
E

NORD-10 PASCAL

NORSK DATA AS

NORD-10 PASCAL

REVISION RECORD

Revision Notes

6/77 Original Printi

6/79 Version two, su i revious version

Publ. No. ND—60.086.02

June 1979

 NORSK DATA AS.

 Larenveien 57, Postboks 163 @kern, Oslo 5, Norway

NORD-10 Pascal 2
USER MANUAL

PREFACE

The Pascal language was designed in 1971 by Niklaus Wirth.
The language design had two principal aims. The first was to
make available a language suitable to teach programming as a
systematic discipline, the second was to develop
implementations of this language which are both reliable and
efficient on

The success of this language design proves that Pascal is
not "yet another 1language". Today Pascal has been
implemented on almost all computers commonly in use, ranging
from the very large computers to mini- and micro-computers.
It is the first language which shows ability to bite into
domains hitherto reserved for FORTRAN and BASIC. This
ability 1is not only local, but is apparent on a world-wide
scale.

This manual contains the information necessary toc compile
and execute Pascal programs on the NORD-10. It is assumed
that the reader is familiar with the Pascal language. The
uninitiated reader is referred to the Pascal Report or to an
appropriate textbook.

ND-60. 086. 02

NORD-10 Pascal

USER MANUAL

TABLE OF CONTENTS

A
C
U
V
U
U
U
R
U
I
T
V
T
V
T
U
V
T
N
T
V
T

S

B

B
E
W
W
W
W
W
W
W
W
R
R
N
R
R
N
R
N
R

R
N

N
N

R
N

R

R

R
N

R
S
N

R

N

H

)
.

e
°

.
o

e
o

s
e

o
®

e
o

o
o

o
.

s
.

.

S
O

O
O

L
T
I

U

B

B
B

N

B
w
W

N

N

W
A

D
T

W
D

N
N

[N

ot

.
LI

)
o

o

W
 N

=

.
o

o
e

G
d

W
K

S

w

N

-

w

N

-~

w

N
=

INTRODUCTION

The Pascal compiler
The Main Machine Dependent Characteristics
Restrictions
The Main Extensions
THE SOURCE PROGRAM

Identifiers
Key-words
Standard Identifiers
Compiler commands
Conditional compilation
Multiple source files
Options
Special symbols
Extensions in NORD-10 Pascal
Variable initialization
Standard procedures and functions
External procedures and functions
External FORTRAN routines
Miscellaneous extensions
Implementation dependent features
Structured types
Packed structures
Strings and character arrays
Formal procedures
PROGRAM COMPILATION

HELP

COMPILE

CLEAR

OPTICONS

SET and RESET
EXIT

Program Compilation Example
PROGRAM LOADING AND EXECUTION

Program loading
Run-time Errors
INPUT/OUTPUT

File Variables
The type TEXT
Standard files
Packed files
OPEN and CLOSE
OPEN

CLOSE

Program heading parameters
Terminal I/0
Random Access 1/0
WRITEEOF

IMPLEMENTATION DESCRIPTION

Memory Layout

ND-60. 086. 02

NORD-10 Pascal

USER MANUAL

6.2 Loader Map

6.3 Procedure and Function Calls
App A Compiler Error Messages
App B Run-time Error Messages
INDEX

ND-60. 086, 02

NORD-10 Pascal 5
USER MANUAL

INTRODUCTION

The present chapter gives a general description of the
NORD-10 Pascal system. The specific information necessary
for the compilation and execution of Pascal programs 1is
found mainly in chapters 2 to 4. Most of the chapters 5 and
6 describe features for the more advanced use of NORD-10
Pascal.

NORD-10 Pascal has been implemented according to the
definition in "Niklaus Wirth: The Programming Language
Pascal. Revised Report. (1973)". Hereafter this language
definition will be referred to as Standard Pascal.

NORD-10 Pascal has one minor restriction and several
extensions in relation to Standard Pascal. Especially,
several extensions have been introduced to make it
convenient to compile and run Pascal programs in a
time-sharing environment. Explicit extensions of the
Standard Pascal language will be noted as such in this
manual. The extensions should be avoided if program
exportation is planned or probable.

The Pascal compiler

The NORD-10 Pascal compiler was developed from the Pascal
TRUNK compiler designed at ETH, Zurich. The compiler
produces BRF code, which <can be loaded by the Nord
Relocatable Loader and then executed. A prooram may refer to
separately compiled procedures and functions written in
Pascal and FCRTRAN,

The Main Machine Dependent Characteristics

A NORD-10 Pascal prodgram may be run either as a l-bank or a
2-bank program. As a l-bank proaram, all program and data
reside within 64K of memory. As a 2-bank program, the
program may occupy up to 64K in the instruction bank, and
the data occupy up to 64K in the data bank. 1- or 2-bank
execution may be selected at compile-~time with the B option.

The NORD-10 Pascal system has been constructed to run on
NORD-10 computers with both 32-bit and 48-bit floating point
arithmetic. Cross compilation is possible by wusing the
compiler R option.

A variable of type set will by default occupy 8 words, i.e.
a set can have up to 128 elements. The S option can be used
to reduce the number of words occupied by set variables.

ND-60. 086. 02

NORD-10 Pascal 6
USER MANUAL

Restrictions

File variables may only be declared in the main program.

The standard procedure DISPOSE is not implemented. Instead,
heap space may be deallocated by the help of the procedures
MARK and RELEASE (see section 2.5.2).

The Main Extensions

Variables in the main program can be initialized. There is a
convenient syntax for array initialization.

The procedures OPEN and CLOSE enable a program to associate
a Pascal file variable with an external file at run-time.
OPEN has been implemented such that the actual name of the
external file easily can be entered from the terminal
runnina the program.

Random access I/0 can be performed with the routines GETRAND
and PUTRAND.

ND-60. 086. 02

NORD-10 Pascal 7
USER MANUAL

THE SOURCE PROGRAM

A Pascal source file must contain either

1) A full Pascal proaram, or
2) One or more procedures and functions.

The source language must be Standard Pascal, with the
restrictions and possible extensions described in this
manual.

A full Pascal program will compile into an executable object
program, while procedures and functions will compile into
code that may be loaded together with a full program. A file
of procedures and functions to be compiled separately, must
be terminated with the character "." (period).

The source file character set must be ASCII, where the lines
are separated by the Carriage Return character, and
optionally, the Line Feed character. Files produced by OED
are acceptable as input to the compiler.

A source input line must not exceed 100 characters. The
Pascal compiler will indicate a longer line as an error.

Identifiers

An identifier may be of any length, but only the first 8
characters are significant. Within an identifier, lower and
upper case letters will be treated as distinct, unless the U
option is on (see section 2.4.3).

gez—wordg

The following are Pascal key-words, and can not be used as
identifiers:

Standard Pascal key-words:

and array begin case
const div do downto
else end file for
function goto it in
Tabel mod not of
or packed procedure program
record r epeat set then
to type until var
while with

ND-60. 086, 02

2.3

NORD-10 Pascal
8

USER MANUAL

Extra key-words in NORD-10 Pascal:

value
—— —

A key-word may be written with lower and/or upper case
characters. However, within a key~word all 1lower case
characters will be converted to upper case. Thus,

end END End

are all representations of the key~word end.

Standard Identifiers

Following is a list of the standard identifiers in NORD-10
Pascal. A standard identifier may be thought of as having
been defined in a block enclosing the program, and as such, may be redefined. Normally, such redefinition should be avoided, since it easily may lead to confusion.

Standard Pascal standard identifiers:

ABS ARCTAN BOOLEAN CHAR
CHR Ccos DISPOSE* EOLN
EOF EXP FALSE GET
INPUT INTEGER LN MAXINT
NEW NIL ODD ORD
OUTPUT PACK PAGE PRED
PUT READ READIN REAL
RESET REWRITE ROUND SIN
SOR SORT succ TEXT
TRUE TRUNC UNPACK WRITE
WRITELN

*DISPOSE is not implemented in NORD-10 Pascal.

Extra standard identifiers in NORD-10 Pascal:

CLOSE COSH GETRAND HALT
MARK MAXREAL OPEN POWER
PUTRAND RELEASE SINH WRITEEOF

All standard identifiers are written with upper case
letters.

Compiler Commands

The Source program text may contain commands to the
compiler. A command is signalled by the character "$" in position one in a source line. The rest of such a line is

ND-60. 086. 02

NORD-10 Pascal 9

USER MANUAL

treated as a command to the compiler, and no part of it will

be included in the proper program text.

The available compiler commands are

SSET
SRESET
$IFTRUE
SIFFALSE
SENDIF
SOPT IONS
$INCLUDE

A compiler command may be abbreviated to its shortest
unambiguous form.

Conditional compilation

The NORD-10 Pascal compiler may be instructed to skip
specified parts of the source text. This may be useful in
order to generate different versions of a program from the

same source file.

The skipping of source text is steered by flags, which are
Boolean variables. The flag identifiers are distinct from
the program identifiers, therefore no name conflicts between
flag and program identifiers can occur. A flaa identifier
can have up to 8 characters. No distinction is made between
upper and lower case characters.

A flag is given the value TRUE by the command

SSET <flag>

A flag is given the value FALSE by the command

SRESET <flag>

The skipping of source text is effected by the commands

SIFTRUE, SIFFALSE, and SENDIF

The command

SIFTRUE <flag>

has the effect:
If <flag> has the value TRUE: No effect.
If <flag> has the value FALSE: Skip all source text up
to an SENDIF <flag> with the same flag name.

ND-60, 086, 02

NORD-10 Pascal 10
USER MANUAL

2.4.3

The command

$IFFALSE <flag>

has the effect:
If <flaa> has the value TRUE: Skip all source text up to
an SENDIF <flag> with the same flag name.
If <flag> has the value FALSE: No ef fect.

If an SIFTRUE or SIFFALSE command has a flag parameter that
was not previously defined, it will become defined and given
the value FALSE.

Note that when source text is skipped, compiler commands
(such as SET, SIFTRUE etc.) will also be skipped.

Multiple source files

The SINCLUDE-command facilitates insertion in a program of
source text from an alternate file. This is useful when a
set of programs (within the same project, say) use a common
set of type, variable, and procedure definitions. Also,
"standard" data structures and procedures for handling
problems within a specific problem area, can easily be
incorporated in a program with the $INCLUDE-command.

The command

SINCLUDE <filename>

has the effect of switching the input stream from the
present input file to <filename>. When end of file on
<filename> 1is reached, the input stream will be switched
back to the previous input file. The effect is to insert the
text in <filename> at the place where the $INCLUDE-command
occurs.

SINCLUDE-commands may be nested to a maximum depth of 4.

Options

There is a set of options that affect the output produced by
the Pascal compiler. Each option has a one-letter name. Some
of the options are associated with counters. A counter value
greater than zero means that the option is on, a value equal
to or less than zero means that the option is off. The
remaining options are associated with specific values.

ND-60. 086. 02

NORD-10 Pascal 11
USER MANUAL

A counter option is increased or decreased by one by writing
the option name followed by "+" or "-" respectively.

The available options are (counter options are indicated by
the character "*"):

Bn Specify n-bank execution of program (n=1 or 2).
Default value is n=1.

L* Generate listing. Default value is 1 (on).

M* List generated object code (MAC). Default value is O
(of £).

Rn Specify n-word real (n=2 or 3). Default value is 2 on
NORDs with 32-bit floating point arithmetic, and 3 on
NORDs with 48-bit arithmetic. A program that is to be
cross-compiled, must not contain real constants.

Sn Specify n-word sets (n=1,2,...,8). All variables of
type set will then occupy n words, and can have up to
16n elements. The option can only be used once in a
program, and must appear before any reference to or
use of set is made. n=1 will cause in-line code to be
generated for most of the set operations. Default
value is n=8 (up to 128 elements).

T* Generate code to check array indices, subrange
assignments, pointer values and arithmetic overflow.
Turning this option off will make the object program
smaller and faster, but also unsafe. Default value is
1 (on).

Note that the NORD hardware does not facilitate
checking of overflow on floating point arithmetic
operations. Therefore, Pascal can only detect overflow
on integer operations. As a special case, attempted
floating division by zero is detected.

U* Convert lower case characters outside strings to upper
case. Default is 1 (on).

Z* 1Initialize all variables to zero. Default value is O
(of £) .

Options may be set within a comment in the source program.
The first character within the comment must be "s".
Thereafter, option settings separated by "," may follow.
Options may also be set following the $OPTIONS compiler
command.

ND-60. 086. 02

NORD-10 Pascal 12

USER MANUAL

Examples:

(*SM+,S3,T-*) means:

M+ List object code.
S3 Sets will occupy 3 words (up to 48 elements).
T- Do not generate testing instructions.

SOPT 7+ ,U- means:

Z+ Initialize all variables to zero.
U- Do not convert lower case characters to upper case.

2.4.4 Special symbols

2.5.1

Some of the special symbols in Standard Fascal have one or
more alternate representations in NORD-10 Pascal:

Standard Pascal NORD-10 Pascal

(*

*)
[or (.

] or .)

A or @ —
p

v

A

Extensions in NORD-10 Pascal

This section will describe all extensions in NORD-10 Pascal
not related to input/output. Refer to chapter 5 for 1I/0
extensions.

Variable initislization

Variables in the ma in proaram may be initialized.
Initialization is signalled by the key-word value, and must
appear after the var-declarations and before the first
procedure or function declaration, or main program begin.

The syntax for initialization is:
*

<variableinit>::= value {<initialization>;}
<initialization)>::= <variable> = <val>
<val>::= <constant> | (<valuelist>)
<valuelist>: := <aval> { , <aval>}
<aval>: := <constant> | <count> * <constant>
<count>: := <integer constant>

ND-60. 086. 02

NORD~10 Pascal 13

USER MANUAL

Examples:

value

X = 2.55;

I = 19;

TABLE = (1,3,2*7,-1,11*%0);
NAME = ('PASCAL ');

Since a string has the type array of CHAR, a string constant
must be enclosed in parentheses as shown in the last
exampl e.

Standard procedures and functions

SINH and COSH

These real functions calculate the arithmetic functions sinh
and cosh respectively.

POWE R

POWER 1is a real function with two parameters x and y which
calculates the function xty. When y is an integer, xfy 1is
(in principle) calculated by repeated multiplication. When y
is real, xfy is calculated by the formula xty = efy-1ln(x).
Thus, POWER(-1.0,2.0) will give a runtime error, while
POWER(-1.0,2) will give the correct result 1.0.

HALT

HALT is a procedure which takes a string parameter. HALT
will write this string on the terminal and abort the
program.

MARK and RELEASE

The Standard Pascal standard procedure DISPOSE 1is not
implemented in NORD-10 Pascal. Instead, heap space may be
deallocated by the help of MARK and RELEASE.

Both procedures take a pointer variable as a parameter. The
call MARK(<ptr>) will assign the address of the current heap
top to <ptr>. The <call RELEASE (<ptr>) will release
everything on the heap which is beyond the value of <ptr>.

External procedures and functions

The Pascal library contains a set of external procedures and
functions. To use one of these, the procedure or function
must be declared as external within the program.

ND-60. 086, 02

NORD-10 Pascal 14
USER MANUAL

An installation may choose to have a system file containing
external declarations for these external procedures and
functions. This file may then be included in a proagram with
the SINCLUDE compiler command.

TUSED

External declaration:
function TUSED: REAL; extern;

TUSED aives the elapsed CPU time in seconds.

TIME and DATE

External declarations:
procedure TIME (var hour, min, sec: INTEGER) ; extern;
Eroceaure DATE(var year, month, day: INTEGER) extern;

TIME and DATE give the current time and date respectively.

ECHOM

External declaration:
procedure ECHOM(echomode: INTEGER) ; extern;

Executes MON 3 with echomode in the A register. This will
define the echo mode for the terminal as specified in the
Sintran manual.

BRKM

External declaration:
procedure BRKM(breakmode: INTEGER); extern;

Executes MON 4 with breakmode in the A register. This will
define the break mode for the terminal as specified in the
Sintran manual.

ERMSG

External declaration:
procedure ERMSG(errorno: INTEGER) ; extern;

Executes MON 64 with errorno in the A register. This will
write the Sintran error message corresponding to the given
error number to the terminal.

HOLD

External declaration:
pProcedure HOLD(time: REAL); extern:

" ND-60. 086. 02

NOKD-10 Pascal 15

USER MANUAL

Will suspend execution of the program in <time> seconds.
<time> is accurate to 20 milliseconds.

VERSN

External declaration:
procedure VERSN(var year, month, day: INTEGER); extern;

Will give the date when the executing program was compiled.

RANDOM

External declaration:
Eunction RANDOM (var x: REAL): REAL; extern;

This function gives a uniformly distributed pseudo random
number in the interval <0,1>. Each new value 1is calculated

from the value of the parameter. This new value is also
assigned to the parameter variable. Thus, successive calls
on RANDOM with the same variable as a parameter, will
produce a uniformly distributed pseudo random number stream.

External FORTRAN routines

Separately compiled FORTRAN subroutines may be called from a

Pascal program. A FORTRAN routine must be declared in the
Pascal program with a procedure or function heading, and a
body consisting of the word "FORTRAN". Example:

grocedure ROUTINE (var x, y: REAL); FORTRAN;

Parameters of any type and kind, except Fascal procedure or
function names, may be transmitted to the FORTRAN routine;
however, no check is made that the parameters are consistent
with the formal parameters of the FORTRAN routine.
Parameters which are specified as var, or which occupy more
than 8 words, are transmitted by reference. Value parameters
occupying 8 words or less are transmitted by value.

FORTRAN routines may only be called from one-bank Pascal
programs.

When loading modules for a mix of Pascal and FORTRAN
programs, the following order must be observed:

1l Pascal main program
2 Pascal and FORTRAN external routines
3 FORTRAN library

4 Pascal library

ND-60. 086. 02

NORD-10 Pascal 16
USER MANUAL

2.5.5 Miscellaneous extensions

The compiler accepts octal constants. The syntax for an
octal censtant is

dd" B
where d is an octal digit.

MAXREAL is a standard real constant with a value egual to
the largest possible floating point value (approximately
1014930 and 10176 for 48- and 32-bit floating point numbers,
respectively).

Implementation dependent features

Structured types

Variables of structured types (records and arrays) may be
assigned to and compared, provided the variable type is not
packed or contain packed variables. Variables of type packed
array [...] of CHAR are excepted from this restriction.

Packed structures

Record and array types may be specified as packed. Each
single variable will then occupy a minimum number of bits,
and several single variables may be packed into one computer
word. No single variable will cross word boundaries. Also, a
record or an array will always start at a new word boundary.

The wuse of packed structures will save data space, but may
increase execution time significantly.

A variable within a packed structure can not be used as a
var parameter to a procedure.

See chapter 5 for information on packed files.

Strings and character arrays

Variables of type array [...] of CHAR will be packed whether
packed was specified or not.

In Standard Pascal, a string constant with n characters is
automatically given the type packed array [l..n] of CHAR.
This inhibits assignment of, or parameter substitution with,
a string to a variable or formal of type array [...] of CHAR
where the lower bound is different from 1. In NORD-10 Pascal

ND-60. 086. 02

NORD-10 Pascal 17
USER MANUAL

such assianment or substitution will be legal provided the
length of the string is equal to the length of the array.

Formal procedures

A formal procedure may only have value parameters. On entry
to a formal procedure, the actual parameters are checked
only to see if they occupy the same number of words as the
formal parameters. The user is warned that the use of formal
procedures with pointer parameters is unsafe.

ND-60. 086,02

NORD-10 Pascal 18
USER MANUAL

PROGRAM COMPILATION

The Pascal compiler is invoked by the command

@EASCAL

Initially, the compiler enters into a command processina
mode, to enable the user to specify source, list and code
files, options etc. The command processor prompts the user
to give a new command with the character "$".

The available commands are:

HELP
COMPILE
CLEAR
OPTIONS
SET
RESET
EXIT

A command may be abbreviated to its shortest unambiquous
form.

Note that the SET, RESET, and OPTIONS commands also are
available as compiler commands (cfr. section 2.4).

HELP
— et

The HELP cormand lists the available commands on the user's
terminal (or batch output file). The list includes both the
command processor commands and the compiler commands.

COMPILE

The COMPILE command orders Pascal to compile the specified
source file. The present setting of flags and options will
be used durina the compilation.

The syntax of the COMPILE command is

COMPILE <source file>, <list file>, <code file>

The parameter list may be omitted, in which case the command
Processcr will ask the user to specify the files one by one.

<source file> containe the proaram to be compiled.

ND-60, 086. 02

NORD-10 Pascal 19

USER MANUAL

<list file> is the file on which the listing of the compiled
proogram will be written. The <list file> parameter may
be omitted, in which case no listing will be generated.

The listing contains:

in column 1: Source line number (decimal).
in column 2: Relative program and variable addresses

(octal).
in column 3: A number ina of the begin-end,

repeat-until, and case~end pairs 1In ~the
program, to indicate the nesting structure
of the program. Also, the declaration
level for each procedure and function is
indicated.

in column 4: The source program.

The listing is divided into pages with a heading on each
page containing: version of compiler, date and time of
compilation, and page number.

The listing will indicate a language syntax error at the
exact spot where it was discovered, together with an
error number. If a part of the source text was skipped
as a result of the error, the part that was skipped will
be indicated by a line containing the text *#*SKIP* at
the 1left, and hyphens under the skipped text. Lines
containing syntax errors will in addition be written on
the terminal.

At the end of the listino a list of the error numbers
and an explanatory text for each error will appear.

A list of all compiler error messages can be found in
appendix A.

<code file> 1is the file on which the BRF output will be
written. The <code file> parameter may be omitted, in
which case no object code will be generated.

In a second or followinag COMPILE commend, only <source file>

need be specified. The previous <list file> and <code file>
will be wused if they were specified in a previous COMPILE
command. If a new <list file> or <code file> 1is specified,
the previous file will be closed, and the new file opened.

Be aware thet option and flag values may be affected by o
compilation, and thus may influence the result of a
succeeding compilation. Use the CLEAR command to brinag the
processor back te its initial state.

ND-60. 086. 02

NORD-10 Pascal 20

USER MANUAL

CLEAR

The CLEAR command brings the command processor back to its
initial state. The following actions are taken by CLEAR:

Set all options to their default values.
Delete all flags.
Close <list file> and <code file>.

OPTIONS

The OPTIONS command 1is used to set compilér options. The
command and the options are described in section 2.4.3.

SET and RESET

The SET and RESET commands set a flag to TRUE and FALSE,
respectively. These commands, and the wuse and effect of
flags are described in section 2.4.1.

EXIT

The EXIT command closes all files and returns control to the
operating system.

ND-60. 086. 02

NORD~10 Pascal 21
USER MANUAL

Program Compilation Example

Followina is an example showina how a compilation of a
program is performed. Computer-generated output is
underlined.

Terminal input/output Comments

@PASCAL Call Pascal compiler
NORD-10 PASCAL. Version 78-11-01 Identifying text
SOPT B2,T- Compile for 2-bank execution and
- suppress generation of test

instructions.
$SET PARIS Generate "PARIS" version of

program. (Assumes sour ce file
contains SIFTRUE and SIFFALSE
tests on flaa with name PARIS.)

$COM Compile
Source file=MYPROG Source is MYPROG
List file=L-P Listing to line printer
Code file=MYPROGCODE BRF code goes to MYPROGCODE

NO ERRORS Message from compiler
"7 "XX.xx SECONDS COMPILATION TIME

$EX Exit
@ Back to SINTRAN

ND-60. 086, 02

NORD-10 Pascsal 22

USER MANUAL

PROGRAM LOADING AND EXECUTION

Program Loading

A compiled NORD-10 Pascal program must be loaded by the NRL
loader before it can be executed. The reader should consult
the NRL manual for details concerning the 1loader and the
loading process. Here we will just give an example of how a
Pascal program is loaded and executed:

Terminal input/output Comments

@NRL Call loader
RELOCATIONG LOADER LDR-XXXXX Identifyino text
*I, MYPROGCODE P-LIB Load code file and Pascal library
FREE : X XXXXX—-X XXXXX Free memory area
*RUN Execute program

@ Execution finished

BRF files <containing the main program and external
procedures may be loaded in any order. The Pascal library
must always be loaded last.

Note that for a one-bank program, more space will be

allocated for the stack and heap if the loading process is
done via an image file.

Further information on how a running Pascal proaram utilizes
memory, and how to make an absolute program, can be found in

chapter 6.

Run-time Errors
If a program attempts to do an 1illegal operation, the
prooram will abort with an appropriate error message. If the
error was an illegal I/0 operation, the name of the file
variable involved will be part of the message. A list of 3all
run-time error messages can be found in appendix B.

The error message will indicate at which absolute address
(octal) the error occurred, and, if the T option was on
dur ing compilation, which line number in the source program
this address corresponds to.

Be aware ©of "the following pit-falls regarding the source
program line number:

1 If the T option was turned off and on one or more times
dur ing the compilation, the source line number may be
wrong.

ND-60. 086. 02

NORD-10 Pascal 23
USEF MANUAL

2 If the program calls separately compiled procedures, the
source line number may be that of an external procedure,
if that procedure was compiled with the T option on.

3 If an error occurs within an external FORTRAN subroutine
or function, the Pascal system will not be able to give
any information about the error.

If there is any doubt regarding the source line number given
in cases 1 and 2 above, you should correlate the octal
address in the error message with the octal progam addresses
in the 1listing by the help of a loader map. The loader map
can be acguired by the NRL *ENTRIES-DEFINED command.

If the program aborts with the error message STACK-HEAP
OVERFLOW, then your program needs more space for data. If
the progrom ran with the Bl option, you can recompile the
program with the B2 option and rerun the program.

ND-60. 086. 02

NORD-10 Pascal 24
USER MANUAL

INPUT/OUTPUT

Input/output is that part of a programming language which is
most operating system dependent. Several design and
implementation decisions therefore have to be taken by any
implementor of Pascal. The reader is warned that some of the
features described 1in this chapter may not be implemented,
or may work differently, in other Pascal implementations.

File Variables

File types may be used as any other type in a Pascal
program, with the following limitations:

1 A file variable may only be declared in the main proaram
(i.e. file declarations within procedures and functions
are not allowed).

2 file of . . . file of . . . is not allowed.
3 File “variables, or structures containing file variables

may not be generated with the NEW constructor.

.1 The type TEXT

There is a standard file type TEXT. A file of type TEXT 1is
assumed to contain a secuential text, subdivided into lines
of maximum 136 characters each.

Note: In NORD-10 Pascal, the type TEXT is not eguivalent to
the type packed file of CHAR. The latter type will be
interpreted as a sequence of characters where no 1line
subdivision is visible.

The following procedures and functions may only be used on
files of type TEXT:

EOLN READ READILN WRITE WRITELN

On input, the CR character (value 15) will be taken as a
line separator. An LF character (value 12,) following CR
will be ignored. According to Standard Pascal EOLN (<file>)
will become TRUE when a READ (<file>,c) reads the last
character before the CR. When EOLN(<file>) is TRUE, the next
READ(<file>,c) will deliver the space character (value 40,) .

On output, WRITELN will write the two characters CR and LF.

The editing specifications in READ and WRITE are extended to
enable I/0 of the octal representation of integers. In READ,
an inteaqer parameter may be followed by a :n spec1f1cat10n,
while in WRITE an integer parameter may have a :n

ND-60. 086. 02

NORD-10 Pascal 25

USER MANUAL

5.1.2

5.2

specification after the :<field width> specification. 1In
both cases, 1if n has the value 8, the octal representation
of the integer will be read or written. If n is not equal to
8, decimal conversion will be performed.

On output, a :<field width> specification with zero value is
legal. In this case, the number will be written left

justified, using the minimum space.

Standard files

There are two standard files, INPUT and OUTPUT, both of type
TEXT. These files may therefore be used without declaration.

Packed files

In a GET or PUT-operation on a non-packed file, a whole

number of 16-bit words will always be transferred.

In the declaration

packed file of T,

the key-word packed will have an effect only if values of
type T occupy 8 bits or less. In these cases, PUT and GET
will operate as follows:

If the values of type T occupy 6,7 or 8 bits:
Transfer one value.

I1f the values of type T occupy 1, 2, 3, 4 or 5 bits:
Pack (unpack) the maximum number of values in one
l16~-bit word. Transfer a word when it is full (PUT) or
empty (GET).

Be aware that on reading a file of this kind, it may
be the case that EOF is found too late, if the last
word was not completely filled when the file was
written.

QPEN and CLOSE

The procedures OPEN and CLOSE have been implemented in
NORD-10 Pascal to enable run-time association between a file

variable and an external file.

ND-60. 086. 02

NORDL-10U Pascal 26
USER MANUAL

5.2.1 GPEN

1he CPEN procedure can have up to 3 parameters:

OPEN(<file>,<filename>,<status>)

<file> is the variable name of the file.

<tilename> is a string or an array of CHAK containing the
external name of the file, the file type, and the
SINTRAN file access code (R, W, WX, RX, Rw, WA, WC, or
kRC). It no file type 1is given, the type :SYMB is
assumed. The file name and the access code should be
separated by a blank or a comma. In case no access code
is given, the access mode 1is taken to be R (read
sequential).

{status> 1is an 1integer variable where status for the open
operation will be left.

Example:
var F: file of . . .;

STS: INTEGEK;

CPEN(F,'MYDATA:DATA RW',STS);

The action of OPEN is to open <filename>, and associate that
file with <file>. Status for the operation is left in
<{status>. If the open operation was errorfree, <status> will

be =zero; if an error occurred, <status> will contain the
SINTRAN error number.

One or both of the parameters <filename> and <status> may be
omitted:

If the <filename> parameter is omitted, the OPEN
procedure will

1l Write the name of the file name variable followed by
an equal sign to the terminal.

2 Read the file name and access code entered at the
terminal.

3 Open this file.
4 If the <status> parameter is present, leave status

in <status>., 1If the <status> variable 1is not
present, and the open operation resulted in an error
condition, write the error message and

a) repeat from 1 if an interactive job,
b) abort the program if a batch job.

If the <filename> parameter is present, and the <status>
parameter is omitted, the program will be aborted in
case of an open error.

ND-60. 086. 02

NORD-10 Pascal 27

USER MANUAL

Remember that RESET or REWRITE must be called before I/0 on
the file can be performed.

CLOSE

The CLOSE procedure has one parameter:

CLOSE (<file>)

The external file will be closed and disassociated from the
<file> wvariable. A later OPEN may associate <file> with
another external file.

Program heading parameters

The program heading may have file wvariable names as
parameters. For each of these file variables, the compiler
will automatically generate an OPEN(<file variable>) call,
preceding the first statement of the main program. In
addition, for the file INPUT a RESET(INPUT) will be
generated, and for the file OUTPUT, a REWRITE(CUTPUT)
generated. For all file names in the program heading, except
INPUT and OUTPUT, the call on RESET or REWRITE must be

programmed.

Placing a file variable as a parameter 1in the PROGRAM

statement, therefore has the effect that the user at the
terminal is inquired to specify the actual external file
name and access mode (cfr. section 5.2.1).

Since OPEN and CLOSE are not part of Standard Pascal, file
variables in programs that are to be ported should appear in
the program heading, instead of being explicitly opened by
calls on OPEN.

Terminal I/0

When the actual external file is the terminal running the
program, certain special actions are taken by the 1/0
system.

On input, a RESET will not read the first character into the
file window, as specified in Standard Pascal. Instead, RESET
will put the space character into the window, and set EOLN
to TRUE. Thus, 1in the input from the terminal, an extra
initial space will appear. The reason for this modification
is to permit output to the terminal prior to the first input
without program hang-up.

ND-60. 086. 02

NORD-10 Pascal
28

USER MANUAL

In a READ operation from the terminal, a number syntax error
will not result in a program abortion. Instead, the messace

ILLEGAL NUMBER SYNTAX

will be written to the terminal, and the READ performed
anew, such that the correct number can be retyped.

An input TEXT file associated with the terminal will be
given logical unit number zero. This enables editing of the
terminal input with CTRL A and CTRL O.

Random Access I/0

A file variable may be associated with an external random
access file. Random access I/0 may be done on that file with
the procedures PUTRAND and GETRAND. Each of these procedures
has twec parameters:

<file> and <block number>

PUTRAND writes the current content of the file window to the
given <block number> on the file. GETRAND reads the block in
<block number> on the file into the file window.

The block =size is equal to the number of words occupied by
the file component type. This block size is determined when
the file is opened by a call on OPEN.

RESET and REWRITE have no effect on random access files.

A random access file can not be packed.

WRITEEOF

WRITEEOF takes a file variable as a parameter. The procedure
will write an end-of-file mark on the file, provided this
operation is meaningful for the kind of medium on which the
file resides.

ND-60. 086. 02

NORD-10 Pascal 29

USER MANUAL

IMPLEMENTATION DESCRIPTION

This chapter will give some information on how the NORD-10

Pascal system works internally, to enable more advanced use

of the system. Be aware that most of the features described

in this chapter are very NORD-10 and SINTRAN dependent.

Therefore, the reader should not assume that other Pascal

implementations work in the same or a similar manner. Also,
the reader is warned that implementation details may chanage
in future versions of NORD-10 Pascal.

gemorz Layout

The following figures show how memory is utilized by a
running Pascal program (including the Pascal compiler

itself).

One-bank program

address “_ e

0 (LOADER)

PROGRAM

STACK

HEAP

CONSTANTS

MAIN DATA

177777 SYS DATA

Two-bank program

0 (LOADER) STACK

PROGRAM |- - -~ - - — - -

HEAP

 (constants) | CONSTANTS

(main data) | MAIN DATA
1777717 [(sys data) “sys pata |

ey .- - ——————— e e

ND-60, 086. 02

NORD-10 Pascal 30

USER MANUAL

PROGRAM The Pascal program together with the necessary
library routines.

STACK The memory used by procedures and functions that
the program <calls. The stack grows from low
towards high addresses.

HEAP The memory used by data allocated with the NEW
constructor. The heap grows from high towards low
addresses.

CONSTANTS The constants of length 4 words or more referred
to by procedures. For each procedure, a common
block containing such data is allocated within the
CONSTANTS area.

MAIN DATA All variables declared in the main program. This
area is a common block named C.MAIN.

SYS DATA The variables and constants used by the Pascal
library routines.

The object program and Pascal library are identical in the
one- and two-bank versions. When running, the system detects
the actual execution mode by sensing bit zero in the STATUS
register.

The decision whether to run a program 1in one-bank or
two-bank mode may be postponed till after the loading
process has been completed. Use the NRL DEPOSIT command to
change the BANKS variable to 0 (for one-bank execution) or 1

(for two-bank execution) before entering the RUN command.
The BANKS variable 1is found at relative location 2 in the
5CCOM common area.

One-bank programs

Note that the space occupied by the loader is wasted. Doing
the 1loading process via an image file so that the Pascal
program starts at address 0, will give more space for the
stack and heap. Thus, an absolute version of a program
giving maximum space for the stack and heap will need a file
of 64 pages.

Two-bank programs

A two-bank program is loaded exactly as a one-bank program.

Before execution starts, the CONSTANTS, MAIN DATA, and SYS
DATA areas are moved to the data bank. The data will be
located at the same addresses as they had in the instruction
bank.

To make a minimal absolute version of a two-bank program,

use the NRL SET-LOAD-ADDRESS command to minimize the space
betweer the PROGRAM and CONSTANTS areas.

ND-60. 086, 02

6.3

NORD-10 Pascal 31
USER MANUAL

A two-bank proaram will usually be slower than a one-bank
program due to the necessary ALTON and ALTOFF monitor calls
within the Pascal library.

Loader Map

The compiler generates 7-letter entry point names. The names
found in the loader map are constructed as follows:

Main entry point: The name given by the programmer in the
PROGRAM statement.

Procedures and functions local to the program: These have
the form nnnndd* where nnnn are the first four
characters of the procedure or function name. dd are two
invented characters, to make entry point names distinct.

Non-local labels: These have the form LABLAd+ where dd

are invented characters.

External procedures and functions: The name oiven by the
programmer.

Labelled common areas: These have the form nnnndd+ where
nnnn are the first four characters of the procedure or

function with which this common area is associated. dd
are invented characters.

Procedure and Function Calls

The following information on how procedure and function
calls are handled by Pascal should enable a user to write
simple external routines in MAC or NPL.

For each procedure or function call, Pascal generates an
object on top of the stack to hold system data, parameters,
and data local to the routine. At the time of entry to the
routine, the registers and stack contain the following data:

ND-60. 086, 02

NORD-10 Pascal 32

USER MANUAL

X Static Link
A Top of new procedure object relative to B
B Dynamic Link (calling procedure object)
L Return Address

Stack:

(A)+(B) -> | system loc

_system loc
system loc

_function value
parameter (1)
parame ter (2)

- -

_parameter(n)

In a proper Pascal procedure, the three system locations are
used to <contain Static Link, Dynamic Link, and Return
Address.

The function value occupies O words if the object 1is a
procedure; 1, 2, or 3 words if the object is a function.

parameter (i) can have the following form:

when var parameter reference to actual
when value parameter k-word value if k<=8

reference to actual if k>8

The routine may use 200 octal stack 1locations without
causing stack-heap overflow.

On exit from a procedure or function, the following
conditions must be satisfied:

The B-register must hold the same value as it had on
entry.

For a function, the A-, AD-, or TAD-register must hold the
function value.

The exit must be to Return Address (= contents of
L-register on entry).

ND-60. 086. 02

NORD-10 Pascal

USER MANUAL

APPENDIX A

Compile-time Error Messages

Error in simple type
Identifier expected
'PROGRAM' expected
')' expected
':' expected
Illegal symbol
Error in parameter list
'OF' expected
‘(' expected
Error in type
'[' expected
']"' exepcted
'END' expected
';' expected
Integer expected
'=! expected
'*BEGIN' expected
Error in declaration part
Error in field-list
',' expected
'*! expected
Illegal character
Error in constant
':="' expected
'THEN' expected
'UNTIL' expected
'DO' expected
'TO'/'DOWNTO' expected
'IF' expected
'FILE' expected
Error in factor
Error in variable
Identifier declared twice
Low bound exceeds high bound
Identifier is not of appropriate class
Identifier not declared
Sign not allowed
Number expected
Incompatible subrange types
File not allowed here
Type must not be real
Tagfield type must be scalar or subrange
Incompatible with tagfield type
Index type must not be real

Index type must be scalar or subrange
Base type must not be real
Base type must be scalar or subrange

ND-60, 086. 02

33

NORD-10 Pascal 34
USER MANUAL

117:

118:

119:

120:

121:
122:

123:

124:
125:
126:
127:

128:

129:
130:

131:

132:

133:
134:

135:
136:

137:

138:

139:

140:

141:

142:

143:

144:

145:
146:

147:

148:

149;:

150:

151:

152:
153:

154:
155;:

156:
157:

158:
159;

160:
l161:

162:

163:

Unsatisfied forward reference
Forward reference type identifier in variable
declaration

Forward declared; repetition of parameter list not
allowed

Function result type must be scalar, subrange or
pointer
File value parameter not allowed

Forward declared function; repetition of result type
not allowed
Misssing result type in function declaration
F-format for real only

Error in type of standard function parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type of parameter function does not agree with
declaration
Type conflict of operands
Exepression is not of set type
Tests on equality allowed only
Strict inclusion not allowed
File comparison not allowed
Illegal type of operand(s)
Type of operand must be Boolean
Set element type must be scalar or subrange
Set element types not compatible
Type of variable is not array
Index type is not compatible with declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter substitution
Illegal type of loop control variable
Illegal type of expression
Type conflict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be scalar
Index type must not be integer
Assignment to standard function is not allowed
Assianment to formal function is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Control variable must not be formal or global
Multidefined case label
Too many cases in case statement

Missing corresponding variant declaration
Real or string tagfields not allowed
Previous declaration was not forward
Again forward declared
Parameter size must be constant
Missing variant in declaration

ND-60. 086. 02

NORD-10 Pascal 35

USER MANUAL

164:

165:

166:

167

168:
169:
170:

171:

172:
173:

174:

175
176:

177

178:

179:

180:
181:

182:

183:

184:
185:
190:

191:

201:
202 :

203:

204 :

205:

206
207:

208:
250:

251:

252:

253
254:

255:
256:

257:
258:
259:
260:
300:

301:

302:

303:

304:

320:

322:
331:
332:

Substitution of standard proc/func not allowed
Mult idefined label
Multideclared label
Undeclared label
Undefined label
Error in base set
Value parameter expected
Standard file was redeclared
Undeclared external file
Fortran procedure or function expected
Pascal procedure or function expected
Missing file 'INPUT' in program heading
Missing file 'OUTPUT' in program heading
Illegal assignment to control variable
Variable used as control variable in outer loop
Read into control variable not allowed
Source line too long
Value of tagfield out of range
Illegal assignment to function name
Forward declared procedure not defined
Illegal jump to label
Variant already defined
Type must be scalar, subrange or array
Value list too long
Error in real constant: digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 9 in octal number
Real number overflow
Real number underflow
Too many decimals
String constant of zero lenath not allowed
Too many nested scopes of identifiers
Too many nested procedures and/or functions
Too many forward references of procedure entries
Procedure/function too long
Frocedure/function has too many long constants
Too many errors on this source line
Too many external references
Too many externals
Too many local files
Expression too complicated
Procedure/function has too many local variables
Division by zero
No case provided for this value
Index expression out of bounds
Value to be assigned is out of bounds
Element expression out of range
Internal error (reference out of range)

Internal error (GETOPR)
Internal error (LOADAD - packed address)

Internal error (LOADAD - condition address)

ND-60. 086, 02

NORD-10 Pascal 36

USER MANUAL

333:

340:

380:
381:
382:

383:
384:
385:
386:
390:

398:
399:
400:

Internal error (MAKEMREG)

Internal error (SELECTREG)
Illegal command
Unknown command
Ambiguous command
Too many flags
Too deep nesting of INCLUDE files
INCLUDE open error

Missing file name in INCLUDE
EOF encountered on source file
Implementation restriction
Variable dimension arrays not implemented
Internal error (MOAVATTR, RESETGATTRP)

ND-60. 086. 02

NORD-10 Pascal 37

USER MANUAL

APPENDIX B

Run-time Error Messages

ARGUMENT TO EXP TCO BIG

The argument to EXP will cause arithmetic overflow.
ARGUMENT TO LN WAS <= O

The logarithm of a negative number is not defined.
ARGUMENT TO SIN/COS TOO BIG

Lost accuracy makes the function result meaningless.

ARGUMENT TO SINH/COSH TOO BIG

The argument will cause arithmetic overflow 1in the

result.,
ARGUMENT TO SQORT WAS < O

The souare root of a negative number is not defined.
ARITHMETIC OVERFLOW

Overflow caused by
a) integer arithmetic operations,
b) floating division by zero, or
c) conversion of real to integer.

BAD ARGUMENT TO ARCTAN

Lost accuracy makes the function result meaningless.
BLOCK DOES NOT EXIST

Program tried to read non-existina block on a random
file.

EOF ON INPUT

Program tried to read past end-of-file on an input file.
FILE ALREADY OPEN

Program tried to OPEN an already opened file.

FILE NOT OPEN

Program tried to access a non-opened file.

FILE NOT RANDOM

Program tried random access to a secuential file.
FILE NOT SEQUENTIAL

Program tried sequential access to a random file.
ILLEGAL ARGUMENT (S) TO POWER

Either attempt to raise negative number to a real power,
or the arguments will cause arithmetic overflow.

ILLEGAL CASE INDEX

The case label corresponding to the value of the case
variable is not defined.

ILLEGAL FCRTRAN CALL

A FORTRAN routine was called from a two-bank Pascal

program.
ILLEGAL NUMBER SYNTAX

The number being read did not have the correct syntax.
ILLEGAL PARAMETERS TO FORMAL PROC/FUNC

The actual parameters to a formal procedure or function
did not correspond in number or type to the formal

parame ters.
ILLEGAL SUBRANGE ASSIGNMENT

Attempted assignment of a value outside the subrange, or

ND-60. 086. 02

NORD-10 Pascal 38

USEKk MANUAL

the controlled variable in a for-loop was of a subrange
type and lower or upper bound of the loop was outside
the subrange.

INPUT RECCRD TOO LONG

A TEXT file record must not exceed 135 characters.
INTERNAL PASCAL ERROR

Error within the Pascal system. Contact a systems

expert.

NO RESET

Frogram tried to reaa from a file without a previous
RESET.

NO REWRITE

Program tried to write to a file without a previous
REWRITE.

OFEN ERROKR

Failure in an attempt to OPEN a file. The SINTRAN error

message will indicate the cause.
POINTER 1S NIL

Attempted access to data via a pointer with the value
NIL, or call on RELEASE with a NIL-valued pointer

parame ter.
POINTER IS OUTSIDE HEAP

Attempted accecss to data via a pointer which did not
point to data within the heap, or call on RELEASE with a
pointer parameter that did not point within the heap.

RESET ON OUTPUT FILE

RESET was attempted on a write only file.
REWRITE ON INPUT FILE

REWRITE was attempted on a read only file.
SET ELEMENT OUTSIDE RANGE

Program attempted to construct a set with an element
value not within the set type.

SHORT FIELD ON OUTPUT

The number value being output did not fit in the given

field size.
STACK-HEAP OVERFLOW

The program generated too much data by calling
procedures recursively or with the NEW constructor.
Running the program in two banks (see section 1.2) may
solve the problem.

SUBSCRIPT OUT OF RANGE

The index(es) to an array are outside the array bounds.
UNKNOWN LUN

There is no file open on this logical unit.
WRONG I/0 PARAMETER

Illegal specification of the formatting of a number.

ND-60. 086. 02

NORD-10 Pascal

USER MANUAL

INDEX

banks . . + ¢« ¢« ¢ & o o

BRKM . . ¢ ¢« ¢ ¢ ¢ & o =

character set
CLEAR . . « ¢ « o o o o =

CLOSE . . ¢« &« &« & o o o =

code file
COMPILE . ¢« o o o o« o =

Compile-time errors . .
Compiler commands . . .
Conditional compilation
COSH . . v v ¢ o o o &

DATE - - . . - - - - - -

ECHOM
ENDIF . . . ¢« ¢« &« & « & =«

ERMSG . ¢ ¢« & &« & o o o &
EXIT ¢ &« & & o o o o o &

Extensions
External procedures . . .

flilé m .« a . . s 8 ., a5
floating point arithmetic
Formal procedures
FORTRAN « ¢« ¢ o o o o o o«

HALT . - - - - . - - - »

HELP - - - - - - . - o -

HOLD » . . - . . - - - s

identifier . .

IFFALSE + v « o o o o o =

IFTRUE o s o W B & 4 = §

Implementation
INCLUDE & &+ ¢ o« o & & o =

INPUT . & ¢ o % % & @ @ =@

Input/output

key-word . « « o o o« o

1ist file - . - - - - - -

MARK . * . Ld . . » o . o

MAXREAL « o

Multiple source

octal constants

octal I/O0 . ¢« ¢« « o o o @
OPEN *

s
&

®
&

®
@&

@&
@

.
.

.
.

ND-60

- . -

. . -

. . -

. - .

. - .

- - .

- - .

- . -

- - -

- . -

- ° -

- . -

. " -

- . -

. . -

. o -

- - -

. . .

- . .

- . -

- . .

- - .

. . -

- . .

. . .

- - -

. - -

- - .

. - -

- - -

.

. . .

° . a

- - .

. . .

. . °

- - -

. . .

. . -

. . .

. 086. 02

e
&

8
8

8
»

s
=

®
®

®
®

®
%

=

-
-

-
o

e
8

&
&

®
°

&
&

8
&

&
&

.
*

&
8

@

T
s

8
&

®
@

@
®

8
®

&
3

»

39

29
14

2C
27
18
18
33

13

14

14

14
20
16
13

24

17
15

13
18
14

29
10
25
24

18

13

10

16
24
25

NORD~-10 Pascal

USER MANUAL

Options . . . + . « « &
OPTICNS . &« &« &« o o o o

oUTPUT . - . - . - - -

Packed files
packed structures . .
POWER

Program compilation
Program execution .
Program heading
Program loading . . s

&
&

5
0

@

e
8

5
%

e

RANDOM e o s e e T oW %

Random access I/0

RELEASE . ¢ ¢ ¢« & o« « &

RESET « ¢ « ¢ « o o « &

Run-time errors

SET (command)

set (type) e s e o W
S INH e & W e & = ‘s f& G

source file
source program
Special symbols
Standard files
standard identifier . .
Standard Pascal
Standard procedures . .
Strings . . .« ¢ .« . . .
Structured types . . .
syntax errors

terminal . .
TEXT ¢ ¢« o o o o o o o
TIME .+ & & o ¢ « « « &
TUSED .« .« &« & « &« &« & =

value o +« v 4 4 o e o

Variable initialization

VERSN ¢ ¢ 4 o o« o o o =

WRITEECF

- . - - - .

- - . . - -

- - . . . -

- - - . .

- - - - . -

- L] - . . -

" - - » . -

- - - e . .

-

. - - - - .

. . . - - -

. - - . - .

- - . . [-

- - . - . .

[- - - - -

. . - - . .

- . . - - -

L] - . - . -

. - - - ® -

. - ° - ® -

. - - - . 1l

L] - - - " .

. . (] . = -

- . ° . . -

- - . . - .

. - - - - -

- . . L] . -

- - . - - o

. . - . . -

.

. . . . - .

.

. - . - - -

. . . - . -

° - . - - .

- - - = . -

ND-60. 086. 02

e
&

&
@®

8
s

@
s

8
&

®

e
®

©®
8

8
®

8
@

®
8

@

&
e

©®
@&

=
=

®
"

=
8

@®

"«
&

&
®

&
@

®
s

®
®

=
«

*
8

=
®

=8

*s
&

&
®

8
5

@
s

=
&

®

=
&

&
@8

B
®

@
B

e
e

e
&

&
&

®
&

&
©

5
&

»
.

«
&

®
@&

@
@&

&
®

&
@

=
-

®

e
&

&
®

°
@

°
.

.
L

40

10
20
25

25
16
13
18
29
27
31

15
28
13
20
37

20

13
18

12
25

13
16
16
19

27
24
14
14

12
12
15

28

NORSK DATA A, S.

Jerikoveien 20, Box 4, Lindeberg gird

OSLO 10 e
a
s
a
e
e
s
s

2
0
0
0
0
0
0
0

e
o
e
o
e
c
0
e

COMMENT AND EVALUATION SHEET

ND-60. 086. 02 NORD-10 PASCAL

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, Suggestions

for additions, etc, Please write down your comments on this pre-
addressed form and post it, Please be specific wherever possible,

FROM

