" may 

precede a condition. For example, the condition NOT (A = B OR C) is true when 

(A = BOR A = C)is false. The word NOT may precede a level 88 condition 

name, also. 

ND-60.089.03



  

  

APPENDIX F 

NESTING OF IF STATEMENTS 

A ""nested IF”’ exists when, in a single sentence, more than one IF precedes the 
first ELSE. 

Example: 

IFX=YIFA=8B 
MOVE "*"" TO SWITCH 
ELSE MOVE "A” TO SWITCH 
ELSE MOVE SPACE TO SWITCH 

The flow of the above sentence may be represented by a tree structure: 

F T 

Wil 
Space —= Switch 

  

      

% 
E Nt 

. 
A — SwitchJ *—CQwitch 

Next \‘ 

sentence 

Another useful way of viewing nested IF structures is based on numbering IF and 

ELSE verbs to show their priority. 

  

      
    

        

  

  

¥ X =Y 

: I, A= B , 
true : true—action. : MOVE "*" TO SWITCH 

:1(!1101\1: : |~:|.sr,2 I':llsc—:l’cti'onzz MOVE "A" TO SWITCH 

1   
  

ELSE 
1 

f:il:;o-—.'lctionl: MOVE SPACE TO SWITCH, 

ND-60.089.03



The above illustration shows clearly the fact that IF, is wholly nested within the 
true-action side of IF,. . 

It is not required that the number of ELSEs in a sentence be the same as the 
number of |Fs; there may be fewer ELSE branches. 

Examples: 

iF M=5bIFK =20 
GO TOM1KOELSE GO TO MNOT1. 

IF AMOUNT IS NUMERIC IF AMOUNT 
IS ZERO GO TO CLOSE-OUT. 

In the latter case, IF, could equally well have been written as AND. 

  

ND-60.089.03



 
 

G-1 

APPENDIX G 

*LE 
pa3oxa 

10U 
Aew 

y1bug) 
aoinos 

(abajul 
pasubisun 

ue 
se 

paleall 
si 

82IN0G 
(D) 

‘ano|A 
dnolo 

B 
JO 

10844 
8yl 

JO 
UOISSNOSIP 

104 
[BNUBW 

SIYl 
JO 

G1°8'§ 

u
o
n
o
a
g
 

2as 
‘anoly 

dnolH 
e 

passpisuod 
st 

w
e
n
 

dnoib 

 
 

 
 

e 
ul 

puesado 
BuIAIB081 

JO 
@DINOS 

JBYYS 
Y
U
M
 

a
r
o
w
 

Auy 
1 

(g) 

*Aue 
JI 

‘paioub) 
sj 

ubis 
824n0g 

=
)
 

:S310N 

(8) 
M0 

(8)0 
(8) 

30 
(9) 

%0 
(9) 

30 
(8) 

%0 
dnoig 

(9) 
%0 

p[0) 
A0 

(J) 
M0 

{2)30 
(
D
)
0
 

ouawnueydyy 

{8) 
M0 

p.[0] 
N0 

paupa 
o
u
a
w
n
u
e
y
d
)
y
 

(8) 
%0 

MO 
MO 

palIpa 
o
u
a
W
N
N
 

(
)
0
 

O
 

MO 
3O 

JaBalul-uou 
o
u
a
W
N
p
 

(8) 
M0 

(V)30 
(V)30 

A0 
A0 

MO 
JaBalul 

o
u
e
w
n
N
 

paup3 
paup3 

labajui-uopN 
Jabawyj 

puesad( 

dnoig 
opswinueydyy 

 osuswnueyd|y 
ouawnp 

o
u
a
W
N
N
 

o
u
a
W
N
N
 

22inog 

 
 

TABLE OF PERMISSIBLE MOVE OPERANDS 

Juswalels 
JAQIN 

Ul 
puesadQ 

Buinisosy 

ND-60.089.03



  

APPENDIX H 

RELATED DOCUMENTATION- 

More comprehensive information is to be obtained through the following 
manuals: 

ND—60.090 
ND—60.066 
ND —60.050 
ND —60.052 

NORD-10 COBOL Users Guide 
NORD — 10 Relocating Loader 
SINTRAN lll Users Guide 
NORD File System 

Especially the NORD—10 COBOL Users Guide gives information concerning 
various system aspects, various program efficiency techniques giving valuable 
hints to the programmers for best utilization of the system, and the COBOL inter- 
active debugging system. 

ND-60.089.03



i s Vi, i 43 W i e Rl X ¢ e AT e e WA TSRS 

000 ©006 0000000 

20250 052 Sovaseces NORSK DATA A.S. 
000600600 €69 000 

, 

®09 ®00 ’ ' 

00 55008808 P.O. Box 4, Lindeberg gird, Oslo 10 

0090 6000000 

COMMENT AND EVALUATION SHEET 

ND-60. 089.03 COBOL REFERENCE MANUAL 

In order for this manual to develop to the point where it best suits 

your needs, we must have your comments, corrections, suggestions 

for additions, etc. Please write down your comments on this pre- 

addressed form and post it. Please be specific wherever possible, 

  FROM   

  

  

ND-60.089.03




