

PRINTING RECORD

Printing Notes

08/76 Qriginal Printing

09/77 Revision A. The following pages have been revised: vi, 2—9, 2—-11, 2-27,

4-19,4-25,7-10, A-8, A—10, A—12, A—13, A—-14, B-1,

B—2,B8-3,B8-14,8 -17,C-13, D—1, D—6.

The following pages have been added: 4—-53, 4—54, 4-55,

4-56,4-57,C—-14

03/79 Revision B. The following pages have been revised: 2—27, 4—653, 454,

4-55 4-—56,4-57,7—-10, A—12,B—1,C—-14, D=2, D—6.

01/80 Revision C. The following pages have been revised: 1-4,1-6,2-2,2-3,

2-6,2-7,2-12,2-31,3-1,3-5,3-7,4-1,4~-2,4-3,

44 4-5,4-7,4-8,4-9,4—11,4-14, 4-17,4-20,4-21,

4-26,4—30,4—31,4-32,4-36,4-39, 4—41, 444, 446,

4—50, 4—51,4—53, 4—54,5—1,5—6,5—10, 5—11, 5-13,

5—14,5-16,7-3,7-8,7-9,7-10,7-11,7-12,7-13, 7—14,

A—1, A—8, A—8, A—10, A—16, A—18, B—1, B—5, B—6, B—7,

B—8,B—12, B—13,B8—14, B—15,8-16, B—19, B—20,C—-1,

C-5,C—11,C—12, D=2, D—5, and added page: A—10a.

05/81 Revision D. The following pages have been revised: 1—4, 1-5, 2-6,2-8,

2-9 211,218, 3—1,4—8,4—16,4—17, 419, 4—24, 4-25,

4-46, 4—51,4—52, 5—1,5—4,65-6,5-8,5-8,5—-11,5-12,

6—11,6—13,6—14,7-11, A—=11, A—14,B-13, B—15, B-16,

B—20,C-1,C—4,C-10,D0-3, D-5.

Most of these pages contain corrections of spelling and lanquage errors.

Changes of technical significance are marked by a vertical line in the margin.

Appendix A.3 has been removed. Refer to the manual “SINTRAN 111

User’'s Guide’’ for File System Error Messages.

ND-—10 BASIC — Compiler Reference Manual

ND-60.071.01

322 P.O.
Oslo

NORSK DATA A.S
Box 4, Lindeberg gard
10, Norway

o '

PREFACE

The product

This manual describes the January 1981 version of the BASIC compiler for ND—100

and NORD—10 computers.

10034B — 32 bit floating point hardware

10024B — 48 bit floating point hardware

The system consists of the software products

2059D — BASIC compiler for 32 bit floating point

2060D — Run time library for 32 bit floating point

or

2000E — BASIC compiler for 48 bit floating point

2001E — Run time library for 48 bit floating point

The reader

This manual is written for anybody who will use the BASIC language for programming

and for those who need a user level description of the ND BASIC compiler.

Prerequisite knowledge

No previous experience with either the BASIC language, other programming or computer

" hardware is expected. A minimum of knowledge of the Sintran || operating system is

required in order to log in on the NORD—10/ND—100 system.

The manual

The manual is intended to be read sequentially, and is well suited as a guide to programming

in general, using BASIC as a tool. It explains BASIC features and interactive use of the BASIC

system in sufficient detail for self study, and contains a complete description of all commands,

statements and functions available.

Related documentation:

Sintran 1| Introduction (ND—60.125)

ND-60.071.01

Revision D

vii

TABLE OF CONTENTS

+ + 4+

Section:

1 INTRODUCTION

1.1 What is a Computer?

1.2 What is a Program?
1.3 What is BASIC?

1.4 What is ND BASIC?

1.4.1 The Language

1.4.2 Special Reai-Time Facilities

1.4.3 Program Development

1.4.4 The Compiler

1.5 The Manual

1.5.1 Conventions Used in This Manual

2 A BASIC PRIMER

2.1 An Example

2.2 Expressions

2.2.1 Numbers

2.2.2 Variables

2.2.3 Relational. Operators

2.3 Loops
2.4 Arrays or Matrices

2.5 Use of the System

2.6 Errors and Debugging

2.6.1 Use of Flags

2.7 Summary of Elementary BASIC Statements

2.7.1 LET

2.7.2 READ and DATA

2.7.3 PRINT

2.7.4 GOTO
2.7.5 IF-THEN- or IF-GOTO

ND-60.071.01
Revision D

2-8
2-8
2-8

2—-10

2-13

2-16

2—-18

2-23

2-23
2-23
2-24
2—-25
2—-25

Section:

2.7.6
Rl T
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13

3

3.1

—

)

w
N

=

3.2.1

3.3

3.3.1
3.3.2
3.3.3
3.3.4

3.4

4.2

4.2.1
4.2.2
4.2.3
4.2.4

viii

FOR and NEXT

DIM

STOP

END

ON-GOTO

REM and Remarks

RESET

INPUT

INTERACTIVE USE OF THE BASIC SYSTEM

Entering the BASIC System

Compiling a BASIC Program

Editing a BASIC Program

Naming of Programs

Saving and Retrieving BASIC Programs

The SAVE Command

Executing Your Program

The RUN Command

Terminating Execution

Immediate Mode Execution

Setting Break Points

Leaving the BASIC System

MORE ABOUT BASIC

Elements of BASIC

Constants

Variables

Type Declaration Statements

Arithmetic Expressions

Arithmetic Symbols or Operators

Elements

Rules for Forming Expressions

Order of Evaluation

ND-60.071.01

Page:

2-26
2-27
2-28
2-28
2-28
2-29
2-30
2--30

Section:

4.3

4.3.1

4.3.2

4.4

4.4.1

4.5

4.5.1

4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

4.7

4.7.1

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

4.7.7

4.7.8

4.8

4.8.1

4.8.2

4.9

4.9.1

4.9.2

Mixed Mode Arithmetic Expressions

More About LET

Mixed Mode and LET Statements

Arrays

Array Structure

Functions

Function Classification

Representations of Strings

Assigning Values to Strings and String Comparisons

Relaxation of Requirement for Quotation Marks

More About RESET

String Arrays

An Operator for Combining Strings

String Expressions

Functions Regarding Strings

Formatting Qutput

Exclamation Marks in PRINT Lists

Commas in PRINT Lists

Empty PRINT Statements

Packed PRINT Lists

Printing Formats for Numbers and Strings

The TAB Function

The MARGIN Statement

The PRINT USING Statement

Input Control

The LINPUT Statement

The MAT INPUT Statement

Program Organization Statements

The Apostrophe Convention

More About REM

ND-60.071.01

Revision D

Page:

4-10

4-12

4-12

4-14

4-—-16

4-17

4-18

4-18

4-19

4-20

4-20

4-21

4-21

4-21

4-24

Section:

4.10

4.10.1
4.10.2
4.10.3

4.11

4.11.1

4.11.2

4.11.3

4.12

413

4.14

4.14.1

4.14.2

4.14.3

4.14.4

4.14.5

4.14.6

4.14.7

4.14.8

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.3

5.3.1
5.3.2
5.3.3

Internal Subroutines

The GOSUB and RETURN Statements

The ON — GOSUB Statement

The |IF — GOSUB Statement

Internal Functions

One Line DEF Statement

Multiple Line DEF Statements

Strings and Function Definitions

Relational Expressions

Logical Expressions

Qther Useful Statements

Multiple Statement Line

The REPEAT Statement and the @ Variable

More About IF

The ON ERROR GOTO Statement and the ERR

Variable

The @ Statement

RANDOM and RND

The COMMON Statement

The Chain Statement

FILES IN BASIC

Introduction

The Connect Device Identifier

The OPEN and CLOSE Statements

Sequential Files

Reading a Sequential File from a Program

Writing a Sequential File from a Program

The Use of the Terminal Itself as a File

Other Input/Output Statements

Margins on Sequential Files

The IF END Statement

Simulating Sequential Files

Random Access Files and Virtual Arrays

Opening a Random Access File
Declaring Virtual Arrays (Virtual DIM Statement)

Virtual String Arrays

ND-60.071.01

Revision D

Page:

4—41

441
4-42
4-43

4—44

4-44
4-45
4-46

4-47
4-48
4-50

4-50

4-50

4-50

451
452
4-52
4-53
4-56

5-—1

5-2

54

5—4

5—-7

5-8

5—-10

5-11

5-11

5-12

5213
5—14
5—14

Section:

5.3.4

6

6.1
6.2
6.3
6.4
6.5
6.6

6.6.1

6.6.2

6.6.3
6.6.4

6.7

6.7.1

6.7.2

6.8

6.9

7.1

7.2

7.3

7.3.1

7.3.2

7.4

7.4.1

7.4.2

7.5

7.5.1

7.6
7.7

7.8

Xi

Using a Random Access File from a Program

ARRAY MANIPULATIONS

Introduction

MAT Initialization Statements
Changing Dimensions Using MAT Statements

Arithmetic Operations

Functions

input and Output Operations

The MAT READ, MAT PRINT and MAT PRINT

USING Statements
The MAT INPUT and MAT LINPUT Statements

and the NUM Function

The MAT WRITE Statement
MAT Statements and Files

Examples Using MAT Statements

MAT Arithmetic

nverting a Matrix

Simulating an N-Dimensional Array

The Row-Zero and Column Zero

PROGRAMS, FUNCTIONS AND SUBPROGRAMS

Program Units

Main Program

Parameters

Formal Parameters

Actual Parameters

Function Subprogram

The EXTERNAL Statement and Function Reference

Function Parameters

Subroutine Subprograms

The CALL Statement

Compilation and Execution with Subprograms

Main Program and Subprogram Linkage

Real Time (RT) Program Statement

ND-60.071.01

Section:

xii

7.9 Stand Alone Execution
7.10 Mixing BASIC With Other Languages

7.10.1 BASIC Strings as Parameters

7.10.2 Types of Parameters

7.10.3 Types of Functions

7.11 Mixed BASIC and Assembly Routines

7.11.1 Parameter Access in Subprograms

7.11.2 Functions in Assembly

7.11.3 Example of a Subprogram Structure

7.11.4 Calling a BASIC Subprogram from Assembly

APPENDICES

APPENDIX A

SUMMARY OF ERROR MESSAGES

Al Compiler Error Messages

A.2 Run-Time System Error Messages

APPENDIX B

SUMMARY OF ELEMENTS

B.1 Statements

B.2 Commands

B.3 Functions

APPENDIX C

MISCELLANEOUS INFORMATION

C.1 Roundoff Errors

C.2 Changing Dimensions

C.3 Line Edit Control Characters

C.4 ASCI!I Character Set

C.5 NORD Word Structure

APPENDIX D

INDEX

ND-60.071.01

Revision C

Page:

7-12
7-13
7-13

7-14

7-14

7-14

7-15

1.3 WHAT IS BASIC?

One such language which is easy to learn and to use is BASIC. BASIC was

first developed in 1963/64 at Dartmouth College and has since then been

revised several times. An advantage ot BASIC is that its rules of form and

grammar are quite simple and easy to learn. It is the purpose of this manual

to present the language BASIC and to show how it is used to solve simple

problems and deal with many situations common in computing. More com-

plicated problems can be solved by combining the simpler steps shown here.

ND-60.071.01

1.4

1.4.1

1.4.2

1.4.3

WHAT IS ND BASIC?

The Language

ND BASIC is a simple, powerful, high-level programming language

that facilitates problemsolving for scientific, business and educational

applications run on ND—100 and NORD—10 computers. Among the

many programming languages currently in use, the rules and grammar

of BASIC must be considered the easiest to learn and use. BASIC

permits the user to solve mathematical problems directly from a key-

board printer or an alphanumeric display terminal. BASIC is

particularly well suited for timesharing applications since the compiler

is re-entrant. This permits multipie users to simultaneously call upon

and utilize the same compiler. ’

The ND BASIC language contains a large number of statement types

and functions with special features includir s matrix operation,

alphanumeric information handling, program control and storage facilities

and program editing, as well as documentation and debugging aids.

Several statements designed expressly to perform matrix computations

are incorporated in the operation set. The NORD-10 BASIC has string-, real-,
integer-, and double integer variable types. Variable names may consist

of up to 7 letters and digits. '

Special Real-Time Facilities

ND BASIC contains the facilities for linking to external subroutines,

including FORTRAN and MAC assembly language libraries, thus

making it easy to develop real-time application programs in the BASIC

language. This facility makes it possible to use the SINTRAN IlI real-

time capabilities as well as other common processors for control systems.

Program Development

ND BASIC provides program control of storage facilities that

save programs or data on mass storage devices, and later retrieve them

for execution. Program editing permits adding or deleting statement

lines from on-line terminals, including possibilities for correcting

individual characters of a line, using the same editing facilities as in

SINTRAN |1 command input. Programs may be combined from several

source units, requesting a partial or complete hard-copy listing and re-

numbering statement lines.

ND-60.071.01

Revision D

1.4.4 The Compiler

The ND BASIC compiler may be used in three different modes:

- Interactive incremental compiler.

- Binary relocatable format (BRF)-compiler.

- Direct execution of statements and expressions.

In the interactive mode lines typed by theuser, or read from an existing

source file, are compiled into machine-instructions and loaded directly

to the user’s virtual memory.

When typing the RUN command, the compiled program is executed at

highest possibie speed, much faster than traditional interpreters. Source

lines are kept on a system-scratch-file for later retrieval. Independently

compiled subroutines or library files may be linked, using the integrated

relocating loader when necessary.

In compile-mode lines are read from existing source files and compiled

into binary relocatable format (BRF)-files, compatible with FORTRAN

or MAC assembly language subroutines. The BRF file may be loaded for

execution by the integrated relocating loadzr, or by a freestanding loader

normally used with FORTRAN/MAC programs.

In immediate mode lines typed without line number are regarded as ex-

pressions being compiled into machine instructions, and executed directly. Most

statements may be used, with a few exceptions as the FOR/NEXT

statements. The terminal may then function as an advanced calculator.

In all modes extensive error messages are given, making it easy to correct

erroneous statements.

ND-60.071.01

Revision D

1.5

1.5.1

THE MANUAL

This manual describes the language in steps so that understanding of

material presumes a knowledge of material in previous chapters.

Conventions Used In This Manual

Some documentation conventions are used in this manual to clarify

examples of BASIC syntax. BASIC statements or commands are often

described in general terms using the following conventions:

A statement number is assumed when a statement is

described.

Items in capital letters are reserved BASIC words belonging

to the vocabulary of the BASIC language. (RUN, EDIT,

IF, LET, STEP.)

[tems in small letters enclosed in < > are essential elements of

the statement or command being described. (<statement>,

<variable>, <expression>)

Text enclosed in [] is optional.

Some terms which may seem confusing are explained below:

Terminal is any device having a two-way communication with

the computer.

The user types on the keyboardand BASIC prints on the

terminal.

Capital letters marked with a © like ASor QF indicate the

respective key on the keyboard plus the CTRL key.

ND-60.071.01

Revision C

The program and the resulting run is shown below exactly as it

appears on the terminal:

10

15

20

READ A, B8, D, E

LET G=A*E-B"D

IF G=0 THEN 65

30 READC, F

37 LET X=(C*E-B*F)/G

42 LET Y=(A*F-C*D)/G

56 PRINT X, Y

60 GO TO 30

65 PRINT “NO UNIQUE SOLUTION"

70 DATA 1,2 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, =7

90 END

RUN

4 ~5.5

6.66667E—01 1.66667E-01

—3.66667 3.83333

BASIC RUN ERROR 406 IN LINE 30

After typing the program, we type RUN followed by a carriage

return. Up to this point the computer stores the program and checks

the form of the statements. This process is called compiling. It is

the RUN command which directs the computer to execute your pro-

gram. The message out-of-data error code here may be ignored.

However, in some cases it indicates an error in the program.

ND- 60.071.01

2.2

2-6

EXPRESSIONS

The computer can perform a great many operations; it can add, subtract,

multiply, divide, extract square roots, raise a number to a power and find

the sine of a number (on an angle measured in radians), etc.. We will now

learn how to tell the computer to perform these various operations and

to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by

evaluating formulas which are supplied in a program. These expressions

are very similar to those used in standard mathematical calculation, with

the exception that all BASIC expressions must be written on a single line.

Five arithmetic operations can be used to write an expression, and these

are listed in the following table.

Symbol Example Meaning

+ A+B Addition (add B to A)
- A-B Subtraction (subtract B from A)

& A*B Multiplication (multiply B by A)

/ A/B Division (divide A by B)

+ or ** X1t2 Raise to the power (find X 2)

We must be careful with parentheses to make sure that we group together

those things which we want together. We must also understand the order

in which the computer does its work. For example, if we type A+ B * C t D,

the computer will first raise C to the power D, multiply this result by B and

then add A to the resulting product. This is the same convention as is usual

for A +BCD. If this is not the order intended, then we must use parentheses

to indicate a different order. For example, if it is the product of B and C

that we want raised to the power D, we must write A + (3*C)1D; or, if

we want to multiply A+ B by C to the power D, we write (A + B)*CtD.

We could even add A to B, multiply their sum by C, and raise the product

to the pewer D by writing {(A + B)*C)4D. The order of priorities is sum--

marized in the following rules:

- The expression inside parentheses is computed before

the parenthesized quantity is used in further com-

putations.

= In the absence of parentheses in an expression in-

volving addition, multiplication and the raising of a

number to the power, the computer first raises the

number to the power, then performs the multiplica-

tion, and the addition comes last. Division has the

same priority as multiplication, and subtraction the

same as addition.

ND-60.071.01

Revision D

= In the absence of parentheses in an expression invol-

ving operations of the same priority, the operations are

performed from left to right.

The rules are illustrated in the previous example. The rules also tell us that

the computer faced with A — B — C, will (as usual) subtract B from A and

then C from their difference; faced with A/B/C, it will divide A by B and

that quotient by C. Given AtBtC, the computer will raise the number A to

the power B and take the resulting number and raise it to the power C. If

there is any question in your mind about the priority, put in more paren-

theses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evalute

several mathematical functions. These functions are given special English

names, for instance:

Functions Interpretation

ATN (X) Find the arctangent of X

EXP (X) Find eX
SQR (X) Find the square root of X (v X)

In place of X, we may substitute any expression or any number in paren-

thesis following any of these formulas. For example, we may aks the com-

puter to find v 4 + x3 by writing SQR (4 + X13), or the arctangent of

3X — 2eX + 8 writing ATN (3*X — 2 * EXP (X) + 8).

If sitting at the terminal, you need the value of (.‘:3/6)17 and you can write

the two-line program:

10 PRINT (5/6) t+ 17
20 END

and the computer will find the decimal form of this number and print it

out in less time than it took to type the program.

Other functions are also available in BASIC, but these are reserved for

explanation later (Section B.3).

ND-60.071.01

Revison C

2.2.1

2.2.2

2.2.3

Numbers

A number may be positive or negative and it may contain up to approxi-

mately nine significant digits. For example, all of the following are num-

bers ir BASIC:2 —3, 675, 1234567, —7654321 and 483.4156. The follow-

ing are not numbers in BASIC:14/3 and v 7,. We may ask the computer

to find the decimal expression 14/3 and v 7, and to do something with

the resulting number, but we may not include either in a list of DATA.

We gain further flexibility by use of the letter E, which stands for “times ten

to the power*’. Thus, we may write 00123456789E — 2 or 123456789E — 11

or 1234 56789E — 6. We may write ten million as 1E7 (or 1E +7) and 1965

as 1.965E3 (or 1.965E +3). We do not write E7 as a number, but must write

. 1E7 to indicate that it is 1 that is multiplied by 107.

Variables

A variable in BASIC is denoted by any letter, or a letter followed by up

to six digits and/or letters. Thus, the computer will interpret E7 as a variable

along with A, X, N5, 10 and O1. A variable in BASIC stands for a number,

usually one that is not known to the programmer at the time the program

was written. Variables are given or assigned values by LET READ or INPUT

statements. The value so assigned will not change until the next time a

LET, READ or INPUT statement is encountered with a value for that vari-

able. However, all variables are set to a zero before a RUN command. Thus,

it is not necessary to assign a value to a variable before using the variable

in a computation.

Relational Operators

- Seven other mathematical symbols are provided for in BASIC, symbols

of relation, and these are used in |F — THEN statements where it is neces-

sary to compare values. An example of the use of these symbols was

given in the sample program in Section 2.1.

Any of the following seven relations may be used:

Symboi Example Meaning

= A=8B Is equal to (A is equal to B)

< A<B Is less than (A is less than B)

<=o0or=< A<=B8B Is less than or equal to (A is

less than or equal to B)

> A>B Is greater than (A is greater

than B)

>=or=> A>=8B |s greater than or equal to (A

is greater than or equal to B)

<> or < A<>B Is not equal to (A is not equal

to B) -

== A== Is approximately equal to

ND-60.071.01

Revision D

The term “‘approximately equal to’’ means that the two quantities differ

by a very small amount and may be regarded as identical for any practical

purpose. More specifically, A == B is true if:

IA—-B|<C *|(A+B/2)

C is a system constant which equals 5E—7 for 48 bit reals and5E—5 for 32

bit reals (see Appendix C).

Generally, approximately equal quantities appear equal when they are

printed.

ND-60.071.01

Revision D

2.3

2-10

LOOPS

We are frequently interested in writing a program in which one or more

portions are performed not just once but a number of times, perhaps with

slight changes each time. In order to write the simplest program, the one in

which this portion ta be repeated is written just once, we use the program-

ming device known as a /oop.

The programs which use loops can, perhaps, be best illustrated and explained

by two programs for the simple task of printing out a table of the first 100

positive integer numbers together with the square root of each. Without a

loop, our program would be 101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the

same table with far fewer lines of instruction, 5 instead of 101:

10 LET X =1
20 PRINT X, SQR (X)
30 LET X =X +1
40 IF X < =100 THEN 20
50 END

Statement 10 gives the value of 1 to X and “initializes’ the loop. In line

20 both 1 and its square root are printed. Then, in line 30, X is increased

by 1 to 2. Line 40 asks whether X is less than or equal to 100; an &ffir-

mative answer directs the computer back to line 20. Here it prints 2 and

/2, and goes to 30. Again X is increased by 1, this time to 3, and at 40

it goes back to 20. This process is repeated, line 20 (print 3 and v 3),

line 30 (X = 4), line 40 (since 4 < 100 go back to line 20), etc. — until

the loop has been traversed 100 times. Then after it has printed 100 and

its square root, X becomes 101. The computer now receives a negative an-

swer to the question in line 40 (X is greater than 100, not less than or equal

to it), does not return to 20, but moves on to line 50, and ends the program.

All loops contain four characteristics, initialization (line 10), the body

(line 20), modification (line 30), and an exit test (line 40). Because loops

are so important and because loops of the type just illustrated arise so often,

BASIC provides two statements to specify a loop even more simple. They

are FOR and NEXT statements, and their use is illustrated in the program:

ND-60.071.01

2-11

10 FOR X =1TO 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40.

Line 30 carries out two tasks: X is increased by 1 and the test is carried

out to determine whether to go back to 20 or to go on. Thus, lines 10 and

30 take the place of lines 10, 30 and 40 in the previous program — and

they are easier to use.

Note that the value of X is increased by 1 each time we go through the

loop. If we wanted a different increase, we would specify it by writing:

10 FORX=1TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop

6 to X on the second time through, 11 on the third time, and 96 on the

last time. Another step of 5 whould take X beyond 100, so the program

would proceed to the end after printing 96 and its square root. Step size

must be positive, unless it is a negative constant.

In the absence of a STEP clause, a step size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final

value, and the step size may all be expressions of any complexity. For

example, if N and Z have been specified earlier in the program we could

write:

FORX=N+7*2ZTO(Z—-N)/3STEP (N —4*2Z)/10

The loop continues as long as the control variable is algebraically /ess than

or equal to the final value.

If the initial value is greater than the final value, then the body of the

loop will not be performed at all, but the computer will immediately

pass to the statement following the NEXT. For example, the following

program for adding up the first n integer numbers will give the correct

result 0 when n is O.

10 READ N
20LETS=0
30 FORK=1TON
40 LETS =S+ K
50 NEXT K
60 PRINT S
70 GO TO 10
90 DATA 3,10, 0
99 END

ND-60.071.01

Revision D

2-12

It is often useful to have loops within loops. These are called nested /oops

and can be expressed with FOR and NEXT statements. However, they must

actually be nested and must not cross, as the following skeleton examples

illustrate:

Allowed Allowed

FOR X FOR X

' I——FOR Y FOR Y

[Y——NEXTY .r FORZ
———NEXT X | ENEXT Z

[l—-FOR W

Not Allowed | -NEXT W
L-NEXT Y

—FOR X FOR Z

ORY -NEXT Z

—NEXT X NEXT X
——NEXT Y '

Note that BASIC does not check for overtap of control variables in nested loops.

ND-60.071.01

Revision C

2-17

The last line is always stored in the computer, and you can correct it,

even if it resulted in an error message by using the line exit control char-

acters. Any program statement may also be corrected in the same way

by typing the EDIT command followed by the statement number. If you

want to eliminate the statement on line 110 from your program, you may

do this by typing the command DELETE 110. It is also possible to type 110

followed by carriage return. Now, line 110 is still a part of the program,

but the effect of the statement is removed. If you want to insert a state-

ment between those on lines 60 and 70, you can do this by giving it a

line number between 60 and 70.

If it is obvious to you that you are getting the wrong answers to your

problem, even while the computer is running, press the key marked ESC

and the control is given to the Operating System. The command CON-

TINUE will restart BASIC with your program intact and you can start 1o

‘make your corrections. |f you are in serious trouble, type the command

CLEAR. The word READY, whenever printed, tells you that BASIC is

ready to accept commands or statements from your terminal.

A sample use of the system is shown below:

10 FORN=1TO7
20 PRINT N, SQR(N)
30 NEXTN
30 END

RUN
1 1
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
READY

ND-60.071.01

2-18

ERRORS AND DEBUGGING

It may occasionally happen that the first run of new problem will be free

of errors and give the correct answers, but it is much more likely that

errors will be present and will have to be corrected. Errors are of two

types: errors of form (or syntax errors) which prevent the running of the

program, and logical errors in the program which cause the computer to

produce wrong answers or no answers at all.

Errors of form will cause error messages to i.e printed. Logical errors are

often much harder to uncover, particularly when the program gives ans-

wers which seem to be nearly correct. In either case, after the errors are

discovered, they can be corrected by changing lines, by inserting new lines

or by deleting lines from the program. As indicated in the last section, a

line is changed by typing it correctly with the same line number; a line is

inserted by typing it with a line number between those two existing lines;

and a line is deleted by typing DELETE and the actual line number. Notice

that you can insert a line only if the original line numbers are not con-

secutive integers. For this reason, most programmers will start out using

line numbers that are multiples of five or ten, but that is a matter or

choice.

These corrections can be made at any time - whenever you notice them -

either before or after a run. Since the comptiter sorts lines out and arranges

them in order, a line may be retyped out of sequence. Simply retype the

offending line with its original line number.

As with most problems in computing, we can best illustrate the process of

finding the errors (or ““bugs”) in a program and correcting {(or “debugging”)

it by an example. Let us consider the problem of finding that value of X

between 0 and 3 for which the sine of X is a maximum and ask the machine

to print out this value of X and the value of its sine. If you have studied

trigonometry you know that n/2 is the correct value; but we shall use the

computer to test successive values of X from O to 3, first using intervals of

.1, then .07, and finally of .001. Thus, we shall ask the computer to find the

sineof 0, of .1, .2,.3, 2.8, 2.9 and of 3, and to determine which

of these 31 values is the largest. |t will do it by testing SIN(QO) and SIN(.1)

to see which is larger and calling the !argest of these two numbers M. Then

it will pick the larger of M and SIN (.2) and call it M. This number will be
checked against SIN (.3) and so on down the line. Each time a larger value

of M is found, the value of X is “remembered” in X0. When it finishes,

M will have been assigned to the largest value. It will then repeat the search,

this time checking the 301 numbers O, .01, .02, .03, 2.98, 2.99,

and 3, finding the sine of each and checking to see which has the largest

sine. At the end of each of these three searches, we want the computer

to print three numbers: the value X0 which has the largest sine, the sine

of that number, and the interval of search.

ND-60.071.01

Revision D

3.1

3.1.1

3

INTERACTIVE USE OF THE BASIC SYSTEM

ENTERING THE BASIC SYSTEM

The BASIC system may be entered from the operating system

SINTRAN |1l by typing

@BASIC

Then the BASIC system starts by identifying itself followed by the word

READY. This word, whenever printed, tells you that BASIC is ready to

accept a command or a statement typed from your terminal.

Compiling a BASIC Program

When you start, the system is initialized to accept your program

lines typed directly from the terminal. However, if your program resides

on a mass storage file you may initiate the compilation process by giving

the command:

QLD <file name>

As soon as all the program lines on the specified file has been compiled,

the number of compiled lines along with the number of diagnostics given

will be printed on your terminal. |f no diagnostics are given the compiler

has accepted all the statements to be syntactically and semantically correct

and you may try to start the execution of it (see below).

Editing a BASIC Program

If compiler diagnostics have occurred these must be corrected before the

program can be executed. The BASIC system provides commands to list,

delete, change and renumber the program lines.

A line may be changed simply by typing a new line with identical line

number. Then the new line will replace the old one.

A line may also be changed by first typing

EDIT <line number>

and then applying the line edit control characters to produce a modified line.

The control characters are described in Appendix C.3.

ND-60.071.01

Revision D

Example:

10 LET A =,1

***EOROR IN LINE 10, “SYNTAX ERROR”

ED 10

Now if Z€ followed by = is typed this will result in the printout:

10 LET A=

Then if a SC is typed in order to remove the comma, D¢ will copy the

rest of the old line to the new one.

A line may be Iisted.on terminal by typing

LIST <line number>

Now this line may be modified without using the EDIT command. More

than one line may be specified, each line number separated by comma.

The word LIST by itself will cause the listing of the entire program.

LIST followed by two line numbers separated by a dash (-) will list the

lines between and including the specified ones.

A line is removed from the program by typing

DELETE <line number>
2

More than one line may be specified, separated by commas. Two line num-

bers separated by a dash (-) will delete the lines between and including

the lines specified.

The RENUMBER command is used to change statement line numbers and

the references to these lines. Line numbers in comments are not changed.

A program is renumbered by typing

RENUMBER <new initial line number> [<increment>]

First parameter indicates the new initial line number and the second (if

any) indicates the increment in the line numbers of two successive state-

ments. If no parameters are specified the first statement number will be

100 and the increment will be 10.

ND-60.071.01

4.2.3

4.2.4

(A + B) (—A * B) ((A**B)—(A*B))
124 [2.4E-2 0%

X All, J) SIN(V)

A factor is a primary or a primary ** a primary:

(A + B) (A +B)**X 1**2

A term is a factor, a term/factor, or a term*term:

A**B (A**B)/X ((A**B)/X)*SIN(V)

A signed term is immediately preceded by a plus or minus:

—A**B ~-X —(—A*B)

A simple arithmetic expression is a term, or two simple arithmetic expressions

separated by plus or minus:

(A + B)+X% X/2.314 Y/SIN(X)—-A**B

An arithmetic expression is a simple arithmetic expression, or a signed term

plus or minus a simple arithmetic expression:

=X/IY [**2 + K% —~A**B-X/Y

Rules for Forming Expressions

Two arithmetic operators may not be adjacent to each other, X + =Y is

an illegal expression. The subtraction operator may not be used as a sign

of negation. —X implies 0—X and must be enclosed in parentheses when

preceded by another operator: X + (=Y) is a legal expression.

Parentheses may be used to indicate grouping as in ordinary mathematical

notation but they may not be used to indicate multiplication: (X) (Y) does

not imply {X) * (Y) nor does juxtaposition imply multiplication: XY does

not imply X * Y. Real and integer quantities may be mixed in the same

gxpression.

Order of Evaluation

When the hierarchy of operations in an expression is not completely specified

by parentheses, the operations are performed in the following order:

ND-60.071.01

Revision C

T or ** exponentiation performed first

/ division

* multiplication performed next

+ addition

- subtraction } performed last

Within a sequence of consecutive multiplications and/or divisions or

additions and/or subtractions, when the order is not explicitly indicated

by parentheses, expressions are evaluated from left to right.

Whenever ambiguity is possible in the evaluation of an expression, paren-

theses should be used. The ambiguous expression A**B**C can “be clarified

as (A**B)**C or A**(B**C) only by parentheses.
2 Ll

The way an expression is written determines how the computer will evaluate it.

1. 10 1 2+1

(mehe computer evaluates this expression as 100 + 1 = 101. It will

» < perform the exponentiation before the addition.

2. 10 t 2/2*3

The value given for this expression is 100/ 2 * 3=50 * 3 = 150.

The computer performs the exponentiation first. When multi-

plication and division appear together, the left-most operation

is performed first. Thus, in this example, the division is performed

second and finally the multiplication.

3. 5+2*3 -1

The value of this expression is5+6 — 1 =11 —1=10. The com-
puter performs the multiplication first. As with multiptication and

division, the positions of the + and — symbols determine which

operation is performed first. Addition and subtraction are per-

formed from left to right. So, in this example, the addition is per-

formed second and the subtraction last.

4. 32/4t2+3*3 -1

This expression uses all the available symbols for arithmetic oper-

ations and the steps by which the computer evaluates it are as

follows. First exponentiation is performed and the expression is

reduced to 32/ 16 + 3 * 3 — 1. Then division and multiplica-

tion are performed from left to right and the simplified formula

is 2+ 9 — 1. Finally, addition and subtraction are performed from

left to right and the value of the formula is seen to be 10.

ND-60.071.01

Revision D

4—15

A% - 1 Ago (Memory location n)

A1 n+ 1

Az0 n+2

Ag1 n+3

A11q n+4

A1 n+5b

Ag2 n+6

A12 n+7

Agg n+8 -

The location of an array element with respect to the first element is a function

of the maximum array dimensions and the type of the array. Given DIM A%

(L, M), the location of A% (I, J) with respect to the first element of arra, A%

is given by:

A% + [+ *(L+1))] *E

The quantity in brackets is the subscript expression. E is the element length

in terms of the number of computer words needed for each element of the

array. In our example, where the array (A%) is of integer type E is equal to

1. For string arrays E will always be equal to 2, because such arrays, in fact,

consist of pointers to the string elements, and the length of each.

ND-60.071.01

4.5

4-16

FUNCTIONS

With the BASIC statements previously described, programs can be written

which compute values of many of the commonly used elementary functions.

For example, the following pertion of a BASIC program can be used to find

the absolute value of a number N and store it in A.

220 REM SIGNED NUMBER IN N

230 {FN<OQ THEN 260

240 LET A=N
250 GO TO 270
260 LET A = (—=N)
270 REM POSITIVE NUMBER IN A

Because the need for the absolute value of a number arises so frequently

in programming, BASIC provides a simpler way of computing this function.

Certain elementary function names (such as ABS) may appear in BASIC

programs anywhere a number may appear. The function name is followed

by any arithmetic expression enclosed in parenthesis. For example, the

absolute value of a number may alternatively be calculated with the follow-

ing portion of a BASIC program:

220 REM SIGNED NUMBER IN N
230 LET A = ABS (N)
240 REM POSITIVE NUMBER IN A

BASIC computes the value of these functions accurately, it does not store

tables of elementary functions, since it can compute a value for a function

in a few thousandths of a second. |f a number which cannot be evaluated

is used with a function, a message is printed on the terminal. For example,

if a program attempts to take the square root of a negative number.

Most of the function names are self-explanatory. The range of the arctangent

function ATN is from —pi/2 to +pi/2. The function INT(X) delivers the largest

integer number not greater than X, for example:

INT (-2.8) = =3
INT (2.8) = 2
INT (-.0001) = -1

The INT function can be used to good advantage to round numbers:

100 LET A = INT (A +.5)
110 LET B = INT (100 * B + .5)/100

Statement 100 rounds A to the nearest integer. Line 110 rounds B to the

nearest hundreth.

ND- 60.071.01

Revision D

4.5.1

4-17

Function-calls may be nested. The following program prints the sine of

the angle whose arctangent is T.

10 INPUT T
20 PRINT SIN (TAN(T))
30 END '

Function Classification

Functions in ND BASIC are divided into three main groups:

1. Mathematical functions

2 String functions

3. Miscellaneous functions

These three types of functions can be defined for a BASIC program in

several ways:

1. Built-in library functions

Functions with restricted names; most commonly used in programs.

2. Extended library functions:

Existing functions which may be supplied by scanning a library

file.

3. User internal functions:

Any desirable function defined by the user through a DEF

statement. The name must start with FN.

4, User external functions:

Any desirable function introduced in a BASIC program through

an EXTERNAL statement. The function must be present in

the NORD standard object form (BRF); the source code, how-

ever, may be BASIC, STANDARD FORTRAN, NPL or MAC

assembly.

When a function reference appears in a BASIC program, the compiler gener-

ates a calling sequence within the object program.

All existing functions are listed with a short description in Appendix B.3.

T he way of defining and calling user functions are described later.

ND-60.071.01

Revision D

4.6

4.6.1

4-18

REPRESENTATIONS OF STRINGS

The BASIC programs described thus far have all dealt with numbers. in

the statement

100 LET A = B + 3.1415926

the sequence 3.1415926 is a representation of a number; the character B

is the name of a- number which can vary as the program is executed by

the computer. The character A is the name of a number which may be

changed by the execution of that statement. Although computers are

excellent machines for performing high-speed arithmetic, some of their

most important uses are in the manipulation of entities which do not

represent numbers. A string is such an entity.

A string is a sequence of characters; these include letters, digits, blanks,

and other special characters such as those which appear on the terminal.

One way of representing a string in BASIC is to enclose it in quotation

marks. Such string constants have already been introduced in INPUT and

PRINT statements. For example, the string in

100 PRINT “NO UNIQUE SOLUTION*

is a string constant just as the number 3.1415926 in the preceding example

is a numeric canstant. '

Just as BASIC has names for numbers, it also has names for strings.

A name of a simple string is formed exactly as a name for a number,

except that it includes a trailing dollar sign ($). The string A$ is entirely
distinct from the number A and both names can appear in the same BASIC

program.

Assigning Values to Strings and String Comparisons

A string variable can take on a string value through a READ statement.

The following BASIC program reads three strings and prints them.

10 READ AS$, BS, C$
20 PRINT C$; BS; AS .
30 DATA “ING*, “SHAR", “TIME- “
40 END

Note that the items in the DATA statement are representations of strings,

not numbers. This program prints the word TIMESHARING on the

terminal. Since the quotation marks are used to delimit the strings, it is

not possible to create a string containing a quotation mark in this manner.

ND-60.071.01

4.6.2

4-19

Strings can also be assigned values through the use of LET statements.

For example:

10 LET A$ = “H2504"
20 LET B$ = A$
30 PRINT B$
40 END

will print the string H2S04 on the terminal. It is even possible to omit

the word LET as with arithmetic assignment statements.

Another way that a string can take on a value is by having the program

request the input of a string from the terminal through an INPUT state-

ment. For example:

10 PRINT “A MIXTURE OF FUEL AND OXIDIZER WHICH"

20 PRINT “BURNS SPONTANEQUSLY IS TERMED";

30 INPUT AS
40 |F A$ = “HYPERGOLIC” THEN 70

50 PRINT “WRONG"

60 GO TO 80
70 PRINT “RIGHT"”

80 END

After printing the textual message the program will print a question mark.

Suppose the user enters the word “"HYPERVENTILATED" in response.

Statement 40 is a string conditional statement. If the string AS$ is the same

as the string “HYPERGOLIC", then statement 70 will be executed next.

Since the user did not enter “HYPERGOLIC'* he has WRONG printed

on his terminal. .

Any of the relational ¢perators except approximately equal (described in

Section 2.2.3) may be used in an |[F — THEN statement to compare strings.

The relational operator “<’* is interpreted as meaning “earlier in alphabetical

order than’ and the relational operators are defined appropriately. The

ordering of characters is arbitrarily defined by the ASCI!I code which is

explained in Appendix C.4. In any strina comparison the strinas ars agsiymed

to be of the same length, i.e., trailing blanks are simulated. ’

Relaxation of Requirement for Quotation Marks

Strings which are entered in response to an INPUT statement need not be

bracketed by quotation marks as long as the items being entered do not

contain commas or do not begin with blanks.

ND-60.071.01

Revision D

4.6.3

4.6.4

4-20

Strings containing commas must be erclosed in quotation marks because

commas are treated as special characters by BASIC. They are used to separate

multiple items entered in response to an INPUT statement containing more

than one variabie in the input list. In addition, if the last string on a line

of input being entered in a list via a MAT INPUT statement ends with an

ampersand (&), the string must be enclosed in quotation marks.

A string in a DATA statement must be enclosed in quotation marks if it

begins with a blank, a digit, a plus sign, a minus sign, or a decimal point,

or if it contains a comma or an apostrophe. Ampersands, however, do not

have the special significance in DATA statements that they do in items

being entered in response to INPUT statements. If strings are enclosed in

quotation marks, the quotation marks are not considered to be part of the

string and are ignored.

Maore About RESET

in DATA statements, numbers and strings may be intermixed. When

a numeric variable appears in a READ statement the next number appear-

ing in the DATA statements is assigned to that numeric variable; when a

string appears in a READ statement, the next string appearing in DATA

statements is assigned to that string variable. Thus, numeric and string

data are managed independently in BASIC. A RESET statement will

reset pointers for both types of data so that subsequent READ statements

will reread the data. A RESET * statement will reset only the pointer for

string data.

The following program illustrates the use of RESET.

100 READ AS, A, BS
110 PRINT “FIRST TIME", A$, A, B$
120 DATA 1, “2APPLES”, PEARS
130 RESET
140 READ C$
150 PRINT "‘SECOND TIME", C$
160 END

Running this program produces the following input:

FIRST TIME 2 APPLES 1 PEARS

SECOND TIME 2 APPLES

String Arrays

BASIC can also operate on multiple strings arranged as one or two dimensional

arrays. These entities are denoted by a string identifier, followed by one or

two subscripts enclosed in parenthesis. Thus A$(3) denotes the third string

in a list of string A$. Similarly, B$(4, 5) denotes a string in the 4th row

and 5th column of a table of strings B$.

ND-60.071.01

Revision C

4-23

The SE unction

SEGS (A$, X, Y) takes a string and two. expressions as arguments and returns

a substring as a result. The substring starts at character number X in the

input string and ends. at character number Y.

Example:

50 LET NEWS$ = SEG$ (A$, 3, 3) & BS

ND-60.071.01

4.7

4.7.1

4.7.2

4-24

FORMATTING OUTPUT

When you write BASIC programs to prepare reports, graphs, tables and

other formatted (or specially arranged) output, it is important that you

will be able to control output format very closely. This section describes

statements which permit construction of neatly aligned tables, labels and

SO on.

Exclamation Marks in PRINT Lists

The exclamation mark (!} will cause the terminal print head to move to

the next line, i.e., carriage return and line feed is printed. This will be

repeated for each exclamation mark found as in the example:

10 PRINT !, 1,11, 2
20 END
RUN

1

2

Commas in PRINT Lists

The terminal line is considered to be divided into zones of 15 characters

each. The default number of zones is 5 as the standard margin (see Section

4.7.7) is set to 75. Each line begins with column zero.When multiple items

appear in a PRINT list separated by commas, the first item is printed start-

ing at the beginning of the first zone (column 0), the second at the next

zone (column 15), etc. The comma can be considered to cause the ter-

minal print head to space up the next zone preparatory to printing. If the

last zone has just been filled, the terminal print head will move to the

first print zone of the next line. Thus, the statement

100 PRINT , ,,, 'COLB0O"

will print the five character ““COLB0" beginning at column 60, the begin-

ning of the fifth zone.

If a PRINT list ends in a comma, the terminal print head simple spaces

up to the next 15 character zone and does not move to the beginning

of a new line in preparation for the next PRINT statement unless the

last zone has been filled.

For example, the program:

100 FOR I =1TO 15
110 PRINT |,
120 NEXT |
130 END

ND-60.071.01
Revision D

4.7.3

4-25

1 2 3 4 5

6 7 8 9 10

1 12 13 14 15

READY

Empty PRINT Statements

A PRINT statement which does not end in any special punctuation mark,

such as a comma, will print the information in the PRINT list and the ter-

minal will be prepared so that further output will begin at the beginning

of the next line. Thus, an empty PRINT statement such as

100 PRINT

will simple advance the paper one line, leaving a blank line if the terminal

print head is already at the beginning of a line. It can be used to cause

the completion of a partially filled line as illustratad in the following

program.

100 FOR | =1 TO 4
110 FORJ=1TO |
120 LET B(l, J) = |
130 PRINT B (1, J),
140 NEXT J
150 PRINT
160 NEXT | i
170 END

This program will print B(1,1) on the first line. Without line 150, the -terminal

print head would then go on printing B (2, 1), B (2,2) on the same line.

Line 150 directs the terminal print head to start at the beginning of a new

line after printing the highest J value for a given I. Thus, items are printed

in a triangular format. Qutput from the preceding program follows:

1
2 2
3 3 3
4 4 4 4

READY

ND- 60.071.01

Revision D

4.7.4

4.7.5

4-26

Packed PRINT Lists

Using the comma to separate items in PRINT lists, you will find that it

is not possible to print more than five numbers or strings on one line. A

semicolon may be used to print items closely packed on a line. For exam-

ple, the program

100 FOR1=1TO 15
110 PRINT |;
120 NEXT |
130 END

will cause the following output to be printed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

READY

To determine what will be printed using the semicolon separator, it is neces-

sary to know how strings and numbers are printed. In general, when you

use the semicolon to format output, no blanks will be output other

than those automatically output when a number is printed as described in

the following section.

Printing Formats for Numbers and Strings

This section describes the spacing of numbers and strings as they are printed

by a simple PRINT statement.

Strings are printed just as they are, with no leading or trailing spaces. A

space is printed after the right-most digit of a number; negative numbers

are precedad by a minus sign and positive numbers are preceded by a blank.

The number of spaces which will be occupied by the decimal representation

of a number varies according to the magnitude and type (integer or non-integer)

of the number. The following discussion of how numbers are printed will help

in determining the expected printed output.

Numbers may be printed using one of three notations:

| A number printed using /nteger notation is printed without a

decimal point and contains from 1 to 6 digits. (For example,

twenty printed as 20 is i n integer notation.)

t A number printed in fractional notation contains from 1 to 6

digits and a decimal point. Trailing (right-most) zeros are

dropped and a number less than one is printed with a zero to

the left of the decimal point. (For example, twenty printed as

20. is in fractional notation.)

ND-60.071.01

Revision C

4.11.2

4—-45

DEF statements may involve both dummy arguments and variables which

have the same meaning as elsewhere in the program. In the following

example

100 DEF FNX (X, Y} = X * COS(T) + Y * SIN(T)

110 DEF ENY (X, Y) =+ X * SIN (T) + Y * COS(T)

120 LET T = 1.7 ‘ANGLE IN RADIANS
130 INPUT A, B
140 PRINT “ROTATED", FNX(A, B), FNY(A, B)
160 GO TO 130
160 END

the DEF statements involve both the dummy variables X and Y whose

values depend on the arguments of the function and a variable T which

has the same value as it does elsewhere in the BASIC program. If a variable

in a DEF statement is to have its current value in the program when the

function is called, it is not included in the list of dummy arguments.

It is often called a g/obal variable.

Multiple Line DEF Statements

The use of the DEF statement described above is limited to those functions

which can be defined in a single BASIC arithmetic statement. Many func-

tions cannot be computed using a single BASIC arithmetic expression,

particularly those which require IF — THEN statements. The following

example demonstrates the format of multiple line DEF statements and

their use for a function which returns the larger of two numbers.

10 DEF FNM (X, Y)
20 LET FNM = X
30 IF Y <= X THEN 50
40 LET FNM =Y
50 FNEND
55
60 PRINT FNM (5,4), FNM (=5, —4)
70 PRINT FNM(1, FNM(2, FNM(3,0)}}
80 END

The definition of the function extends from line 10 to line 50.

The absence of the equal sign in line 10 indicates that this is a multiple

line DEF; the end of the DEF is indicated by the FNEND statement. The

value which the function delivers must be stored in the variable having

the same name as the function (in this case, FNM) when control reaches the

FNEND statement. As illustrated in line 70, function calls may be nested.

The preceding program prints the numbers 5, —4, and 3.

ND-60.071.01

4.11.3

As with the single line function definition, variables appearing in parentheses

after the function name in a multiple line definition are callad dummy argu-

ments, and values are substituted for these arguments wHen the function is

called. Variables not listed in the DEF statement will use their current value.

There must not be a transfer from inside a muitiple line DEF to outside,

nor vice versa. Function definitions may not be: nested. Naming conventions

are the same as for single line definitions. Multiple line function definitions

may be placed anywhere in a program because such blocks of code are not executed,

unless they are called.

If a3 value is not stored as in line 40 above, for the function when control

reaches the FNEND statement, a value of zero is returned when the function

is called. Any variable assignments made to variables other than the dummy

arguments of the function within the scope of a multiple line definition

affect the values of variables of the same name appearing elsewhere in the

program.

Strings and Function Definitions

The function definitions described thus far delivered numbers as results

and take numbers as arguments. A function may be defined which takes

strings as arguments.

Example;

100 DEF FNN (AS, B8S) = ABS(LEN(AS) — LEN(BS))
110 INPUT 218, Q2§
120 PRINT “STRING LENGTHS DIFFER BY"; FNN(Q 1§, Q28)
130 GO TO 110
140 END

The following function inserts string B$ after the n’th letter of string AS -

and delivers a string as the value of FNIS.

100 DEF FNIS (AS, BS, N)
110 LET C1$ = SEGS (AS, 1, N)
120 LET C23 = SEGS (A$, N + 1, LEN(AS))
130 LET FNI$ = C13$ &BS & C2$
140 FNEND
180 °
160 PRINT FNIS$ (“XXXZZZ", “YYY", 3)

170 END

When run, this program prints the string “XXXYYYZZZ".

ND-60.071.01
Revision D

4.14.4

4-51

The ON ERROR GOTO Statement and the ERR Variable

ON ERROR GOTO <line number>

In Appendix A, a complete list of run-time error messages is given. The occur-

rance of errors marked FATAL will normally cause termination of program

execution, while non-fatal errors will continue after some action has been

taken. A negative argument to the square root function, for example, results

in printing a message and continuing with the result set to zero. However,

an input/output error such as encountering end of file is fatal.

Some applications may require continued execution of a program after

any errors occur. In these situations, you can execute an ON ERROR

GOTO statement within your program. This statement tells BASIC that a

user subroutine exists, beginning at the specified line number which will

analyze any error encountered in the program and possibly attempt to

recover from the error. Note that the GOTO action is not taken when

executing ON ERROR GOTO, but if an error occurs later on, execution

is interrupted and the user written subroutine is started at the line number

indicated without printing any message. ON ERROR GOTO must be executed

prior to any executable statement with which the zrror handling routine deals.

A system variable, ERR, is available and can be tested according to the error

codes given in Appendix A. Thus, the error handling routine can determine

precisely what error occurred and decide what action is to be taken. It is

possible to switch to different error handling routines by executing several

ON ERROR GOTO:s.

Often, it is desirable to let the system handle errors in portions of a pro-

gram. The actual error routine can be disabled by executing ON ERROR

GOTO 0. The occurrence of zero, which cannot be a line number, causes

the system to treat errors as if ON ERROR GOTO had never been executed.

Example:

10 PRINT 1/0
20 ON ERROR GOTO 100
30PRINT 1/0
40 STOP
100 PRINT “DECIMAL ERROR CODE="ERR
110 PRINT “OCTAL ERROR CODE=";0CS$(ERR)
120 ON ERROR GOTO O
130 PRINT 1/0
200 END
RUN

BASIC RUN ERROR 273 IN LINE 10
0
DECIMAL ERROR CODE =187
OCTAL ERROR CODE =00000000273

BASIC RUN ERROR 273 IN LINE 120
0

READY

ND-60.071.01

Revision D

4.14.5

4.14.6

4-52

The @ Statement

@ <operating system command>

This statement provides a means to execute SINTRAN il Commands in

the program sequence or in immediate mode. The command may be of

any type, such as deleting a file, reading the clock or even logging out!

Note that error conditions will return control to the Operating System.
(Restart with CONTINUE.)

Example:

10 @TIME-USED
20 REPEAT 50000: N =N + @
30 @TIME-USED
40 PRINT !,N,!
50 @LOG
60 END
RUN

TIME USED IS 1 SECS OUT OF 41 SECS
TIME USED 1S 5 SECS OUT OF 48 SECS
1.25002E+09
15.13.58 26 APRIL 1976
——EX|IT—

RANDOM and RND

The RANDOM statement can be used in conjunction with the random

number function o induce variance. [t augments the function RND by

causing it to produce different sets of random numbers. For example,

if this is the first instruction in the program using random numbers,

then repeated program execution will generally produce different results.

When this instruction is omitted, the ‘“‘standard list" of random numbers

is obtained.

It is suggested that a simulation model should be debugged without

RANDOM, so that you always obtain the same random numbers for test

runs. After your program is debugged, you may insert

1 RANDOM

before execution.

ND- 60.071.01
Revision D

5.1

5.1.1

FILES IN BASIC

INTRODUCTION

Files are the retrievable units in which information is stored. All the pro-

grams discussed so far in this manual are examples of files. Files are classified

according to how the information is accessed.

Sequential files are accessed one character after the other. In Chapter 3,
the saving and retrieval of program files are explained. These files are sequen-

tial files.

Data in random access files are accessed using an address. If data is used

in random manner, retrieval using an address is normally much faster than

sequential searching. In BASIC random files are used to hold data arrays

too big for the memory available but still manipulated using BASIC programs.

BASIC utilizes the NORD File system through a set of different monitor

The File System is designed to manipulate files on disks, drums, magnetic

tapes, cassette tapes or standard peripherals. A file means a collection of

records or blocks, ordered randomly or seguentially.

Each file in the system is named with a character string arid has one owner,

which has to be defined as a user of the file system. Each user may have

several other users as friends. The file system provides individual protection

of files. with separate protection modes for the owner, the owner’s friends

and the public’s access of the file.

The user of the file system may treat files on mass storage devices or standard

peripherals in a uniform manner.

The NORD File System is described in detail in the documentation:

SINTRAN Il Timesharing/Batch Guide (ND—60.132)
SINTRAN 1l Reference Manual (ND—60.128)

The Connect Device /dentifier

When accessing a file through any BASIC input/output statement, a so-called

connect device identifier is used, rather than the file name. The file name is

only referenced once, in the OPEN statement which is described below. it

is also possible to access a sequential file if the file is opened by a direct

file system command. In this case, the connect device identifier must cor-

respond to the file system logical device number. Later we shall see that the

connect device identifier may be a string, thus simulating sequential input/output

devices.

ND-60.071.01

Revision D

The connect device identifier may follow any legal statement having con-

nection with input/output operations and has the general form:

<expression> :

The colon delimiter may be exchanged with the comma delimiter

in input/output statements (INPUT, PRINT, etc.).

The OPEN and CLOSE Statements

" The OPEN statement is used both to associate a number with a file in the

file system and to describe how the file should be used. Such a description

"is valid unti! the CLOSE statement is used or the file is closed by the system.

>
-l

QPEN

|

OPEN # <expression> : FOR <access mode> <file name>

The first expression is the connect device and may be any numeric expres-

sion. The access mode must be one of the words listed below:

INPUT Sequential read access

DUTPUT Sequential write access

APPEND Sequential write aprend

RANDOM Random read/write access

The file name may be anystring expression. The OPEN statement assigns

a file to a number, thereafter all references to the file are made through

the number. There may be up to 10 open files with a program. The con-

nect numbers may be of any range and need not be assigned sequentially.

The open statement must, of course, be executed before any access to the

file is made.

A successful OPEN statement demands an entry in the file table where

connect number and accass information is stored.

CLOSE

CLOSE # <expression> :

The expression indicates the connect number and has the same value as

the expression in the OPEN statement.

The CLOSE statement is used when you are finished using a file. The state-

ment will set the file ready to be opened again and leave an empty entry in

the file table.

ND- 60.071.01

All files should be closed before the end of program execution. This is

very important when using random access files because the CLOSE state-

ment, causes output of the last block.

Examples:

10 INPUT “FILENUMBER*, UNIT, “FILENAME", UNIT$

20 OPEN # UNIT: FOR INPUT UNIT$

100 PRINT # UNIT, A, B,C, D, E

190 CLOSE # UNIT :
200 END

ND-60.071.01

5.2

5.2.1

5—4

SEQUENTIAL FILES

In this chapter, storing and loading of data on files is discussed. The ways

of entering data into a program using the READ and DATA statements

or the user terminal (INPUT statement) are both inefficiant when the amount

of data increases beyond a few items.

Using files, there is almost no [imit to the number of items the program

can process in one run. There are limits on the length of a program to be

compiled and these limits include the DATA statements. Another advantage

is that since the program file is never modified (as it would have to be if

DATA statements were used), there is no chance of the program itseif

being inadvertently changed during the typing of a new data set.

Reading a Sequential File from a Program

Throughout the next few sections of this chapter, several versions of the

same fundamental program will illustrate the use of the statements related

to sequential files. This program computes an average grade for each of

several students in a group.

The first version of this program, AVERAGE1, uses data stored in a sequen-

tial file called GRADES.

A listing of AVERAGE1 follows:

100 REM PROGRAM NAME — AVERAGE!

110

120 REM THIS PROGRAM COMPUTES AVERAGE GRADES FOR

130 REM A SET OF STUDENTS. EACH STUDENT IS ASSUMED

140 REM TO HAVE THE SAME NUMBER OF INDIVIDUAL

150 REM GRADES TO BE AVERAGED. THE DATA IS IN A

160 REM SEQUENTIAL FILE CALLED “GRADES".

170 REM THE FIRST LINE CONTAINS S, THE NUMBER OF

180 REM STUDENTS, AND G, THE NUMBER OF GRADES PER

190 REM STUDENT. THE REST OF THE FILE CONSISTS OF

200 REM S SETS OF (G + 1) LINES. THE FIRST LINE IN A SET

210 REM CONTAINS THE NAME OF A STUDENT, AND THE

220 REM FOLLOWING G LINES IN THE SET EACH CONTAIN

230 REM ONE OF THE STUDENT'S GRADES.

240 °

250 OPEN # 1: FOR INPUT “GRADES"

260 PRINT “NAME", “AVERAGE"”

270 PRINT

280 INPUT #1:5,G

290 FOR I=1TO S

ND-60.071.01
Revision D

300 LETA=0
310 INPUT # 1 : N§ .
320FORJ=1TOG
330 INPUT #1: X
340 LETA=A+X
350 NEXT J
360 LET A = A/G
320 PRINT N§,A
380 NEXT |
390 CLOSE # 1 :
400 END

In AVERAGE1 only one file, GRADES, is used. The OPEN # statement

assigning the file GRADES to file number 1 is in line 250. Thereafter, the

file GRADES is referred to as file # 1 in lines 280, 310, 330, and 390 of

the program. '

The INPUT # statement differs from the simple INPUT statement only

by the inclusion of the number sign, a file number and a colon. Any list

of variables that is legitimate in a simple INPUT statement is also legitimate

in an INPUT # statement. See Section 2.7.13.

Now, let us briefly run through the whole program before going on to

- consider the construction of the data file GRADES. Lines 100 - 230 are

remarks describing the program, its limitations and instructions for using it.

The OPEN statement has already been described. Lines 260 and 270 print

a heading for the output. Line 280 requests the input of two numbers, S

and G, from file # 1, the file GRADES. S is the number of students and

G is the number of grades per student. A loop indexed by | begins in line

290 and continues through- line 380. The program ends after this loop has

been executed S times, once for each individual whose grades are to be

averaged. '

Within this loop, line 300 initializes A, the variable used to store the sum

of the grades for an individual. Line 310 requests the input of a string from

file # 1, GRADES. This string is the name of the next individuai

whose grades are to be averaged. Another loop begins in line 320 and ends

in 350. This loop is executed G times, once for each grade. Within the loop

indexed by J, line 330 inputs a grade, X, from GRADES and line 340 adds

this grade to A, the sum of the grades so far. When this loop has been executed

G times, line 360 divides the sum of the grades, A, by the number of grades,

G, to get the average grade which is stored in A. Line 370 prints the name

of the individual, N$, and his average, A. Then the loop indexed by | is

executed for the next individual, until all averages have been computed

and printed.

ND-60.071.01

5-6

Now let us consider the data file. The format used in constructing a sequential

file to be read by a program is determined by the way in which the INPUT

statements are set up in the program. INPUT # statements,

like simple INPUT statements, contain lists of variables to receive values.

Whereas a simple INPUT statement requests the user of the program to

supply these values at run time, the INPUT # statement requests the

values from files, and, of course, no question mark is printed on the terminal.

It considers the contents of the next line in the file (beginning with the

first line in the file), as a response to its request. |f there are more numbers

or strings in the line than were requested, the excess is ignored. If there are

not, the next line in the file is interrogated in an attempt to find more

numbers or strings. |f the items on the line interrogated do not correspond

in type to the variables in the input list, an error message is printed.

The first INPUT # statement in AVERAGE1 requests two numbers,

S and G. These numbers may either be on the same line in the data file

or on two different lines. The rest of the numbers and strings in GRADES

must be written one per line since they will be read by INPUT #

statements regquesting one number at a time. If they were erroneously writ-

ten more than one per line, all but the first number on each line would be

ignored, the computer would look for values beyond the end of the file and

the program run would terminate. The file GRADES must not have line

numbers — just the data requested by the INPUT # statements in

the program. The following is a listing of the file GRADES as written for

use with AVERAGE1. Note that when more than one item is listed on

the same line, the items are separated by commas, as in the first line of

GRADES.

3,4
GERALD FRIEND
78 .

86
61
80
PHILIP CLOUGH
66
87
88
91
ADA SHAW
56
77
81
85

This file could be created by using the PED editor.

(For information about PED consult the PED User’s Guide (ND—60.124)),

ND60.071.01
Revision D

5.2.2

5—-7

The following is a run of AVERAGE1 using the data in the file GRADES:

AVERAGE!1
NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75

READY

Writing a Sequential File fram a Program

In this section, we will consider how to alter the program AVERAGE1

so that it writes its output into a sequential file instead of printing it on

the terminal. Using a file in this manner allows the user to obtain mui-

tiple copies of the output without re-running the program. In addition,

if there is a lot of output, it is often more convenient and possibly faster

to direct the output to a file and then list the file than to print the

output directly on the terminal.

Two changes need to be made in AVERAGE1; first, another OPEN

statement must be added to assign the output file to a file number; and

second, the simple PRINT statements must be changed to PRINT #

statements. The following program, AVERAGEZ2, incorporates these

changes. The output is printed in a sequential file called AVERAGES.

210 REM PROGRAM NAME — AVERAGE2
220 * :
230 REM THIS PROGRAM IS LIKE AVERAGE1 EXCEPT THAT
240 REM THE OUTPUT IS PRINTED N A SEQUENTIAL
250 REM FILE CALLED “AVERAGES".
270
290 OPEN # 1: FOR INPUT “GRADES"
300 OPEN # 2: FOR OUTPUT "“AVERAGES"
310 PRINT # 2: “NAME", “AVERAGE"
320 PRINT # 2:
330 INPUT # 1:5,G
340 FOR1=1TO S
350 LET A =0
360 INPUT # 1:N$
370 FORJ=1TO G
380 INPUT # 1:X
390 LET A = A + X
400 NEXT J
410 LET A = A/G
420 PRINT # 2:N$,A
430 NEXT |
440 CLOSE # 1:
450 CLOSE # 2:
460 END

ND-60.071.01

5.2.3

5-8

The input file GRADES is assigned to file # 1 and the output file AVERAGES

is assigned to file # 2.

When' the program is run, line 300 will set the file AVERAGES ready to

receive output. Any information in the file will be destroyed and you

should do as follows if you want to save the information:

1. Enter the editor PED (see above)

2. Read the file

3. Save the file using a new name

It is still easier to use the SINTRAN [l Operating System command:

COPY.

After the program AVERAGE 2 has been run, you can list the file
AVERAGES using COPY or the PED editor. The following printout

results:

NAME AVERAGE

GERALD FRIEND 78.75
PHILIP CLOUGH 83
ADA SHAW 74.75 -

Note that the output of AVERAGE2 and that of AVERAGET is identical;

the only programming difference is that the first program prints i:s output

to a file and AVERAGE1 prints output directly on the terminal. The for-

mat of the output in AVERAGES is the same as that of the output printed

on the terminal when AVERAGE1 is run.

The Use of the Terminal Itself as a File

Suppose now that we wanted to rewrite AVERAGE2 so that the use of

files for input and output was optional. We could write separate sections

in the program to deal with each option and then to branch to the ap-

propriate section. However, there is an easier way. Both the INPUT

and the PRINT # statements interpret a reference to file number

0 as a reference to the terminal itself and in this case work exactly like

the simple INPUT and PRINT statements.

The following program, AVERAGES3, is a revision of AVERAGE2Z2 in whizch

the user may decide whether or not he wishes to use files. In addition he

may choose the names of the data and output files if he wants tc use files.

ND-60.071.01

Revision D

100 REM PROGRAM NAME - AVERAGES3
110 ° '
120 REM THIS PROGRAM IS LIKE AVERAGE2 EXCEPT
130 REM THAT THERE ARE OPTIONS FOR READING
140 REM DATA FROM A FILE AND PRINTING THE OUTPUT
150 REM INTO A FILE.DATA CAN BE IN A SEQUENTIAL
160 REM FILE OR CAN BE TYPED IN AT RUN TIME. |F THE

170 REM DATA ARE IN A FILE, THE FORMAT IS THE SAME
180 REM AS THAT OF “GRADES” USED IN AVERAGE1 ARD
190 REM AVERAGE2. IF THE DATA ARE TO BE TYPED

200 REM IN AT RUN TIME, THEY MUST BE ENTERED
210 REM ACCORDING TO THE SAME FORMAT THEY WOULD
220 REM HAVE WERE THEY IN A FILE.IF QUTPUT IS
230 REM TO GO TO A FILE, THE FILE SHOULD BE SAVED
240 REM BEFORE THE PROGRAM IS RUN.
250 °
270 LET F1=F2=20
280 PRINT “ARE DATA IN A FILE — ANSWER NO OR GIVE

FILE NAME";
290 INPUT AS
300 IF A$ = "“NO" THEN 330
310 OPEN # 1 : FOR INPUT AS
320 LET F1 =1
330 PRINT “SHOULD OUTPUT GO TO A FILE — ANSWER NO

OR GIVE”
340 PRINT “FILE NAME";
350 INPUT A$
360 IF AS = “NO” THEN 390

370 OPEN # 2: FOR OUTPUT A$
380 LET F2 =2
390 PRINT # F2:
400 PRINT # F2: “NAME", "AVERAGE"
410 INPUT # F1: S, G
420 PRINT # F2:
430 FORi=1TOS
440 LET A=0
450 INPUT # F1 : N3
460 FORJ=1TO G
470 INPUT # F1: X
480 LET A=A+ X
480 NEXT J
500 LET A = A/G
510 PRINT # F2 : N§,A
520 NEXT I
530 END

ND-60.071.01

Revision D

5.2.4

5-10

The following is a sample run of AVERAGES3 using the option to input the

data at run time. This listing shows clearly the correspondence between the

simple INPUT statement and the INPUT # statement.

AVERAGE 3

ARE DATA IN A FILE — ANSWER NO OR GIVE FILE NAME?NO
SHOULD OUTPUT GO TO A FILE — ANSWER NO OR GIVE

FILE NAME? AVERAGES
?34
? GERALD FRIEND
?78
? 86
? 61
? 80
? PHILIP CLOUGH
? 66
? 87
? 88
? 91
? ADA SHAW
? 56
? 77
? 81
? 85

READY

Note that AVEBAGE3 will execute as in the example above supplying

the file name, TERMINAL, in the first question.

Other Input/Output Statements

The LINPUT # statement is used to read strings which’ might contain

such special characters as quotation marks, leading blanks, ampersands,

and commas from sequential files. The format of this statement is:

100 LINPUT # <expression> : <list of string variables>

Rules governing the use of the LINPUT statement apply to the LINPUT

statement.

ND-60.071.01

Revison C

5.2.5

5-11

As we have seen, the INPUT statement requices a comma or carriage return

as delimiter for the data being entered into a BASIC program. Because the

PRINT statement, in its turn, does not supply the necessary commas, BASIC

will not be able to read its own output. This fact has lead to the implemen-

tation of the WRITE statement whose purpose is to produce a list readable

by a matching INPUT statement. Thus, commas are automatically inserted

between the items output. This feature, however, is meaningless when not

using files. The format of the statement is: :

10 WRITE # <expression>> : <list of variables>

There are also five MAT statements which may be used with sequential

files: MAT PRINT #, MAT WRITE #, MAT PRINT USING #, MA

INPUT #, and MAT LINPUT #. These statements ere discussed in Chapter

6.

Margins on Sequential Files

MARGIN # <expression> : <expression>

MARGIN # N : M sets a margin of M on file # N just as the

simple MARGIN statement sets a margin on lines output to the terminal.

The margin for sequential files may be changed at any time. MARGIN # 0 : M

has the same effect as MARGIN M. The interpretation of the margin

setting is the same as the simple MARGIN statement. See Section 4.7.7

for details.

The |F END Statement

IF END # <expression> THEN <line number>

This statement is similar to ON ERROR GOTO, but has effect only when

end of file conditions occur. It must be executed after the OPEN state-

ment and before any INPUT statement reading the actual file. The IF END

statement itself is, in fact, no conditional statement at all. When executed

the line number is stored in the file table telling BASIC to start the user

written error routine if end of the actual file is detected.

The error handling routine can be disabled by executing |F END . . THEN 0.

IF END has the highest priority used together with ON ERROR GOTO.

Example; (next page)

ND-60.071.01

Revision D

5.2.7

5-12

10 OPEN # *: FOR INPUT ""XXXX"

20 OPEN # 2: FOR INPUT "YYYY"

30 IF END #1 THEN 1000

40 |F END # 2 THEN 2000

50 INPUT # 1,X: INPUT # 2,Y : GOTO 50

60 STOP
1000 REM HERE IF END # 1

1010 IFEND #1 THEN O

1020 INPUT # 2,X : GOTO 1020

1030 STOP

2000 REM HERE IF END # 2

2010 IFEND %2 THENO

2020 INPUT # 1,X : GOTO 2020

3000 END

RUN

BASIC RUN ERROR 3 IN LINE 2020
END OF FILE

READY

Sinulating Sequential Files

BASIC allows a// input/output statements to communicate with internal

strings rather than sequential files. This means that it is possible to convert

the numeric value of any expression to an ASCIi string or vice versa, according

to the rules of the respective input/output statements. Previously we have

seen the connect device identifier having numeric values. You will obtain

the effects described above if the connect device identifier is given a string

value. The general form is:

1. < input statement> # <string expression> : <list of variables>

2. < output statement> # <string variable> : <list of expressions>

The string denoting the connect device identifier is now a BASIC string

which is used directly and not the name of a sequential file. The OPEN,

CLOSE and MARGIN statements have, of course, no meaning in such

constructions. Note that output terminates if the stardard margin (75) is

exceeded.

If you want to use the ~umeric value of the substring in A$ starting in

position X, and 3nding in position Y, just type the statement:

10 INPUT # SEGS$ (A$, X, Y): VALUE

On the other hand, if you want to generate a string of the value of A

using a special format described in A$, type the statement:

10 PRINT USING # FORMATS @ AS, A

ND-60.071.01

Revision D

6.6.2

6—11

If V is a vector and M is a matrix, the entries of V are printed in

rows with five entries per row. M is printed as a matrix with the

entries of each row closely packed.

Only array names without parantheses are legal in a MAT PRINT state-

ment. The following statements are illegal:

100 MAT PRINT M(2,3)

110 MAT PRINT TRN(A)

Vectors as well as matrices may be output in the MAT PRINT USING

statement. Comma is the only legal delimiter of the format string and

the array names in the list. The elements of the array(s) are printed

according to the format string as with the PRINT USING statement.

The format is used again starting on a new line if there are more

elements than fields. !f there are several arrays in the list, a blank line

is left between them, and the format string is used from the beginning.

The shorthand MAT USING may be used,

Examplé:

10 MAT A = CON(2,2)

20 MAT USING “"+### AND —FHHIA

30 - END

RUN

+1 AND 1.00 E+0O

"+1 AND 1.00 E+00

READY

The MAT INPUT and MAT LINPUT Statements and the NUM Function

The input is taken from the terminal as with normal INPUT or LINPUT

statements, and a question mark is printed when the program is ready

to accept the input.

If MAT INPUT goes to a vector, the excess data are ignored when

trying to enter more data than the vector can hold. If less data are

entered, the elements not affected remain unchanged. The function

NUM is available after the execution, and returns the number of data

which were .input.

If MAT INPUT goes to a matrix, the data is entered by row. A variable

number of data may not be input; -enough data must be entered to fill

entirely the matrix as it has been dimensioned in MAT INPUT or previously.

The excess data is ignored as with vectors, and the number of data is

available in the function NUM.

ND-60.071.01

Revision D

6-—-12

If you want to input more numbers than can be typed on one line,

it is possible to continue typing on additional lines. If the last item on

a line is followed by an ampersand (&) with no precedirig comma and

then by a carriage return, BASIC will accept the input typed so far,

and then expect data continued on the following line. The last string

on a line must be enclosed in quotation marks if its last character is

an ampersand (&).

The following program will call for the input of 24 numbers.

100 DIM M(2,12)

110 MAT INPUT M

Changing line 110 the program will call for the input of maximum 50

numbers.

110 MAT INPUT M(50)

String vectors and matrices may also be used in the MAT INPUT

statement, and NUM is updated.

The LINPUT statement is described in Section 4.8.1; the MAT LINPUT

statement allows more than one line of information (possibly containing

commas, leading blanks, etc.) to be input in response to a single 'state-

ment.

A variable amount of input is not allowed, and a question mark is

printed for each element.

Common to MAT INPUT and MAT LINPUT is:

- Row 0 and column O are ignored.

- Several arrays may appear in the list.

— Arrays may be explicitly redimensioned.

- If not, the current dimension(s) will determine the

maximum number of elements to be input.

- insertion of messages in the list is not allowed as

with INPUT and LINPUT.

ND-60.071.01

6—-13

Exampies:

100 DIM V(5), A(3), M(3,4)

110 MAT INPUT V, A(2), M(2,3)

120 PRINT “NUM=";NUM

130 MAT PRINT V;A;M;

140 END

RUN

?1,2&

3

71,2

71,234

?4,5,6

NUM= 6
1 2 3 0o O

—_

N

wW

10 MAT LINPUT AS$(4)
20 PRINT “NUM=";NUM

30 MAT PRINT A$
40 END
RUN
?FIRST
?SECOND, (NEXT EMPTY)
?

?FOURTH
NUM= 4
FIRST
SECOND, (NEXT EMPTY)

FOURTH

ND-60.071.01

Revision D

6.6.3

6.6.4

6-14

The MAT WRITE Statement

As described in Section 5.2.4 the WRITE statement produces an out-

put readable by a matching INPUT statement. The MAT WRITE state-

ment outputs the elements of a vector separated by commas on a single

line. The rows of a matrix are output on separate lines, thus readable

by a matching MAT [NPUT statement. It is very important, however,

that the number of characters output on one line does not exceed the

margin. This will be dependent on the number of columns and the

range of each element. In fact, this restriction is due to the size of

the input buffer rather than the current margin.

MAT Statements and Files

Any MAT statement performing input or output operations on the

terminal may be used with sequential files as well. The formats of

the statements are:

10 MAT INPUT # <N>‘<list of arrays>

20 MAT LINPUT # <N>:<list of string arrays>

30 MAT PRINT # <N>:<list of arrays>

40 MAT USING # <N>:<list of arrays>

50 MAT WRITE # <N>:<list of arrays>

where <N> is the connect device identifier; i.e., the number of the

file being read or written, or the string which simulates a sequential

file. :

For a complete discussion of files see Chapter 5.

ND-60.071.01

Revision D

7.9

7-11

STAND ALONE EXECUTION

Previously we have seen that any program unit written in BASIC can

be compiled to machine instructions in BRF format. Such a program

unit is not dependent on being loaded and executed with the total

BASIC system in memory. Other subsystems exist which are able to

perform the loading and linking procedure:

- SINTRAN [ll Real Time Loader

- NORD—10/ND—100 Relocating loader

These are described in the respective manuals.

A BASIC Library and Run-time System is available for stand alone

execution purposes. This system should be loaded after the BASIC

program units, hence, only the run-time routines required (called for)

are loaded into memory.

ND-60.071.01

Revision D

7.10

7.10.1

7-12

Mixing BASIC With Other Languages

BASIC/FORTRAN/NPL/MAC program units, i.e., programs, sub-

routines or functions may be mixed in an arbitrary combination. —

Within the BASIC system at most one BASIC program unit can be

executed in incremental mode, else all the units must be compiled

to BRF format and linked together by the BASIC buiit-in loader

or by another loader subsystem. The main program may be created

in either of the languages mentioned above.

BASIC Strings as Parameters

When using a BASIC string as parameter, generally the address of the

two word string-descriptor is transferred to callee. The descripton

contains the string address (1. word) and string length in bytes (2. word).

The string is packed two by two characters in a word.

If, however, a BASIC string appears as parameter to a FORTRAN sub-

program, it must be preceded by a dummy plus sign (+). As an

effect of this the string address instead of the descriptor address is

transferred to callee. This restriction is necessary as the string concept

of BASIC is lacking in FORTRAN.

Assignment to string parameters in non-BASIC subprograms will often fail.

Such variables should be declared in the COMMON storage area.

Example:

10 CALL SUBR1(AS) ’‘BASIC/BASIC

20 CALL SUBR1(+A$) ‘BASIC/FORTRAN

On the other hand, a FORTRAN Hollerith string may be associated

with a BASIC formal parameter by applying a certain function upon

it like:

STRING{<hollerith string><number of characters>)

Example:

10 CALL SUBR2(“ABC"”) ‘BASIC/BASIC

C FORTRAN/BASIC

CALL SUBR2(STRING(3HABC, 3))

ND-60.071.01

Revision C

A2

A-11

RUN—TIME SYSTEM ERROR MESSAGES

Run-time error messages are printed as selfexplanatory text. Example:

BASIC RUN ERROR IN LINE 10: PARITY ERROR ON INPUT

When executing ‘‘stand alone’’ the messages are given as an error code which

is an octal number, and the line number is replaced with the octal address of

the statement. Numbers in the range 0—377 are equivalent to the error codes

returned from the FILE SYSTEM monitor calls. All numbers from 400 and

upwards are BASIC run-time error codes which are explained below. FILE

SYSTEM errors are always printed with, explanatory text in addition to the

error code. The ON ERRQR GO TO statement will omit printing of run-time

error messages, but the error code is still available in the function ERR. In

incremental mode errors are always printed with explanatory text. In

BRF —compiler mode the user may prevent text strings being loaded (from

BASLIBR) if the symbol 7ERRP is set t& zero by the DEFINE command

prior to loading. If text strings are not loaded, a saving of approx. 1K of

memory is achieved.

Error Code Non-

Octal Decimal fatal (x). . Interpretation

401 257 System error in 1/O system

402 258 Format parameter not string

403 259 Illegal delimiter

404 260 Empty string

405 261 Ilegal item type

406 262 Out of data

407 263 Not used

410 264 Format error

411 265 System error in 1/0 system

412 266 X integer overflow on input

Argument set to largest integer

413 267 Not used

414 268 input buffer overflow

415 269 Not used

416 270 X Parity error on input.

The character is skipped.

417 271 Bad character on input

420 272 String input error

421 273 Not used

422 274 X Real overflow on input

Argument set to largest real (1E99)

ND-60.071.01
Revision D

A-12

Error Code Non-

Octal Decimal fatal (x) Interpretation

423 275 X Real underflow on input

Argument set to zero

424 276 X Real underflow on output

Argument set to zero

425 277 X Real overflow on output

Argument set to largest real {1EYY)

426 278 Not used

440 288 Empty or too long string

441 289 Illegal connect device number

442 290 Connect device number used before

443 291 Open-file table filled

444 292 No such connect device number

445 293 Zero or negative margin

446 294 Not used

460 304 X Overflow in integer exponentiation

Result set to largest integer (32767)

461 305 X Overflow in real-integer exponentiation

Result set to largest real (1E99)

462 306 X Base less than zero in real exponentiation

Result set to zero

463 307 X Overflow in real exponentiation

Result set to largest real (1E99)

464 308 X Argument negative in SQR

Result set to zero

465 309 X Argument overflow in SIN

Result set to zero

466 310 X Argument overflow in COS

Result set to zero

467 311 X Overflow in EXP

Result set to largest real (1E99)

470 312 X Argument zero or negative in LOG/LOG10

Resuit set to —1E99

471 313 X Argument error in CAX

Argument set to zero

ND-60.071.01

Revision B

A-13

Error Code Non-

Octal Decimal fatal {(x) Interpretation

472 314 X Argument overflow in TAN

Result set to zero

473 315 X Overflow in division

Result set to zero

474 316 X Zero base or negative exponent in

double integer exponentation.
Result set to largest integer.

475 317 X Argument error in ASI, ACO. Result

set to zero.

476 318 Not used

500 320 Double integer in MAT arithmetic

statement.

501 321 Dimension unmatch right of = in

MAT + or —

502 322 Not used

503 323 System error in MAT * or INV

504 324 Not used

505 325 Dimension unmatch right of = in

MAT*

506 326 Dimension error in MAT TRN or

IDN

507 327 MAT A = TRN(A) not allowed

510 328 Both arrays must be square in

MAT INV

511 329 Both arrays must be two-dimensional

in MAT INV

512 330 Both arrays must be real in MAT I[NV

513 331 Not used

514 332 Dimension out of ranae

515 333 ' Argument error in SEGS$

516 334 MAT A = A*A not allowed

517 335 Argument error in MATCH

520 336 Argument error in CNT

521 337 Argument error in INS$

522 338 Argument error in REP$

523 339 Argument error in MAX! or MINI

524 340 Not used

ND-60.071.01

Revision A

A-14

Error Code Non-

Octal Decimal fatal (x) Interpretation

550 360 GOSUB stack filled

551 361 GOSUB stack empty

552 362 Number of parameters not matching

in “FN functions”

553 363 Parameter unmatch in ““FN functions’

554 364 “FN stack” filled

555 365 “FN stack' empty

556 366 Statement removed or missing in

GOTO/GOSuUB

557 367 Statement removed or missing in

“FN functions”

560 3€8 Garbage collection error

561 369 Garbage collection error, out of memory space

562 370 Garbage collection error

563 371 Garbage collection error

564 372 Argument out of range in ON GOTO/

GOSuUB

565 373 Too many subprograms

566 374 Chaining requires BASIC Compiler

567 375 X QOver/underflow in real addition

570, 376 X Over/underflow in real subtraction

571 377 X Over/underflow in real multiplication

572 378 X Overflow in real to integer conversion

ND-60.071.01

Revision D

If the third parameter is present the compiler will trans-

late the source program into BRF format which is

written on the file/device specified. Normally the third

parameter is left out indicating incremental operating

modus.

In incremental mode the compiled program will be

appended to the statements already present (if any).

CONTINUE

The execution of the current program will continue following

a STOP statement or a break state.

DEFAULT-INTEGER

All variables will become type INTEGER if not explicitly declared

as another type. All constants not including a decimal point or

exponent are compiled into single or double integers.

DEFAULT-REAL

Initial modus.

DEFINE <symbol><octai vatue>

The symbol will be entered into the external-entry-table,

its value will be equal to the octal number specified.

DELETE <line number> or <line number—iine number>

Remove one or more lines from the current program. Following

the word DELETE the user types the line number of the single

line to be deleted or two line numbers separated by a dash (—)

indicating the first and last line of the section of code to be removed.

If the dash is included and the second argument is omitted, the last

line of the program is assumed. Several single lines or line sections

can be indicated by separating the line numbers, or line number pairs,

with a comma. Note that deletion of lines does not remove belonging

variables or referenced entry points. .

DEPQSIT <octal address>

The old contents of the octal address specified (octally and

symbolically) are displayed and may be changed by typing

the new contents on the same line. By typing carriage return the

next location will be displayed automatically. Termination

character is point (.) followed by carriage return.

ND-60.071.01
Revision D

B-14

EDIT <line number>

This command copies the actual line to old line preparing

a modification of the line. The line edit control characters

may now be applied.

ENTRIES-DEFINED [<file name>]

All symbols (defined) present in the external-entry-tabie

will be printed on the terminal. In addition the current

location and the upper bound are displayed in the following

format:

FREE: <current location> — <upper bound>

Default file name is the terminal.

ENTRIES-UNDEFINED [<file name>]

EXIT

FIX

This command is much alike ENTRIES-DEFINED, but only

undefined symbols are printed.

Default file name is the terminal.

Same as BYE.

The current contents of the external-entry-tabie are fixed
{will not be removed by CLEAR) and the current location

will later act as the lower bound reset-address. The fixed

entries do not appear in any entry list-out.

IDENTIFIERS-USED [<file name>]

All identifiers used in the current program will be listed on

the terminal. Also some type information is given.

Default file name is the terminal.

ND-60.071.01

Revison C

B—-15

IGNORE-MATRIX-CHECK

Normally, if a matrix is accessed beyond its range (greatest

index permitted) a message will be printed. This. command

removes this checking. Note that a matrix check introduces

much overhead as code is generated to compute and check

the index(es) for any array access. Should be used for

debuqging purposes only. Note that this command does not

concern COMMON and virtual arrays.

LIBRARY

In this mode subroutines and functions are compiled into

library-subprograms. Such subprograms are loaded only if

they are referenced from another routine, else they are

skipped.

LIST <line number—line number> l

m
—

.
Y

Produces a listing at the user terminal of the current

program, or one or more lines of that program. The word

LIST by itself will cause the listing of the entire user program.

LIST followed by one line number will list that line; and

LIST followed by two line numbers separated by a dash (=)

will list the lines between and including the lines indicated.

If the dash is included and the second argument is omitted,

the last line of the program is assumed. Several single lines

or line sections can be indicated by separating the line numbers,

or line number pairs, with a comma.

LISTH [<line number> or <line number-line number>]

Same as LIST, but also prints a header containing the

program name and current date.

LOAD <file name>{<file name>...]

The file(s) specified will be loaded until EOF {(control byte

23) is encountered. The file(s) must be BRF object file(s).

NEW [<program name>]

The BASIC system is initialized and the user may type a

new program from his terminal. The command may be

followed by a program name (see LISTH and RUNH).

ND-60.071.01

Revision D

B-16

NEXT-LINE

The next line after the last one listed will be printed

on the terminal.

N100—-REAL-OVERFLOW—CHECK

OBLIST

Turns on/off this check in the compiled code. Overflow as

well as underflow is detected in real arithmetic operations

in the NORD—100, and an error message is printed (non-fatal).

This option is initially turned off.

Special command for system debugging purposes only.

QLD <file name>

The BASIC system is initiated and the program on the

file specified will be read and compiled.

RECOMPILE

The source program is re-compiled from its internal

scratch file representation. The statements are compiled

in ascending order: thus, this command may be the only

wdy to get rid of MISPLACED STATEMENT error

messages.

Also the code which belongs to removed or edited state-

ments will disappear.

RENUMBER [<new initial line number> <increment>]

RUN

RUNH

Changes the statement line numbers and the references to

these line numbers. First parameter indicates the new

initial line number, and the second (if any) indicates the

increment in the line numbers of two successive state-

ments. |f no parameters are specified the first statement

number will be 100 and the increment will be 10.

Starts execution of the current program.

Same as RUN, but also prints a header containing the

program name and current date.

ND-60.071.01

Revision D

B-19

Extended

Library Function Explanation

X A=POA(X,Y) returns polar angle of the cartesian
coordinates X and Y

X R=POR(X,Y) returns polar radius of the cartesian
coordinates X and Y

X Y=FIX(X) returns the truncated value of X;

SGN(X)*INT(ABS(X))

X Y=FRA(X) returns the fractional part of X

X Y=MAXI{A,B,C...) returns the greatest value

Y=MINIi(A,B,C...)

String Functions

returns the smallest value

Extended
Library Function Explanation

1%=ASC(AS$) returns the ASCII value of the first

character in A$

1%=LEN(AS) returns the number of characters (bytes)

i in A$

AS$=SEGS$ returns a substring of B$ starting in

(B$,F%,L%) position F% and ending in position L%

returns a one character string (ASCI!)

26

A$=CHRS$(X)

A$=0CS$(1%%)

N%=CNT(A$,B$)

X$=INS$(AS,
BS,1%)

N%=MATCH(AS,
BS$,1%)

corresponding to the value of X

* returns an eleven character digit string

corresponding to the value of %% (octal)

returns the number of times the string

B$ occurs in A$

returns a string where the contents of

the string B$ is inserted into the string

AS$ at the character position [%.

searches the strina A$ for the acnnirrance

of the string BS, starting at the [%’th
character, The returned value is O

if no occurrence found,
or the position of the first character

that match.

ND-60.071.01

Revision C

Extended

Library Function

B-20

Explanation

X X$=REPS(AS,
BS, 1%)

X XS=SPACS (1%)

Miscellaneous Functions

Extended

Library Function

returns a string where the string A$ is

replaced with the content of the string

B$, starting from the 1% th position

of the string AS$.

returns a string of spaces, |% characters

long

Explanation

TAB(X)

N%=MAR (1%)

N%=PQOS{1%)

MAT Y=TRN(X)

MAT Y=(V)* X scalar multiplication of each element

in matrix X .

MAT Y=INV(X) returns the inverse of matrix X

Y=DET returns the determinant of the last

INV(X) function evaluation.

Y=NUM returns the number of data input in

an array by the last MAT INPUT statement.

Y=RND returns a random number between

Oand 1.

Y=ERR returns the last error code if an ON

ERROR GOTO statement occurs in

the program.

ND-60.071.01

PRINT statements only! Moves print

head to position X in the current print

record.

returns the last MARG!N setting of

connect device no. 1%.

returns the current print position of

connect device no. |%. F4

returns the transpose of the matrix X

Revision D

(e

APPENDIX C

C.1

MISCELLANEOUS INFORMATICN

ROUNDOFF ERRORS

The smallest number BASIC can handle is approximately 1*101t —4931

and the largest number is 1*10t+4931, but input and output are

restricted to be within the following limits: 1*10t—-100< Ix1<1*10%100.

BASIC stores numbers correctly to approximately nine significant digits

and generally prints numbers to six significant digits.

The values of the expressions in the FOR or REPEAT statements need

not be integers. However, the user must be cautioned that using a

non-integer step size may result in roundoff errors. These errors occur

because the computer can only store about nine significant digits for

each number it computes. The cumulative effect of these roundoff

errors over a loop executed many times may be significant:

100 FOR X = 0 TO 200 STEP 0.001

110 LET Y = Y+1

120 REM Y COUNTS THE NUMBER OF TIMES

130 REM THE LOOP IS EXECUTED

140 NEXT X
150 PRINT XY
160 END

This program gave the following output when it was run:

200 199998

READY

Note that Y, which counts the number of times the loop is performed,

is not 200001, the expected value, but 199998; the loop has been

executed three times less than might be expected. Consequently,

calculations involving the running variable or depending on the number

of times the loop was performed would be in error because of roundoff

errors.

Thus, in general, use integer step sizes and integer FROM and TO

elements to avoid roundoff errors. |f you want to step over a series

of non-integer values, appropriate operations may be performed on the

running variable within the loop to achieve this result. For instance,

in the example above X may be made to range from 1 to 200 in steps

of .001 using the following technique:

ND-80.071.01

Revision D

100 FOR | = 0 TO 200000
110 LET X = 1/1000
120 LET Y = Y+1
130 NEXT |
140 PRINT XY
150 END

This program prints a value of 200 for X and 200001 for Y. These

values are the expected ones, and no roundoff error has occurred.

ND-60.071.01

c.2 CHANGING DIMENSIONS

The DIM statement is used to dimension (reserve initial space for)

subscripted variables. Thus, the same DIM may be executed in a

loop with variable(s) indicating the dimension(s), or the same array

may be referenced in separate DIM statements with different dimen-

sions.

Subscripts may be enclosed in parentheses following some MAT

statements as follows {one or two dimensions may be specified

for all but the IDN function, where two identical values are

required).

Functions Statements

MAT A = CON (N,M) MAT INPUT A (N,M)

MAT A = IDN (N,N) MAT LINPUT A (N,M)

MAT A = ZER (N, M) MAT READ A (N,M)

The array A takes on the dimensions specified in the statement.

Redimensioning is implicit in the MAT statements which perform

matrix arithmetic and matrix functions. That is, in the statement

MAT C = A+B, C takes on the dimensions of A and B if unequali.

Note that redimensioning (even reservation of less space) is very

time-consuming as it involves release of cld space and reservation

of new space which is always zeroed.

ND-60.071.01

C.3 LINE EDIT CONTROL CHARACTERS

The Line Edit control characters available in BASIC are listed belaw,

and on the following pages they are given a short description. (The

characters are the same as in SINTRAN [1i command input.)

Function Character

Tab =

Line Terminate ME (CR)

Escape Character
take C literally vec

Backspace
one character : AC
one word : wC¢
one line Q¢

Copy
one character c¢
to tab stop ue
to end of line HC
up to occ
through C zcc
rest of line (terminate) D¢
rest of line (no printing) FC

Skip
one character g¢
up to C PCC

through C X¢c

Reprint

fast RC

aligned TC

Re-Edit Y¢

Mode Change
insert/replace gc
terminate LC

ND-60.071.01
Revision D

Octal Decimal ASC

Graphic Value Value Abbreviation Comments

) 51 41) Closing parenthesis

* 52 42 * Asterisk

+ 53 43 + Plus

; 54 44 ; Comma

- 55 45 - Hyphen (Minus)

. 56 46 . Period (Decimal)

/ 57 47 4 Slant

0 60 48 0 Zero

1 61 49 1 One

2 62 50 2 Two

3 63 51 3 Three

4 64 52 4 Four

5 65 53 5 Five

6 66 54 6 Six

7 67 55 7 Seven

8 70 56 8 Eight

9 71 57 9 Nine

) 72 58 : Colon

; 73 59 ; Semi-colon

< 74 60 < Less than

= 75 61 = Equals

> 76 62 > Greater than

? 77 63 ? Question mark

@ 100 64 @ Commercial at

A 101 65 A Uppercase A

B 102 66 B Uppercase B

C 103 67 C Uppercase C

D 104 68 D Uppercase D

E 105 69 E Uppercase E

F 106 70 F Uppercase F

G 107 71 G Uppercase G

H 110 72 H Uppercase H

I 111 73 | Uppercase |

J 112 74 J Uppercase J

K 113 75 K Uppercase K

L 114 76 L Uppercase L

M 115 77 M Uppercase M

N 116 78 N Uppercase N

0 117 79 0 Uppercase O

P 120 80 P Uppercase P

Q 121 81 Q Uppercase Q

R 122 82 R Uppercase R

S 123 83 S Uppercase S

ND-60.071.01

c-10

Octal Decimal ASC

Graphic Value Value Abbreviation Comments:

T 124 84 T Uppercase T

U 125 85 U Uppercase U

V 126 86 Vv Uppercase V

w 127 87 w Uppercase W

X 130 88 X Uppercase X

Y 131 89 Y Uppercase Y

2 132 30 2 Uppercase Z

{ 133 91 { Opening bracket
\ 134 92 \ Reversing slant

] 135 93] Closing bracket
A 136 94 A Circumflex, up-arrow

_or+ 137 95 _,UND,BKR Underscore, back arrow
' 140 96 ' GRA Grave accent

a 141 97 a, LCA Lowercase a

b 142 98 b, LCB Lowercase b

c 143 99 ¢, LCC Lowercase ¢
d 144 100 d, LCD Lowercase d

e 145 101 e, LCE Lowercase e
f 146 102 f, LCF Lowercase f

g 147 103 g, LCG Lowercase g

h 150 104 h, LCH Lowercase h

i 151 108 i, LCI Lowercase i

i 152 1086 i, LCJ Lowercase |

k 153 107 k, LCK Lowercase k
I 154 108 I, LCL Lowercase |

m 155 109 m, LCM Lowercase m

n 156 110 n, LCN Lowercase n
0 157 111 o, LCO Lowercase 0

p 160 112 p, LCP Lowercase p

q 161 113 g, LCQ Lowercase g

r 162 114 r, LCR Lowercase r

s 163 115 s, LCS Lowercase s

t 164 116 t, LCT Lowercase t

u 165 117 u, LCU Lowercase u

v 166 118 v, LCV Lowercase v

w 167 119 w, LCW Lowercase w

X 170 120 x, LCX Lowercase x

y 171 121 y, LCY Lowercase y

Z 172 122 z, LCZ Lowercase z

£ 173 123 { , LBR Opening {left) brace
| 174 124 I, VLN Vertical line

3 175 125 } . RBR Closing (right) brace

~ 176 126 ~, TIL Tilde

177 127 DEL Delete, rubout

ND-60.071.01
Revision D

EXIT

EXP
EXPONENT

EXPRESSIONS
EXTENDED LIBRARY FUNCTIONS

EXTERNAL
EXTERNAL FUNCTIONS
EXTERNAL SUBROUTINES
FILE
FILE SYSTEM
FIX COMMAND
FIX FUNCTION
FLAGS
FNEND |
FOR ‘
FORMAL PARAMETERS
FORTRAN C
FRA
FRACTIONAL NOTATION
FUNCTION CLASSIFICATION

FUNCTION REFERENCE
FUNCTION STATEMENT
FUNCTIONS. 7/
GLOBAL VARIABLES
GOSUB
GOTO
HOLLERITH
IDENTIFIERS
IDENTIFIERS-USED
IDENTITY MATRIX
IF
IFEND
IGNORE-MATRIX-CHECK
IMMEDIATE MODE
INCREMENTAL MODE
INCREMENTAL UNIT
INDEXED VARIABLE
INDEXES
INPUT
INPUT CONTROL
INS S|
INT
INTEGER
INTEGER NOTATION
INTEGER STATEMENT
INTERACTIVE
INTERNAL FUNCTIONS
INTERNAL SUBROUTINES
INV
INVERSION OF MATRICES

ND-60.071.01
Revision D

3-9,B-14
2-17,8-18
4-30,4-31
2-2,2-6
4-17,B-18
4-17,7-3,7-4,7-6,B-3
4-17,7-1,7-4
1-4,7-1
2-21,3-4,5-1FF 6-14
3-4,5-1,A-11,A-15
B-14
B-19
2-22
4-45,4-46,B-3
2-10,2-11,2-26,B-3,C-1
4-44,7-3FF ,
1-4,1-5,4-17,7-9,7-12,7-13
B-19
4-26
4-17
7-4,7-5
7-1,7-3,7-4,8-3
2.7,4-16,4-44,6-7,7-1FF,B-18
4-45
4-41FF,B-4
2-25,8-4
7-12
4-2,7-2,7-6,7-8,7-13
7-13,B-14
68-2,6-17
2-3,2-26,4-19,4-43,4-50,B-4
5-11,B-4
B-15
1-5,3-5,4-52,A-11
1-5,7-9,7-12,A-11
7-8
2-13,5-13
3-13,2-27
2-30,4-20,5-5FF, B-4
4-36,6-9
B-19
4-16,B-18
1-4,4-1FF
4-26
4-4,7-13,B-4
1-5,3-1
4-17 4-44
4-41
6-7,6-8,6-16,B-20
6-7,6-8,6-16

D4

LEN
LET

LIBRARY
LIBRARY COMMAND
LINE EDIT CONTROL CHARACTERS

LINE NUMBER

LINPUT

LIST

LISTH

LOAD
LOADER

LOG
LOG10
LOGICAL EXPRESSIONS

LOGICAL OPERATORS

LOOPS

MAC
MACHINE LANGUAGE

MAGNETIC TAPE

MAIN PROGRAM

MAR

MARGIN
MASS STORAGE

MAT
MAT ARITHMETIC STATEMENTS

MAT INPUT

MAT LINPUT

MAT PRINT

MAT PRINTUSING

MAT READ

MAT USING

MAT WRITE

MAT-CON

MAT-IDN

MAT-INV

MAT-TRN

MAT-ZER

MATCH
MATHEMATICAL FUNCTIONS

MATRICES
MATRIX

MAXI
MINI
MISCELLANEOUS FUNCTIONS

MIXED LANGUAGES

MIXED MODE

MULTIPLE LINE DEF
MULTIPLE STATEMENT LINE
NESTED CALLS

NESTED LOOPS

NEW

NEXT

NEXT-LINE

ND-60.071.01

4-22,8-19
2-2,2-23,4-12,4-19,B-5
7-1
B-15
2-17,3-1,C-4
2-2,7-8
4-36,5-10,B-5
2-16,3-2,B-15
2-21,3-3,7-2,B-15
7-9,B-15
7-10,7-11,7-12
B-18
B-18
4-48-4-50
4-48 '
2-10,2-26,4-50,C-1
1-4,1-5,4-17,7-9,7-12 -
1-2
5-1
7-1,7-2
B-20
4-28,5-11,B-5
1-4,3-1,3-451 (5
5-11,5-13,6-1,8-5,B-8
6-5,6-6,6-14,B-8
4-36,5-11,6-11,6-12,6-14,B-10
5-11,6-11,6-12,6-14,B-10
5-11,6-9,6-10,6-14,B-10
5-11,6-11,8-10
6-9,6-10,B-11
6-11,6-14,8-10
5-11,6-14,B-11
6-2,6-3,6-4,B-9
6-2,6-3,6-4,B-9
6-7,6-8,B-9
6-7,B-9
6-2,6-3,6-4,8-10
B-19
2-7,4-17,B-18
2-13,6-1FF
2-13,6-1FF
B-19
B-19
4-17,8-20
7-12FF
4-10,4-12,6-1
4-45
3-6,4-50
4-17,4-42,4-45
2-12
3-3,B-15
2-10,2-11,2-26,B-5
B-16

D-5

NON-EXECUTABLE STATEMENTS

NPL (NORD PL)
NUM
NUMBER SIGN({#)
NUMBERS
OBJECT CODE
OBLIST
ocs
OCTAL
oLD
ON
ON ERROR GOTO
ONE LINE DEF
OPEN
OPERATING SYSTEM
OPERATORS
OUTPUT CONTROL
PARAMETERS
PARITY i
PERCENT SIGN(%)
PERIPHERALS
P
POA
POR
POS
PRINT
PRINT USING
PRINT ZONES
PRIORITY
PROGRAM
PROGRAM COMPILATION
PROGRAM DEBUGGING
PROGRAM DEVELOPMENT
PROGRAM EDITING
PROGRAM EXECUTION
PROGRAM LANGUAGE
PROGRAM NAMING
PROGRAM STATEMENT
PROGRAM UNITS
QUESTION MARK(?)
QUOTATION MARK("")
RANDOM
RANDOM ACCESS FILES
RDN
RE-ENTRANT
READ
READY
REAL
REAL STATEMENT
REAL-TIME
RECOMPILE
RECORD

ND-60.071.01
Revision D

44
4-17,7-9,7-12
4-37,6-11,6-12,6-13,8-20
5-2,5-5
2-8,4-1FF,C-11FF
7-8,7-9
B-16
4-51,8-19
4-2,4-51,A-11,B-19
2-16,3-1,7-8,B-16
2-28,4-42,B-6
4-51,5-11,A-11,8-6
4-44
5-2,5-13,B-6
2-17,4-52,5-8
2-6,4-6,4-47,4-48
4-24,6-9
7-1FF
Cc-13
4-1,7-13
5-1
B-18
B-19
B-19
B-20
2-4,2-21,2-24,4-24FF 5-7,B-6
4-29FF,B8-7
4-24
7-10
1-2,7-1FF
1-5,3-1,7-8,7-11
2-18,2-22
1-4
1-4,2-2,2-17,3-1
3-5,7-8,7-11
1-4
3-3,7-2
7-1,7-2,7-10,8-7
7-1FF
2-30,4-36,4-37,5-6,6-12
2-2,2-21,4-18,4-19
4-52,B-7
5-1,5-13
B-18
1-4
2-2,2-23,4-20,B-7
2-16,2-17,3-1
1-4,4-1FF
4-5,8-7
1-4,7-10,7-11
B-16
5-1

'REDIMENSIONING
RELATIONAL EXPRESSIONS
RELATIONAL OPERATORS
REM
REMARKS
RENUMBER
REP$
REPEAT
RESET
RESET$
RESET*
RETURN
RND
ROW
RUN
RUN-TIME SYSTEM
RUNH
SAVE
SCALAR MULTIPLICATION
SCIENTIFIC NOTATION
SEG$
SEMICOLON(;)
SEQUENTIAL FILES
SET-LOAD-ADDRESS
SGN ,
SIMULATING SEQUENTIAL FILES
SIN
SINTRAN I
SOURCE
SPACS$
SQR
SQUARE MATRIX
STAND ALONE EXECUTION
STATEMENTS
STEP
STOP
STRING
STRING EXPRESSIONS
STRING FUNCTIONS
SUBPROGRAMS
SUBROUTINE STATEMENT
SUBROUTINES
SUBSCRIPTED VARIABLES
SUBSCRIPTS
SYNTAX
TAB
TABLE-SIZES
TAN
TERMINAL
THEN
TO

ND-60.071.01

2-27,6-3FF,C-3
4-47,4-50
2-8,4-47
2-29,4-39,8-7
2-29,4-39
3-2,B-16
B-20
3-6,4-50,8-7,C-1
4-20,8-8
4-20,B-8
4-20,B-8
4-41,8-8
4.52,8-20
4-14,6-2FF,6-20
2-16,3-5,B-16
7-11,7-14,A-1,A-11
3-3,3-5,7-2,B-16
2-16,3-4,B-17
6-7,8-9,8-20
4-27
4-23,8-19
2-31,4-26,4-34,6-9
5-1FF,7-1
8-17
B-18
4-22,5-1,5-12
2-18,B-18
1-4,3-1,3-5,5-8,A-15
1-4,1-5,7-8
8-20
2-7,2-10,3-6,B-18
6-2
7-11,A-11
2-2,7-1,B-1
2-11,2-26,4-50,B-3
2-22,2-28,8-8
4-2,4-3,4-18,5-14,7-12
4-21
4-17,4-21,4-46,B-19
7-1FF
7-1,7-3,7-6,8-8
4-41,7-1
2-13,4-3,4-4,5-14
2-13,2-27,4-3,4-4,4-14
1-6,2-16,2-18,A-1
4-28,8-20
B-17
B-18
1-6
2-25,4-50,B-4
2-11,2-26,8-3

