

SINTRAN i

Users Guide

| A/S NORSK DATA-ELEKTRONIKK

¢

1..1

%

SINTRAN il

users Guide

REVISION RECORD

Notes

Total revision, superceding all

ND-60. 050. 03
January 1975

A58 NORSK DATA-ELEKTRONIKK

Lovanveien 57, Oslo 5 - TIf,: 21 73 71

Chapters

1

st

NS

™o

—
e
t

e
o

e

e

e

N
N

N
N

B

DN

N

DN

B

()
]

—
_

T

=

e

e

=

W

Do

=

L
W

w

N

B

=
0

DN

W

DN
oo

TABLE OF CONTENTS

--00000--

INTRODUCTION TO SINTRAN III

Features

Operating Modes
Real-time Processing
Time-sharing Processing
Batch Processing

Programming Languages

Subsystems and Utility Programs

Processing Efficiency

Virtual Memory and Dynamic Program Relocation
Ring Protection
Interrupt System

High Data Throughput

Hardware

Optional Hardware

Example of Configurations

THE COMPONENTS OF SINTRAN

Use of Hardware Facilities

The Interrupt System
Memory Management

Program Structure

System Tables

Program Tables
Input/Output Tables

Parts of the Monitor

Moniter Entry
Central Monitor
Segment Administration
Error Reporting

Input/Cutput

Background System

ND-60. 050. 03

Chapters

3 THE PROGRAMMER'S INTERACTION WITH THE SYSTEM

3.1 Monitor Calls

3.1.1 Subroutines callable from RT FORTRAN
3.1.2 Monitor Calls from Assembly Programs
3.1.3 Monitor Calls from Background Programs

3.2 Commands

3.2.1 Background Commands
3.2.2 Monitor Commands
3.2.3 Console Commands
3.2.4 Subsystems

3.3 Batch System

3.3.1 Introduction
3.3.2 Example of a Batch Job
3.3.3 Definitions
3.3.4 Description of Type 2 Batch (MODE type)
3.3.5 Description of Type 1 Batch (BATCH type)

3.3.5.1 Explanation of Terms
3.3.5.2 Description of Commands
3.3.5.3 Example of a Batch Run

3.3.5.4 Special Monitor Calls concerning Batch Jobs

3.3.5.5 Error Conditions

4 ACCOUNTING SYSTEM

4.1 Commands

Appendices

A ASSEMBLY CODE IN SINTRAN
A.l Assembly-coded RT Programs
A.2 SINTRAN Standard for Subroutine Calls

A.3 Examples of Monitor Calls from Assembly Programs

B SYSTEM MONITOR CALLS SUMMARY

C BACKGROUND SYSTEM COMMAND SUMMARY

D RUN TIME ERRORS

E THE REAL-TIME LIBRARY

F USER EXTENSIONS TO SINTRAN III
F.1 Monitor Calls
F.2 User Start Sequence
F.3 User Restart Sequence

G MONITOR CALL NUMBERS

ND-60. 050. 03

|
—_

N
N
R
P
R

P

=

s

=

=

W
=

m
U
O
U
fl
D
r
D
>
D
>
3
>

o
H
m
m

1.

1.

1

1. 1

1-1

INTRODUCTION TO SINTRAN 11

SINTRAN III is a multi-programming real-time operating system
that supervises the processing of user programs submitted to a
NORD-10 computer system. SINTRAN III controls the order in
which user programs are executed and allocates the hardware
and software resources they require. SINTRAN III also relieves
the user from program control, input/output and housekeeping
responsibilities by monitoring and controlling the input, loading
compilation, run preparation, execution and output of user pro-
grams.

The system is highly modular and may be used for a wide range
of NORD~-10 configurations. Modularity allows memory resident
systems of only 8K, expanding to mass storage systems including
256K main memory, disecs, drums, ete., and connections to other
NORD computers, thus allowing multi-processing systems.

The philosophy behind SINTRAN III makes it especially suited for:

- Process Control Systems

- Business Oriented On-line Systems

- Scientific Engineering Timesharing Systems

- Data Communication Systems

- Data Acquisition System

and combinations of these processed concurrently. This, not at
least because of the subsystems offered under SINTRAN III, helps
to case the users implementation of applications.

Features

SINTRAN III offers the user many important features, some of
these are found elsewhere only in medium to large scale com-
puter systems.

Operating Modes
SINTRAN III allows users to run real-time, timesharing, and batch
programs concurrently.

Time critical real-time processing has always higher priority than
timesharing and baich processing. The number of programs
that can be processed concurrently depends on such factors as
the hardware configuration, the operating modes and the applica-
tion involved.

ND-60. 050. 03

1.

1.

1.

1.

1.

1.

2

3

4

1-2

Real-time Processing

Real-time processing allows the user to perform time dependent
and time critical work that requires very rapid information pro-
cessing. Real-time processing is used primarily in applications
where data gathered during a physical process must be input
and operated upon so rapidly that the results can be used to
influence the process as it develops. Real-time processing is
also used in many on-line commercial applications where a
guaranteed response time is required.

A real-time program, called RT program, generally responds
to, or controls external events. Under real-time processing
there are four principal ways of scheduling programs, external
requests, program requests, operators requests and time scheduling.

The programs may have a full range of execution times, frequencies
and start conditions. The system ensures that the most important
RT program will always be run first by providing 256 procgram
priority levels with any number of programs on each level.

Time-sharing Processing

In time-sharing the programmer interacts conversationally with
the computer, receiving immediate response to his input. Many
users on remote or local terminals can program on-line and make
use of SINTRAN III subsystems. This type of interaction where
each user receives an equal share of time in a round robin
fashion can be used for program development, information re-
trieval, interactive problem solving, and many more applica-
tions where the user will be best serviced by accessing the
system directly.

Batch Processing

Batch processing lets the user submit program jobs for compu-
tation to the computer. The computations are performed without
interactions from the user. Each job contains all control com-

mands, program statements and data required for its execution.
Jobs are loaded through on-site devices such as card readers
and tape readers.

Batch jobs are divided into two categories, local batch jobs and
remote batch jobs. Local batch jobs are those compiled and

executed on the local NORD-10 computer. Remote batch jobs are
those compiled and executed on a host computer on which the
local NORD-10 is a remote terminal.

SINTRAN III can handle both the local batch stream and the re-

ND-60. 050, 03

1. 2

1-3

mote batch stream concurrently. The local batch stream is

scheduled in a first-in-first-out fashion. The local batch jobs

share compute time with the time-shared programs. The re-

mote batch processing runs as a low-priority RT program.

SINTRAN III outputs the job locally on a device such as a line

printer, disc file, or card punch.

Programming Languages

To let the user implement his applications as easily and

economically as possible SINTRAN III accepts programs written

in the following languages:

STANDARD FORTRAN following ANSI STANDARD

FORTRAN and with ISA Real-time

Extensions. The user can call

subroutines written in NORD PL

and MAC from his FORTRAN pro-
gram. FORTRAN programs can be
executed in all three modes of

operation.

NODAL interpreting higher-level inter-

active language especially suited
for process control applications.

NODAL can be executed in all three
modes of operation and can call
subroutines in NORD PL and MAC.

BASIC interpreter following Dartmouth

College 71 specification. From
his BASIC program the user can
call FORTRAN, NORD PL and MAC
subroutines. Programs written in
BASIC can be executed in time-
sharing and batch modes.

NORD PL medium level language especially

suited for systems programming.
By using the NORD PL the pro-
grammer will more quickly write
and debug programs, more easily
modify them, and make them more

reliable and easier to read and
understand than using the traditional

assembly language. SINTRAN III is
written in NORD PL.

MAC assembly language and debugging
package for the NORD computers.

Each language translator is accessed by a unique SINTRAN III

command.

ND-60. 050. 03

1. 3

1-4

Subsystems and Utility Programs

SINTRAN III is offered with many subsystems and utility pro-
grams which will be extremely efficient tools for the users of

the system.

FILE SYSTEM SINTRAN III offers the user of
mass storage systems a general
purpose file system for use of
permanent files, scratch files,
and peripheral device files. The
system provides a very flexible
file security mechanism that allows
the programmer to specify the degree
of security desired. The files may
be accessed in sequential or random
mode.

SIBAS is a data base system where efforts
are especially put on the users'
possibilities of representing com-
plex data structures and on the
separation of application programs
from the data base. SIBAS is an
extensive tool for applications in
business oriented on-line systems
and ADP systems. SIBAS data
handling routines follow the speci-
fications given in CODASYL DATA
BASE TASK GROUP, APRIL 71
REPORT.

RT LOADER enables the user to load RT pro-
grams into mass storage resident
systems in binary relocatable for-
mat while real-time processing is
running.

QED An interactive program for editing
text. It has extensive facilities
for inserting, deleting, and changing
lines of text, a line editing feature.
Text may be read from and written

into any file. QED is extremely
efficient for on-line program develop-
ment.

RUNOFF The RUNOFF program will help
the user to write reports under
SINTRAN Il by processing the raw
text information held in a computer

ND-60. 050. 03

1.

1.

4

4.1

1-5

file, and provide a printed docu-
ment of a quality acceptable for
publication. The control com-
mands are few and easy to learn.

DDC Package The Direct Digital Control packages
running under SINTRAN III, MEAS,
PROCSY, and PROSO give the user
extensive tools for implementing

= process control applications in his
NORD-10 computer. The packages

control and process analog signals
and perform conventional PID,
cascade, ratio and other regulation
functions.

NORD IDT The NORD Intelligent Data Terminal
programs allow the user to communi-
cate with Honeywell 6000, IBM 360/

370, CYBER 74, and Univac 1108/

1110 machines through remote job
entry terminal simulators.

In addition subsystems also include scientific and statistical pro-
gram libraries.

Processing Efficiency

SINTRAN III offers the user the best efficiency because it takes
full advantage of the NORD-10 computer hardware resources.
Many powerful operating system features are made possible by
utilizing the extremely efficient hardware of the NORD-10. This
in turn makes multi-programming in real-time, time-sharing,
and batch modes possible.

Virtual Memory and Dynamic Program Relocation

The SINTRAN III virtual memory makes it possible to run pro-
grams which are larger than the available main memory, or to
utilize a main memory of 256K words with a program address space
of only 64K words. The virtual memory consists of both main

memory and swapping memory on disc.

Due to the overall ability of the memory management system, user
programs and SINTRAN IIl subsystems are dynamically relocated
to utilize the main memory most efficiently.

ND-60. 050.03

1.

1.

1.

1.

4.2

4.3

4.4

5

1-6

Ring Protection

By use of the four-mode ring protection system SINTRAN III
offers the users an extremely efficient protect system. A pro-
gram that is placed on a specific ring cannot be accessed by
a program that resides on a ring of lower priority. This system
is used to protect system programs from user programs and

the system kernel from its subsystems. Ring 3 and ring 2 are
used for the system kernel and subsystems, and ring 1 and
ring 0 for user programs. The user programs are individually
protected by use of the page protect system.

In addition to these protect features the ring protection system
equips SINTRAN III with & set of privileged instructions legal
only on ring 3 and ring 2 for use by the SINTRAN III's kernel
and its subsystems. These instructions are of the type which
could be disastrous if executed by a user's program. For any
on-line system with a larger number of potentially undebugged
programs this is extremely important.

Interrupt System

The structure of SINTRAN III is greatly simplified by use of the
different program levels in NORD-10. By running independent
tasks at different program levels all priority decisions are
determined by hardware. This is extremely efficient because
almost no overhead takes place due to the rapid context switching.

High Data Throughput

High throughput of data is facilitated by the high-speed direct
memory access channel. The channel is given an ingenuous
solution thereby several high-speed devices can simultaneously
share it, but although be given & total throughput equivalent
to the maximum speed of the channel. There is no channel over-
head time in switching between devices.

Hardware

The minimum hardware configuration required to run SINTRAN III
is:

= NORD-10 standard CPU, including 8K words of main
memory

- Console terminal

- Paper tape reader

ND-60. 050. 03

1. 5. 1

1-7

Optional Hardware

Main memory up to 256K words, both core and solid
state memory in the same system.

High-speed direct memory access channel 1M word/sec
in interleaved processing.

Up to 4 mass storage controllers (independent of types)
used for system and user program storing.

No limitation in number of mass storage controllers and
types for file and data storage.

Moving-head Cartridge discs. Up to 4 Cartridge disc
units per controller and 5 or 10 M bytes per unit. Average
access time 47.5 ms, 156K word/sec transfer rate.

Moving-head disc packs. Up to 8 disc packs per con-
troller and 37 or 74 M bytes capacity per pack. 48 ms average

access time, and 600 K word/sec transfer rate.

Fixed-head drum. One drum unit per controller
with capacity from 64K to 104K words per unit. 10.5 ms
average access time, and 100K words/sec transfer rate.

Magnetic tapes up to 4 units per controller. 7 track,
45 ips, 200, 556, or 800 bpi. 9-track, 75 ips, 800 or
1600 bpi.

Magnetic cassette tapes.

Card readers. 300, 600 or 1000 cards/minute.

NORDCOM graphic and semigraphic colour display
systems.

Line printers. Prints from 200 to 1100 lines per minute.

Terminals. Hard copy: 10 to 120 characters per second.
CRT screen: 10 to 960 characters per second.

Graphic plotters and displays.

Data communication interfaces.

Paper tape readers and punches.

ND-60. 050. 03

1. 6

1-8

Example of Configurations

With the wide choice of optional equipment, many hardware
configurations are possible. For example a small main memory
resident system used for a process control application might
appear as shown in Figure 1.1. In this system the paper tape
reader is used for input and the Teletype for the operators
communication with the system, while the process controller is
connected directly to the process. Implementation may be eased
by use of the DDC package.

Core

Lo words

U

NORD =10 —_— e e e T

P! ocpriobes P

T Puper tape Process Process

‘ reader controller

Figure 1. 1: Small Process Control System

ND-60. 050. 03

1-9

This system may easily be extended to the disc resident system
shown in Figure 1. 2. The user programs developed for the
system of Figure 1.1 can be put directly into the system of
Figure 1.2. The system of Figure 1. 2 opens the possibilities
for on-line program development in FORTRAN, NORD PL etc.
in timesharing mode, while the process control programs are
executed in real-time mode.

Programs can be written and compiled in FORTRAN, NORD PL
etc. and by using the QED, the FILE SYSTEM and the other

utility packages, the implementation will be greatly eased.

The display terminals are used for on-line communication in
timesharing mode, the line printer for output and the disc
storage for programs and data files. By putting on a synchronous
modem control and a card reader, the system will also have the
capabilities of a small batch system.

32K words

core

NORD-10 S X
CpU CPU 1/0O bus >

A] i/

/ i /

R i Process E _
TTY PTP controlle d— Process

N\
Bus

controller Local 170 bus \/

Display Display Line
lerminal terminal printer

Figure 2.1: Combined Process Contrcel and Timesharing System

ND-60. 050. 03

1-10

Configurations like Figure 1. 3 will be well suited for many

on-line information retrieval and transaction oriented systems

by running the data base system SIBAS under SINTRAN III

The 148M bytes disc store will hold the data files while the

data entry terminals will be used for data input/output specified

by the application.

32K words

core

NORD-10

CPU

+

Displiy . Cassette tape
) p'. Printer SSSEP LADE

terminal recorder

v

Bus

controller

l

Data e e 2 Data

entry entry

Figure 1. 3: Transaction Oriented System

ND-60. 050. 03

1-11

A larger processing system is shown in Figure 1. 4, consisting
of two NORD-10 CPU's, standing back-up for each other. The
NORD-10 CPU I is intended to be used in a transaction oriented
system by using bus controller I and accoringly the 148M bytes
disc, magnetic tape station, and the data entry terminals. The
magnetic tape system will be used as a data base back-up
medium. In addition it will have a modem connection to a host
machine acting as a remote terminal.

The NORD-10 CPU II is intended for use in a process control
system by using the bus controller II and IIl. In addition the
NORD-10 CPU II will be used for program development and
scientific on-line problem solving. By use of the dual bus switch
each NORD-10 CPU I has provisions to control all three bus con-
trollers and both the process control and transaction oriented
application.

ND-60. 050. 03

5
8
9
2
0
4

Y

H
o
n
U
I
U
B
I
U
0
)

din
MOTQ

B
Ul

W
A
S
A
Y

H
O
T
O
U
S
U
T
A
]

pur
B
U
l
I
T
Y
S
I
W
I
]
,

[0J}40,)
8
8
3
0
0
0

P
A
U
I
q
U
I
O
)

shq
(/1

[uo0T]

1-12
aepdsic

I
0
%
i
1
d
 (]

 J13]]0a3U0D,
sng

N
I

vIvdd

ALIUD
I

sngq
O

1
U
0

sng

f

11
eandig

Japuia
pav)

W
a
p
o
j
y

advy

L
o
u
y

T | I

h
J
a
j
u
t
a
d

m

|
oun

|

U
l

d

snq

1eng
Uolims

T

s

0,71
0d

D
0
1
-
M
O
N

it
d
o

spaosm
8
%

a
d
0
d

1
5
i
d
)

S
h
g

3
,

1
1
v
a
a
T
]

?
E
E
.
H
S

supdsig

h

J
a
p
a
c
o
o
.

ade;
9
1
)
9
8
5
1
)

0
1
-
(
T
H
O
N

2d0D

spaosm
J8F

S
t
y

I

ND-60. 050. 03

2.

2.

2.

1

1.

1.

1

2

2-1

THE COMPONENTS OF SINTRAN

Use of Hardware Facilities

The Interrupt System

The NORD-10 has 16 program levels. Each of these has a com-
plete register set, so that change of levels needs only 0. 9 us.

SINTRAN uses the levels like this:

15 -
14 - Internal interrupt
13 - Real-time clock interrupt
12 - Input interrupt
11 - Mass storage interrupt
10 - Output interrupt

9 -

8 T

7 =

6 -

5 - Monitor
4 -

3 = RT programs
2 -

1 =

0

Level 14 is activated by monitor calls or by errors detected
by hardware.

External interrupts on levels 10-13 start the proper driver
routines,

Memory Management

The memory management system includes a paging system, a
memory protection system, and a ring protection system.

In SINTRAN III the memory management system is used for the
following purposes:

1) Dynamic memory allocation and paging. The page size
is 1K.

2) Extension of maximum physical address space from 64K
words to 256K words.

3) Memory protection between parts of a program, detecting
attempts to modify read-only areas or executing data.

ND-60. 050, 03

2. 2

2-2

4) Inter-program protection, to prevent one program
directly accessing another program on the SINTRAN III
system. This is accomplished by means of the ring
protection system.

The ring protection system has four levels. On one level it is
not possible to access areas on higher levels.

On levels 2 and 3 privileged instructions can be executed, and
these levels are used for the SINTRAN III system. User programs
are on level 0 and 1.

Program Structure

The basic program concept is the segment. It is a contiguous
area in the logical address space. In physical core it will be
scattered because of the hardware paging system.

There are two types of segments:

= Non-demand segment, all of it must be in core before
the program can be started.

- Demand segment, only part of it is needed at a time.
If a page fault interrupt occurs, the monitor will fetch
the missing page, and the program will continue.

Non-demand segments are normally used for real-time programs,
because of short and well-defined transfer times and fast monitor
call handling.

Demand segments are used when a program is too big to be in
core at a time. The normal use is background processing.

The segment type is determined at load time.

An RT program can have one or two segments. The RT
programs can share segments. This may be used in several
ways:

- A segment may consist of a set of re-entrant sub-
routines.

= A segment may consist of common data areas.

2 A program may have its code on one segment and
its data on the other.

ND-60. 050. 03

2-3

One or both segments can be changed, using the monitor call
MCALL, see Section 3.1.2. This can be used for program
segmenting.

In addition to the segments the RT programs can also have
access to a core resident common data area. This area is placed
on protection ring 1, so that programs on ring 0 cannot access
this area.

A segment can be fixed in core by means of a monitor call, so
that it will not be swapped out until it is released again.

Logical address space:

Monitor | Core |

commey | 77707 1. l

W] |«]VM/ / fi%f | Segment A Wfié&fi 641K

0., B =) i . , Segment B
Ring 2-3 S | Ring 1 Ring 0-1i

B

Physical core: Segment A
| Segment B

Monitor 1 Core Other segments

tables | common 0000 %,
v 7 77

0

S

it
 s
l

I | Dynamic area

Mass storage:

Segment A

Other segments TFiles
| _ Y |
{ 7% |

Segment B

ND-60. 050, 03

2.

2.

3

3. 1

2-4

System Tables

The system tables are placed in permanent core, not accessible
from the user programs.

Program Tables

RT descriptions Core Hardware

Mo Page

Table

Segment

table
The RT description table has one element for each RT program

existing in the system. An element consists of the following:

Loec. 1 : Link. This location is used for linking RT
descriptions together to form the time queues.

Loc. 2 : The right half-word contains the priority of
the RT program and the left half-word some
status information flags.

Loc. 3 and 4 : This is a double precision number indicating
the time when the RT program is to be (or was)
scheduled.

Loc. 5 and 6 : This is the time interval if the RT program is to
be executed periodically.

Loc. 7 : This contains the core address of the first

program instruction.

Loc. 8 : Initial segment numbers. Two numbers, 0-254.
If one of them is equal to zero, the program
uses only one segment. If both are zero, it is
a core resident system program.

ND-60. 050. 03

Loc. 9 - 16

Loc. 17

Loc. 18

Loc. 19

Loc. 20

2-5

Register save area.

Wait link - used for linking the programs
waiting for resource.

Current segment numbers.

Current priority.

Reservation link - used for linking those
resources reserved for this program.

The segment table has one element for each segment in the system.
An element consists of five locations.

Loc. 1

Loc. 2

Loc. 3

Loc. 4

Loe. 5

Segment link. All segments being in core at
the moment and being allowed to be swapped
out are linked together. It is used for the
page-removal strategy.

Page-link-pointing to the segment's first page
in the core map table. If this location con-
tains zero, the segment has no pages in core.

Logical address space for the segment. Bits
0-5 contain the first logical page number and
bits 6-11 contain the number of pages.

Mass storage address of the segment.

I'lag bits: Bit 0 segment all in core
Bit 1 = demand segment
Bit 2 = fixed in core
Bit 3 = use inhibited
Bits 9-15 = protect and ring bits

to be used by the
hardware page table.

The core map table has one element for each physical page, con-
taining information on what is in core at the moment. An element
consists of three locations.

Loc. 1

Loc. 2

Loec. 3

Page-link, linking together the pages be-
longing to a segment.

Logical page number (index into the hard-
ware page table).

Contents to be put into the hardware page
table.

ND-60.050. 03

2. 3. 2

2-6

The hardware page table consists of 64 high-speed registers,

mapping the 64K logical address space. Each entry has the

format:

15 14 13 12 11 10 9 7 0

PM | RPM FPM WIP PGU[RING ||Physical page no. | | 4| o

Bits 9-10 : Ring number
Bit 11 : Page used
Bit 10 : Written in page
Bits 13-15 : Memory protect bits

Interrupt Data fields Logical Tirmer Background

table
I’lumber tdbl es tahld a proppgq tubl e

] _w e |

-
//./

B L
™~ #

_T \\‘- .—"'. zj

_J | ~ ///

/ S
—

The interrupt table contains pointers to the data fields of the

physical devices.

The logical number table contains pointers to the data fields of the
logical units (internal or external units).

The data field table contains a data field for each logical unit.
For some units a data buffer is associated.

The timer table contains pointers to the data fields of the devices

needing a time-out check.

The background process table contains pointers to the data fields

of the background terminals.

ND-60. 050.03

2.

28

4

4. 1

2-7

Parts of the Monitor

The following is a description of the parts of the monitor as shown

in Figure 1.5 and 1. 6.

Monitor Entry

The monitor works on a separate hardware level. This level

may be activated from several other hardware levels. The task

of Monitor Entry is to find out why the monitor level was activated

and to transfer the program control to the appropriate monitor

function.

The monitor may have several calls at the same time. A program

calling the monitor may be interrupted by a program on a higher

level also calling the monitor, and new calls may occur while

the monitor is working.

A monitor call is performed by linking a representation of the call

to the other calls which may be waiting. The monitor processes

the elements of the chain, deleting each element and executing

the corresponding function. When the chain is empty, the monitor

level is "given up".

Some of the monitor functions imply the possibility of a different

RT program to be activated on return from the monitor. These

monitor functions set a flag to indicate that it should be further

investigated before leaving the monitor level.

The monitor level may be activated for a number of reasons.

From high levels:

- A process interrupt has occurred, and an RT program

should be scheduled for execution,

An I/0 transfer is finished, and the waiting RT program

should be restarted.

A clock interrupt occurs.

From the RT program level:

B The current RT program is {inished.

- The current RT program erters waiting mode.

- The user-call RT (<prog.names) has occured.

The other user-calls (SET, ABSET,....) do not execute on the

monitor level. However, the monitor level is disabled while the

corresponding subroutines are being executed, in order to prevent

interrupts in critical sections.

ND-60. 050. 03

2-8
¢

T
2
a
n
d
r
g

e

__
-

=

SWVIO0ud
|

SIVHDONd
uasn

|
WALSAS

ral
m

i
L

7
|

|
W V
D
O

YIAYVO'T
TINOD

|
RNV

UATANASSY |
|HOLVHAJO

X
|

<
7

.J _
,

HOLINOIW
n

fi
.

|
SHAA me

HNITOOAA
Ld YU

ALNT

_ # _

F

L

S
L
A
N
Y
Y
A
L
N
I

T
Y
N
U
I
A
L
X
A

12491

B
o
a
d
-
1
4
u

19491

I03TUOIY

s[eA9]

JoyS1H

ND-60, 050. 03

MONITOR

Return from Interrupt

RT-program activated

MONITOR ENTRY

Y _ \

CENTRAL PROG ADNM

(Program (Get prog.

scheduling) to core)

I Start or restart

RT-program

Figure 1.6

ND-60. 050. 03

2.

2.

4.

4.

2

o

2-10

Central Monitor

The task of the central part of the monitor is to determine when
a new RT program is to be started, giving consideration to
priority, time and interrupts.

The central monitor operates on two queues: A time queue and

an execution queue. The queues consist of RT descriptions

which are linked together.

The time queue consists of RT programs which are to be executed
at a future time. The execution queue consists of programs

which should be executed as soon as possible, considering their
priority. The time queue is ordered with respect to time, and
the execution queue with respect to priority.

If an RT program enters the waiting mode, the monitor will take
a look further down the execution queue to see if any interrupted
programs are ready for execution in the meantime. If not, the
monitor will at least find the dummy RT program at the bottom or
the execution queue. This program is part of the system: It has
lower priority than all other programs, it will always be ready
for execution, it will never be finished, and it will do nothing.
It has priority 0. This means that a user program with priority 0
will never be started.

Segment Administration

The lower part of the hardware page table (monitor and core

common area) is never changed. The dynamic upper part will

contain entries for the segments of the currently running RT
program. The unused table entries will contain zero, so that
trying to use their corresponding logical address space will
result in error.

When control is handed from one RT program to another, first
the page table entries of the old program is cleared, leaving
all dynamic part of the page table equal to zero. Then the entries
for the new program will be initialized with values from the core
map table.

If a program is going to be started and its segments are not present
in physical core, some pages in core must first be removed to
give room for the new segments. During the necessary mass
storage transfers the program will be in a waiting mode.

ND-60. 050. 03

2.

2.

4.

5

4

2-11

Error Reporting

When an error is found by the system, it will be recorded at once,

starting a special system RT program which will write an error

message on terminal 1. Detailed description will be found in

Appendix D, Run Time Errors.

Input/Output

For detailed description of the 1/0 calls, see Chapter 3 and the

manual NORD File System.

The 1/0 system gives several facilities:

1. Servicing external units.

2. File access.

3. Internal message transfer between RT programs.

4, General semaphores for sequencing of critical sections.

Each unit is associated with a logical unit number. Some units

(terminal, files) will have an input and an output part with the

same unit number.

The logical unit numbers are grouped like this:

Octal Numbers:

0-77 Physical devices

100-177 Open files
200-277 Internal devices

300-377 Semaphores
400-477 Process devices
500-377 System devices

The units can be reserved by RT programs, using a monitor

call. They can be released either by another monitor call or

automatically when the program terminates. If a unit is already

reserved, the program will normally be queued for this unit,

being set in a waiting state.

The simplest units consist solely of a logical number which can

be reserved. Their task is to serve as general semaphores.

The external units can be reached by standard INBT and OUTBT

monitor calls. There will normally be a ring buffer associated

with each unit.

ND-60. 050. 03

2-12

An internal message transfer unit consists of an input and an
output part sharing one ring buffer. One RT pogram can put
bytes into the buffer using OUTBT, and a different RT program
can fetch them using INBT. Since the access to external and
internal units is done in the same way, the communication
between two programs in the same computer or in different com-
puters will look the same, except for the unit number.

The files can be accessed sequentially using INBT and OUTBT.
In addition, the file blocks can be accessed randomly using the
RFILE and WFILE monitor calls. Data transfer and processing
can proceed in parallel.

There are two ways of allocating files:

1. Static - the file will consist of a contiguous area
on the mass storage.

2. Dynamic - the file will be scattered in the file area
of the mass storage.

The access routines will be the same for both types of files.
See also the manual NORD File System.

f a program is waiting for input from a unit, it will not be
efficient to restart it each time a byte is ready. Therefore the
program will remain waiting until a break condition occurs.
This break strategy can be set by monitor calls for each unit.
Some drivers have special built-in break strategies.

The external devices are treated by the following parts:

nitiating Part
This part is called from the RT program by monitor calls, causing
characters to be filled into the buffer if output, and getting charac-
ters if input. The task includes also converting from logical unit
numbers to physical device numbers.

Driver Routines

The SINTRAN driver routines run on the hardware level of the
device interrupt, transferring one character for each activation
between device and buffer. There are separate drivers for
Teletype input. tape reader input, Teletype/tape punch output,
card readers, communication lines, and data links to other com-
puters.

ND-60. 050. 03

2. 6

2-13

Timer Program

if a requested character has not been transferred in a specified

time. INBT or OUTBT will have an error return.

The allowed time is specified separately for each device. If the

time is specified equal to zero. no time check will be performed.

Background System

Each terminal is connected to a background RT program, so that

several users can work independently of each other. A super-

vising RT program time-slices the background programs by

periodically changing their priorities.

The background system can be used for

- executing background programs,

- RT program supervising,

- system maintenance.

See Section 3. 2 for the use of the commands.

A background program consists of two segments:

a) System segment on protect ring 2, containing routines

for monitor calls and some commands, and open file

tables and buffers.

b) User segment on ring 0. This is the background

user's working area. where he can Joad and execute

system programs like the QED editor or the FORTRAN

compiler, or his own programs.

In addition there is a segment shared by all background programs.

It contains the command decoder and most of the command de-

coding routines.

Background logical area

-*®t——— e e e e e et e[

 ——)

1 System segment] { User segment I terminal 1

‘ System segment

—
'7 User segment
e]

terminal 2

Commana segment \

ND-60.050. 03

3. 1

. 1. 1

3-1

THE PROGRAMMER'S INTERACTION WITH THE SYSTEM

Monitor Calls

The monitor call instruction (MON) is used to perform monitor
functions. From FORTRAN a set of small subroutines are used,
most of them consisting of the MON instruction and an EXIT
only (see Appendix E).

If an RT program name equals zero, the calling RT program will

be used.

Subroutines callable from FORTRAN

The following subroutines are callable from FORTRAN.

CALL RT (<prog.name>)

The RT program specified by the parameter will enter
the execution queue immediately (independent of any

clock interrupt).

Example:

CALL RT (PR1)

CALL SET (<prog.name>, <time>, <time unit>)

The RT program given by «prog.name> will enter the
time queue. The parameter <time unit> may have the
values 1, 2, 3, 4:

1: basie time units

2: seconds

3: minutes

4; hours

Other values will give an error message and the calling
program is aborted. The parameter «<timex gives the
number of time units the program has to stay in the time
queue. If the number is =« 0, the RT program will be
transferred from the time queue to the execution queue
the first time the basic time unit counter in the monitor
is incremented.

If the RT program already is put in the time queue, it will
be removed from the queue before being inserted the next

time.

Example:

CALL SET (RT1, 10, 2)

ND-60. 050. 03

3-2

The RT program RT1 will be scheduled for execution
in 10 seconds, reckoned from the moment SET is executed.

CALL ABSET (<prog. name>,<second>,<minute>, <hour>)

The RT program given by «prog.namex will enter the
time queue. The three last parameters give the time
of day for execution. If the time is exceeded at the moment
ABSET is called, the program will be scheduled next day
at the time specified.

If the RT program already is put in the time queue, it
will be removed from this queue before being inserted
in the next time.

If a time parameter has an illegal value, an error message
is given, and the calling program is aborted.

If the clock is adjusted by means of a call of CLADJ while
the program is in the time queune, the execution time is
modified to fit the new clock setting.

Example:

CALL ABSET (PROG, 0, 30, 17)

The RT program PROG will be scheduled for execution
at 17. 30.

CALL INTV (<prog.name>, <time>, <time unit=)

The RT program given by <prog. name > will be prepared
for periodic execution. The two last parameters give
the time between each execution. However, the first
execution must be initiated by other means, for instance
by a call of SET.

The periodic execution property set by INTV will be
reset by a call of DSCNT (see CALL DSCNT below), thus
stopping a series of periodic executions.

The interval can be modified by another call of INTV
without an intervening DSCNT.

If the starts are delayed because of other RT programs,
the delays will not be accumulated. Thus synchronism
is preserved. However, if the start is delayed until the
time for the next start, an execution is dropped.

ND-60. 050. 03

3-3

The parameter <time unit> may have the values

1, 2, 3, 4:

1: basic time units

21 seconds

3: minutes

4: hours

Other values give an error message, the calling pro-

gram being aborted.

Example:
C THE PROGRAM PP IS TO RUN EACH 20 MINUTE

CALL INTV (PP, 20, 3)

C FIRST EXECUTION STARTS 6 MINUTES FROM
C NOW ON:

CALL SET (PP, 6, 3)

CALL DSET («<prog.name>, <time>)

The RT program given by «prog. name > will enter the
time queue. The parameter <time> is a double precision
number of basic time units giving the time the program
has to stay in the time queue, reckoned from the moment
DSET is called.

Example:

CALL DSET (RTP, TM1)

CALL DABST (<prog.name>, <time>)

The RT program given by «prog. name > will enter the
time queue. The parameter <time> is a double precision
number of basic time units giving the absolute point of
time when the program is to leave the time queue, entering

the execution queue.

Example:

CALL DABST (RTIMP, TM2)

CALL DINTV (<prog. name>, <time:>)

The RT program given by «prog. name=> will be prepared
for periodic execution. The parameter <time> is a double
precision number of basic time units giving the time between
each execution. See the description of the subroutine INTV.

ND-60. 050. 03

3-4

Example:

CALL DINTV («prog.name=, «time=)

Return from an RT program.

END -~ statement in a main program unit.

STOP - statement.

Control will be given to the monitor, which will release
the reserved resources of the program. If a STOP
statement is used with a number different from zero, the
STOP number will be printed on Terminal 1.

Return from assembly-coded RT programs may be done

by the monitor call RTEXT (MON 0). The registers may then
have arbitrary contents.

Example:

PROGRAM TCOM, 30
CALL SUBR (3)
END

CALL RTWT

The program will be set in a waiting mode. Its re-
sources will not be released. Next time the program
is started, for instance by a call of RT from some other
program, it will continue after the call of RTWT.

CALL HOLD (<«time >, <time unit>)

The calling program will be in a waiting state for the
time given as parameters.

<time unit> : 1: basic units

2: seconds

3: minutes

4: hours

CALL ABORT (<«prog.name=>)

The specified program will be aborted if it is running.
All reserved resources will be released.

Example:

CALL ABORT (PRX)

ND-60. 050. 03

3-5

CALL CONCT (<prog.name>,<logical unit:>)

The RT program given by the first parameter will be
connected to an interrupt line, i.e., the program will
be inserted into the execution queue each time an inter-

rupt signal occurs on that line.

The logical unit numbers are determined at system
generation time, belonging to the I/O system. Several
units can be connected to one program. Illegal numbers
cause the calling program to be aborted, and an error

message will be given.

Example:

CALL CONCT (CPIN, 15)

CALL DSCNT (<prog.name:>)

Any connection established by CONCT will be removed.
If the program has been made periodical by INTV,
this will be reset. If the program is in time queue or exe-
cution queue, it will be removed from the queue.

Example:

CALL DSCNT (PRGA)

CALL PRIOR («<prog.name>,<priority>)

The RT program given by <prog.name> will have its
priority permanently changed. The parameter «priority>
keeps the new priority value.

Example:

CALL PRIOR (RTPR, 30)

CALL UPDAT (<minute>, <hours,<day>,<month>, <year>)

The clock and calendar units will get new values. The
internal time representation and time queue will not be
affected.

If a unit is specified outside its range (e.g., minute >60)
an error message is given, and the calling program is
aborted. For <year> a value <1974 is illegal.

Example:

CALL UPDAT (24, 11, 24, 2, 1974)

This will set current time to February, 24, 1974, at
11. 24 o'clock.

ND-60. 050. 03

3-6

CALL CLADJ («time>, <time unit>)

(clock adjust)

The parameter ~time unit> may have the values 1, 2, 3, 4:

1: basic time units

2: seconds

3: minutes

4: hours

Other values will give an error message, and the calling

program will be aborted. The parameter <time > gives

the number of time units the clock/calendar has to be

modified. If the time is positive, the clock/calendar will

be advanced, otherwise the clock/calendar will stand

still for the proper time amount.

If there are any programs in the time queue inserted by

ABSET, these will have their start time and queue

position adjusted to fit the new clock setting. This con-

cerns also periodic execution, if the first start was speci-

fied by means of abset.

Example:

CALL CLADJ (15, 2)

The clock/calendar will be advanced by 15 seconds.

CALL CLOCK (<array=)

The clock/calendar setting at the moment will be recorded

in the integer array given as parameter. The seven first

elements will contain on return: basic unit, second,

minute, hour, day, month and year.

Example:

CALL CLOCK (IARR)

WRITE (1, 10) TARR

<time== TIME (0)

This double integer function gives the internal time in

basic time units.

Example:

DT = TIME (0)

ND-60.050. 03

3-7

CALL FIX (<segment number)

This monitor call is used to make a segment temporarily
core resident. The segment, which must be of non-
demand type, will be brought into core. Then it will
be flagged in the segment table, so that it will not be
swapped out.

If «segment number > refers to a non-existent or demand
segment, an error message will be given, and the calling
program will be aborted. Only a limited amount of
physical core can be used for fixed segments at a time.
This amount will be specified at system generation time.

CALL UNFIX («segment number>)

If the segment has been fixed in core by means of the
FIX call, this property will be undone, so that the
segment can be swapped back to mass storage.

«value>= IOSET («logical unit>,<read/write>,<program=, <control>)

Control information will be set for a logical unit. If<read/

write>equals zero, the input part is reserved for a two-way
unit, else if it equals one, it means the write part. If
<control= equals -1, the unit will be reset. Otherwise
«control> has a special meaning for each device type.
<programs= specifies a program which the unit is supposed
to be reserved by. If not, IOSET will return a negative
function value. This will also occur if an illegal logical
unit is specified. If everything is OK, a value greater
than or equal to zero will be returned.

Example:

I =I0SET (2. 0, PROG, -1)

This means: Clear and reset the tape reader which is
reserved for program PROG.

<value>= RESRV («logical unit>,<read/write>, <return flag:>)

This routine is used to reserve a logical unit. If <read/
write > equals zero, the input part is reserved for a two-
way unit, else if it equals one, it means the write part.
If the unit is already reserved, the program will be set
in a waiting state if <return flag> equals zero. If the unit
is reserved and the <return flag> is set non-zero, there
will be an error return with negative function value. If
the unit is free, there will be immediate return with zero
function value.

ND-60. 050. 03

3-8

CALL RELES (<«logical unit>, <read/write>)

The reserved unit will be released if it is reserved from
the calling program. If <read/write> equals zero, the
input part is reserved for a two-way unit, else if it equals
one, it means the write part.

If RELES is not called, the unit will be released when the

RT program is terminated.

<value>= PRSRV («logical unit>, <read/write>,<prog. name=)

The logical unit will be reserved for the RT program
specified by the parameter «prog. name>. For a two-way
unit <read/write> equal to zero means that the input part
is already reserved, otherwise that the output part is re-
served. If the unit is already reserved, a negative function
value is returned. If not, zero is returned, and the reser-
vation will be performed.

CALL PRLS (<logical unit>,<read/write>)

The unit will be released from the program having re-
served it.

=value>= WHERE (<«logical unit=, <read/write>)

If the logical unit is reserved for some program, the
address of the RT description will be returned as the function
value. If the unit is free, zero will be returned.

CALL RFILE («file number >, <return flag >, <core address=>,
<block number:, «no. of words=>)

This is a subroutine to read a random record from a file.
«<file number > identifies the file. If <return flags>is
zero, the program will be set in a waiting state until the
transfer is finished. If <return flag> is set non-zero,
there will be return from RFILE as soon as the transfer
is started, so that the program and the transfer can
proceed in parallel.

The parameter «core address= determines where the
record should be placed. In FORTRAN this can be an
array name. <block number> gives the file block number
where the record starts, while «number of words= de-
fines the record size. There is no inherent restriction on
the record size. The first block number is 0.

ND-60. 050. 03

3-9

CALL WFILE («<file number>,<return flag:, <core address>
<block numbers,<no. of words>)

This is a subroutine to write a random record onto a
file. The parameters have the same meaning as for

RFILE.

Note that when RFILE or WFILE is called directly with

the MON instruction, also the T register should con-
tain the file number.

RFILE and WFILE can also be called as functions to ob-

tain error information. If the transfer went wrong, a
non-zero funetion value will be returned. Note that

RFILE and WFILE then must be declared as INTEGER

FUNCTION.

CALL WAITF («file number>, <return flag>)

This call is used to check whether a transfer is finished
or not. If the transfer is finished, there will be immidiate
return. If the <return flag> is equal to zero and the
transfer is not finished, the calling RT program will be
set in a waiting state until the transfer is finished. If the
<return flag> is set (non-zero) and the transfer is not
finished, there will be an immediate error return
(non-zero integer function value).

<error code>= MAGTP (<function=,<core address>, <unit >,

<maxwords >, <words read>)

This is a monitor call for magnetic tape transfers.
<functionsis the function code:

0 - Read one record

1 - Write one record

108 - Advance to end-of-file

118 ~ Reverse to end-of-file

128 - Write end-of-file

138 - Rewind

148 - Write skip

158 - Backspace one record

168 - Advance one record

178 - Unload rewind

208 - Read status

ND-60. 050. 03

<error

3-10

< core address> 1is the logical address where a
record should be read or written.

<unit> is the unit number.

<«maxwords> is the number of words (16 bits) to

be read or written. It cannot be greater than 1024
(2048 bytes).

~words read=> is the actual size of the record which

is read.

Example:

: DIMENSION IARR (1024)
I = MAGTP (0, IARR, 0, 1024, N)
I = MAGTP (1, IARR, 1,N, 0)

copying a record from unit 0 to unit 1.

code> = ACM (<logical unit >, <function>, <coreaddr >,
<DMA-addr> , <wordcount>)

This is monitor call to transfer a block of words to/

from an external memory.

<logical unit> identifying the external memory. This
unit must be reserved on beforehand.

~function> is the function code:

0 Read

1 - Write

2 - Lock/write/unlock

3 Clear

Example:

INTEGER FUNCTION ACM
DIMENSION IARR (100)

CALL RESRV (26B, 0, 0)
IX = ACM (26B, 1, TIARR, IDMA, 100)

ND-60. 050. 03

3-11

~char. value> = INCH (<«logical unit>)

(Input character)

This integer function returns an 8-bit character (16 bits

if data link) with no modifications, except for card

reader, where the card code may be converted to ASCIIL.

If the input buffer is empty, and the device has no charac-

ter ready, the program will be in a waiting state until the

character has been read from the device. INCH internally

uses the monitor call INBT (see Section 3.1.2).

Example:

ICH = INCH (1)

ICH will get one character from the device with logical

unit 1. Negative result means error.

CALL OUTCH (<logical unit>, «<char.value>)

The eight least significant bits will be considered to be

a character which will be inserted into the output buffer

of the unit (16 bits if data link). If the buffer is full,

the calling RT program will be set in a waiting state

until there is room for the character. Negative A register

on return means error. OUTCH internally uses the

monitor call QUTBT (see Section 3.1.2).

Example:

CALL OUTCH (3, 12B)

The character "line feed" (octal 12) will be output on

logical unit 3 (usually a paper tape punch).

ND-60. 050, 03

. 1. 2

3-12

Monitor Calls from Assembly Programs

INBT

OUTBT

CIBUF

COBUF

This monitor call reads an eight-bit byte from a unit.
The T register contains the unit number. The byte
is returned in the A register, with a skip return.
In case of error there will be a non-skip return with
an error number in the A register:

if bad file number

if end of file detected

if card reader error. The card is read.

if illegal device (device not reserved)
if card reader error. The card is not read

(card crash or feed error).

= 128 if end of device (timeout) e

I

O

o
o

This monitor call writes an eight bit byte to a unit.
The T register contains the unit number, and the
A register contains the byte. Normally there will be
a skip-return. In case of error there will be a non-
skip return with an error number in the A register:

A =2 if bad file number
A =3 if end of file detected
A =5 if illegal device (device not reserved)

This is a monitor call to clear the buffer for an

input device.

T = logical number.
Return : A = error number
Skipreturn : OK

This is a monitor call to clear the buffer for an

output device.

T = logical number,.
Return : A = error number

Skipreturn : OK

ND-60.050.03

ISIZE

OSIZE

ABSTR

3-13

The number of characters in the buffer of an input

device is read.

T = logical number.
Return : A error number

Skipreturn : A number of characters

The free room for characters in the buffer of an

output device.

T = logical number.
Return A error number

Skipreturn : A free room

This is a monitor call for data channel transfers

between physical core and a mass storage. The

monitor call, parameters and core space for transfer

must be in permanent core or on a fixed segment.

The T register contains a logical number for the mass

storage device. The rest of the parameters are

according to the SINTRAN standard call (Appendix A.2).

The parameters have different meaning for the different

device types.

Discs and drums.

Parameters:

PARI1: Function code

C - Read

1 - Write

2 - Read test

3 - Compare
208 - Read status

PARZ2: Core address (double precision)

PARS: Block address

PAR4: Number of blocks to transport

ND-60. 050. 03

MCALL

MEXIT

3-14

This monitor call is used when a subroutine on a

different segment is wanted.

The T register contains a pointer to a data element

of two locations, holding the address of the sub-

routine. The first location holds the address, and

the second holds the new segment numbers, one in

each half-word. If a segment number is zero, only

the other segment is wanted. If a segment number

is 255, the corresponding segment will be the same

as in the calling program.

A call of MCALL will cause the new segments to be

fetched, and the subroutine will be started. The L

register will then hold the return address, and the

T register contains the segment numbers of the calling

program. Return from the subroutine will be per-

formed by the monitor call MEXIT (see below).

This monitor call will cause a return from the

subroutine.

The T and L registers must have the same values as

they had after the corresponding MCALL. Then the

old segments will be used, and the calling program

will be resumed.

ND-60.050.03

3. 1. 3 Monitor Calls from Background Programs

The following calls can be used from background programs

only.

ECHOM

Define echo mode

A = 0 means always echo

A =1 means echo everything but control characters
A = 2 means special MAC echo strategy
A < (0 means no echo

BRKM

Define break mode

A =0 means
A =

A = 2 means

always break

1 means break only on control characters
special MAC break strategy

For background programs, the monitor calls INBT
and OUTBT can be used also for file access. This
is not possible from RT programs.

The following monitor calls can be used for back-
ground programs as well as for RT programs:

CIBUF
COBUF

ISIZE
OSIZE
CLOCK
TIME
RFILE
WFILE

See also Chapter 6 in the manual NORD File System.

ND-60.050.03

3. 2

3-16

Command s

A terminal is activated by pressing the "escape" key. The

command processor will ask for password, after which the

system prints an @ , expecting a command to be typed.

When the user has finished his work, the command LOGOUT

should be used to release the terminal.

When typing in commands to the command processor, it is

only necessary to type sufficient characters to distinguish the

intended command from all other permissible commands. A

special character, "-", exists in order to separate a command

name into two or more distinct parts. Any and all parts of

a command name may be abbreviated. Consider as an example

the commands LOAD-BINARY and LIST-FILE. The first com-

mand may be typed as LOAD, LOAD-B, L-BINARY, L-B or LO

or in quite a few other ways. The second command may be

typed as LIST, LIST-F, L-FILE, L-F, LI-F or LL However,

if only L is typed the command processor will indicate that

the command is ambiguous.

The abbreviation look-up function just described is a standard

function which is almost always available to the user when

typing in names. Examples of things which may be abbreviated

are: command names, file names and user names.

The collection of parameters for the commands is done in a

standardized way as follows. The parameters to a command

may be separated by either a comma or any number of spaces.

If the user does not know what parameters a command expects

or in which order he should type them in, he may simply omit

any or all parameters. In this case the command processor will

ask for the required parameters.

The commands consist of three groups:

1) Background commands - calling compilers, assembler,

and editor. These commands can be used by all

timesharing users.

2) Real-time commands - starting and stopping RT

programs, loading new RT programs using the RT

loader. These commands can be called by the users

"RT" and "SYSTEM".

3 System commands - changing locations within the

SINTRAN system, and certain file system commands.

They can be called by the user "SYSTEM".

See also Chapter 6 in the manual NORD File System.

ND-60. 050. 03

3.2.1

3-17

Background Commands

LOAD-BINARY file

The LOAD-BINARY command simulates the action of
pressing MASTER CLEAR and LOAD on the NORD-10.
Input is taken from the specified file.

PLACE-BINARY file

Same as LOAD-BINARY except that the loaded program
is not started up.

GOTO-USER address

The GOTO-USER command transfers control to the user
program at the specified address.

"Escape"

If the "excape" key is pressed while a user program is
running, control will return to the utility command pro-
cessor with a message indicating where the program was
interrupted being typed out. All registers are saved.
Therefore, the user program may be restarted by supplying
the GOTO-USER command with the address at which the
program was interrupted. All open files are closed when
control returns to the utility command processor.

DUMP file, start address, restart address

The DUMP command saves the contents of the user's virtual
memory plus the central registers on the specified file.
The start address parameter indicates where the program
should be started when it is later retrieved with the RE-
COVER command. The restart address parameter indi-
cates where the program should be started when restarted
with the CONTINUE command.

RECOVER file

The RECOVER command retrieves a program from the
specified file and starts it up at its main start address.
There is an alternate form of the RECOVER command which
is provided for the convenience of the user, whereby one
may leave out the name RECOVER completely. In other
words, instead of typing RECOVER MAC one may simply
type MAC.

ND-60, 050. 03

3-18

CONTINUE

The CONTINUE command is used to restart a program

which has previously been started with the RECOVER

command. The program is started up at the address

specified by the third parameter of the DUMP sommand.

STATUS

The STATUS command lists on the Teletype the contents

of the user program's central registers.

LOOK-AT

This is a command to examine and modify locations and

registers. As a parameter it can have one of the three

symbols:

CORE Locations in the User's address

space are affected. The SYSTEM

user can also reach locations in

fixed core.

SEGMENT A second parameter, the segment

number, is required. Then loca-

tions on this segment can be reached.

This is allowed for the REAL-TIME
and SYSTEM users.

IMAGE Locations on the core image on the

mass storage can be reached.
This is allowed for the SYSTEM

user only.

To examine a location, the octal address should be typed,

followed by a slash (/). Then the octal contents will be

printed. The contents can now be changed by typing

an octal number. If a carriage return is given, the

contents of the next location will be printed.

If an asterisk (*) is typed, the current address will be

printed.

The contents of the background program registers can

be accessed in the same way, using a single letter to

address the register. The letters are:

P, X, T, A, D, L, S, B.

If a character not mentioned above is typed, control will

be given back to normal control mode.

ND-60. 050. 03

3.2.2

3-19

DATCL

The current time will be printed, from second up to

year.

MEMORY <lower bound> < upper bound >

The MEMORY command defines the area to be dumped

onto a file by the command DUMP. If the MEMORY

command is not used, the bounds set by the last LOAD-

BINARY, PLACE-BINARY, or RECOVER will be used.

" The MEMORY command does not affect the logical space

available for the user.

TIME-USED

The CPU time used will be printed.

Monitor Commands

Most of the monitor calls may be executed as operator commands.

The parameters should be specified as (signed) decimal integers,

except for RT programs, which are symbolic names or octal numbers.

RT <« prog.name >

Example:

RT STAX

SET «prog.name> <time> <time unit>

Example:

SET PP2 18 3

ABSET . prog.name>> < second > < minute > < hour >

Example:

ABSET PXY 0 30 18

INTV prog.name > <time > <time unit™>

Example:

INTV SAMPL 2 2

ND-60. 050. 03

3-20

ABORT <« prog.name >

Example:

ABORT OPTI

CONCT «prog.name> <int.line number >

Example:

CONCT RESP 257

DSCNT < prog.name>

Example:

DSCNT RESP

PRIOR _prog.name > <priority >

Example:

PRIOR LPM 19

UPDAT < minute> <hour> <day> <month> <year>

Example:

UPDAT 14 10 3 3 1975

CLADJ <« time> <« time unit>

Example:

CLADJ 10 2

FIX <segment number >

Example:

FIX 25

UNFIX < segment number >

Example:

UNFIX 25

ND-60. 050. 03

3-21

PRSRV <«logical unit> <read/write> < prog.name >

Example:

PRSRV 25 0 PROG

PRLS <logical unit> <read/write>

Example:

PRLS 25 0

RTON <prog.name >

Example:

RTON PROG

RTOFF . prog.name>

Example:

RTOFF PROG

IOSET <logical unit>, <read/write>< prog.name > < control >

Example:

IOSET 2 0 RTX -1

LIST-TIME-QUEUE

The RT programs in the time queue will be listed.

LIST-EXEC-QUEUE

The RT programs in the execution queue will be
listed.

LIST-SEGMENT <« segment number >

The contents of the element in the segment table will

be listed.

LIST-RT-DESCRIPTION <RT-name™>

The contents of the RT description will be listed.

ND-60. 050. 03

3.2.3

3-22

RTENTER

The user "RT" will be entered as user for the RT
programs. This must be done before any file can
be opened for RT programs. The command should
be given each time the SINTRAN III system is started.

GET-RT-NAME <octal RT address>

The corresponding name of the RT program will be
printed. The octal RT address can occur for instance

in error messages.

Console Commands

TERMINAL-STATUS <terminal number>

The following information is listed:

1. Mode: User mode, when a subsystem or
user program is active, or Command mode.

2. User name.

3. Last command line.

STOP-TERMINAL «terminal number >

The specified terminal will be logged out.

WHO-IS-ON

The active terminals will be listed with terminal

number and user name.

WHERE-IS <file or peripheral name >

The user name and terminal number will be

listed.

STOP-SYSTEM

The computer will stop. It can be restarted by

pushing the RESTART button. Then the system

will continue where it left.

3.2.4

3-23

Subsystems

RT-LOADER

FTN

The FORTRAN Compiler.
Manual: NORD Standard FORTRAN Reference Manual.

QED

Editor.
Manual: QED Users' Manual.

MAC

Assembler
Manual: MAC Users' Guide.

BRL

Loader for background programs.
Manual: Binary Relocating Loader.

MACF

Assembler version for assembling onto file.
Manual: MAC Users' Guide.

NORD PL

Medium level language compiler.
Manual: NORD PL Users' Guide.

LDR

The RT loader will load RT programs onto segments.
Manual: SINTRAN III Real-Time Loader.

Loader including FORTRAN run-time system.
Manual: Binary Relocating Loader

ND-%60. 050. 03

3-24

KRYSSREF

Cross reference listing program.

BASIC

Interpreter.
Manual: NORD BASIC Reference Manual.

SORT

Sorting routine.
Manual: NORD SORT System.

ND-60. 050. 03

3.3

3.3.1

3-25

Batch System

Introduction

In addition to the usual interactive communication with the SINTRAN
background system, the user may also run his background jobs in
batch mode. This means that command input is taken from another
device or file than the terminal, and that device number 1.

which usually identifies the terminal, is interpreted as the

batch input file on input and the batch output file on output.

There are two slightly different ways of running batch jobs in SINTRAN:

Type 2;

A batch job may be initiated by the @MODE command. This
command just changes the command input and output files
to those specified in the @MODE command. The batch job
will continue running under the user currently logged on,
and control will return to the terminal when end-of-
file is reached on the batch input file or the command @MODE
TERMINAL TERMINAL is found on the batch input file.

Type 1:

A batch process may be initiated by the @BATCH command.
This command will start a background RT program running

independently of any terminal. Control will return to the
terminal immediately after the @BATCH command and this
terminal may be used for other activities running in parallel
with the batch process. Control commands to the batch process
may be given from any terminal.

All the interactive commands may also be used in batch mode, except
the following:

-t @ LOGOUT and M@MODE are illegal in type 1 batch.

= Although they are legal, some commands are not very well
suited for use in batch. Among these are for example the
LOOK-AT. command.

All command parameters have to be written on the same line as the
command itself, because the system cannot ask for missing parameters
in batech mode.

The first character on a system command line is always an @, which
corresponds to the @ written out by the system in front of each
command in interactive mode.

ND-60. 050.03

3.3.2

3-26

Example of a Batch Job

The batch input file has the following contents:

@FTN
COM 1,0,0BJ

PROGRAM TEST
WRITE (1,1)

1 FORMAT (* FORTRAN TEST OUTPUT *)
END
EOF

EX
@ LDR
A OBJ
S

Running of this job will give the following output on the batch output

file:

@ FTN

NORD FTN
gCOM 1,0,0BJ

PROGRAM TEST
WRITE (1,1)

1 FORMAT (* FORTRAN TEST OUTPUT *)
END

EOF
4 STATEMENTS COMPILED
$EX
@ LDR

BINARY LOADER
1L*A OBJ
L*S

FORTRAN TEST OUTPUT

If this job is run as type 1 batch, it should be bracketed by an @ENTER

command identifying the user and two ESC characters signalling end

of job.

ND-60. 050.03

3.3.3

3.3.4

3-27

Definitions

= The batch input file is the file or input device from where

SINTRAN takes its command input when running in batch

mode.

Or more precisely: The batch input file is the input part

of device number 1 when running in batch mode.

= The batch output file is the file or output device where

SINTRAN lists command input and command output when

running in batch mode.

Ur more precisely: The batch output file is the output part

of device number 1 when running in batch mode.

Description of Type 2 Batch (MODE type)

The MODE command has the following format:

@MODE «<batch input file > <batch output file >

The effect of this command is to redefine device number 1 to mean the

batch input file on input and the batch output file on output.

When the MODE command is given, SINTRAN will take command input

from the batch input file until another MODE command is found (on the

batch input file), or end of file is reached on the batch input file. The

commands are listed on the batch output file together with the command

output (if any).

If the user programs read from device number 1, input will be taken

from the batch input device, and all output to device number 1.is routed

to the batch output file.

If end of file is reached on the batch input file, control will be returned

to the terminal Teletype.

Error conditions:

If an error condition occurs in a MODE job, the usual error message

will be printed on the batch output file. Then the message

BATCH JOB ABORTED

will be printed and control returned to the terminal.

ND-60. 050.03

3-28

3.3.5 Description of Type 1 Batch (BATCH type)

3.3.5.1 Explanation of Terms

A batch process is a background RT program very much
alike the background RT programs handling interactive
communication with the SINTRAN system. The task of the
batch process is to process the batch jobs on its batch
input files, one at a time.

In principle, there may be an unlimited number of batch
processes running in parallel with each other, and the other
activities in the system. The maximum number of batch
processes running in parallel is determined by system

generation time.

The extra overhead introduced by adding a batch process is
approximately the same as by adding a terminal.
The number of batch processes will usually be limited to
one or very few, because one of the reasons for batch

processing is to run the jobs one by one, and save overhead
introduced by timesharing them.

A batch process is started by a @BATCH command, and
terminated by an @ ABORT-BATCH command.

A batch job is an entity consisting of commands to the
SINTRAN system, and possibly source input to the subsystems

and user programs called.

The first command in a batch job is always the @ ENTER

command identifying the user. The last two characters in a
batch job is always ESC (338), signalling end of job. These
two characters corresponds to the command A LOGOUT in
interactive mode. For the convenience of the user who pre-
pares his batch input files from a terminal, the

character SHIFT CTRL M (358) may also be used as end of job

characters. The card code of the ESC character is the multi-
punch 7-8-9.

A batch queue is a queue of batch input file - batch output file
pairs held internally in SINTRAN. A new pair is added to the
gueue by the @APPEND-BATCH command., Each batch pro-

cess has its own batch queue.

When end of file is reached on a batch input file, the batch

process fetches the next batch input file - batch output file
pair on the queue, and continues taking input from the new
batch input file and giving output to the new batch output file.

ND-60. 050.03

3-29

If the batch queue is empty, the batch process will enter
waiting state.

A batch input file may contain any number of jobs, and a
job may use any number of batch input file - batch output
file pairs. Thus, the boundaries between jobs and the

boundaries between batch input files, is completely indepen-

dent of each other.

A batch process will always be in one of the three following

states:

Passive - this means that the batch process is not

' started.

Idle - this means that the batch process has
entered waiting state because the batch
queue is empty.

Active - this means that the batch process is working
on some job.

ND-60. 050. 03

3-30

OFIL1 QFIL2

Gther RT programs

Mass

storage

files
or
output

devices

1

SINTRAN III
MONITOR

A A !

vy LT _i y

| ' ' e Interactive
Batch process - riL1 |rrice | | - operator

OFIL1 I OFILZ{ : communication

Batch queue

A

@ENTER Job 3 (cont.’

Job 1 Mass ES Es

$ storage Cc °C
Eq ES files

“C “C or @ENTER

@ENTER input
devices Job 4

Job 2 %

F, E

| ¢ S¢
F, FE

Sc Sc @ENTER
@? ENTER

Job 5

Job 3 *

E., E

) ¢ Eg

IFIL1 IFIL2

This figure shows 8 system with one terminal and one batch
process. The dotted line indicates that a batch job may append jobs to

its own batch process.

ND-60. 050. 03

3.3.5.2

3-31

Description of Commands

{@BATCH

This command finds an unused batch process and
starts it. It then prints

BATCH NUMBER = <batch number >

where <batch number> is a decimal integer which
may be used in future commands to identify the
batch process.

If there are no unused batch processes in the system,
the message

NO BATCH AVAILABLE

is printed.

When the batch process is started, it immediately
enters waiting state, because the batch queue will
initially be empty. It will automatically be restarted
when a batch input file - batch output file pair is
entered into the batch queue by an @ APPEND-BATCH
command.

The @ BATCH command is usually given from a

terminal in interactive mode.

@APPEND-BATCH <batch number><batch input file>
<batch output file >

This command appends the <batch input file>-
<batch output file > pair specified to the batch queue
for the batch process identified by <« batch number>.
If the batch process is idle, it will be restarted.

If the batch queue is full, the message

BATCH QUEUE FULL

will be printed.

If the specified batch process is passive, the message

BATCH PASSIVE

will be printed.

ND-60. 050, 03

3-32

- If the batch input file is owned by another
user than SYSTEM, the user name should
be specified in brackets in front of the
file name.

The batch input file should have read access
for user SYSTEM and all users having jobs
on it.

= The batch output file should have write and
append access for all users having jobs on
the corresponding batch input file.

Examples of APPEND-BATCH commands:

@ APPEND-BATCH 1, CARD-READER, LINE-PRINTER
@APPEND-BATCH 2, (NILS) BAFIL, BOFIL

The @ APPEND-BATCH command is usually given from
a terminal in interactive mode.

(@LIST-BATCH-PROCESS

This command lists the status of the batch processes
in the system. It has no effect on the batch processes.

Example of @LIST-BATCH-PROCESS command for a
system with three batch processes:

@LIST-BATCH-PROCESS

1 IDLE, NO USER LOGGED ON
2 ACTIVE, USER NILS LOGGED ON

@ 3 PASSIVE

The @ LIST-BATCH-PROCESS command is usually given
from a terminal in interactive mode.

ND-60. 050. 03

3-33

@LIST-BATCH-QUEUE < batch number >

This command lists the batch queue of the specified
batch process.

Example of @ LIST-BATCH-QUEUE command:

@LIST-BATCH-QUEUE 1
CARD-READER LINE-PRINTER
%’ER) BINP LINE-PRINTER

The @LIST-BATCH-QUEUE command is usually
" given from a terminal in interactive mode.

(@ABORT-JOB <batch number ><user name>

This command may be used to abort a batch job.
The job will be aborted and batch input will be
skipped until the next end of job characters. The
batch process will then continue processing the
next job.

If the specified <user name> is not the user currently
logged on the specified <batch number=, nothing
will be done.

The @ABORT-JOB command is usually given from
a terminal in interactive mode.

(AABORT-BATCH <batch number >

This command will abort a batch process and release
all resources reserved by the batch process. Any
job currently running will be aborted immediately,
and the batch queue will be cleared.

The @ ABORT-BATCH command is usually given
from a terminal in interactive mode.

ND-60. 050. 03

3-34

@ENTER <user name><password><project number><max. time>

This command is legal only as the first command in a
batch job. It identifies the user of the following job,
and corresponds to the log on procedure in inter-
active mode. <user name> may be any name imple-
mented as a user in the system. «password=> should
be the correct password for the specified user.
If the user has no password, just two commas
should be present between «user name> and
< project number>. _project number>= is used

for accounting purposes and may be any decimal
integer. < max.time= is the maximum CPU time
for the job in minutes. If this time limit is reached,
the job will be aborted.

The @ENTER command is always given from a batch
input file in batch mode.

(® SCHEDULE <device number ><device number>,.....

This is a general command specially designed for
use in batch mode. It is used to reserve the devices
mentioned in the parameter list for the current job.
If one or more of them are reserved by other pro-
grams, the batch process will enter waiting state
until they are released. This is very useful in batch
mode, because one does not know if a device will be
free at run time when one prepares a batch job.

To prevent deadlock situations, no devices can be
reserved for the job before the @@SCHEDULE com-
mand 'is given. If it is, the error message DEVICE
ALREADY RESERVED will be given, and the batch
job will be aborted.

The @ SCHEDULE command is usually given from
a batch input file in batch mode.

ND-60. 050. 03

3.3.5.3

3-35

Example of a Batch Run

The file BINP is owned by user PER and has the following contents.

@ ENTER NILS, PWN,5
@ FTN
COM 1.0,100

= FORTRAN STATEMENTS

EOF
EX
@ LDR
A 100
S
E, E

5S¢ 8¢
@ ENTER PER, PWP, 4
@ SCHEDULE 3
@ COPY FAST-PUNCH, PERFILE
E. E
S 8¢

It is assumed that the users NILS and PER have the passwords PWN
and PWP respectively. Of course, the passwords will not be listed
on the batch output file.

To run these two jobs, the following commands could be given from
any terminal:

@ WHERE-IS LINE-PRINTER
@ FREE TO USE
/@ BATCH
@ BATCH NUMBER =1
@ APPEND-BATCH 1 (PER)BINP, LINE-PRINTER
@

If you have no more batch jobs to run when the batch process has
entered idle state, an

@ ABORT-BATCH 1

should be given to terminate the batch process and release the
line printer,

ND-60. 050. 03

3-36

3.3.5.4 Special Monitor Calls concerning Batch Jobs

3.3.5.5

If the monitor call RTEXT (MON 134) is executed by a back-
ground program running in batch mode, the batch job will be
aborted.

The monitor call RSIO (MON 143) may be executed by a back-
ground program if it wants to find out whether it is running
in batch or interactive mode.

The return parameters from RSIO are:

A register : 0 if interactive mode
1 if type 1 batch
2 if type 2 batch (MODE)

T register i command input file number

D register : command output file number

Error Conditions

If an error condition occurs in a batch job, the job will be aborted
and batch input will be skipped until the next end of job characters.
The batch process will then continue with the next batch job.

If an I/O error occurs on the batch input or output file, all jobs on
current batch input file will be skipped and the batch process will
continue with the next batch input file - batch output file pair on the

batch queue.

In most cases, an error message will be printed on the batch output
file, but if an I/O error has occurred on the output file, this is of

course impossible.

ND-60. 050. 03

4-1

ACCOUNTING SYSTEM

Whenever a user logs out, a record is written in the account
file on the disc. This file, named (SYSTEM) ACCOUNTS:
DATA, consists of blocks of length 256 words, each block
containing 16 records of 16 words. A record has the following
information:

Word 0-6 user name character
7 user number binary
8 project number binary
9-10 log off time and date binary
11 console seconds binary

© 12 CPU seconds binary
13-15 unused

Log-off time and date are packed into two words, or a 32 bit
field, as follows:

—————— date time — =

6 4 5 5 6 6

year month day hours minutes seconds

31 26 22 17 12 6 0

‘————— word 1 word 2-—mm——»

The first block of the file contains only the following infor-
mation:

1. Word 1 contains the number of records writien in the

file. This number is increased by 1 for every log-
off.

2. Word 2 contains the desired number of records. When

this number is reached, a message will be sent every
time a user logs off, APPROACHING END OF ACCT
FILE. The accounting file should then be listed, and
then reset by the INIT-ACCOUNTING command.

3. Word 3 contains the maximum number of records. If
this number is reached, a message will be sent every
time a user logs off. END OF ACCT FILE ENCOUNTERED.
No accounting is done after this number is reached.

ND-60. 050. 03

4.1

4-2

The account records themselves start in the second block.
The file is updated physically for every new record. This
involves reading and writing the first block (updating the
record count) and writing the block which contains the new
record.

Command s

@INIT-ACCOUNTING desired, max

desired: desired number of accounts. By use of this
parameter the user specifies the number
of accounts he wants to the account file be-
fore he gets the warning that the file is
running full. The parameter should be speci-
fied as a decimal number.

max: maximum number of accounts permitted on
the file. When this limit is reached, no
more accounting will take place before the
account file is reset. Users can log off, but
the request for accounting will be ignored.
"max" should be specified as a decimal
number.

This command initializes and starts the accounting system.
It may only be executed by the user SYSTEM. It writes the
first block of the file (SYSTEM) ACCOUNTS:DATA. Word 1
(record count) contains 0. Words 2 and 3 contain the desired
no. and max.no. as given in the command. If 0 or empty,
default values of 500 and 600 are used.

@START-ACCOUNTING

This command starts the accounting, but does not initialize
the accounting file. It may only be executed by user SYSTEM.

@ STOP-ACCOUNTING

This command stops the accounting system. The accounting
file is not affected. It may only be executed by user SYSTEM.

ND-60. 050. 03

APPENDIX A

ASSEMBLY CODE IN SINTRAN

Assembly-coded RT Programs

The name of the RT program, which may be used in other RT
programs, is a pointer to the first location of the RT description.

At the moment when the RT program starts, the machine status is
like this:

The P register contains the starting address, as found
" in location 7 of the RT description.

The other registers have arbitrary values.

In the program itself, all the registers may be used
freely, including the B register.

When program execution is finished, the program control should
be transferred to the monitor by the monitor call RTEXT (MON 0).

The registers may then have arbitrary values.

An example of an assembly-coded RT program follows. The name
of the RT program is PER. It has priority 5.

YI9BEG
PRI5 =5
2RTEX = 0

JORT PER PRIS
LDA (PARAM

MON 2RTEX
PARAM, NUMBER

)DEC
NUMBER, 50

)FILL
)YO9END

The RT loader will generate the RT description.

ND-60. 050. 03

SINTRAN Standard for Subroutine Calls

The subroutine call is performed by a JPL instruction.

Example:
JPL 1 (SUBR

The A register contains the address of the parameter list. The
parameter list contains the addresses of the actual parameters.
Returns from the subroutine are always to the instruction after
the JPL.

On return, the B and X registers will have the same values as
before the subroutine jump: the other registers may be changed.

The T-A-D registers may have a function value on return.

Note especially that pointers to the RT descriptions are considered
to be variables. Thus, the location in the parameter list will con-
tain the address of such a variable in this case. See Figure A.1
below.

A Register
Parameter

List
 Integer

RT Name

RT Description

Figure A.1: Standard Call

ND-60. 0560. 03

Examples of Monitor Calls from Assembly

Programs

For subroutines callable from FORTRAN, the corresponding

FORTRAN call will also be shown.

CALL RT (PR1)

LDA (PARAM
MON 100

PARAM, (PR1 % RT PROGRAM

CALL SET (RT1, 10, 2)

LDA (PARAM
MON 101

PARAM, (RT1 % RT PROGRAM

(12 % NUMBER OF

(2 % SECONDS

CALL ABSET (PROG, 0, 30, 17)

LDA (PARAM
MON 102

PARAM, (PROG % RT PROGRAM

(0 % SECOND

(36 % MINUTE
(21 % HOUR

ND-60. 050. 03

CALL INTV (PP, 20, 3)

LDA (PARAM
MON 103

PARAM, (PP % RT PROGRAM

(24 % NUMBER OF

@ % MINUTES

Terminating an RT program:

MON O

The registers may then have arbitrary contents. All re-

served units of this program will be released.

Set a program waiting:

MON 135

The program will stop. It will restart at the same point next

time it is started.

CALL HOLD (5, 2)

LDA (PARAM
MON 104

PARAM, ‘(5 % TIME

(2 % TIME UNIT

CALL ABORT (PRX)

LDA (PARAM
MON 105

PARAM, (PRX % RT PROGRAM TO BE

% ABORTED

ND-60. 050. 03

CALL CONCT (CPIN, 5)

LDA (PARAM
MON 106

PARAM, (CPIN
(5

CALL DSCNT (PRGA)

LDA (PARAM
MON 107

PARAM, (PRGA

CALL PRIOR (RTPR, 30)

LDA (PARAM
MON 110

PARAM, (RTPR
(36

CALL UPDAT (24, 11, 24, 2, 1974)

LDA (PARAM
MON 111

YDEC
PARAM, (24

(11
(24
(2
(1974

ND-60.050. 03

% RT PROGRAM
% INTERRUPT LINE NUMBER

% RT PROGRAM

% RT PROGRAM
% NEW PRIORITY

CALL CLADJ (15, 2)

LDA (PARAM
MON 112

CALL CLOCK (IARR)

LDA (PARAM
MON 113

PARAM, IARR
IARR, 0;0;0;0;0;0;0;

DELTA = TIME (0)

MON 11
STD DELTA

DELTA, 0;0

INBT

SAT 2
MON 1
JMP ERROR
STA CHAR

LDA CHAR
SAT 3
MON 2
JMP ERROR

ND-60. 050. 03

% NUMBER OF
% SECONDS

oe

Q LOCK UNITS WILL BE

TAPE READER
INBT oP

e

TAPE PUNCH
OUTBT o®

o
®

CALL DSET (PROG, DTIME)

LDA (PARAM
MON 126

PARAM, (RT1

DTIME
DTIME, 1

32000

CALL DABST (PROG, DTIME)

LDA (PARAM
MON 127

PARAM, (PROG
DTIME
10333
145016

DTIME,

CALL DINTV (PROG, DTIME)

LDA (PARAM
MON 130

(PROG
DTIME

DTIME, 0
6000

PARAM,

ND-60. 050. 03

T PROGRAM TO BE
CHEDULED o

o
 =

wn

% THIS DOUBLE PRECISION
% NUMBER WILL BE ADDED
% TO CURRENT TIME AND
% THE RESULT PLACED IN
% THE RT DESCRIPTION

THIS DOUBLE PRECISION
NUMBER WILL BE PLACED
IN THE RT DESCRIPTION o

oe

o

THIS DOUBLE PRECISION
NUMBER WILL BE PLACED
IN THE RT DESCRIPTION o

o®

°

ABSTR

LDT LOGNO

LDA (PARAM

MON 131

PARAM, 0

0
CORA

(2700

Q1

CORA, 0

IARR

IARR = =*

*+ 100/

MCALL, MEXIT

ILLDA (PARAM

LDT (START

MON 132

START, éUBRl

2005

SUBRI1,

MON 133

CALL FIX (33)

LDA (PARAM

MON 115

YDEC

PARAM, (33

ND-60. 050. 03

AC

S

o°

o

o

o

o

o

o

o

o

o

o

o\
©
o

S°

S

o

o

o

%

READ
MEANS WAIT
PHYSICAL CORE ADDRESS
ABSOLUTE BLOCK NUMBER
NUMBER OF BLOCKS

TRANSFER TO THIS AREA
HARDWARE BLOCK SIZE
FOR DRUM (64)

PARAMETER LIST FOR
SUBR1

MCALL, OVER TO SUBRI1
RETURN HERE AFTER
MEXIT

SUBR1's SEGMENT,
4 AND 5

END OF SUBRI1
T AND L AS WHEN SUBRI1
WAS ENTERED
MEXIT, RETURN TO
CALLING PROG.

SEGMENT NUMBER

CALL UNFIX (33

LDA (PARAM
MON 116

YDEC
PARAM, (33

IX = I0SET (2, 0, PROG, -1)

LDA (PARAM
MON 141
JAN ERROR

PARAM, -(2
(0
(PROG
(-1

IX = RESRV (4, 0, 0)

LDA (PARAM
MON 122
JAN ERROR

PARAM, “
©
(

CALL RELES (4, 0)

LDA (PARAM
MON 123
JAN ERROR

PARAM, “
(0

o

o

o

o

e

SC

o

o

oe

ND-60. 050, 03

TAPE READER
INPUT
RT-PROG
CLEAR

ILLEGAL UNIT

CARD READER
INPUT
WAIT IF BUSY

ILLEGAL UNIT

IX = PRSRV (3,

PARAM,

A-10

1, PROGX)

LDA (PARAM
MON 124
JAN ERROR

.(3

1
(PROGX

CALL PRLS (3, 1)

PARAM,

LDA (PARAM
MON 125
JAN ERROR

@

IVAL = WHERE (3, 1)

PARAM,

LDA (PARAM
MON 140
JAN ERROR
JAZ NRES
STA RTPRG

@
a

ND-60. 050. 03

e

o
 NIT RESERVED OR U

NON-EXISTING

Z
z ON-EXISTING DEVICE

OT RESERVED

A-11

CALL RFILE (101B, 0, IARR, 2, 256)

LDA (PARAM
LDT I PARAM
MON 117
JAF ERROR

PARAM, (101
Q)
IARR
(2
(400
YFILL

IARR, * + 400/

CALL WAITF (101B, O

LDA (PARAM
MON 121
JAF ERROR

PARAM, (101
0

CIBUF

SAT 2
MON 13
JMP ERROR

COBUF

SAT 3
MON 14
JMP ERROR

ND-60. 050. 03

ISIZE

IX = MAGTP (0,

PARAM,

IRD,
YFILL
IARR,

IX = ACM (26B,

PARAM,

)FILL
IARR,

A-12

SAT 2
MON 66
JMP ERROR
STA NCHAR

SAT 3
MON 67
JMP ERROR
STA NLEFT

IARR, 1, 1024, IRD)

LDA (PARAM
MON 144
JAF ERROR

(0
IARR
a
(2000
IRD
0

oe

o

o®

oe

* + 2000/ o\

1, IARR, IDMAD, 100)

LDA (PARAM
MON 145
JAF ERROR

(26 %
a %
IARR
(IDMAD %
(144 %

* + 100/

‘ND-60. 050. 03

READ A RECORD

FROM UNIT 1
MAX WORDS

ACTUAL WORDS READ

TO THIS AREA

LOG. NUMBER
WRITE

DMA - ADDRESS
NO. OF WORDS

B-1

APPENDIX B

SYSTEM MONITOR CALLS SUMMARY (File System included)

(suorjeoo]
L)

S
T
U
N

J
I
B
P
U
S
[
B
O

pue
-3[0010

9]
185

sof
sof

saf
&Avyyv)

€IT
|3DOTID

%0010

[euasqur
2y

jsnlpy
ou

sof
sof

(LINQ
“HWIL)

gIT
|

PAVTIO

J1oyng
jndur

aeeord
sok

ou
ou

*ou
CA9D

=
I,

er
A04dID

(saaom
“
4
q
a
v
v
m
a

‘avyao?
‘oNnd

INDV
Sseooy

s94
sok

504
‘LINA

“D0T)
SHI

W
O
V

s¥o01q
Jo

J
e
q
u
n
u
=
3
]
I
N
N
G

ssaJappe
98va03s

S
S
e
W
=
Y
A
A
V
I
A

* fluo
sweaSoad

C
I
g
I
N
g

wols
AS
W
0

posn
aq

ueo
‘
Y
d
a
v
I
n

11eo
81y,

‘o8exojs
ssrW

‘
4
a
a
v
-
T
y
o
0
9
d

W
O
y

/0}

eyep
IeJsued],

ou
gof

|
ou

ALIHYM/AVAY)
16T |

4
1
s
a
V

_

(dNOH
‘NIN

ou
sof

sod
OFS

‘HWVN)
g0T

|
L
I
S
V

w
e
x
3
o
x
d

1Y
Ue

3I0qy
ou

sof
sok

(AWVYN)
G0T

|
T¥godvVv

l

u
o
1
3
d
r
a
o
s
o
q

3a0Yysg
p
u
n
o
a
d

11€0
Qun

_
N
V
H
I
L
H
O
A

_
S
a
9
)
o
W
R
I
R
 J

{ISqUINN
Q
u
I
E
 N

-30B(Q
WOJ]J

-
n
o
J
-
g
n
s

Wwodxj
|

I[QISE830YF
PJIEPUB]S

|
9
[
(
I
S
S
8
0
0
Y

|
S11eD

A
0
J
U
O
N

TIT
N
V
U
I
N
I
S

ND-60. 050. 03

B-2

Ajuo
s
w
e
a
d
o
a
d

p
u
n
o
a
s
y
o
r
q

ioJ

‘ £397e018
0
2
9

398
sodk

ou
ou

‘ou
A8o1BI1YS

=
Y

¢
|

N
O
H
D
H

‘poardxo
seBY

aumIT}
USAIS

OYj
u
a
y
m

weadord
1Y

oY}
4rels

ou
so4

sof |
 (AWILA

‘TNVN)
93T |

LESA

“JUoOmugISSB
[BAxojuUI

o0
jdnixajur

Aue
w
o
a
)

w
e
a
d
o
x
d

LY
9y}

3}00uu0dsIq
ou

sof
soh

HINVN)
0T

|
I
N
O
S
d

* T
B
A
I
S
I
U
I

9WUT]

o
3

o3
w
e
x
d
o
a
d

LYy
9y}

joeuuo)
ou

sof
sof

(ANILA
‘TN VN)

0T
|

AINIA

‘
W
)

USAIS

e
98

w
e
a
d
o
a
d

1Y
9y}

31B3S8
ou

sof
sof

(AWILA
‘TN VYN)

LT
|

1Lsdvd

-ouI]
jdnaiejur

o
y

o3
w
e
a
d
o
x
d

L4
oyj

joeuuo)
ou

sof
sof

(ANIT
‘AINVYN)

90T
|

L
O
N
O
D

1o1Ing
m
d
o

Jes1d
sof

ou
ou

‘'Ou
‘A9D

=
T,

T
|

4
9
0
D

"ol
98010

a4k
ou

sok
‘ou

o1
=

I,
¢y |

@SOTO

u
o
1
3
d
r
a
o
s
a
(
g

H
o
y
s

punoasd
11e°

9ur}
|

N
V
E
I
L
3
0
J
d

s
a
g
j
o
u
w
e
i
e
d

|
I
o
q
u
u
n
i

a
w
I
B
N

~3oBQ
W
O
I
}

-noa-qgns
w
o
a
y

9
1
q
I
S
s
o
0
0
Y

p
a
e
p
u
e
l
s

|

9
q
I
S
s
e
0
0
y

s[1eD
JI03TUOIN

I

N
V
H
.
I
N
I
S

(popniour
wials A4S

A[1d)
AUVININAS

S
T
T
V
O

H
O
L
I
N
O
W

W
H
I
S
A
S

ND-60. 050. 03

B-3

m
a
v
a
y
g

adey
‘MXVIN

“ LINO
onjeuSew

§s900VY
sok

sok
sek

‘
a
v
d
o
)

‘ONNJdg)
9
1

|

A
L
O
V
I
N

S
I
9
7
0
B
I
B
Y
D

Jo
a
e
q
u
n
u

p
e
o
y

s9A
ou

ou
*0u

‘A9P
=

L[
99

A7ZISI

(1o¥L
*O0TASpP

B
03

UOI}
-
N
O
D

H
W
V
N

~BULIOJUI
10I]U0D

188
ou

soh
sS4

‘
M
/
¥
L
I
N
)

154
L
A
S
O
I

‘1eALOUI
owrj

o
y

01
w
e
a
d
o
a
d

LYd
9y}

joeuuo)
ou

04k
sok

(LINN
‘ANIL

“AWYN)
€01

AINI

9
1
4
q

= ¥
214q

®
p
B
o
Y

sof
ou

ou
u
n

8
0
1

=
1,

I
L
A
N
I

*owir]
UsAIg

o
y

103
jrem

w
e
a
d
o
a
d

Surreo
ay}

391
ou

sof
saf

(LINA
‘HNIL)

$0T1
a
1
o
H

(
w
e
s
A
s

arrd)
0
3
8
S
8
o
W

J0XIS
9ITIM

sak
ou

ou
8poO

I
0
d
I
T

=
¥

$9
|

DSINYUA

uornydraosad
IoyYs

punoa3d
1182

aun |

N
V
H
I
H
O

s
I
9
j
o
W
B
I
R
J
 | I

o
q
U
U
N
N

awIBN
-30'q

WOoJd}
~-NoI-qns

woJaJ

9
1
q
I
S
S
2
0
0
y

pJIEPUB]S
|

O
]
Q
I
S
S
8
0
0
Y

S11eD
J0jTUOIN

[T
N
V
H
I
N
I
S

(popnrour
welsLg

o11.q)
A
Y
V
I
N
I
N
A
S

S
T
T
I
V
D

H
O
L
I
N
O
N

W
H
L
S
A
S

ND-60. 050. 03

B-4

(weys
£s

of1d)
‘jinb

pue
o
8
e
s
s
o
w
l

J0440

9ITAM
s94

ou
ou

9poo
JOdID

=
Y

g9
W
N
Y
A
O

‘
w
e
x
d
o
a
d

Aue

w
o
d
]

jTun
oyj

9
s
e
s
[
d
y

ou
g0k

o
4

(
M
/
9

‘1IND)

6
1

S
T
U
d

- f312012d
MOU

108
ou

sof
sof

(
o
1
d
d

‘dINVN)
0TT

|
YOIdd

n
l
q
=
v

9144
B

9ITIM
sok

ou
ou

jun
“801

=
I,

¢ |
L4d1NO

193Inq
Ul

WOOoJd
99J]

p
e
o
y

sok
ou

ou
‘ou

‘A8p
=

I
99

A
Z
I
S
O

odf}
=

¥
§89008

=
I,

‘o113
wedQ

sak
ou

sok
‘oIty

=
X

0S
N
A
d
O

‘
g
u
e
w
d
a
s

JUSISJJIP
UO

SUIINOI
—-gns

®
WOoIJ

W
I
N
}
o
y

ou
ou

ou
squewidas

pio
=

L
eeT

|

IIXHANW

‘syuowiSes
JUSISFIIP

(
S
I
N
I
N
W
D
A
S

U0
QUIINOIQNS

B
[[BD

ou
ou

ou
“4aav

‘g4dns)
28T |

T
I
V
O
I

u
o
1
3
d
r
a
o
s
a
Q

310ysg
p
u
n
o
i
s

11eo
our}

|

N
V
H
I
L
Y
O
J
L

s
a
9
j
o
w
r
I
R
d
 | I

9
q
U
N
N

Q
W
E
N

-3oBQ
W
O
I
J

-noa-qgns
w
o
a
J

9
1
q
I
s
s
o
0
0
y

p
a
e
p
u
e
l
S

|

91qISse900Y

S11eD
I0JTUOIN

IIT
N
V
H
L
I
N
I
S

(pepnjour
weys4g

o11d)
X
Y
V
I
N
I
N
A
S

S
T
T
V
O

H
O
L
I
N
O
N
W

I
W
H
I
L
S
A
S

ND-60. 050. 03

B-5

‘
m
e
a
d
o
x
d

1
Y

oY)
31838

ou
g0k

sok
(AN

VN)
00T

Iyd

(woys
As

o11d)
S
S
Q
I
P
P
E

9109
=

X

‘
o
l

®
‘ou

}o0[q
=

¥
woJd]

S
p
I
o
M

9GT
p
e
o
y

sohk
ou

ou
‘ou

91y
=

I,
L

|
. I
D
V
d
d

(Sa¥OoMm
"ON

‘
a
v
s
s
v
i
n

*9[1§
W
O
}

PL0OSI
‘
a
v
y
o
d

‘ovi1d

ulopuel
B
p
e
o
y

safk
894

sok
*
L
N
O
D

‘LINQ)

LIT
AT1IdY9

‘
m
e
a
g
o
x
d

Juorano

oy}

J0J
JTUn

9Y}
SALS

Y

ou
so4

sof
O
V
T
I

N
U
N
L
I
Y

‘M/d
LINAD)

%31
|

A
Y
S
H
Y

‘wrex8oad
juarino

oY}
WOXJ

jJIun
9y}

9Sea[oy
ou

sok
sofk

(M/49
‘LINN)

€21
|

SHAT1HY

(weys
£s

o1q)
aojurod

914q
prvoy

so4h
ou

ou
aoqurod

914q
=qQV

daquinu
offy

=
T,

SL
|

L
d
V
H
Y

(ways £g
o11d)

00T
O[IJ

yojeaos
§S9IppPE

910D
=

X
w
o
J
J

S
p
i
o
m

9GT
p
e
a
y

sofk
ou

ou
ou

o
o
l
d

=
L

G
OSIdYy

u
o
1
3
d
1
1
0
s
o
(

1LOYS
p
u
n
o
x
d

[1ed
au1}

|

N
V
H
I
L
Y
O
J
A

s
a
o
j
o
w
e
I
R
g

|IoqUInN
oureN

-YoBq
WOJI}

~-nol-qns
m
o
J
y

o
l
q
I
s
E
9
0
0
y

pJlepuels
|

9
1
q
I
s
s
9
0
0
y

81[eD
JLO0JTUOI

IIT
N
V
H
I
N
I
S

(pepniour
w
e
s
4
g

o[1d)
X
Y
V
I
N
I
N
A
S

S
T
I
V
O

H
O
L
I
N
O
W

W
A
L
S
A
S

ND-60. 050. 03

B-6

*QuwIT)
TEUASIUL

JUOLIND
O
}

195
sof

s94
89k

IT
TINLL

*
(
w
e
s

£s
o11d)

‘x1oqurod
zoqurod

9149
=
A
Y

914q
W
N
W
I
X
e
W

3198
S9A

ou
ou

‘ou
oIl

=
L

€L
X
V
I
N
S

(woysAs
o11d)

aoqurod
934q

=
V

Jojurod
&14q

308
sok

ou
ou

"ou
91}

=
I,

v.
|

L
A
L
A
S

(
w
e
y
s
 s

ol1d)
9Z1S

3001q
198

sofk
ou

ou
9718

3201q
=
V

‘ou
91}

=
L

91
S
I
S

(ways£s
o[1d)

aojurod
¥o0[q

198
sok

ou
ou

|
xogurod

3oo01q
=
A
Y

‘ou
9f1f

=
I,

LL
|

T
d
L
I
S

o
W
}

USAIS
o3

Ul
(LINN

weaSoad
1y

148IS
ou

sof
sok

‘INIL
‘HINVN)

10T
L3S

‘
w
e
a
d
o
a
d

qusaanod
oYy

dois
soAh

ou
ou

0|
ILXd1L¥

11em
w
e
i
d
o
x
d

JU_IIND
9y}

191
ou

sok
sok

cet
I
M
L
Y

u
o
n
d
i
r
a
o
s
a
(

310YS
punoasd

1180
aun)

|

N
V
E
I
L
Y
O
J
I

s
a
o
j
o
w
B
I
B
d
 | I

9
q
U
U
N
N

o
w
e
N

-3j0oBQq
WOJI]

-noJx-qns
w
o
I
J

9
1
9
1
8
8
9
9
0
y

p
l
e
p
u
e
l
s

|

S
[
M
I
S
S
9
0
0
Y

81180
103TUOIN

IIT
N
V
H
L
N
I
S

(pepnyout
w
o
s
A
s

of1d)
A
Y
V
I
N
I
N
A
S

S
T
T
I
V
O

H
O
L
I
N
O
I
W

W
H
I
L
S
A
S

ND-60. 050. 03

B-17

(woys4s
of1.d)

SS9JIppe
9109

=
X

‘
9
l

®
*oU

JoOoIq
=

V¥
W
o
J
J

S
p
I
o
M

gGZg
p
r
o
y

s
0
4

ou
ou

‘ou
o1t}

=
L

0T
|

I
O
V
d
A
M

"jIun
9
}

p
a
A
I
9
s
a
l

3urary

w
e
a
d
o
a
d

1,9
9y}

399
ou

sak
sok

(LIND)
0FT

|

I
Y
A
H
M

(SaAYOM
"ON

‘AvssSyn
piooox

‘avdaon
‘ovid

WopUeL
B

9JLIM
sok

sof
sok

*INOD
‘LINN)

02T |
A
T
I
A
M

(
w
e
y
s
 s

o114d)
‘00T

9[1J
yoyeaos

*Ippe
9109

=
X

OJuo
S
P
I
O
M

9GZ
S
T
A
M

8
0
4

ou
ou

*ou
Y
o
o
l
q

=
I,

9
O
S
I
a
m

‘peysTul}
8q

03
J9JsUBI}

B
I0]

JTEM
ou

s8f
sof

(LINN)
12T

|
A
L
I
V
M

v
a
x

*IBpus[Bd
‘
H
I
N
O
N

‘Xvd

pue
30010

93epdn
ou

so4
sof

‘4NOH
‘NII)

I1T |
L
v
a
d
n

u
o
r
y
d
i
x
o
s
a
(

3
1
0
Y
s

p
u
n
o
x
3

1189
au1}

|

N
V
Y
I
L
H
O
J

s
i
o
j
o
w
m
e
I
e
d

| I

a
q
u
u
n
y

o
w
E
N

-¥jorq
WOJIJ

-
h
o
a
-
g
n
s

W
o
x
}

9[qI88900Y
piepue)s

|
S[qISE000Y

ST18D
X0JTUOIN

TI
NVYULNIS

(popniour
weys4S

o[1d)
AMVININAS

STTIVO
H
O
L
I
N
O
W

WHALSAS

ND-60. 050. 03

APPENDIX C

BACKGROUND SYSTEM COMMAND SUMMARY

Command Parameters Used by Short description

ABORT NAME RT Stop RT program

ABORT-BATCH BATCH-NO. RT Abort batch process

ABORT-JOB BATCH-NO. ,USER | RT

ABSET -NAME, SEC, MIN, RT Start RT program at time
HOUR of day

BATCH RT Start batch process
APPEND-BATCH | BATCH-NO. USER

INPUT, OUTPUT

COPY DESTIN. FILE, USER Copy file or device
SOURCE FILE

CLADJ TIME, UNIT RT Adjust internal clock

CONCT NAME, LINE RT Connect RT program to
interrupt line

CONTINUE USER Restart background
program

DATCL USER Print current time and
date on the terminal

DSCNT NAME RT Disconnect the RT program

DUMP FILE, START, USER Save background program
RESTART

FIX SEGM. NO. RT Fix segment in core

GET-RT-NAME OCTAL ADDRESS RT Convert address to name

GOTO-USER ADDRESS USER Start background program

INIT- NUMBER, MAX SYSTEM
ACCOUNTING

INTV NAME, TIME, UNIT RT Connect RT program to
time interval

ND-60. 050. 03

number | Meoing xx vy abosted

00 Illegal monitor call RT prog. yes

01 Bad RT program address " n

02 Wrong priority in PRIOR B "

04 Ring protect " n

05 Memory protect n "

09 Illegal parémeter in CLOCK | " n

10 Illegal parameter in ABSET B "

11 Illegal parameter in UPDAT i "

12 Illegal time parameters " "

13 Page fault for non-demand " n

14 Outside segment bounds " "

15 Bad segments in MCALL/

MEXIT n "

16 Bad segment in FIX/UNFIX i "

19 Too big segment " n

20 Segment transfer error n

hardware | block no.

status

22 False interrupt level no. no

23 Device error hardware | hardware i

status device no.

24 Internal interrupt bit no. yes

26 Mass storage time-out program no

27 Error in CONCT RT prog. yes

28 FTN I/0 Error no. |[(See NORD File System)

35 Stack error "

ND-60. 050. 03

APPENDIX E

THE REAL-TIME LIBRARY

The real-time library consists of a set of subroutines in BRF

format.

Most of the entries are interfaces between the FORTRAN calls

and the monitor calls, consisting of a MON instruction and an
EXIT instruction.

In addition a set of stack operations are included, used by

FORTRAN to obtain re-entrant program units.

The bit string operations according to ISA-S61.1 are also in-

cluded.

Bit Operations in FORTRAN

Logical Operations

The logical operations are implemented as integer functions in

FORTRAN. In the following m and n are constants, integer

variables or array elements. Operations are performed on a

full word bit by bit.

Inclusive or

IOR (m, n)

Logical Product

IAND (m, n)

Logical Complement

NOT (m)

Exclusive or

IEOR (m, n)

ND-60. 050. 03

=

APPENDIX F

USER EXTENSIONS TO SINTRAN III

Monitor Calls

The monitor calls 170gthrough 177; are set aside for the
special needs of a user. The corresponding subroutines can
be included at system generation time.

When the monitor call is executed, the subroutine will be
entered on RT program level. The user's registers are saved
in a data field, to which the X register points. The registers
can be reached using the displacements ZPREG, ZXREG,... etc.
The B register will be equal to the user's A register.

The normal entry sequence will do:

a) Get hold of any parameter values in core.

b) Copy the X register to the B register.

c) Turn off the monitor level.

If the parameters are conforming to the SINTRAN standard
calling sequence (see Appendix A), some existing subroutines
can be used for the entry sequence: GETO0, GET1, GET2,
GET3, GET4 and GET5. These will move the parameters to the
data field, where the parameters can be reached using the
displacements DO0...D5.

On exit, the B register should be the same as the X register
on entry. Exit is then a jump to the monitor address RET.

Example:

Monitor call to add two integers.

FORTRAN: 1 = IPLUS (J,K)

Called subroutine:
YI9BEG
YOENT IPLUS

IPLUS, MON 170
EXIT
J9END

Monitor call routine, US0 corresponding to MON 170:

usao, JPL I (GET2 % GET 2 PARAMETER
% VALUES, X=:B

LDA DO,B
ADD D1,B
STA ZAREG,B
JMP 1 (RET

YFILL
ND-60. 050. 03

.2 User Start Sequence

When the SINTRAN III system is started, an initializing RT
program calls a user subroutine USTAR. In this routine
the user can do his special initializing, or he can start his
own RT program.

Example:
USTAR, LDA RTPR

JAZ NOPR
LDA (PAR
MON 100 % RT

NOPR, EXIT
PAR, RTPR
RTPR, OWNPR

JFILL

User Restart Sequence

The restart routine being executed after power fail will call
a user routine, where the user can for instance initialize
process output values. This subroutine is called before the
interrupt system is turned on.

Example:

UREST, LDA I (PINI
10X PROCU % SOME PROCESS

% OUTPUT
EXIT

YFILL

ND-60. 050. 03

APPENDIX G

MONITOR CALL NUMBERS

The octal number can be used as an argument in the MON
instruction.

RTEXT

INBT

OUTBT

ECHOM

BRKM

RDISK

WDISK

RPAGE

WPAGE

TIME

Not used

CIBUF

COBUF

Not used

OPEN (old version)

CLOSE

Not used

DBRK

GBRK

SBRK

OPEN

DMAC BREAKP.

Not used

ERMSG

QERMS

ISIZE

‘OSIZE
Not used

SMAX

SETBY

REABT

SBSIZ

SETBC

RT

SET

ABSET

INTV

HOLD

ABORT

CONCT

107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146-167
170
171
172
173
174
175
176
177

ND-60. 050. 03

DSCNT

PRIOR

UPDAT

CLADJ

CLOCK

Not used

FIX

UNFIX

RFILE

WFILE

WAITF

RESRV

RELES

PRSRV

PRLS

DSET

DABST

DINTV

ABSTR

MCALL

MEXIT

RTEXT

RTWT

RTON

RTOFF

WHERE

IOSET

ERRMON

RSIO

MAGTP

ACM

Not used

USo

US1

Us2

US3

US4

UsS5

USé6

US7

~a

=
9

