
SINTRAN Il

Real Time Loader

A/S NORSK DATA-ELEKTRONIKK

SINTRAN 1l

Real Time Loader

ii

REVISION RECORD

Revision Notes

11/74 Version two, superceding the original printin

2/76 Version three, superceding all previous versions

Publ. No.

ND-60. 051.03
February 1976

A/S NORSK DATA-ELEKTRONIKK

e

fig* Lerenvn. 57, Oslo 5, TIf, 21 73 71

iii

TABLE OF CONTENTS

+ + +

Section:

i GENERAL REMARKS AND DEFINITIONS

i.1 The RT Loader's Tables
1.2 How to Start the RT Loader

2 COMMANDS

2.1 Allocate Area on a Segment
2.2 Update an Alternative SINTRAN III System

2.3 Binary Dump of a Segment on a File
2.4 Change Content of One of the New Segments
2,5 Change RT Description Table Element
2.6 Clear an Existing Segment
2.7 Compare a Segment with a File
2.8 Allocation of an RT Description
2.9 Name an Existing RT Description
2.10 Define Name of a Segment File
2.11 Define a Symbol
2.12 Delete a Common Label
2.13 Delete Names of Non-Reentrant Routines
2.14 Delete an RT Program
2.15 Delete a Symbol in the RTFIL
2.16 Remove a Symbol from the Linking Table
2,17 Dump Segment Files' Bit Map
2,18 End a Load Operation
2.19 Exit from RT Loader
2.20 List Available Commands
2,21 Load a SINTRAN III Core Only System
2.22 List Free Segment Numbers
2,23 List Reference Addresses of Undefined Symbol
2.24 Load BRF Code onto a Segment
2.25 Specify New Segment
2,26 Load into Current Load-Segment
2.27 Octal Dump of a Segment
2.28 Delete Symbols in RTFIL
2.29 Remove Symbols from the Linking Table
2.30 Load Binary Code onto a Specified Segment
2.31 Load Reentrant Programs onto a Segment
2.32 Release Segment Table Entry

ND-60.051.03

Page:

o

o
t

D
R

W

|
A

e

A
e

A
0

0
0

I
O

O
V

W
N
F
P
,
-
~
O
O

N
N
M
N
N
M
N
M
N
D
N
M
N
N
M
D
N
N
D
N
D
N
N
D
N
D
N
D
D
N
D
N
N

1

Section:
-

N
M
N
N
M
N
N
N
D
N
D
N
N
D
D
N
D
N
D
N
D
N
D
N
N

o

D

R

R

R

WO

W

D
W
W

S
O

W
O

O
O
0

&

W

iv

Make a Symbol Undefined in the Linking Table
Change Symbol Name in the Linking Table
Reorganize Segment File
Reset RT Loader
Reset '"New-Page'' Mode
Allocate Common Area in Resident Core
Set Load Address of a Segment
Start Each Load on a New Page
Specify Page Index Table
Allocate Common Area on Second New Segment
Specify Segment File for New Segment(s)
Print Information about Specified Symbol
List Common Label Names in Linking Table
Write Address Limits and Load Address
List Non-Reentrant Runtime Routines in Linking

Table
List RT Program Names
List Undefined Symbols
List Symbols in RTFIL
List Information about Segment
List Defined Symbols in the Linking Table
List Information about Symbols in the Linking

Table
Load Library BRF Units

EXAMPLES

ND-60.051.03

Page:

2-31
2-31
2-32
2-33
2-33
2-33
2-34
2-34
2-36
2-36
2-37
2-37
2-37
2-38

2-38
2-39
2-40
2-40
2-41
2-42

2-43
2-44

3-1

HOW TO USE THIS MANUAL

—--00000--

It is assumed that the reader has a good knowledge of the
SINTRAN III system. The necessary background information
is given in the manual SINTRAN II Users Guide, especially
chapters 1, 4, 5 and 7.

--00000--

ND-60. 051, 03

1-1

GENERAL REMARKS AND DEFINITIONS

The Real Time Loader (hereafter called the RT Loader) is a
subsystem included in all versions of SINTRAN III mass storage.
The RT Loader's main function is to load real time programs
(hereafter called RT programs) in an active SINTRAN III system.
An RT program is a program which has its own RT description
and which has been loaded into the SINTRAN III system by the
RT Loader. Some RT programs (the timer program, the error
message program, the file system programs and one program
for each batch process and each timesharing terminal, and a
few others) are included in the SINTRAN III system when the

system is generated.

A SEGMENT is a continuous limited area on a mass storage
device containing executable code or data for RT programs or
for the SINTRAN III system itself. When an RT program is
started, its segment or segments or part of them are copied
from their place on mass storage into memory, and when a seg-
ment or part of segment has to be removed, it will be trans-
ferred to its original location on the mass storage device. The
logical pages of which a segment consists will in general be
scattered about in main memory because of hardware paging.
An RT program's virtual address space may be divided into two
parts (segments) each consisting of a number of 1K word pages,
and an RT program cannot use more than two segments simul-

taneously.

A segment is specified by its segment number, of which a
limited number are available in a SINTRAN III system.

All segments in a SINTRAN IIT system are kept on continuous
files, SEGMENT FILES, on a mass storage device. There may
be from one to four SEGMENT FILES in a SINTRAN II system.
The SEGMENT FILES are numbered from zero to three. A
SEGMENT FILE may be defined in any file directory in a
SINTRAN III system.,

ND-60. 051. 03

1.1

1. 2

1-2

The RT lLoader's Tables

There are two tables in the RT Loader with which users of

the RT Loader should be familiar. These are the Linking table

and the RTFIL table.

The linking table is a linked table containing all symbols available

for the current load operation. Available symbols are symbols

defined or referred to in the current load operation, symbols de-

fined in the segment currently used as linking segment, all RT

program names, all core common labels and all symbols defined

in resident memory, segment 0. When a load operation is termi-

nated by an END-LOAD command, 2ll defined symbols in the

linking table which do not exist in the RTFIL table are trans-

ferred to the RTFIL table, and only RT program names, core

common labels and symbols defined in segment 0 (resident memory)

will remain in the linking table (these symbols will also be present

- in the RTFIL table).

The RTFIL table contains all defined symbols (RT program names,

names of entry points, etc.) in all the existing segments (including

resident memory) built by the RT Loader. The RTFIL table is
copied to a mass storage file named (SYSTEM) RTFIL: DATA after

each load operation which changes the content of the RTFIL table.
The SINTRAN II operator communication uses this file to find

symbolic RT program names.

How to Start the RT Loader

Only the user SYSTEM and the user RT may use the RT Loader.

The user RT must be defined as a friend of the user SYSTEM to

be allowed to update (write on) the segment files and the RTFIL

file. Only one user at a time may use the RT Loader. The RT

Loader is started by the command (WRT-LOADER.

If the RT Loader is free to use, it will print a version number

and go into command input mode, otherwise the error message

ALREADY IN USE will be given. The break characters "Escape'

and "Break" will stop the execution of the RT Loader and give
control to the operator communication, except in sequences where
the RT Loader is updating the RTFIL table, the segment table or
the RT description table. The command @CONTINUE cannot be
used to restart the RT Loader.

ND-60. 051. 03

2-1

COMMANDS

The RT Loader is ready to accept a command when an asterisk (*)
is printed on the terminal. All RT Loader commands may he
abbreviated in the same way as the SINTRAN III and file system
commands. Missing parameters will be asked for by the RT
Loader. Parameter delimiters are space, comma or carriage
return. Parameter default values may be specified by giving
two commas or carriage return., The character "control L' (octal 14)
given in a command (or parameter) line, will terminate and cancel
the command, and the RT Loader will be ready to accept a new
command., The line editing characters 'control Q" for deleting the
current line and "control A' for deleting one character on the current
line, are available in the RT Loader. Parameter types used by the
RT Loader are:

- Octal numbers, the six last digits will count.

- File names.

- Octal logical device (file) numbers,

- Symbolic names, up to seven characters.

Decimal numbers cannot be used as parameter values, and all num-
bers written by the RT Loader are octal numbers.

All questions that the RT Loader may ask must be answered with Y
for yes or N for no; other alphabetical characters will result in the
question being repeated. All non-alphabetical characters will give
an error message,

In the following sections a parameter surrounded by parantheses
has default value, whereas parameters not surrounded by parantheses
do not.

Example:
DEFINE-SYMBOL « symbol>(«segment no. >)

The parameter « symbol> has no default value, but the parameter
(< segment no.>) has a default value.

Note:
In the examples given in this manual user input is under-
lined to distinguish it clearly from the computer output.
(On the terminal no underlining occurs.)

ND-60. 051. 03

2.3

2-4

Binary Dump of a Segment on a File

*BINARY-DUMP <output file><segment no.- (<lower addr >)
(< upper addr>)

This command will dump the segment «segment no.» in binary
format on the file <output file>. The parameter «segment no>
must refer to closed segment, i.e. a segment on the segment
file, or it can have the value zero meaning core common.,
<output file> may be a file number or a file name. Default
file type for «output file> is SYMB. The parameters (< lower
addr >) and (<upper addr>) are respectively the lower and
upper addresses of the area to be dumped. Default value for
(<lower addr>) is the first address of the segment and default
value for (< upper addr >) is the last address of the segment.
There will be no bootstrep in front of the binary dump. The
output from the BINARY-DUMP command may be read by the
various MAC assemblers or by the RT Loader commands READ-
BINARY and COMPARE.

Example of dumping segment no. 33 on the output file BIN-

DUMP:SYMB:

*NREENTRANT-LOAD
INPUT FILE: 200-USER
LINKING-SEGMENT NO.
NEW SEGMENT NO: 33
#END-LOAD
#YRITE-SEGMENT
SEGMENT NO: 33
OUTPUT FILE:

33 0 13777 1300 0 0 1 RFW NON DEMAND
#BINARY~DUMP
OUTPUT FILE: BIN-DUMP
SEGMENT NO: 33
LOWER ADDRESS:
UPPER ADDRESS:

ND-60.051. 03

2.4

2-5

Change Content of One of the New Segments

*CHANGE-LOCATION «segment no.>

The CHANGE-LOCATION command is used to look at or to change

locations on the segment «segment no>. The <«segment no.>

must be one of the segments currently being built,

The syntax is an address followed by a slash (/. The content of

the location addressed will be printed out, If a new value is

wanted in the location, the new value followed by a carriage return

is typed. The content of the next locatior is then printed. If no

change is wanted, just type carriage return and the content of the

next location will be printed. This command must be terminated

with the point (.) character.

The syntax of the CHANGE-LOCATION command is the same as

the LOOK-AT command in SINTRAN III.

Example:

*NREENTRANT-LOAD 200-USER,,
NEW SEGMENT NO: 32
*YRITE-LOAD-ADDRESS 32

L .ADR: 0 U.ADR: 13776 C.LADR: 13776
#*CHANGE-LOCATION
SEGMENT NO: 32
0/ 125005
125005
125005 10/ 6614 1

6427 2 -
177777 3
177777

2
3 o

1 L

*
—
 Io ~N

ND-60. 051, 03

2.5

2-6

Change RT Description Table Element

*CHANGE-RT-DESCRIPTION «rt prog> (<prior »)(<segno 1>)
(< segno 2 >)(< stadr >)

This command changes an already created RT description. Thus
the parameter «rt prog> must be the name of a defined or
declared RT program, and the RT program may not be active
when this command is executed. The parameter (< prior>) is
the new priority of the RT program, (<«segno 1>) is the first
segment (right byte in the SEGM word in the RT description
table) and (< segno 2>) is the second segment (left byte) of the
RT program. The parameter (< stadr>) is the start address
of the RT program. The default values of the parameters are
their old (current) values.

Example:

*WYRITE-PROGRAMS,,

CDC4a 24517 35
CDC3 24473 35
CDC2 24447 35
CDC! 24423 35
CDCO0 24377 35 o

o

o
o
O
o

o

* CHANGE-RT-DESCRIPTION
RT-PROGRAM: CDCO
PRIORITY: 100
SEGMENT ONE: 35
SEGMENT TWO:
START ADDRESS: 200
*END-LOAD
*

ND-60. 051.03

2.6 Clear an Existing Segment

¥CLEAR-SEGMENT <«segment no>

The segment «segment no> will be cleared, i.e. the space on
the segment file occupied by the segment «segment no> will be
released, and the segment number « segment no> will be free
again, The segment cannot be one of the segments initially
present in the SINTRAN III system. The segment will not be
cleared if it is one of the segments of an existing RT program,
or if the segment is currently being used by an RT program,
or if it has been fixed using the FIX or FIXC command.

If the parameter <segment no> is given the value zero, which is
equivalent to core common, and the question "CLEARING CORE
COMMON?" will be printed. If the answer Y for yes is given,
the core common pointers will be reset to their initial values,
and all core common labels will be deleted from the linking table
and the RTFIL,

When clearing a segment, all symbols defined on this segment
will be deleted from RTFIL and the linking table.

Example:

#CLEAR-SEGMENT
SEGMENT NO: 35

ERROR - RT-PROGRAMS ON SEGMENT:

cDC4
CDC3
cDC2
cDC1
cDhCo

| *DELETE-PROGRAM CDC4
#*DELETE-PROGRAM CDC3
#DELETE-PROGRAM CDC2
#DELETE-PROGRAM CDC1
#*DELETE-PROGRAM CDCO
#CLEAR-SEGMENT
SEGMENT NO: 35
*

ND-60. 051. 03

2.7

2-8

Compare a Segment with a File

*COMPARE <segment no><file> (< output file>)lower addr>)

(<upper addr>)

The content of the segment < segment no> will be compared with
the content of the file < file>. The segment < segment no> must
be a closed segment and the content of the file <file.> must be

in binary format (produced by a)BPUN or a BINARY-DUMP com-
mand). The parameters (< lower addr>) and (< upper addr>)
set the limits of the area to be compared. If there are any
differences between the content of the <«file>> and the segment
<segment no>, the addresses where the differences are, and the
contens of those addresses for the segment and the file will be
printed out on the (<output file>).

Default values for the parameters (< lower addr>) and (<upper
addr >) are the first and the last address of the specified segment.
The default value of the parameter (< output file>) is the communi-
cation device (the terminal). This command is useful for debugging
RT programs. After loading the segments, they may be dumped
with the BINARY-DUMP command., If anything goes wrong during
execution of the RT programs using these segments, the COMPARE
command may be used to see if anything in the original segments
has been destroyed.

Example:

®*NREENTRANT-LOAD 200-USERs.»
NEW SEGMENT NO: 36

#END-LOAD
#BINARY~DUMP BIN~DUMP:SYMB 36,
*EXIT-LOADER 1

@LOOK-AT SEGMENT 36
READY:
0/ 125005 1
125005 1000/ 0 2

0 5000/ 124010 3
170401 10000/ 50771 4
142006 & -

-END
@RT-L

REAL-TIME LOADER 76.02.06

ND-60. 051, 03

2-9

COMPARE
SEGMENT NO: 36
BINARY FILE: BIN-DUMP:SYMB
LOVER ADDRESS:
UPPER ADDRESS:
OUTPUT FILE:

ADR SEGMENT FILE

0 1 125005
1000 2 0
5000 3 124010

10000 4 50771
*

Allocation of an RT Description

*DECLARE-PROGRAM < rt-program name>

The symbol «rt-program names is the name of an RT pro-

gram to be loaded at a later time, and an entry in the RT

description table will be allocated. This command must be

used when loading RT programs which have other as yet unde-
fined or undeclared RT programs as "externals'. All such

"external RT programs' must be declared using the DECLARE-

PROGRAM command before the loading process can be completed.

Example:

*DECLARE-PROGRAM

RT-PROGRAM: PROGRI

*DECLARE-PROGRAM PROGR2

¥YWRITE-PROGRAMS,»

PROGR2 24567 ??7??27??
PROGR1 24543 ??27??7?7

CDC4 24517 36
CDC3 24473 36
CDC2 24447 36
CDC! 24423 36
CDCO0 24377 36 o
o

o
o

o

ND-60. 051, 03

2.9

2.10

2-10

Name an Existing RT Description

*DEFINE-PROGRAM «rt-program name > < rt-description address>

The DEFINE-PROGRAM command may be used to give a name to
RT programs which are not loaded by the RT Loader, =rt-program
name > is the name of the RT program and <rt-description address >
is the address of the RT program's RT description.

Example:

*DEFINE-PROGRAM

RT-PROGRAM: TERMI

RT-DESCRIPTION ADDRESS: 23153

*DEFINE-PROGRAM TERM2 23177

#YRITE-PROGRAMS .,

TERM2 23177 3 1
TERM! 23153 3 11

Define Name of a Segment File

*DEFINE-SEGMENT-FILE < segment file name ><segment file no>

Define the segment file number « segment file no>». The para-
meter <segment file name'> will be the name of the segment file.
If the segment file number « segment file no> is already defined,
then this segment file's name and the question REDEFINE SEG-
MENT FILE? will be printed out, the answer Y for yes will result
in the segment file's name being changed to < segment file name>.

Before using the DEFINE-SEGMENT-FILE command, the specified
segment file must have been defined with the ALLOCATE-FILE
command and the mass storage address of the segment file must
have been inserted in the "BLST'" array in the SINTRAN III system.

Example:

*DEFINE-SEGMENT-FILE

SEGMENT FILE NAME: (FIXED-PACK:SYSTEM)SEGFIL1:DATA

SEGMENT FILE NO.: 1
*

ND-60. 051. 03

2.11

2.12

2-11

Define a Symbol

*DEFINE-SYMBOL <« symbol><value>(<segment no>)

Define the symbol <« symbol > on the segment (< segment no_>)
and give it the value «<value>. The parameter (< segment no=)
must be an existing segment or one of the segments currently
being built. The default value of the parameter (<segment no=)
is the current "load segment'", the segment last loaded into the
current load operation,

Example:

¥*NEW-SEGMENT,» 5

NEW SEGMENT NO: 31!

*DEFINE-SYMBOL

SYMBOL NAME: SYMBI

VALUE:s 0
SEGMENT NO: 31
#DEFINE-SYMBOL SYMB2 1 31
*

Delete a Common Label

*DELETE-COMMON-LABEL <common label>

The common label <common label> will be deleted from the

linking table.

Example:

*WRITE-COMMON~LABELS, »

COMLAB3 31 454
COMLAB2 31 454
COMLABI 31 454

#*DELETE-COMMON-LABEL

COMMON LABEL: COMLAB2

*DELETE-COMMON-LABEL COMLABS3

*WRITE-COMMON-LABELS., .,

CoOMLABI 31 454

#*

ND-60. 051. 03

2.13

2-12

Delete Names of Non-Reentrant Routines

*DELETE-NOT-REENTRANT

The names of the non-reentrant routines in the reentrant
FORTRAN library will be deleted. This command is useful
when building a reentrant system with more than one RT pro-
gram on the same segment. After each RT program is loaded:
define the end of the stack, delete the names of the non-reentrant
routines, set the new load address (equals end of stack plus one),
load the next RT program etc.

The names of the non-reentrant routines in the "reentrant' FOR-

TRAN Library are:

8DXI, DEXP, DLOG, DLOG10, DSIN, DCOS, DSQRT,
DATAN, DTAN2, DMOD, 8DIV, 8STAC, STPNT, STBEG,
STEND, SRTEN, 8ENTR, 8STKI

Example:

*WRITE-SYMBOLS.,,

STBEG 5741 31
STPNT 5740 31
OUTBT 56717 31
INBT 5674 31

8RLDN 5254 31
ERRS 5250 31
ERRS 5242 31
gDMU 5521 31
8DSB 5260 31
8DAD 5256 31

SENTR 100 31
8STAC 5704 31
8STKI 5733 31
8LEAV 255 31
8F10 306 31

WAITF 50 31
RESRV 52 31
8RTEN 54 31

ND-60. 051, 03

2-13

#*DELETE-NOT-REENTRANT

#JRITE~-SYMBOLS, »

QUTBT 5677 31

INBT 5674 31

8RLDN 5254 31

ERRO9 5250 31

ERRS 5242 31

8DMU 5521 31

8DSB 5260 31
8DAD 5256 31

8LEAV 255 31

8F10 306 31

WAITF 50 31
RESRV 52 31

*

2.14 ~ Delete an RT Program

*DELETE-PROGRAM <« rit-program name >

The RT program named <rt-program name > will be deleted
from RTFIL and from the linking table, and the RT program's
entry in the RT description table will be free again, When the
RT program <rt-program name > is active, the DELETE-
PROGRAM command is illegal.

Example:

*RITE<PROGRAMS., ,

cDC4 23723 31 0
CDC3 23677 31 0
CbC2 23653 31 0
CDCl1 23627 31 0
CDCO 23603 31 0

¥*DELETE-PROGRAM
RT-PROGRAM: (CDC2
#*DELETE-PROGRAM CDCO
*WRITE-PROGRAMS,

CDC4 237283 31 0
CDC3 23677 31 0
CDCl 23627 31 0

ND-60. 051. 03

2-14

2.15 Delete a Symbol in the RTFIL

*DELETE-RTFIL-SYMBOL <symbol name> < segment no>

The symbol «symbol name> defined on the segment «<segment no=
will be deleted from the RTFIL.

Example:

*WRITE-RTFIL.,.,

TWw2 23603 32 0
8RTEN 54 32
RESRV 52 32
WAITF 50 32
8FIO 306 32

8LEAV 255 32
8STKI 5733 32
8STAC 5704 32
8ENTR 100 32
8DAD 5256 32
8DSB 5260 32
8DMU 5521 32
ERRS8 5242 32
ERR9S 5250 32

8RLDN 5254 3a
INBT 5674 32

OUTBT 5677 32
STPNT 57470 32
STEND 5000 32
STBEG 5741 32

*DELETE-RTFIL-SYMBOL
SYMBOL NAME: OUTST
SEGMENT NO: 32
*DELETE-RTFIL-SYMBOL WAITF 32
*YRITE-RTFIL,,

Tw2 23603 32 0
8RTEN 54 32
RESRV 52 32
8F1I0 306 32

8LEAV 255 32
8STKI 5733 32
8STAC 5704 32
8ENTR 100 32
8DAD 5256 32
8DSB 5260 32
8DMU 5521 32
ERRS 5242 32
ERRO9 5250 32

gRLDN 5254 32
INBT 5674 32

STPNT 5740 32
STEND 5000 32
STBEG 5741 32

ND-60.051.03

2.16

2-15

Remove a Symbol from the Linking Table

*DELETE-SYMBOL «symbol>

The symbol named < symbol > will be deleted from the linking
table., The symbol «symbol> must not be a common label or
an RT program,

Example:

*WYRITE-SYMBOLS, »

TABP6 6575 33
IOINI 6310 33
8RLDN 5605 33
ERRS 5475 33
ERR9 5473 33

OUTBT 6330 33
INBT 6313 33
8DMU 6134 33
8D5SB 5673 33 .
B8DAD 5671 33

8CONV 6624 33
8LIB 254 33

8ENTR 124 33
8LEAV 255 33
8FIO 266 33

WAITF 111 33
RESRV 113 33
8RTEN 115 33

#*DELETE-SYMBOL

SYMBOL NAME: 8CONV

#DELETE-SYMBOL QUTBT

*DELETE-SYMBOL 8RTEN

*WRITE-SYMBOLS, .,

TABP6 6575 33
IOINI 6310 33 .
8RLDN — 5605 33
ERRS8 5475 33
ERR9 5473 33
INBT 6313 33
8DMU 6134 33
8DSB 5673 33
8DAD 5671 33
8LIB 254 33

8ENTR 124 33
8LEAV 255 33
8F10 266 33

WAITF 111 33
RESRV 113 33

ND-60. 051, 03

2.17

2-186

Dump Segment Files!' Bit Map

*DUMP-SEGFILE-BITMAP (<segment file no>)(<output file =)

The bit map of the segment file (<segment no=) will be dumped
on the (<output file >). There will be one bit for each page of
the segment file. A bit with value one means that the corre-
sponding page on the segment file is used, and a bit with value
zero means that the corresponding page on the segment file is
free. The default value for the parameter (<« segment file no>)
is all 4 segment files, and the default value for (< output file>)
is the terminal.

Example:

#*DUMP-SEGFIL-BITMAP

. SEGMENT FILE NO».:

OUTPUT FILE:

SEGMENT FILE NO: O
0 177777 177777 77777 177777 177777 177777 177777

200 177777 177777 177777 177777 177777 177777 177777
400 177777 77777 77777 177777 177777 177777 177777
600 177777 177777 177777 V77777 177777 177777 177777

1000 177777 177777 V77777 77777 177777 V77777 177777
1200 177777 V77777 177777 177777 140000 000000 000000
1400 000000 000000 000000 000000

FREE PAGES ON SEGMENT FILE: 176
NUMBER OF CONTINUOUS FREE PAGES: 176

SEGMENT FILE NO: I
0 037777

FREE PAGES ON SEGMENT FILE: 2
NUMBER OF CONTINUOUS FREE PAGES: 2

SEGMENT FILE NO. 2 NOT DEFINED

SEGMENT FILE NO. 3 NOT DEFINED

*

ND-60. 051. 03

1777717
177777
V77777
177777
177771
000000

2.18

2.19

2-17

End a Load Operation

*END-LOAD

The END-LOAD command must terminate all load operations. This
command will close the segments currently being built. The seg-
ments will be moved from the scratch file to the segment file and
the RTFIL. The linking table, the segment table and the RT
description table will be updated. The RTFIL table will be written
to the file RTFIL during the END-LOAD command. If there are
undefined symbols in the linking table when an END-LOAD command
is typed, the question NEGLECTING REFERENCES? will be printed
out; if the answer is Y for yes then the END-LOAD command
will continue, otherwise the END-LOAD command is terminated
and the load operation may continue.

If the command NREENTRANT-LOAD was the last "load" command,
then the file FTNLIBR will be automatically scanned in the END-
LOAD command if there are undefined symbols in the linking table.

Example:

#*NREENTRANT-LOAD 200-USER,.»

NEW SEGMENT NO: 33

*END-LOAD

Exit from RT Loader

*EXIT-LOADER

This command will update the file RTFIL and then leave the RT
Loader and give control to the SINTRAN III command processor.

Example:

@ RT-LOADER

REAL-TIME LOADER 76.02.06

#EXIT-LOADER

ND-60. 051. 03

2-18

2.20 List Available Commands

*HELP (<output file>)

This command will list all the RT Loader's commands on the
(<. output file >). The output will be in alphabetic order.

If the terminal is used as (<.output file>), the output is divided
into three parts, and for each part the RT Loader will give the
question NEXT COMMANDS?. If the answer is Y for yes, then
the next part is listed, otherwise the command is terminated.
The terminal is the default value of the (< output file >) parameter.

Example:

*HELP

OTPUT FILE:

ALLOCATE-AREA <SEGMENT NO.> <AREA SIZE> (<LOW. ADR.>)

BACKUP-LCAD <RTFIL> <SEG.FI. 1> (<CUR.SEG+FI+>) (<SEG.FI.NO.>)

BINARY-DUMP <(CUTPUT FILE> <SEGMENT NC.> (<LOWER ADR.>) (<UPPER ADR.>)

CHANGE-LCCATICN <SEGMENT NC.>

CHANGE-RT-DESCRIPTION <RT PROG> (<PRIOR>) (<SEGNOl>) (<SEGNQO2>) (<STAD!

CLEAR-SEGMENT <SEGMENT NO.>

COMPARE <SEGMENT NO.> <FILE> (<LOW.ADR.>) (<UPPER ADR.>) (<QUTPUT FIL]

DECLARE-PRCGRAM <RT-PROGRAM NAME>

DEFINE-PROGRAM <RT-PROGRAM NAME> <RT-DESCRIPTION ADDRESS>

DEFINE-SEGMENT-FILE <SEGMENT FILE NAME> <SEGMENT FILE NO.>

DEFINE-SYMBCL <SYMBOL> <VALUE> (<SEGMENT NO.>)

DELETE-CCMMON-LABEL <COMMON LABEL>

DELETE-NQT-REENTRANT

DELETE-PRCGRAM <RT-PRCGRAM NAME>

DELETE-RTFIL-SYMBQOL <SYMBOL NAME> <SEGMENT NO.>

DELETE-SYMBCL <SYMBOL> Y

DIMP-SEGFILE-BITMAP (<SEGMENT FILE NO«.>) (<OUTPUT FILE>)

END-LCAD

EXIT-LOCADER

HELP (<OUTPUT FILE>)

ND-60. 051. 03

2-19

NEXT CCMMANDS? Y

IMAGE-LCAD <IMAGE-FILE> <QUTPUT FILE> (<BOOTSTRAP START ADR.>)

LIST-FREE~-SEGMENTS (<QUTPUT FILE>)

LIST-REFERENCES-ADDRESS (<SYMBCL>) (<QUTPUT FILE>)

LOAD (<INPUT FILE>) (<LQAD-SEGMENT>) (<LINK-SEGMENT>)

NEW-SEGMENT (<SEGMENT NQ.>) (<RING>) (<DEMAND/NON DEM.>) (<PROTECT BITS

NREENTRANT-LCAD (<INPUT FILE>) (<LINK-SEGMENT>)

CCTAL-D'™MP (SEGMENT NQ.>) (<LCVER ADR.>) (<UPPER ADR.>) (<QUTPUT FILE>)

PARTIAL-CLEAR-RTFIL <SYMBQL/SEGMENT NQO.> (<SEGMENT NO.>)

“PARTIAL-CLEAR-TABLE <SYMBOCL>

READ-BINARY (<INPUT FILE>) (<SEGMENT NQO.>)

REENTRANT-LCAD (<INPUT FILE>) (<LINK-SEGMENT>) (<STACK LENGTH>)

REFER-SYMBQOL <SYMBOL>
RELEASE-SEGMENT <SEGMENT NOQO.>

PENAME~SYMBCL <CLD SYMBOL> <NEW SYMBOL>

REQRGANIZE-SEGMENT-FILE (<SEGMENT FILE NOC.>)

RESET-LCADER

RESET-NEW-PAGE

NEXT COMMANDS? Y

SET-CORE-COMMON <COMMCN LABEL>

SET-LCAD-ADDRESS <SEGMENT NO.> <LCAD ADDRESS>

SET-NEW-PAGE

SET-PAGE-TABLE <PAGE INDEX TABLE NO.>

eET-SEGMENT-CCMMCN <CCMMON LABEL>

SET-SEGMENT-FILE <SEGMENT FILE NO.>.

WHAT-IS <SYMBCL>

WRITE-CCMMON-LABELS (<QUTPUT FILE>)

WRITE-LCAD-ADDRESS <SEGMENT NO.>

WRITE-NOT-REENTRANT (<QUTPUT FILE>)

WRITE-PRCGRAMS (<CQUTPUT FILE>)

WRITE-REFERENCES (<QCUTPUT FILE>)

WRITE-RTFIL (<SEGMENT NQO.>) (<QUTPUT FILE>)

WRITE-SEGMENTS (<SEGMENT NO.>) (<QUTPUT FILE>)

WRITE-SYMBCLS (<CUTPUT FILE>)

WRITE-TABLE (<CUTPUT FILE>)

X-LCAD (<INPUT FILE>) (<LCAD-SEGMENT>) (<LINK-SEGMENT>)
3

ND-60. 051, 03

2.21

2-20

Load a SINTRAN III Core Only System

*IMAGE-LOAD <image file><output file> (« bootstrap start addr:)

This command will set the RT Loader in "image load" mode,
i.e., loading will be to a file instead of to a segment,

The parameter < image file > is the name of the file where the
SINTRAN III C system is resident in binary format. < output file>
is the name of the file where the completed SINTRAN III C system
will be dumped by the END-LOAD command. The parameter
(<bootstrap start addr>) is the address of the bootstrap, i.e. the
address where the boostrap will be placed in memory when the
SINTRAN III C system is loaded and started. The default value of
(<bootstrap start addr>) is the value of the load address when the
load operation is terminated.

The "image load" mode is reset by the END-LOAD and the RESET-

LOADER commands.

Example:

* IMAGE-LOAD

IMAGE FILE: CORE-SINTRAN:SYMB

OUTPUT FILE: TAPE-PUNCH

BOOTSTRAP START ADDRESS:

*#*SET-LOAD-ADDRESS 26000

*NREENTRANT-LOAD 200-USER

*END-LOAD

ND-60. 051. 03

2,22

2.23

2-21

List Free Segment Numbers

*LIST-FREE-SEGMENTS (<output file>)

The unused segment numbers in the system will be listed on the
(<.output file). Default value of (< output file>) is the terminal.

Example:

#LI1ST-FREE-SEGMENTS
OUTPUT FILE:

34 35 36 37 40 41 42 43

44 45 46 47 S0 S1 52 53
54 S5 56 57 60 61 62 63

64 65 L6 67

List Reference Addresses of Undefined Symbol

*LIST-REFERENCES-ADDRESS (< symbol>) (< output file>)

List all addresses where the undefined symbol named (< symbol=>)
is referred to. If no parameter (< symbol>) is specified, all
undefined symbol references will be listed. Default value of the
parameter (< output file ») is the terminal.

Example:

*WRITE-REFERENCES, .,

8LEAV
8F10

WAITF
RESRV
8RTEN

*LIST-REFERENCES-ADDRESS
OUTPUT FILE:
SYMBOL NAME:

BLEAV 43
8FIO 32

WAITF 12
RESRV 4
8RTEN 2

ND-60. 051. 03

2.24

2-22

Load BRF Code onto a Segment

*LOAD (<input file>)(<.load-segment>) (< link-segment >)

Load BRF code from the file (< input file>) into the segment
(< load-segment >). The (<« load-segment>) must have been
specified in a NEW-SEGMENT command before it may be used
in the LOAD command, The (<link-segment>) must be an
existing segment, or one of the two segments currently being
built. Link-segment means that all symbols defined on the link-
segment will be available in the load operation, There must
be no virtual address overlap between the load-segment and the
link-segment. If no (< input file >) parameter is specified, the
last input file specified will be used. If no (< load-segment>)
is specified, the last segment used as load-segment or the last
segment specified in a NEW-SEGMENT command will be used.
Default value of the parameter (< link-segment>) is the second
segment currently being built, or no link-segment if no ''second"
segment is specified. The parameter (< link-segment>) may
be given the value zero to avoid linking to another segment in
a load operation,

Example:

#NEW-SEGMENT. 4,
NEW SEGMENT NO: 34
*L.0AD
INPUT FILE: TW2
LOAD-SEGMENT NO.: 34
L INKING -SEGMENT NO.
*LOAD VAITF,,
#LOAD FTNLIBR,,
*END-LOAD

ND-60. 051, 03

2,25

2-23

Specify New Segment

*NEW-SEGMENT (< segment no>)(< ring>)(<demand/non
demand >) (< protect bits>)

Allocate a segment number to be used in the current load operatim .
The (< segment no>) must be an available free segment number,
and the default value is the first free segment number. The
parameter (<ring>) specifies on which protection ring the seg-
ment will reside; legal values are 0, 1 and 2, with a default
value of 0. The parameter (<demand/non demand >) specifies
whether the segment will be a demand segment or non-demand
segment, and the default type is non-demand. Legal values of
the parameter (< demand/non-demant>) are the characters ND
for non-demand and DM for demand. The parameter (« protect
bits >) specifies whether the segment is to be fetch permitted,
read permitted or write permitted. Legal values for this para-
meter are F for fetch, R for read and W for write permitted
or a combination of these three characters. Default value is

RFW,

A maximum of two segments may be specified by the NEW-
SEGMENT command in the same load operation.

Example:

#*NEW-SEGMENT
SEGMENT NO: 40
RING: 2
SEGMENT TYPE: DM

PROTECTION BITS: RF

*NEW-SEGMENT

SEGMENT NO:

RING:

SEGMENT TYPE:

PROTECTION BITS:

NEW SEGMENT NO: 35
*

In the first NEW-SEGMENT command in the example, the seg-
ment no, 40 is specified to be a demand segment on protect
ring 2, and only read and fetch permitted. In the second NEW-
SEGMENT command only default parameters are used and the
result is that the first free segment, number 35, is allocated.
This segment is non-demand, it resides on protection ring 0
and it is read, write and fetch permitted.

ND-60.051. 03

2. 26

2-24

Load into Current Load-Segment

*NREENTRANT-LOAD (< input file:>)(< link-segment >)

Load BRF code from the file (<« input file>) into the current

load segment, which is the last segment loaded into in the

current load operation or the last segment specified in a NEW-

SEGMENT command. If no current load segment exists, the

first free segment number will be allocated and used as the

current load segment. If a new segment is allocated, it will

be a non-demand segment residing on protection ring 0 and it

will be read, write and fetch permitted. The link segment

(< link-segment >) must be one of the two segments currently

being built or an already existing segment, or (<link-segment>)

can equal zero meaning that no linking is wanted. The default

value of the parameter (< link-segment>) is the last segment

used as link segment or the "second" segment currently being

built. The default value of the parameter (<input file>) is

the last file used as (< input file>).

The file FTNLIBR, containing the FORTRAN runtime system,

will be scanned (loaded from) in the END-LOAD command if

there are undefined symbols, and the last load command is the

NREENTRANT-LOAD command, '

Example:

#NREENTRANT-LOAD
INPUT FILE: TW2
LINKING~SEGMENT NO.:
NEW SEGMENT NO: 35
*NREENTRANT-LOAD WAITF.,
¥*END-LOAD
*

ND-60. 051, 03

2,27

2-25

Octal Dump of a Segment

*OCTAL-DUMP (<« segment nox)(<lower addr>)(<upper addr =)

(< output file>)

Dump the specified area of the specified segment (< segment no>)

in octal format on the file (<output file>). The parameter

(< segment no>) must refer to an already existing segment or

one of the segments currently being built or it may have the value

zero meaning core common. The default value of the parameter

(< segment no >) is the current load segment. (<.lower addr_>)

is the first address and (<upper addr>) is the last address of

the area to be dumped. The default value of the parameter

(<lower addr>) is the first address of the segment and the

default value of the parameter (< upper addr>) is the last address

of the segment, The default value of the parameter (<output file>)

is the terminal.

Example:

#0CTAL-DUMP
SEGMENT NO: 35
LOWER ADDRESS:
UPPER ADDRESS: 47
OUTPUT FILE:

135002 270 115 135603 113 11003 4037

4036 135603 111 5002 4033 4031 4615

42 135603 266 13000 4011 0 135604

105615 135605 135001 255 124004 1 0

ND-60, 051, 03

0:

0:

0: 172400 175040 146755 144156 140006 170401 131403 125001

0:

0:

4036
44615

11001
100

2-26

2,28 Delete Symbols in RTFIL

*PARTIAL-CLEAR-RTFIL «symbol/segment no> (< segment no =)

Delete all symbols in RTFIL defined after the specified symbol
«symbol>on segment (<« segment no>). If the parameter <symbol/
segment no > is a segment number, then all symbols defined on this
segment will be deleted from RTFIL.

Example:

*WRITE-RTFIL.,.,

TW2 24113 35 0
8RTEN 115 35
RESRV 113 35
WAITF 111 35
8F1I0 266 35

8LEAV 255 35
8ENTR . 124 35
BLIB 254 35

8CONV 6624 35
8DAD 5671 35
8DSB 5673 35
8DMU 6134 35
INBT 6313 35

OUTBT 6330 35
ERR9 5473 35
ERRS8 5475 35

8RLDN 5605 3s
IOINI 6310 35
TABP6 6575 35

*PARTIAL-CLEAR-RTFIL
SYMBOL NAME/SEGMENT NO.: BDMU
SEGMENT NO: 35
*WYRITE-RTFIL,.

8DMU 6134 35
INBT 6313 35

OUTBT 6330 35
ERR9 5473 35
ERRS8 5475 35

8RLDN 5605 35
IOINI 6310 35
TABP6 6575 35

ND-60. 051. 03

2.29

2-27

Remove Symbols from the Linking Table

*PARTIAL-CLEAR-TABLE <symbol>

All symbols defined after the symbol «symbol> will be deleted

from the linking table. RT program names will not be deleted

by the PARTIAL-CLEAR-TABLE command.

Example:

#YRITE-SYMBOLS, »

TABP6 6575 36
I0INI 6310 36
8RLDN 5605 36
ERR8 5475 36
ERR9 5473 36

OUTBT 6330 36
INBT 6313 36
8DMU 6134 36
8DSB 5673 36
8DAD 5671 36

8CONV 6624 36
8LIB 254 36

8ENTR 124 36
8LEAV 255 36
8F10 266 36

WAITF 111 36
RESRV 113 36
8RTEN 115 36

*PARTIAL-CLEAR-TABLE
SYMBOL NAME: 8DAD
#*WRITE-SYMBOLS., »

8DAD 5671 36
8CONV 6624 36
8LIB 254 36

8ENTR 124 36
8LEAV 255 36
8F10 266 36

WAITF 111 36
RESRV 113 36
8RTEN 115 36

ND-60. 051. 03

2,30

2-28

Load Binary Code onto a Specified Segment

*READ-BINARY (<«input file >)(<-segment no >)

Load binary code from the file («input file>) onto the segment

(< segment no >), which may be one of the segments currently

being built, or one of the existing segments, or if the parameter

(< segment no>) equals zero, core common, When loading into

an existing segment the question CHANGING EXISTING SEGMENT?

will be printed, and must be answered with Y for yes if the

loading is to continue, When loading into core common, the

question CHANGING CORE COMMON? will be printed, and this

question must be answered with Y for yes before any loading

into core common is done. If the specified segment is one of

the segments currently being built, then the load address on this

segment will be set equal the last address loaded into plus one.

The current load address of core common will be affected in the

same way when loading into core common. The default value of

the parameter (< input file >) is the last file used as («input file>),

and the current load segment or the segment last specified in a

NEW-SEGMENT command in the current load operation is the

default value of the parameter (< segment no>).

Example:

*NREENTRANT-LOAD TW2,,
NEW SEGMENT NO: 36
*END-LOAD
#*BINARY-DUMP BIN-DUMP:SYMB 36,
*NEW-SEGMENT, s
NEW SEGMENT NO: 37
#*READ-BINARY
INPUT FILE: BIN-DUMP:SYMB
SEGMENT NO: 37
*END-LOAD
+*

ND-60. 051. 03

2.31

2-29

Load Reentrant Programs onto a Segment

*REENTRANT-LOAD (< input file >)(< link-segment>) (< stack length>>)

Load BRF code into the current load segment from the file (- input

file >). The current load segment is the last segment loaded into

in the current load operation, or the last segment specified in a
NEW-SEGMENT command. If no current load segment exists, then
the first free segment number will be allocated as the current load
segment. This segment will be a non-demand segment, residing
on protection ring 0 and it will be read, write and fetch permitted.

The (< link-segment>) may refer to one of the segments currently
being built, an already existing segment or have the value zero if
no linking is wanted. The default value of the parameter (< link-

segment >) is the last segment used as link segment in the current
load operation. The last file used as (<input file>) is default

value of the parameter (< input file >).

After each REENTRANT-LOAD command the file FTNRTLIBR, con-
taining the 'reentrant' FORTRAN run-time system, is scanned if
the symbol STEND (end of stack) is undefined. Then the symbol
STEND is defined and the names of the non-reentrant routines are
deleted from the linking table. The symbol STEND will receive a
value equal to the load address after the file FTNRTLIBR is scanned
plus the value of the parameter («stack length>). The load address
of the segment will be set equal to STEND plus one. 1K words is
the default value of the parameter (< stack length>).

This command is useful when building a system consisting of re-
entrant FORTRAN programs on the same segment. The BRI code
of the various RT programs should be placed on different files and
one then uses a single REENTRANT-LOAD command for each RT

program.

Example:

#*REENTRANT-LOAD
INPUT FILE: REENT-TW2
L INKING-SEGMENT NO. :
STACK LENGTH: 400
NEW SEGMENT NO: 740
END-LOAD '
+*

ND-60. 051. 03

2,32

2-30

Release Segment Table Entry

*RELEASE-SEGMENT <segment no>

This command will release the segment <« segment no> from the
segment table. There will be no check as to whether any RT
programs use this segment, but if the segment is currently in
memory, an error message will be given, and the segment will
not be released. No symbols in RTFIL or in the linking table
will be deleted by this command, only the segment table entry
and the segment's space on the segment file will be released.

Example:

*NREENTRANT-LOAD 200-USER,,
NEW SEGMENT NO: 41
*END-LOAD
*WRITE-SEGMENT 41,

41 0 13777 1334 0 0 1| RFW NON DEMAND
#*RELEASE-SEGMENT
SEGMENT NO: 41
*WRITE-SEGMENT 41,

SEGMENT NO. NOT USED
*

ND-60. 051. 03

2.33

2.34

2-31

Make a Symbol Undefined in the Linking Table

*REFER-SYMBOL « symbol:>

This command will make the symbol <« symbol> undefined in
the linking table. This command is useful when loading from
a file containing library BRF- units when the REFER-SYMBOL
command may be used to select the BRF units one wishes to

load.

Example:

#REFER-SYMBOL

SYMBOL NAME: REFSYI

#REFER-SYMBOL REFSYZ2

#YRITE-REFERENCES.,

REFSY2
REFSY!

*

Change Symbol Name in the Linking Table

*RENAME-SYMBOL «.o0ld symbol> <new symbol>

The symbol named <«old symbol> will be renamed < new symbol>.

Example:

*DEFINE-SYMBOL DEFSY1 1 0

#DEFINE-SYMBOL DEFSY2 2 0

¥*WRITE-SYMBOLS, »

DEFSY2 2 0
DEFSY1 1 0

#*RENAME-SYMBOL
OLD SYMBOL: DEFSY!
NEW SYMBOL: DEFSYM!

#RENAME-SYMBOL DEFSY2 DEFSYM2

#WRITE-SYMBOLS,»

DEFSYM2 2 0
DEFSYMI 1 0

*

ND-60. 051. 03

2.35

2-32

Reorganize Segment File

*REORGANIZE-SEGMENT-FILE (<segment file no>)

This command will reorganize the segment file (< segment file no>)

in order to avoid loss of space on the specified segment file. After

this command, the segments will use a continuous area on the

segment file, The segments not built by the RT Loader will not

be moved, and no segments may be in use by RT programs when

executing the REORGANIZE-SEGMENT-FILE command. If no

parameter (< segment file no>) is specified, then all segment

files used in the system are reorganized.

Example:

*

‘I-D”M?"SEGFILE‘QI"‘!:AQrQ) ,

0
200
400
€010

1000
1200
1400

FREE PAGES CN

177777
177777
177777
177777
177777
177777
000000

\
177777 177777

177777 177777
177777 177777
177777 177777

177777 170000
177777 149000
onneng 000000
SEGMENT FILE:

177777 177777

177777 177777

177777 177777

177777 177777

001777 140000

J0009%0 0000090

000009

320
YIMBER CF CCMNTINIC'IS FRPTX PAGES: 2236
¥RECPIANITE-SECMINT-FILE

SEGMINT FILE MC.: 0

#DUMD-CERFIL =
B I TM.Aj G 2

0
200
400

600
1000
1200
1490

FPEE PASEES N

177777
177777
177777
177777
177777
000090
000000

177777 (77777
177777 177777

177777 177777

177777 177777

V77777 177777

n90090 900000

000920 309900

SEGMENT FILE:

177777 177777
177777 177777
177777 177777
177777 177777
177777 177777
000000 000900
600000
329

MTMBE? CF COMTIMNICHIS FOEE DAGES: 190
4

ND-60, 051. 03

177777
177777
177777
177777
009000
0000090

177777

177777

177777

177777

177777

0000290

177777

177777

177777

177777
037777

2000890

177777

177777

177777

177777

177777

30399¢

177777

177777

177777

177777
177777

600099

177777

177777

177777

177777

000082

2000040

2.36

2.37

2,38

2-33

Reset RT Loader

*RESET-LOADER

This command will reset the RT Loader to its initial state,

which is the state after the last EXIT-LOADER, END-LOAD

or RESET-LOADER command.

Example:

*

#RESET-LOADER
#* =

Reset '"New-Page'' Mode

*RESET-NEW-PAGE

The '"mew page' mode is reset by this command. (See the

SET-NEW-PAGE command.)

Example:

*

*RESET-NEW-PAGE
*‘_-'__l-——l_-

Allocate Common Area in Resident Core

*SET-CORE-COMMON <.common label>

The common area labeled «.common. label> will be allocated in

resident core. This command must be used before the common

area <.common label>> is loaded.

Example:

¥*NEW-SEGMENT,, »

NEW SEGMENT NO: 16

*SET-CORE-COMMQE

COMMON LABEL: COMLABI

¥SET-CORE-COMMON COMLAB?2

*L.OAD PROG1,., .,

¥*LOAD PRQOG?2, 4.

*EgfiD PROG3, ., .

¥WRITE-COMMON-LABELS, ,

C OMLAB3 16 454
C OMLAB2 0 454
COMLABI 0 454

3*

MD-60. 051. 03

2,39

2. 40

2-34

Set Load Address of a Segment

*SET-LOAD-ADDRESS «segment no> <load address>

Set the current load address of the segment <segment no> to
the value < load address>. The segment -« segment no> must
be one of the segments currently being loaded in, or « segment no’;
can have the value zero meaning core common. When core
common is specified, the question CHANGING LOAD ADDRESS OF
CORE COMMON? is printed, and this must be answered with Y
for yes before any change of core common load address can
occur,

Example:

#*NEV-SEGMENT, 554

NEW SEGMENT NO: 20

*SET-LOAD-ADDRESS
SEGMENT NO: 20

ADDRESS: 40000

*WRITE-LOAD-ADDRESS

SEGMENT NO: 20

L.ADR: 40000 U.ADR: 40000 C.LADR: 40000
*

Start Each Load on a New Page

*SET-NEW-PAGE

This command will set the RT Loader in '"nmew page" mode, i.e.
the current load address will be set to the start of a new page
for each new BRF unit loaded. The '"new page'" mode will be
reset by the RESET-LOADER, END-LOAD and the RESET-NEW-
PAGE commands. '

The following example shows the difference (note the addresses of

the symbols) between loading a program with and without using the
SET-NEW-PAGE command.

ND-60. 051. 03

2-35

Example:

#SET-NEW-PAGE

*NREENTRANT-LOAD TW2.,.,

NEW SEGMENT NO: 16

*LOAD FTNLIBR, .
*YRITE-SYMBOLS.,.

TABP6 32004 16
I0INI 26000 16
8RLDN 15320 16
ERR8 15210 16
ERR9 15206 16

QUTBT 26020 16
INBT 26003 16
8DMU 22000 16
8DSB 20002 16
8DAD 20000 16

8CONV 32033 16
BLIB 6137 16

8ENTR 6007 16
8LEAV 6140 16
BF10 10001 16

WAITF 2000 16
RESRV 4000 16
8RTEN 6000 16

#RESET-LOADER

#NREENTRANT-LOAD TW2,.,

NEW SEGMENT NO: 16

#L.0AD FTNLIBR,,

#WRITE-SYMBOLS

OUTPUT FILE:

TABP6 6575 16
I0INI 6310 16
8RLDN 5605 16
ERRS 5475 16
ERR9 5473 16

OUTBT 6330 16
INBT 6313 16
8DMU 6134 16
8DSB 5673 16
8DAD 5671 16

8CONV 6624 16
8LIB 254 16

8ENTR 124 16
8LEAV 255 16
8F10 266 16

WAITF 111 16
RESRV 113 16
8RTEN 115 16

ND-60. 051. 03

2.41

2,42

2-36

Specify Page Index Table

*SET-PAGE-TABLE <«page index table no>

This command will specify which page index table the
currently loaded segments and RT programs are to use. Usually
page index table 1 is used for the RT programs and for core
common, and page index table 1 is the default value used if other
values are not set by the SET-PAGE-TABLE command. The
commands RESET-LOADER and END-LOAD will always reset the
page index table to 1.

Example:

*

*SET-PAGE-TABLE

PAGE INDEX TABLE NO.: 3 . =

Allocate Common Area on Second New Segment

*SET-SEGMENT-COMMON <« common label>

The common area labeled «common label> will be allocated
on the segment specified in the second NEW-SEGMENT command
in a load operation. This command must be used before the
common label «common label > is defined.

Example:

#*NEW~-SEGMENT, » » »
NEW SEGMENT NO: 16
#NEW-SEGMENT, , ., »
NEW SEGMENT NO: 20
#SET-SEGMENT-COMMON
COMMON LABEL: COMLAB3
*SET-SEGMENT-COMMON COMLABI
#1.0AD PROG1.,16,20
*#1.0AD PROG2,.,
#L0AD PR0OG3.,,
#*.0AD SUBR, .,
#JRITE-COMMON~-LABELS, ,

C OMLAB2 16 454
COMLAB!I 20 454
COMLAB3 20 454

#*

ND-60. 051. 03

2.43

2.44

2.45

2-37

Specify Segment File tor New Segment(s)

*SET-SEGMENT-FILE <segment file no>

The segment file where the segments currently being built are to
reside is specified by this command. This "current segment file"
can only be changed by this command.

Example:

»

#SET-SEGMENT-FILE

SEGMENT FILE NO.: 0
*

Print Information about Specified Symbol

*WHAT-IS <« symbol >

This command will print all information about all symbols in
the linking table and the RTFIL, with the name . symbol>.

Example:

*

#JHAT-1S
SYMBOL NAME: CDC!

CDC1l 24447 16 20 DEFINED RT-PROGRAM

List Common Label Names in Linking Table

*WRITE-COMMON-LABELS (< output file >)

List the names, addresses and the segment numbers of all the
common labels defined or declared in the linking table, on the
file (<output filew-). The terminal is the default value of the

parameter (< output file>).

Example:

*WRITE-COMMON-LABELS

OUTPUT FILE:

C OMLAB3 22 454
CcoMLAB2 22 454
COMLAB! 22 454

*

ND-60. 051. 03

2.46

2-38

Write Address Limits and Load Address

*WRITE-LOAD-ADDRESS « segment no >

Write the lowest virtual address, the highest virtual address and
the current load address of the specified segment <« segment no>.
This segment must be one of the segments currently being built.
When the value zero is given for the parameter «<segment no >,
the addresses of core common are listed.

Example:

NREENTRANT-LOAD 200-USER,.
NEW SEGMENT NO: 22
*YRITE-LOAD-ADDRESS
SEGMENT NO: 22

L.ADR: 0 U.ADR: 13776 C.LADR: 13776
»*

List Non-Reentrant Runtime Routines in Linking Table

*WRITE-NOT-REENTRANT (<output file >)

List the names and the values of the non-reentrant FORTRAN

runtime routines defined. This command is useful when loading
a reentrant system and should be used before the command
DELETE-NO T~REENTRANT in order to see the addresses of the
routines which will be deleted by the DELETE-NCT-REENTRANT

command,

The default value of the parameter (<output files), is the

terminal,

Example:

%*

*NE'\"—SEGb‘IENT)JJ)

NEW SEGMENT NO: 22

*L.OAD REENT-TWZ2,,

*1L.OAD FTNRTLIBR.,»

*JRITE-LOAD-ADDRESS ?_g

ND-60. 051. 03

2.48

2-39

L.ADR: 0 U.ADR: 5741 C.LADR: 5742

*DEFINE-SYMBOL STEND 6344,.,

*SET-LOAD-ADDRESS 22 6344

*YRITE-NOT-REENTRANT

OUTPUT FILE:

8STAC 5704
STPNT 5740
STBEG 5741
STEND 6344
8RTEN 54
8ENTR 100
8STKI 5733

List RT Program Names

*WRITE-PROGRAMS (<.output file)

List the names of all the RT programs defined and declared on

the file (<output file >).

Each of the RT program's two segment numbers, and the address
of each RT program's RT description will also be listed. Declared

RT programs will not have segment numbers, so question marks

will be written instead of segment numbers.

The default value of the parameter (< output file>) is the terminal.

Example:

*WRITE-PROGRAMS

OUTPUT FILE:

PROGR! 24567 277?727

PROGR2 24377 27?2?2727
TU2 24353 22 0

ND-60. 051. 03

2.49

2.50

2-40

List Undefined Symbols

*WRITE-REFERENCES (<.output file>)

All undefined symbols in the linking table will be listed on the

(<output file>). The terminal is the default value of the

parameter (<output file>).

Example:

*WRITE-REFERENCES
OUTPUT FILE:

8LEAV
8F10

WAITF
RESRV
8RTEN

List Symbols in RTFIL

*WRITE-RTFIL (<.segment no>)(< output file>)

List all the symbols with the segment number (<segment no>)

on the file (< output file >). If no (< segment no>) is specified,

all the symbols in RTFIL will be listed. The terminal is the

default value of the parameter (<output file>).

Example:

*YRITE-RTFIL

SEGMENT NO: 22

QUTPUT FILE:

TW2 24353 22 0
8RTEN 115 22
RESRV 113 22
WAITF 111 22
8F10 266 22

8LEAV 255 22
8ENTR 124 22
8LIB 254 22

8CONV 6624 22
8DAD 5671 22
8DSB3 5673 22
gDMU 6134 22
INBT 6313 22

QUTBT 6330 22
ERRS 5473 22
ERRSE 5475 22

8RL.DN 5605 22
I0INI 6310 22
TABP6 6575 2e

ND-60. 051. 03

2.561

2-41

List Information about Segment

*WRITE-SEGMENTS (<.segment no>)(< output file >)

List all information about the specified segment (<segment no=>).

The information listed is the segment number, the segment's

lower and higher virtual addresses, the mass storage address

(in pages) relative to the start of the segment file, the segment

file number, the page index table number, on which protect ring

the segments reside, the memory protection type (demand/non-

demand).

If no parameter (< segment no>) is specified, then all segments

are listed. When the value zero is given for the parameter

(<.segment no>), the address limits of the core common area are

listed . The terminal is the default value of the parameter

(<output file >).

Example:

®WJOITE-SEGMENTS

eEGMENT NC3

CITPUT FILE:

8.NC. L.AD® T11,AD® M.ADR SF RI PT

! D 173777 0 0 ! 0 RFW NCN DEMAND

2 0 43777 0 0 2 2 RFJ NON DEMAND

2 52000 75777 25 0 2 0 ZBFY DEMAND

4 50000 147777 27 0 2 0 "|FW DEMAND

S 44000 47777 22 0 2 0 RFY NCN DEMAMND

6 50000 133777 110 0 2 0 2FW DEMAND

7 50000 73777 t42 0 2 0 RFW NCM DEMAND

10 0 77777 154 0 2 2 RFW NCNMN DEMAND

11 40000 47777 214 0 2 0 RFY NCN DEMAND

L2 n 177777 220 0 0 2 RFY DEMAND

13 40000 47777 320 0 2 0 RFV NCMN DEMAND

14 0 177777 324 0 0 2 ©FY DEMAND

15 40000 47777 424 0 2 0 2FY MOMN DEMAND

1é 0 177777 430 0 0 2 RFW DEMAMD

17 40000 47777 520 0 2 0 RFW NON DEMAND

29 8 177777 534 0 0 2 ©FW DEMAND

21 40000 47777 €24 0 2 0 RFW NON DEMAND

22 06 177777 €40 0 0 2 RFY DIMAND

23 40000 47777 740 0 2 0 RFW MCN DEMAND

24 0 177777 744 0 0 2 RFY DEMAND

CCRPE CCMMCK ATREA: 174009 177777
1

ND-60. 051. 03

2.52 List Wefined Symbols in the Linking Table

*WRITE-SYMBOLS (<output file>)

List the names, the segments and the values of all defined

symbols in the linking table, on the file (< output file>).

2-42

The

terminal is the default value of the parameter (<output file>).

Example:

*WRITE-SYMBOLS
OUTPUT FILE:

TABP6
I0INI
8RLDN
ERRS
ERR9

OQUTBT
INBT
8DMU
8DSB
8DAD

8CONV
8LIB

B8ENTR
8LEAV
8F10

WAITF
RESRV
8RTEN

6575
6310
5605
5475
5473
6330
6313
6134
5673
5671
6624
254
124
255
266
11
113
115

ND-60. 051, 03

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23

2-43

2,53 List Information about Symbols in Linking Table

*WRITE-TABLE (< output file>)

List on the file (< output file>) all information about all

symbols of all types, in the linking table., The default value

of the parameter (< output file>) is the terminal.

Example:

*YRITE-TABLE
OUTPUT FILE:

8LEAV 30 REFERENCED SYMBOL
8FI0 30 REFERENCED SYMBOL

WAITF 30 REFERENCED SYMBOL
RESRV 30 REFERENCED SYMBOL
8RTEN 30 REFERENCED SYMBOL

TW2 24707 30
CDC4 24663 23
CDC3 24637 23
CDC2 24613 23
CDCt! 24567 23
CDCO0 24377 23

DEFINED RT-PROGRAM
DEFINED RT-PROGRAM
DEFINED RT-PROGRAM
DEFINED RT-PROGRAM
DEFINED RT-PROGRAM
DEFINED-RT~PROGRAM o

o

o
o

o

ND-60. 051. 03

2.54

2-44

Load Library BRF Units

*X-LOAD (<« input file>)(< load-segment=)(< linking-segment >)

When using this command in a load operation, then BRF units

with library format will be loaded if the library symbol of the

BRF unit is either undefined or does not exist in the linking table.

If the library symbol of the BRF unit is defined in the linking

table, then the BRF unit will be skipped. Otherwise this com-

mand has the same function as the LOAD command.

Example of loading the FORTRAN runtime system FTNLIBR

(which is in library format) into segment number 26:

*NEW-SEGMENT

SEGMENT NO:

RING:

SEGMENT TYPE:
PROTECTION BITS:

NEW SEGMENT NO: 30

*X-1L0AD
INPUT FILE: FTNLIBR

LOAD-SEGMENT NO.:
LINKING-SEGMENT NO.:

*END-LOAD

*WRITE-SEGMENT 30.,.,

. 30 0 17777. 467 0 0 | RFW NON DEMAND

ND-60. 051. 03

3.1

EXAMPLES

An example of compiling the FORTRAN program PROGA,

loading it into a segment and starting the program with the

RT command. The RT program PROGA is a program to write

the message "THIS IS PROGRAM PROGA CALLING".

e

eFTN

NORD FTN

$COM_ PROGA.,0,PROGA
7 STATEMENTS COMPILED
$EX
@ RT-LOADER

REAL-TIME LOADER 76.02.06

*NREENTRANT-LOAD PROGA,.
NEW SEGMENT NO: 35
*END-LOAD
*EXIT-LOADER

@ RT PROGA

e LOG

16.21.04 20 FEBRUARY 1976
--EXIT-~

THIS 15 PROGRAM PROGA CALLING

ND-60. 051. 03

3.2

3-2

An example of loading the reentrant FORTRAN input/output
system FIO ihto a segment, and then loading 2 reentrant RT
programs PROGA and PROGB into other segments and linking

them to the segment containing FIO. The entry point 8FIO

must be referenced to extract FIO from the file FTNRTLIBR.

eFTN

NORD FTN

SRT
$COM PROGA,0,REENT-PROGA

7 STATEMENTS COMPILED

SRT
$COM PROGB,0,REENT~-PROGB

7 STATEMENTS COMPILED

SEX
@RT~LOADER

REAL-TIME LOADER 76.02.06

*NEW-SEGMENT, 5.5 »
NEW SEGMENT NO: 33
*SET-LOAD-ADDRESS 33 150000
*REFER~SYMBOL 8FIOQ
*LLOAD FTNRTLIBR,.,
*END-LOAD
*REENTRANT-LOAD
INPUT FILE: REENT-PROGA
LINKING~SEGMENT NO.: 33
STACK LENGTH: 1000
NEW SEGMENT NO: 34
®*END-LOAD
*REENTRANT-LOAD REENT-PROGB 33 1000
NEW SEGMENT NO: 35
*END-LOAD
»

ND-60. 051. 03

3.3

3-3

An example of loading 3 reentrant RT programs PROG1, PROG2
and PROG3 to 3 different segments., All three RT programs

call the vyeentrant subroutine SUBR, and this subroutine is

loaded into a segment which will be common for the three RT

programs,

¢

@FTN

NORD FTN

SRT
$COM PROG1,0L,REENT-PROGI

6 STATEMENTS COMPILED

$RT
$COM PR0OG2,0,REENT~-PROG2

6 STATEMENTS COMPILED

$RT
$COM PROG3,0,REENT-PROG3

6 STATEMENTS COMPILED

$RT
$COM SUBR,0,REENT-SUBR

4 STATEMENTS COMPILED

$EX
@RT-LOADER
"-‘l""_'__’

REAL-TIME LOADER 76.02.06

*NEW~-SEGMENT» 420

NEW SEGMENT NO: 36

#SET-LOAD-ADDRESS 36 1000090

*LLOAD REENT-SUBR,.,

*LLOAD FTNRTLIBR,,

#END-LOAD

*REENTRANT-LOAD REENT-PR0OG1,36,1000

NEW SEGMENT NO: 37

#*END-LOAD

*REENTRANT-LOAD REENT-PR0OG2,36,1000

NEW SEGMENT NO: 40

*END-LOAD

*REENTRANT-LOAD REENT-PR0G3,36,1000

NEW SEGMENT NO: 4l

*END-LOAD
*

ND-60. 051. 03

3-4

3.4 An example of loading the three reentrant RT programs PROG1,
PROG2 and PROG3 into the same segment.

e

eFTN

NORD FTN

SRT
$COM PROG1,0,REENT-PROGI1

6 STATEMENTS COMPILED

SRT
$COM PR0OG2,0,REENT-PR0OG2

6 STATEMENTS COMPILED

SRT
$COM PR0OG3,0,REENT-PROG3

6 STATEMENTS COMPILED

SRT
$COM SUBR,0,REENT-SUBR

4 STATEMENTS COMPILED

SEX
@ RT-LOADER

REAL-TIME LOADER 76.02.06

#*REENTRANT-LOAD REENT-SUBR, ..
NEW SEGMENT NO: 42
*REENTRANT-LOAD REENT-PROG1,.,1000
#*REENTRANT-LOAD REENT-PROG2,,1000
*REENTRANT-LOAD REENT-PR0OG3,,1000
#*END-LOAD "
*

ND-60. 051. 03

3.5

3-5

An example of loadinga common area named COMMLAB to one
segment, and then load the two RT-programs CCMPRC1 and
COMPRO? into other segments and link these segments to the
"COMMON" segment, i.e. the two RT-programs both refer to
the COMMON area COMMLAB,

2FTN

NORD FTN

$COM CCHMPPCLl,0,CCMPPC]

5 STATEMEMTS CO™MPILZD
SCOt! COMPRN?,N, COIIPRO?
S STATEMENTS COMPILED
SEY

9
—

T-L

REAL-TIMZ LOADER 76.01.037

*NEW=-SECMENT, ,,,
HEW SEaMEMT NQes 49
*NE!A"‘ "':Z’!T'E"”"'; s 22

NEW SEZMENT M0: 41

*SET-STSMINT-COMMOY COMMLAR

*LOAD CCMPROL, 49, 41

*L0CAD FTMLIEBR,,,

FNEW-SEGMZENT, 4, .,
NEW SEGMENT IMC: 42
*LOAD COUTRO2, 42,41
*LDAT FTNLIER, .,

*RITE-TABLE, .,

gLIB 217 42 DEFINED SVYMBCL
8ENTR £7 42 DEFIMNED SVMRCL
gLEAV 220 42 DEFINED Svimpl,
RESRV SE 42 DIFINED SVMRCL
8RTED 60 42 DEFINED SYMBEL

CCPRE2 21115 42 41 DEFINED RT-PPOSDPAM
COM¥LAT 107700 4] DEFIMED CCMMCH LAREL 5
cevmm el 21371 40 4] DEFIMNZD RT-PROCRAM

*END-LCAD
#*

ND-60. 051. 03

000 000 0000000
03030 533 601438008
0OHHOBDHY €39 ©IO A/S NORSK DATA-ELEKTRONIKK
§§§°2§§§§ §§§;gg§§3 Lorenveien 57, Oslo 5 - Tlf. 21 73 71

000 000 6000090

COMMENT AND EVALUATION SHEET

ND-60. 051. 03 SINTRAN 11
REAL TIME LOADER

In order for this manual to develop to the point where it best

suits your needs, we must have your comments, corrections,

suggestions for additions, etc. Please write down your comments

on this pre-addressed form and post it. Please be specific

wherever possible.

FROM.

