
N 0 R D BASIC

Reference Manual

./

M

i

'

BASICN 0 R D

Reference Manual

'

ii

REVISION RECORD
NotesRevision

1/73 Original Printing
1/75 Total Revision

Publ. No. ND-60.040.02
January 1975

A/S NORSK DATA-ELEKTRONIKK
LOrenveien 57, Oslo 5 - Tlf.: 21 73 7l

iii .

TABLE OF CONTENTS

—00O00—

Page:Chapters:

1-1INTRODUCTION

What is a Computer ?
What is a Program?
What is BASIC?

1
1-11.1
1-11.2
1-21.3

2-1A BASIC PRIMER

An Example
Formulas

Numbers
Variables
Relational Operators

2
i 2-12. 1

2-52. 2
2-72. 2.1

2. 2. 2
2.2.3
2. 2.4

2-7
2-7
2-7PI
2-82.3 Loops

Arrays
Use of the System
Errors and Debugging
Summary of elementory BASIC Statements

2-10
2-12
2-14

2.4
2.5
2.6

2-182.7
2-18LET2.7.1

2.7. 2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7
2.7.8
2.7.9
2.7.10

2-19READ and DATA
PRINT
GO TO
IF-THEN or IF-GO TO
FOR and NEXT

2-20
2-21
2-21
2-22

1 2-23DIM
2-23
2-23

STOP
END
The ON. . . GO TO Statement' 2-23

INTERACTIVE USE OF THE BASIC SYSTEM

Initializing the User Terminal
Entering the BASIC System
NEW, OLD and SCRATCH
Naming of Programs

Saving and Retrieving BASIC Programs
The SAVE Command
The GET Command
Executing Your Program

The RUN Command
Terminating Execution

3-13
3-13. 1
3-23.1.1

3.1.2
3.1.3

3-2
3-3

3. 2 3-3

3.2.1
3.2.2

3-3
3-4
3-53.3
3-53.3.1

3.3.2 3-6

ND-60. 040. 02

iv

Page:Chapters:

3-73.4 Editing Programs
The DELETE Command
The LIST Command
Changing a Line
The RENUMBER Command
Reserving Peripherals
The TABLE Command
The DIGIT Command
The CHAIN Statement

Terminating

3-73.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4. 7
3.4.8

3-7
3-8
3-«
3-6
3-9
3-9
3-10

3-103. 5

4-1MORE ABOUT BASIC

Functions

Integral Function
SGN
Pseudo-Random Number Generator

Arithmetic Expressions in BASIC

Arithmetic Symbols in BASIC
Exponentiation in BASIC
More about LET

Other useful Statements

RANDOM
INPUT
REM
RESET
Representations of Strings

Assigning Values to Strings and String Comparisons
Relaxation of Requirement for Quotation Marks
The RESET Statement
String Lists and String Tables
Standard Functions Regarding Strings
An Operator for Combining Strings
Formatting Output

Commas in PRINT Lists
Vacuous PRINT Statements
Packed PRINT Lists
Printing Formats for Numbers and Strings
The TAB Function
The MARGIN Statement
The PRINT USING Statement
Input Control

The LIN PUT Statement
The MAT INPUT Statement

4
4-14.1
4-14.1.1

4.K2
4.1.3

4-1
4-2
4-24.2
4-34.2.1

4.2.2
4.2.3

4-4
4-5

4-54.3
4-54.3.1

4.3.2
4.3.3
4.3.4

4-6
4-6
4-7

4-84.4
4-84.4.1

4. 4. 2
4.4.3
4.4.4
4.4.5
4.4.6

4-9
4-10
4-10
4-13
4-12

4.5 4-13
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5. 6
4. 5. 7

4-13
4-14
4-15
4-15
4-17
4-17
4-18

4.6 4-25

4.6.1
4 6 2

4r25
4-25

ND-60.040 02

V

Page:Chapters:

4-27

4-27
4-27

4.7 Program Organization Statements

The Apostrophe Convention
More about the REM Statement

Subroutines

The GOSUB and RETURN Statements
The ON. . .GOSUB Statement
The IF. . .GOSUB Statement

The DEF Statement

One Line DEF Statements
Multiple Line DEF Statements

4.7.1
4.7. 2

4-284.8

4-284.8.1
4.8. 2
4.8.3

4-29
4-30

4-304.9
4-30
4-31

4.9.1
4.9. 2

i

5-1FILES IN BASIC
Introduction
Terminal Format Files

Reading a Terminal Format File from a Program
Writing a Terminal Format File from a Program
The Use of the Terminal Itself as a File
Other Input/Output Statements
Margins on Terminal Format Files

Random Access Files

Using a Random Access File

The OPEN# and CLOSE# Statements

5

5-15.1
5-15. 2
5-15. 2. 1

5. 2. 2
5. 2. 3
5. 2. 4
5. 2. 5

5-5
5-6
5-8
5-8

5-95. 3

5-95. 3 1
5-105.4

ARRAY MANUPULATIONS 6-16

Initialization Statements
Changing Dimensions using MAT Statements
Arithmetic Operations
Functions
Input and Output Operations

The MAT READ and MAT PRINT Statements
The MAT INPUT and MAT LINPUT Statements
MAT Statements and Files

Examples using MAT Statements

Example One
Example Two

Simulating an N-Dimensional Array
The Row Zero and Column Zero

6-16. 1
6-26. 2
6-36.3
6-46.4
6-66.5

6-66.5.1
6.5.2
6.5.3

6-S
6-10

6-106. 6

6-10
6-11

6. 6.1
6.6. 2

6-13
6-14

6.7
6. 8

iND-60. 040. 02

! vi

Page:Chapters:

7-17 MISCELLANEOUS INFORMATION
Roundoff Errors
Some Specifications and Limits
Entering the BASIC System
Using NORD TSS
Using the BASIC Time Sharing System
NORD BASIC One User System
BASIC Error Messages
Compiler Error Messages
Run Time Error Messages
Mathematical Library Error Messages
Error Messages from NORD TSS
Other Messages printed by the System
ASCR Character Set
Line Edit Commands
The LIB Command
The SIZE Command

7-17.1
7-27.2
7-27.3
7-27.3.1

7.3.2
7.3.3

7-3
7-3

7-47.4
7-57.4.1

7.4.2
7.4.3
7.4.4
7.4.5

7-6
7-8
7-9
7-9
7-10
7-13
7-14
7-14

7.5
7.6
7.7
7.8

indices:

L CALLING ASSEMBLY AND FORTRAN ROUTINES
Introduction
Description
Subroutine Name
Parameters
Usage
Calling a FORTRAN Subroutine
Calling a MAC Subroutine
New Error Messages
Program Examples

A-l
A-lA.2

A.2.1
A.2.2

A-2
A-2

A.3 A-4
A. 3.1
A. 3. 2

A-4
A-6

A.4 A-7
A.5 A-8

STATEMENTS, COMMANDS and FUNCTIONS listed
alphabetically vii

—ooOoo—

ND-60. 040. 02

vii

STATEMENTS, COMMANDS AND FUNCTIONS LISTED
ALPHABETICALLY

Statements Page:

CALL A-2

CHAIN

CLOSE#

DATA

DEF

3- 10

5-2, 5-10

2-19

4- 30, 4-31

2-10, 2-23, 4-11DIM
5-9DIM#
2-23END
4-31

2-10, 2-22

4-28

FNEND

FOR

GOSUB
2-21GOTO

2-21, 4-30IF
4-6INPUT

INPUT#

LET

5-2

2-18, 4-5. 4-8, 4-11

4-25LINPUT

LINPUT#

MARGIN

MARGIN#

MAT

5-8

4-17

5-8

6-1

MAT INPUT

MAT INPUT#

MAT LINPUT

MAT LINPUT#

MAT PRINT
MAT PRINT#

4- 25, 6-8

5- 8. 6-10

6-8

5-8, 6-10
6-6

5-8. 6-10

MAT READ 6-6

NEXT 2-10, 2-22

2-23, 4-29ON

:

ND-60. 040. 02

' in

P;»ge:8 1 to moots

5-2, 5-10

2-20, 4-13. 4-14, 4-15

4-18

OFENfr

PRINT

PRINT USING

PRINT# 5-5

4-2. 4-5RANDOM
2-10RE Al
l-5. 4-27REM
4-7. 4-10RESET

RESETS

RESET*

RETURN

4.-10

l-l 0

4- 28■

2-18. 2-23STOP

C o m m ands

A-lA LOAD
8-10BYE

CON
DELETE

3-5

3-7

DIGIT 3-0

GET 3-4

LET 2-18
LIB 7-14
LIST 3-7

MLOAD A-l
NAME 3-3

NEW 3-2

OLD 3-2

PRINT 2-18
RELEASE 3-8
RENUMBER 3-8

RESERVE 3-8
RUN 3-5

ND-60.040. 02

ix

Page:Commands

3-3SAVE

SCRATCH

SIZE

3-2

7-14

3-9TABLE

Functions

2-6ABS
4-11ASC
2-6ATN

CHR$ 4-11

2-6COS
6-5DET

EXP 2-6

4-1INT
4-11LEN
2-6LG10

LOG 2-6

6-9NUM

RND

SEG$

4-2

4-11

4-10SGN
2-6SIN
2-6SQR
4-17TAB
2-6TAN

ND-60. 040. 02

i

f

1

1-1

1 INTRODUCTION

1.1 What is a Computer?

A computer is a very simple and at the same time a very complex
machine. On the one hand, it merely follows elementary instructions
to carry out such simple tasks as adding two numbers or determining
if a given number is negative. These simple tasks also include
’’looking” at the next character in a string of alphabetic characters
and other nonnumeric activities.

On the other hand, a modern electronic digital computer must be
surrounded by a number of storage devices and input-output mechanisms
which supply it with tasks to perform, store the results of its computa
tions, and present these results in a convenient form for evaluation or
future use. A computer performs its work so fast that these peripheral
devices are needed to correlate the many tasks the computer is capable
of performing.

What is a Program?1.2

As noted above, a computer merely carries out simple instructions,
albeit at very high speeds. It works so quickly that human beings can
not be directly involved in making more than a small fraction of the
decisions that arise in carrying out a complicated task, so that almost
ail situations must be contemplated in advance. Also, in most cases the
bulk of the data upon which the calculations are made must be accurately
prepared in advance and entered into the computer so that the calculations
may proceed at full speed without having to wait for more data. Thus, a
set of instructions for performing a task and the relevant data must be
prepared in advance and supplied to the computer. The set of instructions
for carrying out a task is called a program. One can think of a program
as being a recipe for coming up with the solution to a problem, given the
data.

Any mistakes in a program render it just about useless. As with
recipes for baking cakes, program errors are of two types. First, one
can have errors of form or grammar. These would include misspellings
and punctuation. Second, one can have substantive errors even though
the form is correct. In the case of recipes for baking cakes, misspelling
and typographical errors are examples of errors of form; some of these
may make the recipe unreadable. An example of a substantive error
would be a direction to use baking soda instead of baking powder.

Since a computer has much less intelligence or common sense than a
human being, programs for it must adhere strictly to rules of form or
grammar. These rules are particularly complicated for the language
that the physical equipment of the computer is constructed to obey. This
language is called machine language, and its difficult nature has led
computer specialists to invent, other more easily used languages that can
be converted or translated to machine language.

ND-60. 040. 02

1-2

1.3 What is BASIC?

One such language which is easy to learn and to use is BASIC.
BASIC was first developed in 1963-64 at Dartmouth College, and
has since then been revised several times. An advantage of BASIC
is that its rules of form and grammar are quite simple and easy to
learn. It is the purpose of this manual to present the language BASIC
and to show how it is used to solve simple problems and deal with
many situations common in computing. More complicated problems
can be solved by combining the simpler steps shown here.

ND-60. 040. 02

2-1

A BASIC PRIMER2

A n E xample2.1

The following example is a complete BASIC program for solving a
system of two simultaneous linear equations in two variables:

ax + by = c
dx + ey = f

and then solving two different systems, each differing from this system
only in the constants c and f.

You should be able to solve this system, if ae - bd is not equal to 0, to
find that:

af - cd
ae - bd

ce - bf and y =x = ae - bd

If ae - bd = 0, there is either no solution or there are infinitely many,
but there is no unique solution. If you are rusty at solving such systems,
take our word for it that this is correct. At the moment, we want you to
understand the BASIC program for solving the system.

Study this example carefully - in most cases the purpose of each line in
the program is self-evident - and then read the commentary and explana
tion.

10 READ A, B, D, E
LET G = A *E-B* D
IF G = 0 THEN 65
READ C, F
LET X = (C* E~B *F)/G
LET Y = (A* F-C *D)/G
PRINT X, Y
GO TO 30
PRINT "NO UNIQUE SOLUTION"
DATA 1, 2, 4
DATA 2, -7, 5
DATA 1,3,4, -7
END

15
20
3G
37
42
55
60
65
70
80
85
90

We immediately observe several things about this sample program.
First, we see that the program uses only capital letters, since the
teletypewriter has only capital letters.i

A second observation is that each line of the program begins with a
number. These numbers are called line numbers and serve to identify
the lines, each of which is called a statement. Thus a program is made
up of statements, most of which are instructions to the computer.
Line numbers also serve to specify the order in which the statements
are to be performed by the computer. This means that you may type
your program in any order. Before the program is run, the computer

ND-60. 040. 02

2-2

sorts out and edits the program, putting the statements into the order
specified by their line numbers. This editing process facilitates the
correcting and changing of programs, as we shall explain later.

A third observation is that each statement starts, after its line number,
with an English word. This word, denotes the type of the statement.
There are several types of statements in BASIC, nine of which are
discussed in this chapter. Seven of these nine appear in the sample
program of this section.

A fourth observation, not at all obvious from the program, is that spaces
have no significance in BASIC, except in messages enclosed in quotation
marks which are to be printed out, as in line number 65 on the previous
page. Thus, spaces may be used, or not used, at will to "pretty up" a
program and make it more readable. Statement 10 could have been typed
as 10READ A^B.^D.^E and statement 15 as 15LET G=A* E-B *D.

!

With this preface, let us go through the example step by step. The first
statement, 10, is a READ statement. It must be accompanied by one or
more DATA statements. When the computer encounters a READ state
ment while executing your program, it will cause the variables listed
after the READ to be given values according to the next available numbers
in the DATA statements. In the example, we read A in statement 10 and
assign the value 1 to it from statement 70 and, similarly with B and 2,
and with D and 4. At this point, we have exhausted the available data in
statement 70, but there is more in statement 80, and we pick up from it
the number 2 to be assigned to E.

We next go to statement 15, which is a LET statement, and first encounter
a formula to be evaluated. (The asterisk
multiplication.) In this statement we direct the computer to compute the
value of AE - BD, and to call the results G. In general, a LET statement
directs the computer to set a variable equal to the formula on the right
side of the equals sign. We know that if G is equal to zero, the system
has no unique solution. Therefore, we next ask, in line 20, if G is equal
to zero. If the computer discovers a "yes" answer to the question, it is
directed to go to line 65, where it prints "NO UNIQUE SOLUTION".
From this point, it would go to the next statement. But lines 70, 80 and
85 give it no instructions, since DATA statements are not "executed",
and it then goes to line 90 which tells it to "END" the program.

If the answer to the question "Is G equal to zero?" is "no", as it is in
this example, the computer goes on to the next statement, in this case
30. (Thus, an IF - THEN tells the computer where to go if the "IF"
condition is met, but to go on to the next statement if it is not met.)
The computer is now directed to read the next two entries from the DATA
statements, -7 and 5, (both are in statement 80) and to assign them to C
and F respectively. The computer is now ready to solve the system

x + 2y - -7
4x + 2y - 5

is obviously used to denoteit *n

!

ND-60. 040. 02

2-3

In statements 37 and 42, we direct the computer to compute the value
of X and Y according to formulas provided. Note that we must use
parentheses to indicate that CE - BF is divided by G; without parentheses,
only BF would be divided by G and the computer would let X = CE - BF/G.

The computer is told to print the two values computed, that of X and that
of Y, in line 55. Having done this, it moves on to line 60 where it is
directed back to line 30. If there are additional numbers in the DATA
statements, as there are here in 85, the computer is told in line 30 to
take the next one and assign it to C, and the one after that to F. Thus,
the computer is now ready to solve the system:

x + 2y - 1
4x + 2y = 3

As before, it finds the solution in 37 and 42 and prints them out in line
55, and then is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds
in line 85. It then proceeds to solve the system

x + 2y = 4
4x + 2y = -7

and to print out the solutions. It is directed back ag;iin to 30, but there
are no more pairs of numbers available for C and F in the DATA state
ment. The computer then informs you that it is out of data, printing on
the paper in your teletypewriter MRE i IN LINE 30".

RE 1 means Run time Error no. 1_. Run time errors (RE) are errors
detected during execution of a program whereas errors detected during
compilation of a program are called compile time errors and abbreviated
CE followed by a number. A complete error list is given in Chapter 7.

For a moment, let us look at the importance of the various statements.
For example, what would have happened if we had omitted line 55? The
answer is simple: the computer would have solved the three systems and
then told us when it was out of data. However, since it was not asked to
tell us (PRINT) its answers, it would not do it, and the solutions would be
the computer's secret. What would have happened if we had left out line
20? In this problem just solved nothing would have happened. But, if G
were equal to zero, we would have set the computer the impossible task
of dividing by zero, and it would tell us so, printing "RE 5 IN LINE 37".
If we had left out statement 60, the computer would have solved the first
system, printed cut the values of X and Y, and then gone to line 65 where
it would be directed to print "NO UNIQUE SOLUTION". It would do this
and then stop.

ND-60. 040. 02

2-4

One very natural question arises from the seemingly arbitrary numbering
of the statements: Why this selection of line numbers? The answer is
that the particular choice of line numbers is arbitrary, as long as the
statements are numbered in the order we want the machine to follow in
executing the program. We could have numbered the statements 1, 2,
3, 4,
would normally number the statements 10, 20, 30,
the numbers a certain distance apart so that we can later insert additional
statements if we find that we forgot them when we originally wrote the
program. Thus, if we find that we have left out two statements between
those numbered 40 and 50, we can give them any two numbers between
40 and 50 - say 44 and 46; and in the editing and sorting process, the
computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the data
elements in the DATA statements: Why were they placed as they were
in the sample program ? Here again the choice is arbitrary and we
need only to put the numbers in the order that we want them read (the
first for A, the second for B, the third for D, the fourth for E, the fifth
for C, the sixth for F, the seventh for next C, etc.). In place of the
three statements numbered 70, 80 and 85, we could have put

13, although we'do not recommend this numbering. We
130. We put

75 DATA 1, 2, 4, 2 -7, 5, 1, 3, 4, -7

or we could have written, perhaps more naturally,

70 DATA 1, 2, 4, 2
75 DATA -7, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the
various pairs of right-hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on
the teletypewriter.

.

10 READ A, B, D, E
15 LET G=A*E-B*D
20 IF G=0 THEN 65
30 READ C, F
37 LET X=(C * E -B* F)/G
42 LET Y=(A*F-C*D)/G
55 PRINT X, Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4
90 END
RUN

• ■■

if

-7

4 -5.5
6. 66667E-01

-3.66667

RE 1 IN LINE 30

1.66667E-01
3.83333

ND-60. 040. 02

*J-:>

After typing the program, we type RUN followed by a CARRIAGE
RETURN. Up to this point the computer stores the program and checks
the form of the statements. This process is called compiling. It is
the RUN command which directs the computer to execute your program.
The message out-of-data error code here may be ignored. However, in
some cases it indicates an error in the program: for more details,
see Section 2.7.2.

Formulas2.2

The computer can perform a great many operations; it can add, subtract,
multiply, divide, extract square roots, raise a number to a power, and
find the sine of a number (on an angle measured in radians), etc. - and
we shall now learn how to tell the computer to perform these various
operations and to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by-
evaluating formulas which are supplied in a program. These formulas
are very similar to those used in standard mathematical calculation, with
the exception that all BASIC formulas must be written on a single line.
Five arithmetic operations can be used to write a formula, and these are
listed in the following table:

Symbol Example

A + B

A - B

A * B

A / B

X t 2

Meaning
Addition (add B to A)

- Subtraction (subtract B from A)
Multiplication (multiply B by A)
Division (divide A by B)

2Raise to the power (find X)

+

We must be careful with parentheses to make sure that we group together
those things which we want together. We must also understand the order
in which the computer does its work. For example, if we type A + B*C*D,
the computer will first raise C to the power D, multiply this result by B,
and then add A to the resulting product. This is the same convention as
is usual for A BC^. If this is not the order intended, then we must use
the parentheses to indicate a different order. For example, if it is the
product of B and C that we want raised to the power D, we must, write
A + (B*C)f D; or, if we want to multiply A + B by C to the power D, we
write (A + B)* CtD. We could even add A to B, multiply their sum by C,
and raise the product to the power D by writing ((A + B** O* D. The order
of priorities is summarized in the following rules:

The formula inside parentheses is computed before the
parenthesized quantity is used in further computations.

1.

In the absence ot parentheses in a formula involving
addition, multiplication, and the raising of a number to
the power, vhe computer first raises the number to the
power, then performs the multiplication, and the addition
comes last Division has the same priority as multipli
cation, and subtraction the same as addition.

ND-60. 040. 02

2-r>

3. In the absence of parentheses in a formula involving
operations of the same priority, the operations are
performed from left to right.

The rules are illustrated in the previous example. The rules also tell
us that the computer, faced with A - B - C, will (as usual) subtract B
from A and then C from their difference; faced with A/B/C. it will
divide A by B and that quotient by C. Given A ♦ B f C. the computer
will raise the number A to the power B and take the resulting number and
raise it to the power C. If there is any question in your mind about
the priority, put in more parentheses to eliminate possible
ambiguities.

;

In addition to these five arithmetic operations, the computer can evaluate
several mathematical functions. These functions are given special 3-
letter English names as the following list shows:

InterpretationFunctions

Find the sine of X

Find the cosine of X
Find the tangent of X

Find the arctangent of X
Find e^

Find the natural logarithm of X (In X)
Find the absolute value of X (I X|)
Find the square root of X (V3T)
Find the common logarithm of X

Three other functions are also available in BASIC: I NT, RND, and SGN:
these are reserved for explanation in Chapter 4. In place of X. we may
substitute any formula or any number in parentheses following any of__ ~
these formulas. For example, we may ask the computer to find V4 + a
by writing SQR (4 + X t 3), or the arctangent of 3X - 2ex +8 by writing
ATN (3* X - 2 * EXP (X) + 8).

If, sitting at the teletypewriter, you need the value of (5/6)17
write the two-line program:

X interpreted
as a number, or
as an angle measu
red in radians.

SIN (X)
COS (X)
TAN (X)
ATN (X)
EXP (X)
LOG (X)
ABS (X)
SQR (X)
LG10 (X)

and you can

10 PRINT (5/6) f 17

20 END

and the computer will find the decimal form of this number and print it
out in less time than it took to type the program.

ND-60. 040. 02

2-7

2.2.1 Numbers

A number may be positive or negative and it may contain up to approx,
nine significant digits, but it must be expressed in decimal form. For
example, all of the following are numbers in BASIC: 2, -3, 675, 1234567.
-7654321 and 483.4156. The following are not numbers in BASIC: 14/3
and V7\ We may ask the computer to find the decimal expression
14/3 and V7, and to do something with the resulting number, but we
may not include either in a list of DATA. We gain further flexibility
by use of the letter E, which stands for "times ten to the power”. Thus,
we may write . 00123456789 in a form acceptable to the computer in any
of several forms: . 123456789E-2 or 123456789E-11 or 1234. 56789E-6.
We may write ten million as 1E7 (or 1E+7) and 1965 as 1.965E3 (or
1.965E+3). We do not write E7 as a number, but must write 1E7 to
indicate that it is 1 that is multiplied by 10'.

Variables2. 2.2

A variable in BASIC is denoted by any letter, or by any letter followed
by a single digit. Thus, the computer will interpret E7 as a variable
along with A, X, N5. 10 and Ol. A variable in BASIC stands for a
number, usually one that is not known to the programmer at the time the
program was written. Variables are given or assigned values by LET
READ or INPUT statements. The value so assigned will not change
until the next time a LET. READ or INPUT statement is encountered with
a value for that variable. However, all variables are set to zero
before a RUN. Thus, it is not necessary to assign a value to a variable
before using the variable in a computation.

2. 2.3 Relational Operators

Six other mathematical symbols are provided for in BASIC, symbols o.
relation, and these are used in IF - THEN statements where it is
necessary to compare values. An example of the use of these symbols
was given in the sample program in Section 2.1

An3r of the following six relations may be used:
Symbol Example Meaning

A = B
A <B

Is equal to (A is equal to B)
Is less than (A is less than B)
Is less than or equal to (A is less
than or equal to B)
Is greater than (A is greater than B)
Is greater than or equal to (A is
greater than or equal to B)
Is not equal to (A is not equal to B)

or - -< A <: - B<

A > B>
> = or = > A > B

i

!<■ > or > < A < .> B

PI2. 2.4
The symbol PI is a constant (3.14159265) which may be used in any
arithmetic expression.

ND-60.040.02

2-8

2.3 Loops

We are frequently interested in writing a program in which one or
more portions are performed not just once but a number of times,
perhaps with slight changes each time. In order to write the simplest
program, the one in which this portion to be repeated is written just
once, we use the programming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and
explained by two programs for the simple task of printing out a table
of the first 100 positive integers together with the square root of each.
Without a loop, our program would be 101 lines long and read.

10 PRINT 1, SQR(l)
20 PRINT 2, SQR(2)
30 PRINT 3, SQR(3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the
same table with far fewer lines of instruction, 5 instead of 101:

10 LET X = 1
20 PRINT X, SQR (X)
30 LET X = X + 1
40 IF X<= 100, THEN 20
50 END

Statement 10 gives the value of 1 to X and "initializes" the loop. In line
20 both 1 and its square root are printed. Then, in line 30, X is increased
by 1, to 2. Line 40 asks whether X is less than or equal to 100; an
affirmative answer directs the computer back to line 20. Here it prints
2 and V2~» and goes to 30. Again X is increased by 1, this time to 3, and
at 40 it goes back to 20. This process is repeated, line 20 (print 3 and
V5), line 30 (X = 4), line 40 (since 4 ^ 100 go back to line 20), etc. -

until the loop has been traversed 100 times. Then after it has printed
100 and its square root, X becomes 101. The computer now receives a
negative answer to the question in line 40 (X is greater than 100, not less
than or equal to it), does not return to 20, but moves on to line 50, and
ends the program. All loops contain four characteristics; initialization
(line 10), the body (line 20), modification (line 30), and an exit test
(line 40). Because loops are so important and because loops of the type
just illustrated arise so often, BASIC provides two statements to specify
a loop even more simple. They are FOR and NEXT statements, and
their use is illustrated in the program:

:

10 FOR X = 1 TO 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

ND-60. 040. 02

2-9

In line 10, X is set equal to 1, and a test is set up, like that of line 40.
Line 30 carries out two tasks: X is increased by 1, and the test is
carried out to determine whether to go back to 20 or to go on.
lines 10 and 30 take the place of lines 10, 30 and 40 in the previous
program - and they are easier to use.

Note that the value of X is increased by 1 each time we go through the
loop. If we wanted a different increase, we could specify it by writing

Thus

10 FOR X = 1 TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop,
6 to X on the second time through, 11 on the third time, and 96 on the
last time. Another step of 5 would take X beyond 100, so the program
would proceed to the end after printing 96 and its square root. The STEP
may be positive or negative, and we could have obtained the first table,
printed in reverse order, by writing line 10 as

10 FOR X = 100 TO 1 STEP -1.

In the absence of a STEP clause, a step size of fl is assumed.

More complicated FOR statements are allowed. The initial value, the
final value, and the step size may all be formulas of any complexity.
For example, if N and Z have been specified earlier in the program,
we could write

FOR X = N + 7* Z TO (Z - N) /3 STEP (N -4*Z) /10

For a positive step-size, the loop continues as long as the control
variable is algebraically less than or equal to the final value. For a
negative step-size, the loop continues as long as the control variable
is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative
step size), then the body of the loop will not be performed at all, but the
computer will immediately pass to the statement following the NEXT.
For example, the following program for adding up the first n integers
will give the correct result 0 when n is 0.

READ N
LET S = 0
FOR K = 1 TO N
LET S = S + K
NEXT K
PRINT S
GO TO 10
DATA 3, 10, 0
END

10
20
30
40
50
60
70
90
99

ND-60. 040. 02

5

2-10

It is often useful to have loops within loops. These are called nested
loops and can be expressed with FOR and NEXT statements. However,
they must actually be nested and must not cross, as the following
skeleton examples illustrate:

Allowed Allowed

---- FOR X
—FOR Y

pFOR Z
lnext z

FOR W
NEXT W

—NEXT Y
FOR Z
NEXT Z

------NEXT X

— FOR X
pFOR Y
l-NEXT Y

— NEXT X
Not allowed

-FOR X
FOR Y
NEXT X

1—NEXTY

:rt
Arrays

In addition to the ordinary variables used by BASIC, there are variables
which can be used to designate the elements of an array. These are used
where we might ordinarily use a subscript, for example the coefficients
of a polynomial [a , a a............] or the elements of a matrix [b., .]
The variables whicn weusdrin BASIC consist of a single letter, whic&Ve
call the name of the array, followed by the subscripts in parentheses.
Thus, we might write A(0), A(l), A(2), etc. , for the coefficients of the
polynomial and B(l,l), B(l,2), etc. , for the elements of the matrix.

2.4

We can enter the array A(0), A(l), A(2),
simply by the lines:

A (10) into a program very

10 FOR I = 0 TO 10
20 READ A (I)
30 NEXT I
40 DATA 2, 3, -5, 5, 2.2, 4, -9, 123, 4, -4, 17

We need no special instruction to the computer if no subscript greater
than 10 occurs. However, if we want larger subscripts, we must use
a DIM statement to indicate to the BASIC system that it has to save extra
space for the array. When in doubt, indicate a larger dimension than you
expect to use. For example, if we want a list of 15 numbers entered, we
might write

10 DIM A (25)
20 READ N
30 FOR I = 1 TO N
40 READ A (I)
50 NEXT I
60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

ND-60. 040. 02

2-11

Statements 20 and 60 could have been eliminated by writing 30 as
FOR I = TO 15, but the form as typed would allow for the lengthening
of the array by changing only statement 60, so long as it did not exceed
25.

We would enter a 3 x 5 array into a program by writing:

10 FOR I = 1 TO 3
20 FOR J = 1 TO 5
30 READ B (I, J)
40 NEXT J
50 NEXT I
60 DATA 2, 3, -5, -9, 2
70 DATA 4, -7, 3, 4, -2
80 DATA 3, -3, 5, 7, 8

Here again, we may enter an array with no dimension statement, and it
will handle all the entries from B(0,0) to B(10,10). If you try to enter
an array with a subscript greater than 10, without a DIM statement, you
will get an error message telling you that you have a subscript error.
This is easily rectified by entering the line:

5 DIM B (20,30)

if for instance, we need a 20-by-30 table.

The single letter denoting an array name may also be used to denote
a simple variable without confusion. However, the same letter may not
be used both with a single subscript and with a double subscript in the
same program. The form of the subscript is quite flexible, and you
might have the array element B(I,K) or Q(A(3,7), B -C).

Shown below is a list and run of a problem which uses both a singly and
a doubly subscripted array. The program computes the total sales of
each of five salesmen, ail of whom were selling the same three products.
The array P gives the price/item of the three products and the array S
tells how many items of each product each man sold. You can see from
the program that product no. 1 sells for #1.25 per item, no. 2 for #4.30
per item, and no. 3 for # 2.50 per item; and also that salesman no. 1
sold 40 items of the first product, 10 of the second, and 35 of the third,
and so on. The program reads in the sales array in lines 40 - 80, using
data in lines 910 - 930. The same program could be used again, modifying
only line 900 if the price changes, and only lines 910 - 930 to enter the
sales in another month.

This sample program did not need a dimension statement, since the
computer automatically saves enough space to allow all subscripts to
run from 0 to 10. A DIM statement is normally used to save more space.
But in a long program, requiring many small arrays, DIM may be used
to save less space for arrays, in order to leave more for the program.

ND-60. 040. 02

2-12

Since the DIM statement is used to save space for arrays the DIM
statement must be executed before the space is being used. Normally
the DIM statements will be placed near the beginning of the program.

10 FOR 1=1 TO 3
20 READ P(I)
30 NEXT I
40 FOR 1=1 TO 3
50 FOR J=1 TO 5
60 READ S(I, J)
70 NEXT J
80 NEXT I
90 FOR J=1 TO 5

100 LET S=0
110 FOR I»1 TO 3
120 LET S=S+P(I)*S(I, J)
130 NEXT I
140 PRINT "TOTAL SALES FOR SALESMAN"; J; "$";S
150 NEXT J
900 DATA 1.25, 4.30, 2.50
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16, 3, 21, 8
930 DATA 35, 47, 29, 16, 33
999 END

RUN
TOTAL SALES FOR SALESMAN 1 g 180. 5
TOTAL SALES FOR SALESMAN 2 g 211.3
TOTAL SALES FOR SALESMAN 3 gf 131.65
TOTAL SALES FOR SALESMAN 4 g 166. 55
TOTAL SALES FOR SALESMAN 5 g 169. 4

DONE

Use of the System2.5

Now that we know something about writing a program in BASIC, how do
we set about using a teletypewriter to type in our program and then have
the computer solve our problem?

First, ascertain that the BASIC system is present. If no, the system
is loaded as explained in Section 7. 3. When the computer types READY
you should begin to type your program. Make sure that each line begins
with a line number which contains no non-digit characters. Be sure to
press the CARRIAGE RETURN key at the completion of each line. Spaces
may be inserted at any point in the line, including before the line numbers.

If, in the process of typing a statement, you make a typing error and
notice it immediately, you can correct it by pressing the backwared arrow
M , ". This will delete the preceding character, and you can then type
in the correct character. Pressing this key a number of times, say n,

ND-60. 040. 02

2-13

will erase from this line the n last characters. To delete all of the
present line, press CTRL Q. (Press the key marked CTRL and type
Q.) Programs or data may be annotated by typing the remark and
then deleting the line (as far as the system is concerned) with CTRL Q.
BASIC types " \ " to show that a line has been deleted.

When a line is finished, you press the return key. Then the statement
is analyzed by the computer and if any syntax error is found, an error
message is printed. The computer will now check the next input
character and if you print a question mark, the whole erroneous line
will be printed with minor errors underlined and with an arrow pointing
to where the computer stopped compiling.

After typing your complete program, you type RUN, press the CARRIAGE
RETURN key, and hope. If the program is one which the computer can
run, it will then run it and print out any results for which you have asked
in your PRINT statements. This does not mean that your program is
correct, but that it has no errors of the type known as "grammatical errors".
If it had errors of this type, the computer would have printed an error code
as soon as the error was detected during the typing of the program. Errors
detected after RUN are structural (loop nesting, matching GOSUB and
RETURN) or arithmetical errors. A list of the error codes is given in
Chapter 7 together with the interpretation of each.

If you are given an error message, you can correct the error by typing
a new line with the correct statement. If you want to eliminate the
statement on line 110 from your program, you can do this by typing 110
and then CARRIAGE RETURN. If you want to insert a statement between
those on lines 60 and 70, you can do this by giving it a line number
between 60 and 70.

If it is obvious to you that you are getting the wrong answers to your
problem, even while the computer is running, you can type ESC and the
computing will cease. It will type BREAK and you can start to make
your corrections. If you are in serious trouble, use the break character
(ESC) and type SCRATCH. When the system is ready to accept a new
program, READY will be typed.

A sample use of the system is shown below.

10 FOR N=1 TO 7
20 PRINT N, SQR(N)
30 NEXT N
50 END

RUN
11
1.41421
1.73205

2
3
4 2

2.23607
2.44949
2.64575

5
6
7

DONE

ND-60. 040. 02

2-14

Errors and Debugging

It may occasionally happen that the first run of a new problem will be
free of errors and give the correct answers, but it is much more
likely that errors will be present and will have to be corrected.
Errors are of two types: errors of form (or syntax errors) which
prevent the running of the program, and logical errors in the program
which cause the computer to produce wrong answers or no answers at

2.6

all.

Errors of form will cause error codes to be printed, and the various
error codes are listed and explained in Chapter 7. Logical errors
are often much harder to uncover, particularly when the program gives
answers which seem to be nearly correct. In either case, after the
errors are discovered, they can be corrected by changing lines, by
inserting new lines, or by deleting lines from the program. As indicated
in the last section, a line is changed by typing it correctly with the same
line number; a line is inserted by typing it with a line number between
those of two existing lines; and a line is deleted by typing its line number
and pressing the CARRIAGE RETURN key. Notice that you can insert
a line only if the original line numbers are not consecutive integers.
For this reason, most programmers will start out using line numbers
that are multiples of five or ten, but that is a matter of choice.

These corrections can be made at any time - whenever you notice them -
either before or after a run. Since the computer sorts lines out and
arranges them in order, a line may be retyped out of sequence. Simply
retype the offending line with its original line number.

As with most problems in computing, we can best illustrate the process
of finding the errors (or ’'bugs") in a program, and correcting (or "de
bugging") it, by an example. Let us consider the problem of finding that
value of X between 0 and 3 for which the sine of X is a maximum, and
ask the machine to print out this value of X and the value of its sine. If
you have studied trigonometry, you know that 7f/2 is the correct value;
but w-e shall use the computer to test successive values of X from 0 to 3,
first using intervals of . 1, then .01, and finally of .001. Thus, we shall
ask the computer to find the sine of 0, of . 1, of . 2, of . 3............of 2. 8,
2.9, and of 3, and to determine which of these 31 values is the largest.
It will do it by testing SIN(O) and SIN(. 1) to see which is larger, and
calling the largest of these two numbers M. Then it will pick the larger
of M an SIN(. 2) and call it M. This number will be checked against
SIN(. 3), and so on down the line. Each time a larger value of M is found,
the value of X is "remembered" in X0. When it finishes, M will have
been assigned to the largest value. It wall then repeat the search, this
time checking the 301 numbers 0, .01, .02, .03,___ , 2.98, 2.99, and
3, finding the sine of each and checking to see which has the largest sine.
At the end of each of these three searches, we want the computer to
print three numbers: the value X0 which has the largest sine, the sine
of that number, and the interval of search.

i

ND-60. 040. 02

2-15

Before going to the teletypewriter, we write a program; let us
assume that it is the following:

10 READ D
20 LET X0 = 0
30 FOR X = 0 TO 3 STEP D
40 IF SIN (X)<- M THEN 100
50 LET X0 =X
60 LET M = SIN (X0)
70 PRINT X0, X, D
80 NEXT X0
90 GO TO 20

100 DATA .1, .01, .001
110 END

We shall list the entire sequence on the teletypewriter and make
explanatory comments.

NEW
NEW PROGRAM NAME — MAXSIN
READY

10 READ D
20 LWR X0 = 0

CE11
20 LET X0 = 0
30 FOR X = 0 TO 3 STEP D
40 IF SINE <- (X) <- <-<£= M THEN 100
50 LET X0 = X
60 LET M = SIN (X)
70 PRINT X0, X, D
80 NEXT Z«- X0
90 GO TO 20

100 DATA .1, .01, .001
110 END
RUN

RE 13 IN LINE 80

A message indicates that LET was mistyped in line 20, so we retype it,
this time correctly.

Notice the use of the back arrows to erase a character in line 40,
which should have started IF SIN (X) etc. , and in line 80.

ND-60. 040. 02

2-16

The error message RE13 indicates a FOR statement without a NEXT.
Upon checking we see that the variable in the FOR and NEXT are
different, so we correct statement 80. In looking over the program,
we also notice that the IF - THEN statement in 40 directed the computer
to a DATA statement and not to line 80 where it should go.

80 NEXT X
40 IF SIN (X) < = M THEN 80
RUN

0.10.1 0.1
0.10.20.2
0.10.30.3

BREAK

M has never been assigned an initial value and is assumed to be zero.
We decide to give it a value less than the maximum value of the sine,
say -1.

20 LET M = -1
RUN

0.10 0
0.1 0.10.1
0.2 0.2 0.1

BREAK

This is incorrect. We are having every value of X0,X, and the interval
size printed, so we direct the machine to cease operations by typing ESC
even while it is running. Notice that the ESC does not print, but the word
BREAK is printed.

We fix this by moving the PRINT statement outside the loop. Typing 70
delete that line, and line 85 is outside of the loop. We also realize that
we want M printed and not X.

70
85 PRINT X0, M, D
RUN
1.6 0.19. 99574E-01

9. 99574E-011.6 0.1
BREAK

Of course, line 90 sent us back to line 20 to repeat the operation and
not back to line 10 to pick up a new value for D. We also decide to put
in headings for our columns by a PRINT statement.

90 GO TQ 10
5 PRINT "X VALUE", "SIN", RESOLUTION"
CE 13 ?
5 PRINT "X VALUE", "SIN", RESOLUTION"

t

ND-60. 040. 02

2-17

There is an error on our PRINT statement. As we do not see it
immediately, we type a question mark. Following the arrow the
debugging is easy; no left quotation mark for the third item.

Retype line 5, with all of the required quotation marks.

5 PRINT "X VALUE”, "SIN", "RESOLUTION"
RUN

RESOLUTIONX VALUE SIN
0. 11.6 9.99574E-01

1.57
1.571

1 0.01
1 0.001

RE 1 IN LINE 10

Exactly the desired results. Of the 31 numbers (0, .1, .2, .3, ..
2.8, 2.9, 3) it is 1.6 which has the largest sine, namely .999574.
Similarly for finer subdivisions.

Having changed so many parts of the program, we ask for a list of the
corrected program. Listing the corrected program, from time to time,
is an important part of debugging. Using LISTH will list the program
name as a header:

LISTH

MAXSIN
5 PRINT "X VALUE", "SIN", "RESOLUTION"
10 READ D
20 LET M=-l
30 FOR X=0 TO 3 STEP D
40 IF SIN(X) < = M THEN 80
50 LET X0=X
60 LET M=SIN(X)
80 NEXT X
85 PRINT X0.M.D
90 GO TO 10
100 DATA .1, .01, .001
110 END

SAVE F-P

The program is saved for later use by punching it on the Fast Punch.
This tape may be read from the Tape Reader on some later occasion.

In solving this problem, there is a common device which we did not
use, namely the insertion of a PRINT statement when we wonder if
the machine is computing what we think we asked it to compute. For
example, if we wondered about M, we could have inserted 65 PRINT M,
and we would have seen the values.

ND-60. 040. 02

2-18

With harder problems we can use the STOP statement, 58 STOP.

With STOP, execution is halted and control is returned to Teletype.
Then we can change the program, or check the value of the variables
using the PRINT command. (PRINT without statement number.)

Summary of elementary BASIC Statements2.7

In this section we shall give a short and concise description of each of
the types of BASIC statements discussed earlier in this chapter and add
one to our list. In each form, we shall assume a line number, and shall
use brackets to denote a general type. Thus, [variable] refers to any
variable, which is a single letter, possibly followed by a single digit.

2.7.1 LET

This statement is not a statement of algebraic equality, but rather a
command to the computer to perform certain computations and to assign
the answer to a certain variable. Each LET statement is of the form:
LET [variable] = (formula] . More generally, several variables may
be assigned the same value by a single LET statement.

Examples: (of the first type):

i00 LET X=X+1
259 LET W7=(W-X4T3)* (Z-A/(A-B))-17

(of the second type):

50 LET X=Y3=A(3,1)=1
90 LET W=Z=3*X -4*Xt2

ND-60. 040. 02

2-19

2.7.2 READ and DATA

We use a READ statement to assign to the listed variables values
obtained from a DATA statement. Neither statement is used without
one of the other type. A READ statement causes the variables listed
in it to be given, in order, the next available numbers in the collection
of DATA statements. Before the program is run, the computer takes
all of the DATA statements in the order in which they appear and create
a large data block. Each time a READ statement is encountered any
where in the program, the data block supplies the next available number
or numbers. If the data block runs out of data, with a READ statement
still asking for more, it is assumed that the program is done and we get
an out-of-data error code.

Since we have to read in data before we can work with it, READ state
ments normally occur near the beginning of a program. The location of
DATA statements is arbitrary, as long as they occur in the correct order
A common practice is to collect all DATA statements and place them
just before the END statement.

Each READ statement is of the form:

READ [sequence of variables]

and each DATA statement is of the form:

DATA [sequence of numbers]

Examples:

150 READ X, Y, Z, XI, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B(K)
263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R (I, J)
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7
and y/3~ are formulas, not numbers.

ND-60. 040. 02

2-20

2.7.3 PRINT

The PRINT statement has a number of different uses and is discussed
in more detail in Chapter 3. The common uses are:

a) To print out the result of some computations.

b) To print out verbatim a message included in
the program.

c) A combination of the two.

d) To skip a line.

We have seen examples of only the first two in our sample programs.
Each type is slightly different in form, but all start with PRINT after
the line number.

Examples of type a):

100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B*B-4*A*C, EXP(A-B)

The first will print X and then, a few spaces to the right of that number,
its square root. The second will print five different numbers:

X, Y, Z, B2 -4AC, and eA_B.

The computer will compute the two formulas and print them for you, as
long as you have already given values to A, B, and C. It can print up
to five numbers per line in this format.

Examples of type b):

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SINE", "RESOLUTION"

Both have been encountered in the sample programs. The first prints
that simple statement; the second prints the three labels with spaces
between them. The labels in 430 automatically line up with the three
numbers called for in a PRINT statement (as long as the labels do not
exceed 14 characters) as seen in MAXSIN.

Examples of type c):

150 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF" X, "IS", SQR(X)

If the first has computed the value of X to be 3, it will print out:
THE VALUE OF X IS 3. If the second has computed the value of X
to be 625, it will print out: THE SQUARE ROOT OF 625 IS 25.

ND-60. 040. 02

2-21

Examples of typo d):

250 PRINT

The computer will advance the paper one line when it encounters this
com mand.

GO TO2.7.4

There are times in a program when you do not want all commands
executed in the program. An example of this occurs in the MAXSIN
problem where the computer has computed X0, M, and D and printed
them out in line 85. We did not want the program to go to the END
statement yet, but to go through the same process for a different value
of D. Therefore, we directed the computer to go back to line 10 with
a GO TO statement. Each statement has the form GO TO [line number] .
(It is possible to go to a non-executable statement; control then passes
to the sequential executable statement.

Example:

150 GO TO 75

IF - THEN or IF - GO TO2.7.5

There are times when we are interested in jumping the normal sequence
of commands, if a certain relationship holds. For this we use an IF -
THEN statement, sometimes called a conditional GO TO statement. Such
a statement occurred at line 40 of MAXSIN. The more common form of
the statement is:

[relation] [formula]
[relation] [formula]

[THEN] [line number]
[GO TO] [line number]

[formula]
[formula]

IF
IF

Examples:

< - M THEN 80 or
< = M GO TO 80

IF SIN (X)
IF SIN (X)

40
40

IF G =0 THEN 65 or
IF G - 0 GO TO 65

20
20

The first asks if the sine of X is less than or equal to M, and directs
the computer to skip to line 80 if it is. The second asks if G is equal
to 0, and directs the computer to skip to line 65 if it is. In each case,
if the answer to the question is No, the computer will go to the next
line of the program.

ND-60. 040. 02

F

wm

2-22

2.7.6 FOR and NEXT

We have already encountered the FOR and NEXT statements in our loops,
and have seen that they go together, one at the entrance to the loop and
one at the exit, directing the computer back to the entrance again. Every
FOR statement is of the form

FOR [variable] = [formula] TO [formula] STEP [formula]

Any simple (not subscripted) variable may be used as the FOR variable.
Most commonly, the expressions will be integers, and the STEP omitted.
In the latter case, a step size of one is assumed. The accompanying
NEXT statement is simple in form, but the variable must be precisely
the same as that following FOR in the FOR statement. Its form is NEXT
[variable] .

Examples:

30 FOR X = 0 TO 3 STEP D
80 NEXT X

120 FOR X4 = (17 + COS(Z))/3 TO 3*SQR(10) STEP 1/4
235 NEXT X4
240 FOR X = 8 TO 3 STEP -1
456 FOR J = -3 TO 12 STEP 2

Notice that the step size may be a formula (1/4), a negative number (-1),
or a positive number (2). In the example with lines 120 and 235, the
successive values of X4 will be .25 apart, in increasing order. In the
next example, the successive values of X will be 8, 7, 6, 5, 4, 3. In
the last example, on successive trips through the loop, J will take on
values -3, -1, 1, 3, 5, 7, 9, and 11.

If the initial, final, or step-size values are given as formulas, these
formulas are evaluated once and for all upon entering the FOR statement.
The control variable can be changed in the body of the loop; of course,
the exit test always used the latest value of this variable.

If you write 50 FOR Z = 2 TO -2, without a negative step size, the body
of the loop will not be performed, and the computer will proceed to the
statement immediately following the corresponding NEXT statement.

ND-60. 040. 02

2-23

DIM2.7.7

Whenever we want to enter an array with a subscript greater than 10,
w-e must use a DIM statement to inform the computer to save us sufficient
room.

Examples:

20 DIM H (35)
35 DIM Q(5, 25)

The first would enable us to enter an array of 35 items (36 if we use H(0)),
and the latter a 5 x 25 array (6 x 26 if we use row 0 and column 0).

2.7.8 STOP

A STOP statement may be entered anywhere in a program. With STOP
execution is terminated and control is passed to the Teletype.

2.7.9 END

Every program must have an END statement, and it must be the stater*,
with the highest line number in the program. Its form is simple: a line
number with END.

Example:

999 END

The ON.. . GO TO Statement2.7.10

Using an IF. . . THEN statement provides only a two-way branch in a
program. A decision between only two alternatives can be made. More
branches can be achieved by using multiple IF.. .THEN statements.
However, a single statement, ON. . GO TO, allows a manywav branch.
For example, the following lines in a longer program

90 READ X
100 IF X = 1 THEN 500
110 IF X = 2 THEN 600
120 IF X " 3 THEN 700
130 DATA 3

could be replaced by these three lines:

90 READ X
100 ON X GO TO 500, 600, 700
130 DATA 3

ND-60. 040. 02

2-24

The format of the ON. . .GO TO instruction is as follows:

100 ON X GO TO xxxx, yyyy, zzzz,.. .

where X is any number or formula, and xxxx, yyyy. zzzz,... are line
numbers. If X is equal to 1, the computer takes its next instruction
from line xxxx, if X is 2, control passes to yyyy, and so on. If the
value of X is not an integer, its integer part is used. If the value of
X is less than one or greater than the number of line numbers listed,
control is transferred to the next line of the program. There may be
any number of line numbers listed in the instruction, as long as the
entire instruction fits on a single line.

};

I

ND-60. 040. 02

3-1

INTERACTIVE USE OF THE BASIC SYSTEM3

The BASIC system was built for interactive use, and when you are
sitting at the Teletype working with your program some BASIC features
may be of help in coding and debugging.

If you discover a mistyped character before typing carriage return,
you can delete the most recently typed character by using
(left arrow, shift O). Applying this character many times may delete
the whole line.

30 LET A = SIN + + COS(X)

Here SIN is deleted using three times.

A quicker way of deleting the whole line is typing ctrl-Q (press the
pushbutton CTRL and type Q). The system responds printing reverse
slant (\) and issuing a new line.

Example:

100 FRO X=1 TO 5 \

When vou terminate a line typing carriage return, this line is handed
to the compiler for syntax check. With errors proper messages are
given and if the next character input is a question mark, the line is
printed with the errors marked.

200 FOR X=2A TO B ,C

CE 1 9
200 FOR X=2A TO B ,C

f

If you want to change your program, you can use the editing facilities
to list, delete, insert or move lines. You may test one part of the
program at a time as you can start execution at any specified line and
insert an END statement where you want to stop.

Inserting STOP statements you may halt execution to check and change
the program, then execution may be continued.

At any time your program may be saved for later retrieval. For these
activities commands are used. A command is not given a line number
and the system takes action when you type carriage return.

:Initializing the User Terminal3. 1

The BASIC system is initialized when it is entered, but if you have
been programming for some time and want to change to a new program,
all tables should be reset. This is achieved using the commands NEW,
OLD and SCRATCH.

ND-60. 040. 02

3-2

3.1.1 Entering the BASIC vSvstem

When the BASIC system is called using the command

BASIC

in TSS or printing the character ESC in BASIC Time Sharing System,
the start-up procedure is as follows:

BASIC ON LINE
NEW OR OLD - - NEW (alternatively OLD)
NEW PROGRAM NAME - - TEST
READY

The terminal is now ready to accept BASIC commands and statements.

NEW, OLD and SCRATCH3.1.2

If you type OLD, the system expects you to continue working with a
problem which is saved earlier. The system then resets tables and asks
where the program is to be found, printing:

OLD FILE NAME - -

If the program was saved on a mass memory file (disk file), you should
give the name of this file. If you saved the program on paper tape, you
should put the tape in the paper tape reader and print the file name for
the tape reader, T-R. If the program is punched on cards, you may use
the card reader, C-R, as the input file name.

With carriage return the system starts reading and when finished it will
respond by: READY. (Possibly error messages may be printed, see
GET.)

The program is now in core and you may start working on it.

With NEW the system expects you to type a new program and asks for
the name of this program. Then, the tables are reset and the system
prints READY.

If you want to work out a new program using the current program name,
just type SCRATCH. This command responds READY when the old
program is removed.

ND-60. 040. 02

3-3

Naming of Programs3.1.3

Program names are used as a header with listings and runs if the
commands RUNH or LISTH are used (H = header).

The program name should start with a letter and have no more than
12 characters. Quotes, spaces and other nonprintable characters should
not be used.

If you use OLD. the file name is used as program name.

You may set a program name by typing the command NAME followed
by the new program name.

NAME SQUARES

will set SQUARES as the current program name.

If no program name is given when the system asks for it (carriage reti
is typed), the name TEST is used.

Saving and Retrieving BASIC Programs3.2

When you are working on a program and want to oontinue later, you
should save the program by using the SAVE command with the appropriate
file name. A hard copy is produced using Teletype or line printer, a
tape may be punched using the Teletype punch or the fast punch. With
mass memory available, the program may be saved on mass memory
files.

A saved program is entered later using GET followed by the appropriate
file name.

If you have other programs on tape, on cards or on a mass memory file,
you can naturally use the same command to read the program.

Notice that devices such as card readers, line printers and so on must
be reserved before use. (See Section 3.4.5.)

3.2. 1 The SAVE Command

The SAVE command will save a BASIC program. The appropriate names
for the SAVE command are as follows:

TTY designates the user Teletype.
F-P designates the fast punch.
L-P designates the line printer.

With other file names the system expects that you want the program
saved on a mass memory file.

ND-60. 040. 02

J

3-4

SAVE SQUARE

will save the current, program on the mass memory file named SQUARE.
If you have no file with such a name, the file must be created. To do
this you should enclose the file name in quotes.

SAVE "SQUARE”

will create the file SQUARE and save the current program onto this
file.

Program names may be used as file names, with the exception of the
names of i/O-equipment. Further information on file naming may be
found in the documentation for the file system.

To save the program on paper tape using the tape punch on the Teletype,
you may do as follows:

Type "SAVE TTY", but type no carriage return.
Turn the Teletype to local.
Turn on the Teletype tape punch.
Produce a leader by pressing the pushbutton
HERE IS several times.
Turn the Teletype to line.
Type carriage return.
When the program is listed, a trailer is produced by
turning the Teletype to local and pressing HERE IS
several times.
Turn off the Teletype punch.
Turn Teletype to line.

The GET Command3.2.2

{ The GET command will read a BASIC program.

The appropriate names for the GET command are as follows:

i TTY designates the user Teletype.
T-R designates the fast paper tape reader.
C-R designates the card reader.

With other names the mass memory directory is searched, first the
user catalogue and then the system catalogue. You can find more
information about the mass memory file system in the manual for the
file system.

ND-60. 040. 02

3-5

When the correct file is found, the system starts reading one line at
a time. Every line is checked and compiled. Error messages are
buffered. The input stream should be terminated by the correct
character ETB (ASCII - ETB, typed ctrl-W on the Teletype). If not,
an error message is issued with end-of-file.

When the program is read, error messages are printed and you can
type the corrected version of these lines. If a long list of errors messages
is bothering you, just press the break character and the rest is discarded.

3.3 Executing Your Program

When you think your program, or part of it, is finished, you can try
to run it using the command RUN.

Before execution starts, the system will reset variable values and check
the program. If no errors are found, program execution is started.
Execution will continue until either BREAK or an END statement is found
or until an error condition occurs. Then execution is terminated,
variables reset and control passed to the Teletype.

If a STOP statement is encountered, program execution is.halted and
control passed to the Teletype. You may then examine and change your
program. Execution is restarted using the CON or RUN commands.

Possibly your program will produce erroneous results or it may be
executing some endless loops. You can then force execution to be
terminated by using the break character.

The RUN Command3.3. 1

This command is used to initiate execution. You may type RUNH whit.,
means the computer should start by printing the program name as
identification. Normally, the command is used without a parameter,
which means that execution should start with the first line. But if you
print a line number as parameter, execution is started at that line.

RUNH 500

will start execution at line 500.

Before program execution is started, the system will reset variables
and check the program for mismatching FOR - NEXT, errors with
multi-line DEF FN functions, the initialization of numeric and string
data and so on. Numeric variables are set to zero, string data are set
undefined.

ND-60. 040. 02

3-6

3.3.2 Terminating Execution

Program execution is continued until an END statement is reached, an
error is found or you break execution by typing the break character (ESC).

The break character in BASIC is normally ESC. In special operating
systems, however, the system’s break character must be used. For
this, you should consult the manual for the appropriate operating system.

If you use the NORD-TSS, the break character is ESC. When you press
the ESC pushbutton, the NORD-TSS command processor is entered and
you may restart BASIC printing: CON

■

When program execution is terminated, there is a response from the
system:

- With errors an error message is printed.
- With the break character "BREAK" is printed.
- With END the systems prints "DONE".

When execution is terminated, variables are reset, files are closed
and control is passed to the Teletype.

ND-60. 040. 02

3-7

3.4 Editing Programs

If you want to change your program, BASIC has editing facilities to
list, delete and renumber a part of or the whole program.

Arguments to specify which lines should be listed, deleted or re
numbered are as follows:

No arguments mean all lines.
Lines si, s2,. .
Lines si to s2 inclusive

Line si and lines following.

si,s2,...,sn

sl-s2
. , sn

si -

The DELETE Command3.4.1

The DELETE command is used to remove the lines specified from
the program.

DELETE 100-

will remove line 100 and all lines following.

If you want to delete only one line, it may be more convenient to print
the line number followed by carriage return.

50

is equivalent to printing

DELETE 50

The LIST Command3.4.2

The LIST command is used to obtain a listing of the lines specified.

LIST 50, 60, 120

will list line 50, line 60 and line 120.

If you want the program name to be printed as a header for identification,
you can use LISTH.

LISTH

will print the program name and the whole program. ;

I

!

ND-60. 040. 02

3-8

3.4.3 Changing a Line

If you type a new line with the same line number as an old one, the
new line will replace the old one.

3.4.4 The RENUMBER Command

The RENUMBER command is used to change the statement line numbers
and the references to these line numbers. Line numbers in comments
are not changed. As statements in BASIC are ordered according to the
line numbers, you can use the RENUMBER command to move individual
lines or parts of the program.

You can specify what lines should be renumbered as mentioned above.

RENUMBER 100 - 400

will set new line numbers and change references for the lines from
100 to 400.

The new line numbers are specified as follows:

FIRST followed by a positive integer indicates what the line number of
the first renumbered line should be. Successive line numbers for re
numbered lines are obtained by incrementing the FIRST number. You
may set the increment printing STEP followed by a positive integer.

RENUMBER 100 - 400 FIRST 10 STEP 5

will set the line numbers of lines 100 to 400 to 10, 15, 20, 25 and so on.

If you give no first line number, the first renumbered line will be set to
100 and if no increment is given, an increment of 10 will be used.

Notice that if you RENUMBER lines, you may generate line numbers
which already exist. This will remove the old lines with these line
numbers.

3.4.5 Reserving Peripherals

In a time sharing system where many users share the same peripherals,
the common devices must be reserved before use to prevent more than
one user at a time.

If your BASIC system is running under a monitor system like NORD
TSS, reservations are done entering the monitor system. The appropriate
commands will be found in the documentation for the operating system.

ND-60. 040. 02

3-9

In a BASIC time sharing system without mass memory, reservations
are done using the command RESERVE followed by the name of the
peripheral. These names are:

L-P - line printer
F-P - fast punch
C-R - card reader
T-R - tape reader

!
'
!
!
!

RESERVE L-P

will reserve the line printer. If you try to reserve a device which is
already reserved, the system will give a message to indicate for whom
the device is reserved.

When you are through using the device, you should release it to enable
others to use it.
name of the peripheral device.

This is done by printing RELEASE followed by the

RELEASE C-R

will release the card reader.

The TABLE Command3.4.6

The error message RE31 is issued if the system’s table area is over
flowed. The size of this area may be changed using the command
TABLE.

The command is used with integers from 3 to 9 as parameters. Using
this command an area is allocated by the system for book-keeping
purposes. The area is proportional to the integer (size is n*256).

The area is used for a lot of purposes, such as: Input buffer, buffers
for compiling and for run-time purposes, garbage collection, variable
tables.

i

When this area is increased, core for run-time purposes is decreased
by the same amount.

The DIGIT Command3.4.7

The number of significant digits used in the printout may be changed
using the DIGIT command. The command takes as parameter integers
from 3 to 9.i.

*

i

ND-60.040.02

3-10
P.

3.4.8 The CHAIN Statement

A programming task may be solved using many BASIC programs. One
program may then start a new program using the statement CHAIN.

If the first program is started using RUNH, the program name is
printed as identification for each CHAIN-ing.

Data is passed from one program to another using sequential or random
files.

I
Example:

"THIS IS A GAME SELECTOR"
"THE GAMES ARE: LUNAR,";
"FOOTBALL, TIC-TAC-TO"
"PRINT YOUR CHOICE, PLEASE"

10 PRINT
15 PRINT
20 PRINT
30 PRINT
40 INPUT A#
60 CHAIN A#
70 END

FORMAT for the CHAIN statement:

line no. CHAIN ^FILE NAME>

3. 5 Terminating

When you have finished programming and saved what programs you
would like to use later, you should print BYE. This command will
enter the monitoring system. In BASIC systems without mass memory
other users may take advantage of the core released when you leave
the system.

ND-60. 040. 02

4-1

MORE ABOUT BASIC4

4.1 Functions

There are three functions which were listed in Section 2.2, but not
described. These are INT, SGN, and RND.

Integral Function4.1.1

The INT function is the function which frequently appears in algebraic
computation as [x] , and it gives the greatest integer not greater than
x. Thus, INT(2.35) =2, INT(-2.35) =-3, and INT(12) =12.

I
One use of the INT function is to round off numbers. We may use it to
round to the nearest integer by asking for INT(X + .5). This will round
off 2.9, for example, to 3, by finding:1

INT(2.9 + .5) = INT(3.4) = 3

You should convince yourself that this will indeed do the rounding off
guaranteed for it (it will round a number midway between two integers
up to the larger of the integers).

It can also be used to round any specific number of decimal places.
For example, INT(10*X + . 5)/10 will round off X correctly to one
decimal place, INT(100*X + .5)/lOQ will round off X correctly to two
decimal places, and INT(X*10tD + .5)/l0tD will round off X correctly
to D decimal places.

1

4.1.2 SGN

The function SGN (argument) yields +1, -1, or 0 depending on the value
of the argument. These are the options:

Argument Value YieldFunction
SGN Zero

Positive, not zero
Negative, not zero

0
SGN +1

-1SGN

Examples:

SGN (0) yields 0
SGN (-1.82) yields -1
SGN (989) yields +1
SGN (-.001) yields -1
SGN (-0) yields 0

ND-60. 040. 02

4 “2

4.1.3 Pseudo-Random Number Generator
■

In BASIC programs which attempt to simulate complicated systems
or apply Monte Carlo integration techniques, there is need for a
facility which provides random numbers. Since a digital computer
is a deterministic device, it can not produce a truly random number.
However, there are simple techniques for producing numbers which
have many of the properties of random numbers, and do not have any
easily recognized pattern. The BASIC function RND is a pseudo-random
number generator. RND is a function which requires no arguments
and produces a number greater than or equal to 0 and less than 1.

As an example of the use of RND for simulation, consider the following:

100 IF RND > 1/3 THEN 940
200 PRINT "GAME DELAYED. DOG ON FIELD. "
300 PRINT
400 GO TO 940

A pseudo-random number greater than or equal to A and less than B
can be obtained simply by writing

100 LET X = RND * (B-A) + A

Normally the same sequence of pseudo-random numbers is generated
by successive calls to RND each time the program is executed. This is
an aid for debugging programs, but simulations should be run with
different sets of random numbers every time. After a program is de
bugged, inserting the statement!i

1 RANDOM

in the beginning of the program will reset the pseudo-random number
generator, so that different sequences of pseudo-random numbers will
be obtained.

Arithmetic Expressions in BASIC4.2

BASIC will admit general arithmetic expressions in most connections
where numbers are allowed. Exceptions are: Line numbers must be
positive integers. Numbers are used in data statements and with input.

o. ¥ -A) i-A -- Orf B +4 & 4

ND-60. 040. 02

4-3

4.2.1 Arithmetic Symbols in BASIC

In the examples in this chapter, arithmetic formulas are used, and
examples of the way they are evaluated by the computer are given.
Five symbols representing arithmetic operations can be used in formulas.
These symbols are listed in the table below; the first four are used in
the programs in this chapter.

Symbol Formula Meaning
Addition: add B to A
Subtraction: subtract B from A
Multiplication: multiply A by B
Division: divide A by B
Exponentiation: raise A to power B
(On many terminals the symbol for
exponentiation is s\.)
Unary minus: a minus which starts
an expression or which follows imme
diately after = or (

A + B+

A - B

A * B

A / B

A t B

*

/
f

-A

The way a formula is written determines how the computer will evaluate it.

10 t 2 + 1
The computer evaluates this formula as 100 + 1 =■ 101. It
will perform the exponentiation before the addition.

1)

10 t 2 / 2* 3
The value given for this formula is 100 / 2*3 = 50 *3 = 150.
The computer performs the exponentiation first. When multi
plication and division appear together, the left-most operation
is performed first. Thus in this example, the division is
performed second and finally the multiplication.

2)

5 + 2* 3 - 1
The value of this formula is 5 + 6 -1=11-1 =10. The
computer performs the multiplication first. As with multi
plication and division, the positions of the + and - symbols
determine which operation is performed first. Addition and
subtraction are performed from left to right. So, in this
example, the addition is performed second and the subtraction
last.

3)

32/4t2 + 3*3-l
This formula uses all the available symbols for arithmetic
operations, and the steps by which the computer evaluates it
are as follows. First exponentiation is performed and the
formula is reduced to 32 / 16 + 3*3-1. Then division and
multiplication are performed from left to right and the

4)

ND-60.040. 02

4-4

simplified formula is 2 + 9 - 1. Finally addition and
subtraction are performed from left to right and the value
of the formula is seen to be 10.

Vie placement of parentheses in a formula can alter the sequence in
which the operations are performed. Two of the preceding examples
have been rewritten to illustrate this.

10 t (2 + 1)
The computer evaluates this formula as 10 f 3 = 1000. The
formula inside the parentheses is evaluated first, and then the
exponentiation is performed.

((32 /4)t 2 + 3)* (3 - 1)
This formula will be evaluated as follows:
(8 t 2 + 3) * (3 - 1) = 67 * (3 - 1) = 67 * 2 = 134. The formula
inside the "innermost”parentheses is evaluated first. Within
parentheses the described sequence of performing the
operations applies.

1)

2)

Since two BASIC arithmetic operators may not be adjacent, parentheses
are needed in some formulas containing negative numbers. For example,
”X raised to the -2 power” would be Written X t (-2), and ”-3 subtracted
from 2” would be written 2 - (-3).

In summary, to insure the proper interpretation of formulas you should
remember that the computer performs exponentiation first, multiplication
and division second, and addition and sribtraction last unless otherwise
indicated by placement of parentheses. When in doubt about how a formula
will be evaluated, use parentheses.

i.

4.2.2 Exponentiation in BASIC

The symbol for exponentiation in BASIC is the up-arrow (t).
Exponentiation is performed as follows.

Consider the expression AtB. The manner in which the value of this
expression is calculated depends on the values of A and B.

■' ' .i

If A is > 0, AtB = EXP (B* LOG (A))

If A = 0
a) and if B is > 0, AtB = 0
b) and if B is = 0, A t B = 1
c) and if B is < 0, A t B = 0

An error message is printed when this
exponentiation is attempted.

i)

2)

ND-60. 040. 02

4-5

3) If A< 0

a) and B integer > 0, A t B = 1 multiplied by A
a total of B times.

b) and Bis=0,AtB = l
c) and B integer <0, At B = i/(A t ABS(B))

d) and B is not an integer. B is rounded to integer.
Then A ? B is computed according to a, b and c
above.

4.2.3 More about LET

In the LET statement, values can be assigned to variables, as with
the READ and INPUT statements-(e.g. ,100 LET X = 2). However,
the LET statement is also a command to the computer to perform
certain computations and to assign the answer to a certain variable
(e.g. , 110 LET X =X+ 1).

More generally, several variables may be assigned the same value
by a single LET statement. Two examples follow: *

100 LET X = Y3 = 1 E 2
110 LET A(X) =X = X + 1

In line 110, the new value of X is used for the subscript of A. That
is, after execution of line 110, A(101) and X are equal to 101, and
A(100) remains unchanged. Note also that numeric constants may be
represented in scientific notation (Section 2. 2.1), as well as in integer
or fractional notation, anywhere in a program.

Other useful Statements4.3

4.3.1 RANDOM

The RANDOM statement can be used in conjunction with the random
number function to induce variance. It augments the function RND by
causing it to produce different sets of random numbers. For example,
if this is the first instruction in the program using random numbers,
then repeated program execution will generally produce different results.
When this instruction is omitted, the "standard list" of random numbers
is obtained.

It is suggested that a simulation model should be debugged without
RANDOM, so that you always obtain the same random numbers for test
runs. After your program is debugged, you may insert

1 RANDOM

before starting execution runs.

ND-60.040.02

i>

I!

4-6

4.3.2 INPUT

There are times when it is desirable to have data entered during the
run of a program. This is particularly true when one person writes
the program and enters it into memory, and other persons are to
supply the data. This may be done by an INPUT statement, which acts
as a READ statement but does not draw numbers from a DATA statement.
If, for example, you want the user to supply values for X and Y into a
program, you will type

40 INPUT X,Y

before the first statement which is to use either of these numbers. When
it encounters this statement, the system will type a question mark. The
user types two numbers, separated by a comma, presses the return key,
and the system goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement to
make sure that the user knows which values to put in. You might type

20 PRINT ,TWHAT ARE YOUR VALUES OF X, Y, AND Z";
30 INPUT X, Y, Z
40 END
RUN

and the system will type

WHAT ARE YOUR VALUES OF X, Y, AND Z?

Without the semicolon at the end of line 20, the question mark would
have been printed on the next line.

Data entered via an INPUT statement is not saved with the program.
Furthermore, it may take a long time to enter a large amount of data
using INPUT. Therefore, INPUT should be used only when small amounts
of data are to be entered, or when it is necessary to enter data during
the running of the program such as with a game-playing program.

4.3.3 REM

REM provides a means for inserting.explanatory remarks in a program.
The system completely ignores the remainder of that line, allowing the
programmer to follow the REM withidirecfcioiis for using the program, with
identifications of the parts of a long program, or with anything else that
he wants. Although what follows REM is ignored, its line number may
be used in a GOSUB, IF - THEN, GO TO, or ON-GO TO statement.

t

•«

■ /

ND-60. 040. 02

4-7

100 REM INSERT DATA IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED BY
130 ’

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

300 RETURN

520 GOSUB 200

Explanatory remarks may be located following a statement on a line, by
using the character * . Anything on the line following » will be treated
as an explanatory remark. For example, the statement

250 LET Y = 1 ’ INITIALIZE Y TO ONE

includes the remark INITIALIZE Y,TO ONE without affecting the running
of the program.

In line 130 the line number is followed by an apostrophe and the rest of
the line is left blank. Such blank lines are used to increase the readability
of the program listing.

4.3.4 RESET

Sometimes it is necessary to use the data in a program more than once
The RESET statement permits reading the data as many additional times
as it is used. Whenever. RESET is encountered in a program, the system
resets the data block pointer to the first number. A subsequent statement
will then start reading the data all over- again. A word of warning — if
the desired data is preceded by code nqmbers or parameters, superfluous
READ statements should be used to pass over these numbers. For example,
the following program portion reads the data, restores the data block to its
original state, and reads the data again. Note the use of line 570 to "pass
over” the value of N, which is already known.

100 READ N
110 FOR IT TO N
120 READ X

200 NEXT I

560 RESET
570 READ X
580 FOR 1=1 TO N
590 READ X

ND-60.040. 02

4-8

4.4 Representations of Strings

The BASIC programs described thus far have all dealt with numbers.
In the statement

100 LET A = B + 3.1415026

the sequence 3.1415926 is a representation of a number; the character
B is the name of a number which can vary as the program is executed
by the computer. The character A is the name of a number which may
be changed by the execution of that statement. Although computers are
excellent machines for performing high-speed arithmetic, some of their
most important uses are in the manipulation of entities which do not
represent numbers. A string is such an entity.

A string is a sequence of characters; these include letters, digits,
blanks, and other special characters such as those which appear on the
terminal. One way of representing a string in BASIC is to enclose it in
quotation marks. Such string constants have already been introduced in
PRINT statements where they have been called labels. For example,
the string in

100 PRINT ’’TYPE THE INITIAL BALANCE"

is a string constant just as the number 3.1415926 in the preceding
example is a numeric constant.

Just as BASIC has names for numbers, it also has names for strings.
A name of a simple string is formed exactly as a name for a number,
except that it includes a trailing dollar sign (g). That is, a string name
is a single letter, followed by an optional single digit, followed by a
dollar sign. Thus Ag, Zg, Q3g, W7g are legitimate string names, but 4^,
BBg are not. The string Ag is entirely distinct from the number A, and
both names can appear in the same BASIC program.r

4.4. 1 Assigning Values to Strings and String Comparisons
*M A string variable can take on a string value through a READ statement.

The following BASIC program reads three strings and prints them.

10 READ A#, Bg, Cg
20 PRINT Cg; Bg; Ag
30 DATA "ING", "SHAR", "TIME-"
40 END

Note that the items in the DATA statement are representations of
strings, not numbers. This program prints the word TIMESHARING
on the terminal. Since the quotation marks are used to delimit the
strings, it is not possible to create a string containing a quotation mark
in this manner.

ND-60. 040. 02

4-9

Strings can also be assigned values through the use of LET statements.
For example

10 LET A# - "H2SG4"
20 LET B# - A#
30 PRINT B#
40 END

will print the string H2S04 on the terminal.

Another way that a string can take on a value is by having the program
request the input of a string from the terminal through an rXPTJT state
ment. For example:

10 PRINT "A MIXTURE OF FUEL AND OXIDIZER WHICH”
20 PRINT ’'BURNS SPONTANEOUSLY IS TERMED”;
30 INPUT A#
40 IF ASS - "HYPERBOLIC” THEN 70
50 PRINT "WRONG"
60 GO TO 80
70 PRINT "RIGHT”
80 END

After printing the textual message the program will print a question mai
Suppose the user enters the word "HYPERVENTILATED” in response.
Statement 40 is a stringconditional statement. If the string A# is the same
as the string "HYPERBOLIC", then statement 70 will be executed next.
Since the user did not enter "HYPERBOLIC" he has WRONG printed on
his terminal.

Any of the relational operators described in Section 1.3.3 may be used
in an IF. . . THEN statement to compare strings. The relational operator

is interpreted as meaning "earlier in alphabetical order than ” and
the relational operators are defined appropriately. The ordering of
characters is arbitrarily defined by the ASCII code which is explained
in Section 8.3. In any string comparison, trailing blanks in a string are
ignored; thus "YES" - "YES "

Relaxation of Requirement for Quotation Marks4.4.2

Strings which are entered in response to an INPUT statement need not
be bracketed by quotation marks as long as the items being entered do
not contain commas or do not begin with blanks.

Strings containing commas must be enclosed in quotation marks because
commas are treated as special characters by BASIC. They are used to
separate multiple items entered in response to an INPUT statement con
taining more than one variable in the input list. In addition, if the last
string on a line of input being entered in a list via a MAT INPUT statement
ends with an ampersand (&), the string must be enclosed in quotation marks.

ND-60. 040. 02

4-10

A string in a DATA statement, must be enclosed in quotation marks if
it begins with a blank, a digit, a plus sign, a minus sign, or a decimal
point, or if it contains a comma or an apostrophe. Ampersands, however,
do not have the special significance in DATA statements that they do in
items being entered in response to INPUT statements. If strings are
enclosed in quotation marks, the quotation marks are not considered to
be part of the string and are ignored.

4.4.3 The RESET Statement

In DATA statements numbers and strings may be intermixed. When a
numeric variable appears in a READ statement the next number appearing
in the DATA statements is assigned to that numeric variable, when a
string variable appears in a READ statement, the next string appearing
in DATA statements is assigned to that string variable. Thus, numeric and
string DATA are managed independently of each other in BASIC. A RESET
statement will reset pointers for both types of data so that subsequent
READ statements will reread the data. A RESET * statement wall reset
the pointer for numeric data. A RESET g statement will reset only the
pointer for string data.

The following program illustrates the use of RESET.

100 READ Ag, A, Bg
110 PRINT’'FIRST TIME", Ag, A, Bg
120 DATA 1, "2APPLES”, PEARS
130 RESET
140 READ Cg
150 PRINT "SECOND TIME", Cg
160 END

■

Running this program produces the following output:

1 PEARSFIRST TIME
SECOND TIME
DONE

2APPLES
2APPLES

4.4.4 String Lists and String Tables

BASIC can also operate on multiple strings arranged either as lists
or as tables. These entities are denoted by a single letter, followed
by a dollar sign, followed by one or tw'o subscripts enclosed in parentheses.
Thus Ag(3) denotes the third string in a list of strings Ag. Similarly
Bg(4,5) denotes a string in the 4th row' and 5th column of a table of strings
Bg. Ag cannot be both a string list and a string table in the same program.

ND-60. 040. 02

4-11

A DIM statement such as

100 DIM A# (25)

is required if any subscript will exceed 10. Individual entries of
string lists or string tables can be assigned in LET statements as in
the following example.

220 LET Tg = A$ (J+l)
230 LET A# (J+l) = Ag(J)

4. 4. 5 Standard Functions Regarding Strings

The functions ASC, LEN, CHR$ and SEGg may be used in LET as well
as PRINT statements. However, ASC and LEN must not be used in
expressions.

The ASC Function

It is awkward to memorize the correspondence between numbers and
graphics defined by the ASCII code. Rather than being forced to
remember that A corresponds to 65, the programmer can make use
of the ASC function and write ASC (MATr).

The function will take a string as an argument and deliver a number
as a result.

Example:

10 PRINT ASC ("A")

The LEN Function

The LEN function takes a string as an argument and returns the
number of characters as a result.

Example:

10 PRINT LEN(Xg)

ND-60. 040. 02

• m
■

4-12

The CHRg Function

CHRg(Z) delivers a one-character string which corresponds to the
numeric value of the expression Z. According to ASCII code as
outlined in Section 7. 5 the maximum value of Z is normally 127.
However, as far as printing graphics is concerned, characters are
equivalent modulo 128: that is. the remainder when the number is
divided by 128 is used. For example, 511 = 127 modulo 128. So,
CHRg(511) = CHRg(127). A single line statement which will
print a quotation mark follows.

■

100 PRINT CHRg (34)

The SEGg Function

SEGg(Ag, X,Y) takes a string and two expressions as arguments,
and returns a substring as a result. The substring starts at character
no. X from the input string, and ends at character no. Y.

50 PRINT SEGg(Ag, 3, 3)

will print the third character from the string A#.

An Operator for Combining Strings4.4.6

One operation has been defined as working specifically on strings.
This is concatenation, denoted by the ampersand (&).
Concatenation puts one string directly after another, without any
intervening characters.

Example:
10 READ Ag, Bg, Cg
20 PRINT Cg & Bg & Ag
30 DATA "ING", "SHAR", "TIME-"
40 END

Running this program causes "TIME-SHARING" to appear on the
terminal. It is possible to use string constants in quotation marks
in place of string variables with the & operator, if desired.

Concatenation may appear in LET and PRINT statements. In LET
however, only two strings may be combined in one operation.

ND-60. 040. 02

4-13

Formatting Output4.5

When you write BASIC programs to prepare reports, graphs, tables,
and other formatted (or specially arranged) output, it is important
that you will be able to control output format very closely. This
section describes statements which permit construction of neatly
alinged tables, labels, and so on.

Commas in PRINT Lists4.5.1

The terminal line is considered to be divided into five zones of 15
characters each. Each line begins with column zero. When
multiple items appear in a PRINT list separated by commas, the first
item is printed starting at the beginning of the first zone (column 0),
the second at the next zone (column 15), etc. The comma can be
considered to cause the terminal print head to space up the next zone
preparatory to printing. If the fifth zone has just been filled, the
terminal print head will move to the first print zone of the next line.
Thus the statement

100 PRINT , , , , "COL60"

will print the five character ,fCOL60f’ beginning at column 60, the
beginning of the fifth zone.

If a PRINT list ends in a comma, the terminal print head simply
spaces up to the next 15-character zone and does not move to the
beginning of a new line in preperation for the next PRINT statement
unless the fifth zone has been filled.

For example, the program

100 FOR I = 1 TO 15
110 PRINT I,
120 NEXT I
130 END

will cause the following output to be printed:

2 3 41 5
6 7 8 9 10
11 12 13 14 15

DONE

ND-60.040. 02

4-14

4.5.2 Vacuous PRINT Statements

A PRINT statement which does not end in any special punctuation
mark, such as a comma, will print the information in the PRINT
list, and the terminal will be prepared so that further output will
begin at the beginning of the next line,
statement such as

Thus a vacuous PRINT

100 PRINT

will simply advance the paper one line, leaving a blank line if the
terminal print head is already at the beginning of a line,
be used to cause the completion of a partially filled line as illustrated
in the following program.

It can

100 FOR I = 1 TO 4
110 FOR J = 1 TO I

LET B(I,J) = I
PRINT B(I, J),

140 NEXT J
150 PRINT
160 NEXT I
170 END

120
130

This program will print B(l, 1) on the first line. Without line 150,
the terminal print head would then go on printing B(2,1), B(2, 2) on
the same line. Line 150 directs the terminal print head to start at
the beginning of a new line after printing the highest J value for a given
I. Thus, items are printed in a triangular format. Output from the
preceding program follows:

1
2 2
3 3 3
4 4 4 4

<
DONE

ND-60. 040. 02

4-15

Packed PRINT Lists4.5.3

Using the comma to separate items in PRINT lists, you will find that
it is not possible to print more than five numbers or strings on one
line. A semicolon may be used to print items closely packed on a
line. For example, the program

100 FOR I = 1 TO 15
PRINT I;110

120 NEXT I
130 END

will cause the following output to be printed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DONE

To determine what will be printed using the semicolon separator, it is
necessary to know how strings and numbers are printed. In general,
when you are using the semicolon to format output, no blanks will be
output other than those automatically output when a string or number
is printed as described in the following section.

Printing Formats for Numbers and Strings4.5.4

This section described the spacing of numbers and strings as they are
printed by a simple PRINT statement.

Strings are printed just as they are, with no leading or trailing spaces.
A space is printed after the right-most digit of a number; negative num
bers are preceded by a minus sign, and positive numbers are preceded
by a blank.

The number of spaces which will be occupied by the decimal representation
of a number varies according to the magnitude and type (integer or non
integer) of the number. The following discussion of how numbers are
printed will help in determining the expected printed output.

Numbers may be printed using one of three notations:

A number printed using integer notation is printed without
a decimal point and contains from 1 to 6 digits. (For example,
twenty printed as 20 is in integer notation.)

A number printed in fractional notation contains from one
to six digits and a decimal point. Trailing (right-most)
zeros are dropped, and a number less than one is printed
with a zero to the left of the decimal point. (For example,
twenty printed as 20. is in fractional notation.)

I

II

ND-60. 040. 02

4-16

A number printed in seientifie notation has the following
form.

Ill

z r> v Z K-Yor

where Z is a number greater than 1 and less than 10 printed
in fractional notation (II) and V is the appropriate power of
10.

Numbers are printed in one of these notations according to their
magnitude and type. All numbers are rounded off to six significant
digits.

An integer whose absolute value is less than 10 16(1000 000)
is printed in integer notation (I).

An integer whose absolute value is greater than or equal to
10 t 6 is printed in scientific notation (III).

1)

2)

3) A number whose absolute value is greater than or equal to
. 1 and less than 999999, and which is not an integer is printed
in fractional notation (II).

A number whose absolute value is less than . 1 which can be
expressed using 6 digits after trailing (right-most) zeros are
are dropped is printed in fractional notation (II).

4)

5) A number whose absolute value is less than 1 which does not
satisfy the condition in (4) is printed in scientific notation (III).

A number whose absolute value is greater than 999999 and
which is not an integer is printed in scientific notation (III).

6)

By printing powers of two, the following program illustrates how numbers
falling into each of these six categories are printed.

100 FOR I = 1 TO 30 STEP 3
PRINT 2t(-I), I, 2 tl110

120 NEXT I
130 END-

This program yields the following printout.

0.5 1 2
0.0625
7.8125E-03
9. 76562E-04
1.220.7E-04
1.52588E-05
1.90735E-06
2.38419E-07
2.98023E-08
3.72529E-09

4 16
7 128
10 1024
13 8192

65536
524288
4.1943E+06
3.35544E4-07
2.68435E+08

16
19
22
25
28

DONE

ND-60. 040. 02

4-17

The TAB Function4.5.5

In addition to the previously described standard means of controlling
printing formats, it is possible to set up rtonstandard columns and to
print material in special forms. The TAB function is one way of
producing such specialized output.

If the first column in which information can be printed on the terminal
is labeled column 0, then the comma can be thought of as performing a
tabulation to the next tab-stop; these stops are set at columns 15, 30,
45, and 60. There is a way to tab to any desired column using the TAB
function. The TAB function can appear only in a PRINT list. It does
not cause anything to be printed, but it simply positions the terminal
print head to begin printing in the column denoted by the argument of
the TAB function. For example,

100 PRINT X; TAB(12); Y; TAB(27); Z

will cause the X-value to be printed starting in column 0, the Y-value
in column 12, and the Z-value in column 27.

The TAB function may contain any formula as its argument. The value
of the formula is computed, and the integer part is taken. This number
is treated modulo the current margin setting to obtain a column number.
The terminal print head then spaces to this position; in the event that if
has already passed this position the TAB is ignored.

If you wish to print two series of characters on the same line or to
overprint a line, you may do so by printing CHRS{(13), a carriage retui
character (13 is the ASCII code for a carriage return); a semicolon
should separate this character from the next item to be printed. The
following line will print two asterisks on the same line. The first one
printed is in column 11; the second one is printed in column 9.

100 PRINT TAB (11); CHRg(13); TAB (9); »'*

If you use this option, it may be necessary to issue not one carriage
return, but two (or a carriage return followed by a rubout) before the
second TAB to allow the terminal print head to return to the physical
left margin of the terminal before beginning the second tabulation.

4.5.6 The MARGIN Statement

The MARGIN statement sets the maximum number of characters which
may be printed on a tine. The margin is initially set to 70. If a line
is partially filled and there is not enough room remaining for an output
string, the line will be printed and the output begin on a new line. If
the output string is so long that there is not enough room even on a
complete single line, as much as will fit will be printed on that line;
the rest of the output string will be continued on the next line, and the
process will be repeated as many times as necessary to print the entire
string. Even if a line is partially filled when a MARGIN statement is
executed, the statement will change the margin for the rest of the line.

ND-60.040. 02

4-IS

The program MARGIN is illustrative.

100 MARGIN 10
UO PRINT "IN THIS "SECTION"
120 PRINT "THE MARGIN STATEMENT IS DISCUSSED. "
120 PRINT "THE
140 MARGIN 75
150 PRINT "MARGIN ";
160 PRINT "CHANGES AS SOON AS THE MARGIN STATEMENT"
170 PRINT "IS EXECUTED, EVEN IF THE LINE IS PARTIALLY
180 PRINT "FILLED."
100 END

The output is:

IN THIS
SECTION
THE MARGIN
STATEMENT
IS DISCUS
SED.
THE MARGIN CHANGES AS SOON AS THE MARGIN STATEMENT
IS EXECUTED, EVEN IF THE LINE IS PARTIALLY FILLED.

With a margin of ten, the word "SECTION" does not fit on the first line
of output, so it is printed on the second line: The string to be printed
by line 120 will not fit on one line, so it is printed 10 characters per line
until the string is exhausted. The margin statement in line 140 takes
effect immediately, so the line started by the PRINT statement in line 130
with a margin of 10 has a margin of 75 when line 150 is encountered.

\ 4.5.7 The PRINT USING Statement

In addition to the standard formats defined above, it is possible to
define your own formats and use them. This feature allows you to
print numbers in columns so that decimal points line up and to produce
tables easily.

Instead of employing.

100 PRINT A, B, Cg

you can modify the PRINT statement to

100 PRINT USING Xg, A, B, Cg

Here.. Xg contains a "picture" of the line to be printed. Spaces
where the values of the variables are to be inserted are marked b}'
special conventions. Literal labels may also be part of the picture
string If desired, a string constant may be used in place of Xg,
and constant information may be printed in place of variables.

ND-60. 040. 02

4-19

A sample use of the PRINT USING statement follows:

100 LET A = 20
110 LET B = 15
120 LET Cg = "CDE"
130 LET Xg = "A IS - B IS - AND THE STRING C IS # #"
140 PRINT USING Xg. A,B.Cg
150 END

When this program is run.

A IS 20, B IS 15, AND THE STRING C IS CDE

appears on the terminal.

There are 8 special characters for defining PRINT USING fields or
areas where variables are to be printed. These 8 characters are:
- + 4 * S < and > . The number sign, " # ", reserves a place
for one character in a field, but it cannot be used at the beginning of a
field.

The effect of these characters is summarized in the following chart:

Sign Valid in Effect

Numeric fields only Start field; print floating minus for negative
numbers. *
Start field ; print floating plus or minus as
appropriate. *
Mark decimal place; when used outside
numeric fields it is printed literally.
Start field; print floating dollar sign;
must be followed by + or - .
Specify exponent field; must be in group of 5.
Start field; print string left-justified.
Start field; print string right-justified.
Place holder.

Numeric fields only

Numeric fields

% Numeric fields only

f Numeric fields only
String fields only
String field only
Any field

-•c
>
U

These characters may be immediately preceded by "g".

A numeric field, an area in which a number is to be printed, begins
with either or If "+" is used, a plus or minus sign will be
printed just before the left-most digit of the number, depending on
whether it is positive or negative. If is used, there will be a sign
only before a negative number. A alone can be used to specify a
one-character numeric field: a non-negative number less than 10 may be
printed using such a format. Additional places in a numeric field can
be specified hv repeating as many times as desired.

ND-60. 040. 02

:
!!

4-20

Numbers are rounded and truncated before they are printed. They are
printed right-justified in the field, so that the integer digits line up on
successive lines. A sample program NUMBERSl is:

100 PRINT USING "LINE 100 - * * 200. 34
110 PRINT USING "LINE 110 - # * 20. 03
120 PRINT USING "LINE 120 - ** fc”. 2.00
130 END

Output from a run of NUMBERSl follows:

LINE 100 200
LINE 110 20
LINE 120 2

If a number has too many digits to be printed in the field given, asterisks
are supplied instead. So with the format #”, the number "200"
appears as "**” on the terminal when the statement is executed: the
field "- could be used to print numbers in the range -10 < X < 100.
If a field has more places than there are significant digits allowed in
BASIC, question marks are supplied for the digits which might be
misleading. In an eleven-space field, a number input as ”1111111 111"
is printed as ”111111111?”.

If numbers are not to be printed as integers, a period is used to mark
the location of the decimal point in the numeric field. (A . is
interpreted as a character to be printed literally if it is not in a numeric
field.) If the number ”20. 356” is printed with the format ”- # tf. # ft,
two decimal places are given, the number is rounded and truncated
accordingly, and the result is printed as ”20.36”. Again, the number
is right-justified in the field so that the decimal points line up on
successive lines. For numbers in the range -1 < X ^ +1,
a leading zero is provided. As an example, consider the program
NUMBERS2 as follows:

100 PRINT USING "LINE 100 - U p . H
110 PRINT USING "LINE 110 - # 4 . *
120 PRINT USING "LINE 120 - jM . $

A run of NUMBERS2 produces the following output:

LINE 100 20.36
LINE 110 2.04
LINE 120 0.20

20.356
2. 0356
.20356

■

=

ND-60.040.02

4-21

To print a number with an exponent, put a group of five up-arrows
(the symbol for exponentiation) into the format string; the count of 5 is
mandatory. If 2. 356 is printed with the format ”- % . # ",

2.4 E-00" appears. With the t format, one space is reserved
for a possible sign, and the number begins with the next space,
exponent is adjusted to compensate for any shifting which occurs.
With a field "-***. the number 2. 356 appears as
”235. 60 E-02”. and the number 20. 356 is printed ”203. 56 E-01”.

»»
The

The following program NUMBERS2 exemplifies these conventions:

t t M t , 203.56
t ft tt ,20. 356
t 1 t ft . 2. 0356
t * t ft . . 20356

100 PRINT USING ”LINE 100 - # * . # *
110 PRINT USING "LINE 110 - * * . #4
120 PRINT USING "LINE 120 - * *
130 PRINT USING "LINE 130 - * *
140 END

i

i *
4 “

Running this program gives the following output:

LINE 100 20. 36 E+01
LINE 110 20 36 E+00
LINE 120 20.36 E-01
LINE 130 20. 36 E-02

An exception to the rule that a numeric field must begin with a "+" or
"-" is the option of preceding these two characters by a "g". The
use of a dollar sign forces the printing of a dollar sign just before the
first digit or sign of the number.

It is possible to have literal information, including commas, in a format
field.
conveniently.
will be printed as "99.999. 00".
< or > . it is possible to interrupt it with literal information.
This literal information must not include any of the special characters,
except that a period in a non-numeric field is printed literal!’

In particular, it is possible to include blanks to group digits
With the format string ,f- * * f & * fc . ft". ”99999"

Since a field must begin with - +

The field for printing a string must begin with either < or >
These characters are valid only in string fields, just as -. -. T .
and £ are valid only in numeric fields. A 4 causes the string to be
printed left-justified in the field specified: if necessary, the field
is filled with blanks or the string truncated from the right. As
with numeric fields. ” # ” serves to hold a place for printing.
Left-justification of strings is shown in the following example: program
STR1NGS1:

100 PRINT USING "LINE 100 < * * "AB”
110 PRINT USING "LINE 110 < * * ” . "ABC"
120 PRINT USING "LINE 120 < * * ", ”ABCD”
130 END

ND-60. 040. 02

-

--

1
4-22 i

■

SRunning this program gives:

LINE 100 AB
LINE 110 ABC
LINE 120 ABC

A > sign causes the string to be printed right-justified in the field
specified. If necessary, the string is preceded by enough blanks
to fill the field or is truncated from the left. Altering the last program
to STRINGS2:

100 PRINT USING "LINE 100 > * # ", "AB"
110 PRINT USING "LINE 110 > # ft ", "ABC
120 PRINT USING "LINE 120 > ft ft ", "ABCD"
130 END

we get

LINE 100 AB
LINE 110 ABC
LINE 120 BCD

Again literal information can be included within the field; with
"< the string "ABCtf'is printed as "ABXCD".

Note that it is not possible to specify any of the special characters
ft-+T$<or> as material to be printed literally. If these special
characters are to appear in the output, they can be specified as
constants to be printed in separate fields. To print a "+", the
following statement suffices.

900 PRINT USING "<", tt+n

The items to be printed according to the defined format must be
separated by commas, and a comma must separate the USING
string from the variables. The order of numeric and string
variables to be orinted must match the order of the types in the
format string. For example.

I

900 PRINT USING "- ft . ft ft -c ft ft ft ", "ABCD", 23.4

causes an error message and termination of the execution because the
field types in the format string do not match the types of information
to be printed.
can a number be printed with a string field.

. A string cannot be printed with a numeric field, nor

ND-60. 040. 02

4-23

If there are fewer variables in the list of a PRINT USING statement
than there are fields specified in the format string, the extra fields
are not used. On the other hand, if there are more variables than
fields, the format string is used again, starting on a new line. If
the nformation to be printed will not fit on a single line, the part
of the format not used on the first line is continued on the second line,
and so on until all the items in the list are printed.

Ending a PRINT USING statement with a semicolon causes suppression
of the carriage return and line feed characters after all items in the
list have been printed as described in Section 2 7.3 for the simple
PRINT statement. Using this option, vou may complete a partially
filled line with subsequent PRINT or PRINT USING statements. You
may not end a PRINT USING statement with a comma as you can a
simple PRINT statement.

BANKUSING is a program which illustrates that output can be arranged
in columns so that the decimal points line up normally. Additionally,
a dollar sign can be printed immediately before each amount.

100 PRINT ’’ITEM", ” AMOUNT". "BALANCE”
105 PRINT
110 LET C=0
120 LET D=0
130 REM C COUNTS THE NUMBER OF CHECKS
135 REM D COUNTS THE NUMBER OF DEPOSITS
140 READ B
141 REM
142 REM SET UP FORMAT STRINGS IN Fg AND Gg

g- HUU-HH
$-H UUU^U"

143 LET Fg="<# HUHHHUU
144 LET Gg="<# UHUHUU
145 REM

t

146 REM A SPECIAL FORMAT IS NEEDED FOR THE
147 REM OPENING AND CLOSING BALANCES, WHICH
148 REM HAVE NO TRANSACTIONS
149 REM
150 PRINT USING Gg, "OPENING", B
160 REM
170 READ T
180 IF T=0 THEN 400
190 IF T<0 THEN 300
200 REM
210 REM HERE FOR A DEPOSIT
220 LET D=D+1
230 LET B=B+T
240 PRINT USING Fg, "DEPOSIT", T, B
250 GOTO 170
260 REM

.
■

ND-60. 040. 02

4-24

300 REM HERE FOR A CHECK
310 LET C=C+1
320 LET B=B+T
330 PRINT USING F$, ’’CHECK”, -T, B
340 IF B >=0 THEN 170
350 LET B=B-1
360 PRINT USING F$, ’’OVERDRAFT”. l.B
370 GO TO 170
380 REM
400 REM HERE FOR CLOSING
410 LET S=. 03 * D + . 06 * C + . 60
420 LET B=B-S
430 PRINT USING F$. ’’SERVICE”, S,B
440 PRINT USING G$, ’’CLOSING”, B
470 REM
500 DATA 100. 00
510 DATA -23.75, -10.40, 50.00, -7.25, -42.50
520 DATA -45.67, -22.95, 40.00. -50.33, 66.75, 0.00
999 END

A run of this program. BANKUSNG, is below:

BALANCEITEM AMOUNT

$100. 00
$+76. 25
$+65. 85

$+115.85
$+108.60
$+66.10
$+20.43
$-2.52
$-3.52

$+36.48
$-13.85
$-14.85
$+51.90
$+50.79
$50.79

OPENING
CHECK
CHECK
DEPOSIT
CHECK
CHECK
CHECK
CHECK
OVERDR:
DEPOSIT
CHECK
OVERDR.
DEPOSIT
SERVICE
CLOSING

23.75
10.40

$50. 00
$7.25

$42. 50
$45.67
$22.95
$1.00

$40. 00
$50.33
$1.00

$66. 75
$1.11

ADDITIONAL INFORMATION:

1) A shorthand of Print Using is: USING.

The actual MARGIN is also valid for PRINT USING.

It is possible to let the output go to a specified file as with
the PRINT statement.

2)

3)

ND-60.040.02

4-25

Input Control4.6

There are some occasions when a user wishes to override the normal
BASIC input conventions. For example, commas usually are used to
separate a fixed number of entries on a line. The following statements allow
somewhat greater flexibility.

The LINPUT Statement4. 6.1

If a program calls for data to be entered from the terminal using
an INPUT statement, and the data consists of strings containing such
characters as quotation marks, leading blanks, ampersands, or
commas, then the data used in the BASIC computation may not be the
ones desired, for BASIC normally treats such characters in special

' ways. The LINPUT (remember it as 'Tine-input") statement provides
for the entering of an arbitrary sequence of characters into a single
string. The characters typed may consist of any ASCII characters,
other than a carriage return, which terminates the string; the carriage
return character is not included in the string. An example of a LINPUT
statement appears in the following program, which counts the number
of commas in the input string.

100 LINPUT A#
110 LET N = 0
115 LET X = LEN(A$)
120 FOR I = 1 TO X

LET B# = SEG$ (Ag, 1,1)
IF BgU >", " THEN 160
LET N = N+l

160 NEXT I
170 PRINT "THERE ARE”; N; "COMMAS IN THIS LINE."
180 END

A run of the program follows.

? A.B.C.,D,E
THERE ARE FIVE COMMAS IN THIS LINE.

130
140
150

More than one variable may follow the word LINPUT if the variable names
are separated by commas. A new ? appears for each variable in the
list.

The MAT INPUT Statement4. 6. 2

The MAT INPUT statement allows the user to enter data when the
program does not know how much data will be input. This feature
circumvents cumbersome programs such as the following, which is
designed to perform the simple task of adding up a few numbers typed
in from the terminal

100 LET T = 0
105 INPUT N
110 LET T ~ T + N
120 IF N < >0 THEN 105
130 PRINT "THEN TOTAL IS" ; T
140 END

ND-60. 040. 02

4-26

To use such an awkward program, you must type one number and
carriage return in response to each question mark which is printed

by the INPUT statement. When a zero is entered, the program assumes
that all the numbers have been entered, and the total is printed. Besides
being time-consuming, intermediate zeros cannot be entered.

The following program using the MAT INPUT statement is much more
convenient to use and performs the same function as the previous program.

one

100 DIM A(100)
105 LET T = 0
110 MAT INPUT A
120 FOR I = 1 TO NUM
130 LET T = T + A(I)
140 NEXT I
150 PRINT’’THE TOTALIS”; T
160 END

In response to the MAT INPUT statement in line 110, the user may type
any number of numbers separated by commas. When the input line is
terminated with a carriage return, the first number entered is in A(l),
the second is in A(2), and so on. The number of numbers entered is
made available by the function NUM. This function has no arguments
and will deliver the number of entries until a new MAT INPUT statement
is executed.

Zero, one, or any number of entries may appear on a line, the only
limit being the size of the line. If one wishes to enter more numbers
than can be typed on one line, it is possible to continue typing on additional
lines. If the last number on a line is followed bv an ampersand (&) with
no preceding comma and then by a carriage return, BASIC will accept the
input typed so far and then print a question mark so that data may be
continued on the following line. Of course, if more than 10 numbers are
to be entered using a MAT INPUT statement, a DIM statement must be
provided in order to reserve sufficient storage.

The MAT INPUT statement may also be used to enter strings into a list.
Rules for enclosing the strings in quotation marks are the same as those
given in Section 4.4.2 for the INPUT statement with this addition: the
last string entered on a line in response to a MAT INPUT statement must
be enclosed in quotation marks if its last character is an ampersand (&).

The possibility of having variable amounts of input is available only with
lists. If the MAT INPUT statement is used with a table, an item must be
entered for each element in the table; variable input is not allowed See
Section 6.5.2 for more information on the MAT INPUT statement.

i

ND-60. 040. 02

4-27

Program Organization Slat e m enls4.7

When larger BASIC programs are written, they should not be looked
upon as a simple series of statements. They should be organized into
units analogous to blocks or sections or paragraphs, so that overall
action of the program can be managed in terms of ’'building blocks” of
statements. Once these blocks of statements are written and checked,
they can be utilized by a programmer who knows only the function they
perform, without his having to bother with individual, detailed statements.

BASIC is a language which is designed to be understandable both by
machines and by human beings. A program must be understandable to
the machine if it is to perform a computation. A program must be under
standable to a human being if he is to be able to verify its correctness,
improve the technique, change the theoretical basis of the technique, or
explain its value to others. Also, when programs are being developed,
they do something—not necessarily what is finally desired; all programs
do something, even if it is stopping immediately. It must be possible to
determine how a program does w'hat it does, even when it is incorrect.
English-language comments (or other natural-language comments) can be
incorporated into the body of the text of a BASIC program in order to
improve its readability and to aid in its interpretation. These comments
do not interfere with the operation of the BASIC program.

The Apostrophe Convention4.7. 1

A comment may appear on the same line as a BASIC statement if the
comment follows the statement and is separated from it by an apostrophe.
This is especially useful for explaining the intent of a single BASIC state
ment when the importance of that statement is not necessarily clear from
the BASIC statement alone. A comment may appear on a line by itself
if it is preceded b\ an apostrophe as showm in the following program
segment.

100 IF ABS(X)<- 1 THEN 130 'PREVENT NEG SQ ROOT IN 130
110 PRINT ”ABS (X) IS GREATER THAN I IN LINE 100. ”
115 ’ AVOID LINE 130 WITH A GO TO STATEMENT
120 GO TO 140
130 LET Y = SQR (1 - X * X)
140 LET Z = Z - Y

More about the REM Statement4.7.2

As was pointed out in Section 4.3.3, if the first three characters following
the line number of a BASIC statement are REM, then any remarks whatso
ever may follow on that line. REM statements may be used to convey the
function of a block of statements in a program. Knowing the purpose of the
BASIC program (or the purpose of each part of if) facilitates checking each
of the BASIC statements to verify that the program is correct. Well-
written REM statements greatly increase the value of a BASIC program to
other users by making the intent of the programmer know-n, i.e. , what the
program as a unit is supposed to do and how different parts of the program
work toward this end.

ND-60. 040. 02 I

4-28

Since REM statements have line numbers, they can be referred to
in GO TO statements or other statements which cause a transfer of
control such as the ON.. .GO TO and IF. . . THEN statements. It is
especially appealing to transfer to a REM statement which describes
the purpose of a following block of code. The example in Section 4.8.1
illustrates how blank lines can be used to set off a REMARK or other
BASIC statement. Blank lines are ignored by BASIC and are used to
improve the readability of programs.

Subroutines4.8

In BASIC programs, it often happens that similar calculations must be
carried out at several places in the computation. We denote a related
group of BASIC statements required to carry out such a calculation as
a subroutine. It would be tedious and wasteful to have to copy the state
ments of the subroutine at every place in the entire BASIC program that
such a calculation was to be performed. The GOSUB statement provides
a way to transfer control to a subroutine. Control returns to the state
ment following the GOSUB when a RETURN statement is reached in the
subroutine. Alternatively, the ON. . .GOSUB statement allows branching
to one of several subroutines and the IF. . .GOSUB statement allows a
conditional subroutine jump.

The GOSUB and RETURN Statements4.8.1

The GOSUB and RETURN statements are illustrated in the following
example where the subroutine in lines 300-410 calculates the greatest
common divisor of two numbers X and Y. The program uses this sub
routine to calculate the greatest common divisor of three numbers A,
B, and C, relying on the fact that GCD(A, B,C) -• GCD(GCD(A, B),C).

110 PRINT "A", "B", "C", "GCD"
120 READ A, B,C
130 LET X--A
140 LETY B
150 GOSUB 300
160 LETX G
170 LET Y C
180 GOSUB 300
190 PRINT A, B,C , G
200 GO TO 120
210 DATA 60,90,120
220 DATA 38456,64872,98765
230 DATA 32,384,72
250 •

ND-60. 040. 02

4-29

200 REM SUBROUTINE TO CALCULATE GCD
LET Q-INT(X/Y)
LET R~X-Q* Y
rF R=0 THEN 400
LET X=Y
LET Y -R
GO TO 300
LET G-Y
RETURN ’TO LINE 160 OR 190
END

305
310
320
330
340
350
400
410
420

When the program is run, X and Y are set equal to A and B. Line 150
contains a GOSUB to line 300. This is the beginning of a calculation
which sets G equal to the greatest common divisor of X and Y. Line
410 is the RETURN statement which returns to 160, the line following
the GOSUB. Subsequently X and Y are given the values of G and C in
order to GOSUB to the GCD subroutine once more. Upon return to 190,
the line after the second GOSUB, the answers are printed and the process
recycles. In operation, the statement

ISO GOSUB 300

records information about the location of the GOSUB before transferring
control to line 300 This is done in such a way that a statement like

410 RETURN

uses the information stored by the GOSUB statement to return control
to the line directly following the GOSUB. Consequently, a subroutine
may have many RETURN statements in it, but the first one which is
actually encountered causes control to be returned to the main part of
the program.

A GOSUB may be executed inside a subroutine to call still another
subroutine. In this nested subroutine arrangement, the first RETURN
statement to be executed returns control one level to the statement
following the most recently executed GOSUB. The next RETURN state
ment returns control to the statement following the previously executed
GOSUB, and so on.

4.8.2 The ON. . .GOSUB Statement

The ON. . .GOSUB statement provides a way of transferring control to
one of several subroutines. The statement

100 ON X-l GOSUB 700, 800, 900

will cause execution of the subroutine beginning in line 700 if the value
of X-l is 1, execution of the subroutine beginning in line 800 if the value
of X-l is 2, and execution of the subroutine beginning in line 900 if the
value of X-l is 3.

ND-60. 040. 02

4-30

The expression "X-l" could have been any arithmetic expression,
including a simple variable. The value of this expression must not
be less than 1 and not greater than the number of line numbers listed;

If theif so control is transferred to the next line of the program,
value is not an integer, it will be truncated to an integer.
When a RETURN statement is encountered, control is returned to the
statement following the ON. . .GOSUB statement.

The IF. . .GOSUB Statement4.8.3

The IF. . .GOSUB statement provides a way of transferring control to
a subroutine if some specified condition is met. The statement

100 IF A# = "MARRIED" GOSUB 900

will transfer control to line 900 if the condition is true.

The condition may be of either a numeric or a string type.

When a RETURN statement is encountered, control is returned to the
statement following the IF. . .GOSUB statement.

The DEF Statement4.9

BASIC has a number of built-in functions, such as SIN, LOG, SQR, etc.
If the user requires an extension to this set of functions, he has the
ability to write a definition for a new function in BASIC using a DEF
statement.

4.9.1 One Line DEF Statements

Sometimes a function definition can be written in a single BASIC state
ment. Suppose an arcsine function is required.

100 DEF FNA(X) = ATN(X / SQR(1 - X*X))
110 PRINT FNA(. 707)
120 END

Line 100 defines the new arcsine function. Defined functions are given
three-character names, the first two letters of which are FN and the
third is alphabetic. In the definition of FNA(X), the variable X is not
related to any variable of the same name elsewhere in the program.
The DEF statement simply defines the function and does not cause any
calculation to be carried out; the variable X is called a dummy argument.
The appearance of FNA in some other place in the BASIC program (this
is known as the place where the function is called) causes the calculation
denoted in the DEF statement to be executed. When the function is called,
the value of the argument of the function (.707 in the above example) is
substituted for the dummy argument throughout the definition of the
function.

ND-60. 040. 02

4-31

DEF statements may appear anywhere in a program and may define
functions of more than one variable. For example:

100 LET D1 = FNR (201.83 , 199.01)
110 PRINT D1
120 DEF FNR(X, Y) = SQR(X*X + Y *Y)
130 END

When a function of more than one variable is defined, the list of dummy
arguments is separated by commas.

DEF statements may involve both dummy arguments and variables which
have the same meaning as elsewhere in the program. In the following
example

100 DEF FNX(X, Y) =X*COS(T) + Y*SIN(T)
110 DEF FNY(X,Y) = -X*SIN(T) + Y*COS(T)
120 LET T = 1.7 ’ANGLE IN RADIANS
130 INPUT A, B
140 PRINT’’ROTATED", FNX(A, B), FNY(A, B)
150 GO TO 130
160 END

the DEF statements involve both the dummy variables X and Y whose
values depend on the arguments of the function, and a variable T which
has the same value as it does elsewhere in the BASIC program. If a
variable in a DEF statement is to have its current value in the program
when the function is called, it is not included in the list of dummy
arguments.

Multiple Line DEF Statements4.9.2

The use of the DEF statement described above is limited to those
functions which can be defined in a single BASIC arithmetic statement.
Many functions cannot be computed using a single BASIC arithmetic
expression, particularly those which require IF. . .THEN statements.
The following example demonstrates the format of multiple line DEF
statements and their use for a function which returns the larger of two
numbers.

10 DEF FNM PC,Y)
LET FNM = X
IF Y < = X THEN 50
LET FNM = Y
FNEND

20
30
40
50
55

PRINT FNM(5,4), FNM(-5,-4)
PRINT FNM(1, FNM(2, FNM(3,0)))
END

60
70
80

The definition of the function extends from line 10 to line 50.

ND-60. 040. 02

4-32

The absence of the equal sign in line 10 indicates that this is a
multiple line DEF; the end of the DEF is indicated by the FNEND
statement. The value which the function delivers must be stored
in the variable having the same name as the function (in this case,
FNM) when control reaches the FNEND statement. As illustrated
in line 70, function calls may be nested. The preceding program
printes the numbers 5, -4, and 3.

As with the single line function definition, variables appearing in
parentheses after the function name in a multiple line definition are
called dummy arguments, and values are substituted for these argu
ments when the function is called. Variables not listed in the DEF
statement will use their current value. There must not be a transfer
from inside a multiple line DEF to outside, nor vice versa. Function
definitions may not be nested. Naming conventions are the same as
for single line definitions. Multiple line function definitions may be
placed anywhere in a program.

:

If a value is not stored (as in line 40 above) for the function when
control reaches the FNEND statement, a value of zero is returned
when the function is called. Any variable assignments made to
variables other than the dummy arguments of the function within the
scope of a multiple line definition affect the values of variables of
the same name appearing elsewhere in the program.

Note that strings are not allowed as parameters.
i
?

i

V

;
V

V
I V

! J
■ < « . • .!

•'*,> *•••;%> - "v :
t

i

!-
V

V- V 'i

:
i
i

• t

ND-60. 040. 02 i
i.

I

5-1

FILES IN BASIC5

Introduction5.1

Files are the retrievable units in which information is stored. All
the programs discussed so far in this manual are examples of files.
These files are printed on paper and you can retrieve the information
by reading them. Another example is a program punched on paper
tape. The paper tape format is easily transferred to a computer
equipped with a paper tape reader.

Files are classified according to how the information is accessed.

Sequential files are accessed one character after the other. In Chapter
3 the saving and retrieval of program files are explained. These files
are sequential files, and because the files are used with input and output,
the format used is the format suitable for the pheripheral in question.
Accordingly such files are called Terminal -format files.

V
Data in random access files are accessed using an address. If data are
used in random manner, retrieval using an address is normally much
faster than sequential searching. In BASIC random files are used to
hold data arrays too big for the core available and data are only mani
pulated using BASIC programs.

Terminal Format Files5.2

The two major uses of terminal format files, in addition to programs
are the initial storage of data to be used as input for a program, and
the storage in listable form of the output from a program. The use of
a file to store the input data for a program is discussed first in this
chapter.

Reading a Terminal Format File from a Program5.2. 1

Throughout the next few sections of this chapter, several versions of
the same fundamental program will illustrate the use of the statements
related to terminal format files. This program computes an average
grade for each of several students in a group.

The first version of this program, AVERAGE 1, uses data stored in a
terminal format file called GRADES.

ND-60. 040. 02

The main advantage of storing the input data in a separate file, as
opposed to storing it in the same file in DATA statements, is that
files can contain much more data than can a program. For practical
purposes, there is almost no limit to the number of students the
program can process in one run. There are strict limits on the
length of a program to be compiled and these limits include the DATA
statements. Another advantage is that since the program file is never
modified (a,s it would have to be if DATA statements were used), there
is no chance of the program Itself being inadvertently changed during
the typing of a new data set.

A listing of AVERAGEl follows:

PROGRAM NAME—AVERAGEl100 REM
110

THIS PROGRAM COMPUTES AVERAGE GRADES FOR
A SET OF STUDENTS. EACH STUDENT IS ASSUMED
TO HAVE THE SAME NUMBER OF INDIVIDUAL
GRADES TO BE AVERAGED. THE DATA IS IN A
TERMINAL FORMAT FILE CALLED "GRADES".
THE FIRST LINE CONTAINS S, THF NUMBER OF
STUDENTS, AND G, THE NUMBER OF GRADES PER
STUDENT. THE REST OF THE FILE CONSISTS OF
S SETS'OF (G+l) LINES. THE FIRST LINE IN A SET
CONTAINS THE NAME OF A STUDENT, AND THE
FOLLOWING G LINES IN THE SET EACH CONTAIN
ONE OF THE STUDENT’S GRADES.

120 REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

130
140
150
160
170
180
190
200
210
220
230
240
250 OPEN * 1 : FOR INPUT "GRADES"

PRINT "NAME”, "AVERAGE"
PRINT N
INPUT # 1 : S.G
FOR I = 1 TO S
LET A = 0
INPUT * 1 : Ni
FOR J
INPUT # 1 : X
LET A = A + X
NEXT J
LET A = A/G
PRINT Ng, A
NEXT I
CLOSE # 1 :
END

i

260
270
280
290
300
310

1 TO G320
330
340
350
360
370
380
390
400

There are three new statements in this program, the OPEN# statement,
INPUT# statement and the CLOSE# statement. The OPEN# statement
assigns a file name to a file number. The file name may be expressed
as a string constant (as in the program above) or as a string variable.
Thereafter, all references to the file are made through the file number
rather than the file name. There.may be up to 6 open files within a
program, with numbers between 0 and 5. File numbers need not be
assigned sequentially: a statement assigning a file to the number 5
could precede another statement assigning a file to the number 1.

ND-60.040. 02

5-3

When the OPEN statement is used with a sequential file
whether the file shouid_T5e used for input or for output using the argu-
ments FOlTlNPUT o^F.oil OUTPUT.

The CLOSE# statement is used when you are finished using a file.
The statement will set the file ready to be opened again, and leave an
empty entry in the file table.

In AVERAGE1 only one file, GRADES, is used. The OPEN# statement
assigning the file GRADES to file number 1 is in line 250. Thereafter,
the file GRADES is referred to as file #_1 in lines 280, 310, and 330 of
the program.

i

The INPUT# statement differs from the simple INPUT statement only
by the inclusion of the number sign, a file number, and a colon. Any
list of variables that is legitimate in a simple INPUT statement is also
legitimate in an INPUT# statement.

Now let us briefly run through the whole program before going on to con
sider the construction of the data file GRADES. Lines 100-220 are
remarks describing the program, its limitations, and instructions for
using it. The OPEN# statement has already been described. Lines
260 and 270 print a heading for the output. Line 280 requests the input
of two numbers, S and G, from file #1, the file GRADES. S is the numbe.
of students and G is the number of grades per student. A loop indexed
by I begins in line 290 and continues through line 380. The program ends
after this loop has been executed S times, once for each individual whose
grades are to be averaged.

Within this loop, line 300 initializes A, the variable used to store the
sum of the grades for an individual. Line 310 requests the input of a
string from file # 1, GRADES. This string is the name of the next
individual whose grades are to be averaged. Another loop begins in line
320 and ends in line 350. This loop is executed G times, once for each
grade. Within the loop indexed by J, line 330 inputs a grade, X, from
GRADES and line 340 adds this grade to A, the sum of the grades so far.
When this loop has been executed G times, line 360 divides the sum of
the grades, A, by the number of grades, G, to get the average grade
which is stored in A. Line 370 prints the name of the individual, N$,
and his average, A. Then the loop indexed by I is executed for the next
individual, until all averages have been computed and printed.

Now let us consider the data file. The format used in constructing a
terminal format file to be read by a program is determined by the way
in which the INPUT# statements are set up in the program. INPUT#
statements, like simple INPUT statements, contain lists of variables to
receive values. Whereas a simple INPUT statement requests the user
of the program to supply these values at run time, the INPUT# statement
requests the values from a terminal format file. It considers the con
tents of the next line in the file (beginning with the first line in the file)

ND-60. 040. 02

f
5-4

as response to its request. If there are more numbers or strings in
the line than were requested, the excess is ignored. If there are not
the same number of items as there are variables in the INPUT list,
the next line in the file is interrogated in an attempt to find more
numbers or strings. If the items on the line interrogated do not
correspond in type to the variables in the input list, the process is
continued.

The first INPUT# statement in AVERAGE 1 requests two numbers, S
and G. These numbers may either be on the same line in the data file
or on two different lines. The rest of the numbers and strings in
GRADES must be written one per line since they will be read by INPUT#
statements requesting one number at a time. If they were erroneously
written more than one per line, all but theJ.irS-t number on.each line
would be ignored (as ’’excess data"). In an attempt to compensate for
the number ignored, the computer would look for values beyond the end
of the file, and the program run would terminate. The file GRADES
must not have line numbers—just the data requested by the INPUT#
statements in the program. The following is a listing of the file GRADES
as written for use with AVERAGE1. Note that when more than one item
is listed on the same line, the items are separated by commas, as in
the first line of GRADES.

3,4
GERALD FRIEND
78
86
61
90
PHILIP CLOUGH
66
87
88
91
ADA SHAW
56-! 77S

! 81
85

This file could be created by using the editor QED. (For information
about QED consult the QED Users Manual.)

The following is a run of AVERAGE! using the data in the file GRADES.

AVERAGE1
NAME
GERALD FRIEND
PHILIP CLOUGH 83
ADA SHAW

AVERAGE
78.75

74.75

DONE

ND-60. 040. 02

5-5

Writing a Terminal-format File from a Program5.2.2

In this section we will consider how to alter the program AVERAGE 1
so that it writes its output into a terminal-format file instead of printing
it on the terminal. Using a file in this manner allows the uaer-tn.Qbta.in
multiple copies of the output without rerunning._thgJ2ro£ram, In addition,
if there is a lot of output, it is often more convenient and possibly faster
to direct the output to a file and then list the file than to print the output
directly on the terminal.

Two changes need to be made in AVERAGE1; first, another OPEN#
statement must be added to assign the output file to a file number; and
second, the simple PRINT statement must be changed to PRINT# state
ments. The following program, AVE.RAG3E2, incorporates these changes.
The output is printed in a terminal T&rmat file called AVERAGES.

210 REM PROGRAM NAME—AVERAGE2
220 ,
230 REM THIS PROGRAM IS LIKE AVERAGE 1 EXCEPT THAT
240 REM THE OUTPUT IS PRINTED IN-A TERMINAL-FORMAT
250 REM FILE CALLED ’’AVERAGES”.
270
290 OPEN # i: FOR INPUT ’’GRADES”
300 OPEN # 2: FOR OUTPUT ’’AVERAGES”
310 PRINT #2: ’’NAME” AV£F.A§£*
320 PRINT # 2\ 7
330 INPUT # 1:S,G
340 FOR 1=1 TO S
350 LET A -- 0
360 INPUT # i:N#
370 FOR J = 1 TO G
380 INPUT # 1: X
390 LET A - A+X
400 NEXT J
410 LET A - A/G
420 PRINT #2: N#,A
430 NEXT I
440 CLOSE i 1:
450 CLOSE # 2:
460 END

The input file GRADES is assigned to file #1 and the output file
AVERAGES is assigned to file #2.

When the program is run, line 300 will set the file AVERAGES ready
to receive output. If the file does not exist, it will be create_d. Any
information in the file will be destroyed and you should do as follows
if you want to save the information:

Enter the editor QED (see above).
Read the file.
Save the file using a new name.

a)
b)

c)

ND-60. 040. 02

5-6

It is still easier to use the NORD TSS command: COPY.

After the program AVERAGE2 has been run, you can list the file
AVERAGES using COPY or the QED editor. The following printout
results:

NAME AVERAGE
GERALD FRIEND 78. 75
PHILIP CLOUGH 83
ADA SHAW 74.75

Note that the output of AVERAGE2 and that of AVERAGE 1 is identical;
the only programming difference is that the first program prints its
output to a file and AVERAGE1 prints output directly on the terminal.
The format of the output in AVERAGES is the same as that of the output
printed on the terminal when AVERAGE 1 is run.

The Use of the Terminal Itself as a File5.2.3

Suppose now that we wanted to rewrite AVERAGE2 so that the use of
files for input and output was optional. We could write separate sections
in the program to deal with each option and then to branch to the appropriate
section. However, there is an easier way. Both the INPUT# and the
PRINT# statements interpret a reference to file #0 as a reference to the
terminal itself and in this case work exactly like the simple INPUT and
PRINT statements.

The following program, AVERAGE3, is a revision of AVERAGE2 in
which the user may decide whether or not he wishes to use files. In
addition he may choose the names of the data and output files if he does
want to use files.

r •

ND-60. 040. 02

5-7

100 REM PROGRAM NAME—AVERAGE3
110 ’
120 REM THIS PROGRAM IS LIKE AVERAGE2 EXCEPT
130 REM THAT THERE ARE OPTIONS FOR READING
140 REM DATA FROM A FILE AND PRINTING THE OUTPUT
150 REM INTO A FILE. DATA CAN BE IN A TERMINAL-FORMAT
160 REM FILE OR CAN BE TYPED IN AT RUN TIME. IF THE
170 REM DATA ARE IN A FILE, THE FORMAT IS THE SAME
180 REM AS THAT OF "GRADES" USED IN AVERAGE1 AND
190 REM AVERAGE2. IF THE DATA ARE TO BE TYPED
200 REM IN AT RUN TIME, THEY MUST BE ENTERED
210 REM ACCORDING TO THE SAME FORMAT THEY WOULD
220 REM HAVE WERE THEY IN A FILE. IF OUTPUT IS
230 REM TO GO TO A FILE, THE FILE SHOULD BE SAVED
240 REM BEFORE THE PROGRAM IS RUN.
250 ’
270 LET F1=F2=0
280 PRINT "ARE DATA IN A FILE - ANSWER NO OR GIVE FILE NAME";
290 INPUT A#
300 IF A# = "NO" THEN 330
310 OPEN # 1 : FOR INPUT A$
320 LET FI = 1
330 PRINT "SHOULD OUTPUT GO TO A FILE - ANSWER NO OR GIVE"
340 PRINT "FILE NAME";
350 INPUT Ag
360 IF Ag = "NO" THEN 390
370 OPEN # 2 : FOR OUTPUT A#
380 LET F2 = 2
390 PRINT # F2 :
400 PRINT #F2: "NAME", "AVERAGE"
410 INPUT # FI : S,G
420 PRINT # F2 :
430 FOR I = 1 TO S
440 LET A = 0
450 INPUT # FI : N#
460 FOR J - 1 TO G
470 INPUT U FI : X
480 LET A = A + X
490 NEXT J
500 LET A - A/G
510 PRINT # F2 : Ng,A
520 NEXT I
530 END

ND-60. 040. 02

5-8

The following is a sample run of AVERAGE3 using the option to input
the data at run time. This listing shows clearly the correspondence
between the simple INPUT statement and the INPUT# statement.

AVERAGE 3
ARE DATA IN A FILE - ANSWER NO OR GIVE FILE NAME? NO
SHOULD OUTPUT GO TO A FILE - ANSWER NO OR GIVE
FILE NAME? AVERAGES
? 3,4
? GERALD FRIEND
? 78
? 86
? 61
? 90
? PHILIP CLOUGH
? 66
? 87
? 88
? 91
? ADA SHAW
? 56
? 77
? 81
? 85

DONE

.

Other Input/Output Statements5.2.4

The LIN PUT# statement is used to read strings which might contain
such special characters as quotation marks, leading blanks, ampersands,
and commas from terminal-format files. The format of this statement is.

100 LINPUT n N : <iist of string variables >

where N is a file number. Rules governing the use of the LINPUT state
ment (Section 4.6.1) apply to the LINPUT# statement. If N is equal to
zero, the terminal itself is referenced, and input from the terminal is
requested.

\

There are also three MAT statements which may be used with terminal-
format files: MAT PRINT#, MAT INPUT#, and MAT LINPUT#. These
statements are discussed in Section 6.5.3.

•r

Margins on Terminal-format Files5.2.5

MARGIN # N : M sets a margin of M on file # N just as the simple
MARGIN statement sets a margin on lines output to the terminal. The
margin for terminal-format files may be changed at any time. MARGIN
0 : M has the same effect as MARGIN M. The interpretation of the
margin setting is the same as in the simple MARGIN statement. See
Section 4. 5. 6 for details.

ND-60. 040. 02

5-9

Random Access Files5.3

The major use of random access files is to hold big amounts of data
which should be accessed in a random manner. The data will normally
be loaded from a Terminal-format file using a BASIC program or
be generated by a program.

Random files are used to hold numbers and strings. The data are
manipulated internally in BASIC and accordingly the internal format
is used. Numbers are represented in the standard floating point
format and strings are saved in ASCII code two characters to a word.

The addressing mode of arrays is used to address the individual items
in a random access file and when an array is assigned to a random
access file, the associated indexed variable may be used the same way
as for core arrays. The MAT statements may not be used with random
files.

Using a Random Access File5.3.1

Before use the file must be associated with a file designator. This
is done using the OPEN # statement,
for input and for output and the OPEN # statement must be used without
INPUT and OUTPUT

A random file will be used bo.

10 OPEN If 3 : FOR "AVERAGES’’

will assign AVERAGES to file 3 and allow random access in the file.

To assign the addressing mechanism an array must be associated with
a random file.

20 DIM #3 : A(100, 100), Ag(100, 100), Bg(1000) = 40

The statement above indicates that AVERAGES contains 10201 numbers
addressed by:

A(0, 0), A(1,0), A(2, 0).. A(100, 0), A(0,1), . . . etc.

Then follows 10201 strings. The maximum number of characters in
each is 16, because no size is'given. The strings are addressed by:

A#(0, 0), Ag(l,0).......... Ag(100,0), Agf(0,l) etc.

Thereafter follows 1001 strings with a maximum of 40 characters in
each, addressed by:

Bg(0), BSf(l), Bg(2)----- etc.

Note that the same DIM statement must be used to describe the addressing
within one file.

ND-60. 040. 02

5-10

If it is desirable to access the file from other program systems
the relative addresses can be computed based on the following facts:

The first element starts in address 0.
A number uses 3 addresses.
A string uses INT ((max. size +1) /2) addresses.

1)
2)
3)

The OPEN# and CLOSE# S tatements5.4

The OPEN# statement is used both to associate a BASIC file designator
with a file in the file system and to describe how the file should be
used. Such a description is valid until the CLOSE# statement is used
or the file is closed by the system. With the END statement and with
break,all files are closed. With any error messages all files are
closed.

ND-60. 040. 02

6-1

ARRAY MANIPULATIONS6

Up to this point in the manual a singly subscripted variable (a variable
having only one subscript) has denoted a list and a doubly subscripted
variable (a variable having two subscripts) has denoted a table. In this
chapter it is appropriate to refer to lists as vectors and tables as
matrices since we are describing them in a mathematical context.

Vectors and matrices are both arrays. That is, an array is denoted
by a variable having one or more subscripts; a vector is an array having
one subscript; a matrix is an array having two subscripts.

A string array is an array whose entries are strings.

BASIC provedes MAT statements which are designed to allow the pro
grammer to work with arrays in a simple and straightforward manner.
Although arrays have a row number 0 and a column number 0 in BASIC
(Section 2. 4), the MAT statements generally ignore them.

Initialization Statements6.1

There are three MAT statements which facilitate the procedure of
assigning values to individual array entries.

100 MAT A = ZER

This statement assigns a value of zero to each entry of the array A.

110 MAT A = CON

This statement assigns a value of one to each entry of the array A.

120 MAT A = IDN

This statement sets the matrix A equal to the identity matrix. For
this statement to be valid A must be a square matrix: A must be
doubly subscripted and have its number of rows equal to its number of
columns. A may not be a vector.

All three of these MAT statements do not affect row 0 or column 0 of
the arrays on which they operate.

ND-60.040. 02

IE-

6-2

6.2 Changing Dimensions using MAT Statements

As described in Section 2.4 the DIM statement is used to dimension
(i.e. to reserve space in the computer for) subscripted variables.
Space for entries in row 0 and column 0 of an array is a part of the
total space reserved. For example the statement

100 DIM A(7), B(11,5)

results in 8 spaces being reserved for A with room for entries 0 through
7. (11 + 1) * (5 + 1) = 72 spaces are reserved for B with room for entries
in rows 0 through 11 and columns 0 through 5. If subscripted variables
are used in a program but do not appear in a DIM statement, BASIC
implicitly saves 11 spaces for a vector and 121 spaces for a matrix (a
maximum of 10 for each subscript).

It is possible to change the dimensions of the arrays used in some MAT
statements by specifying the desired dimensions in the statement them
selves. The initialization statements allow this flexibility. The state
ments

100 DIM A(8)
110 MAT A = ZER(5)

will reserve nine spaces for the vector A in line 100 and A will be
redimensioned (that is, the space reserved for A in the computer will
change) to a vector having 6 entries (entries 0 through 5) in line 110 with
A(l) through A(5) set equal to zero. A reference to A(6) after line 110
will cause an error message to be output and the program run will
terminate.

When redimensioning variables in the MAT statements care must be
taken that the spaces required to satisfy the specified new dimensions
do not exceed the spaces reserved for the variable in a DIM statement
or reserved implicitly by BASIC.

In the previous example if we retype line 100 to read

100 DIM A(4)=

an error message would be output w'hen line 110 is reached. Line 100
reserves only five spaces for the vector A and line 110 requires six
spaces for A.

Matrices may also be redimensioned in the MAT. . .COX statement.

100 DIM M(8,2)
110 MAT M = CON(5,3)

Twenty-seven spaces are stored for M in line 100 and line 110 requires
6 * 4 = 24 spaces for the redimensioning of M. Again, the spaces required
for redimensioning may not exceed the spaces reserved.

ND-60. 040. 02

0-3

Matrices may be redimensioned bv using the MAT. . .IDN statement
if enough space has been reserved for the redimensioned matrix. The
desired number of rows and columns is included in parentheses as in
the preceding examples.

100 DIM A(6,5)
110 MAT A =- IDN (4,4)
120 END

Here the matrix A is dimensioned to be 6 by 5 and in line 110 it is set
equal to the 4 by 4 identity matrix.

A vector may not be redimensioned to a matrix or vice versa.

As with subscripts, dimensions designated in MAT statements do not
have to be integers: any arithmetic expression may be used, and if the
value of the expression is not a whole number, its integer part is used.

Redimensioning of arrays may occur in other MAT statements. This
feature will be noted as the remaining MAT statements are discussed.

6.3 Arithmetic Operations

110 MAT C ~ A + B
120 MAT C - A - B

The first statement causes the array C to be the sum of the two arrays
A and B. In the second statement C is the result of subtracting array B
from array A. A and B may be vectors or matrices as long as they both
have the same dimensions. The array C assumes the dimensions of A
and B provided enough space has been reserved for C in a DIM statement
or implicitly by BASIC.

100 MAT A - B

This statement sets each entry of the array A equal to the corresponding
entry of the array B. A is redimensioned to be the same size as B
provided enough space has been reserved for A.

130 MAT C = A * B

This statement causes C to be set equal to the product of matrix A and
matrix B provided enough space has been saved for C. The number of
columns of matrix A must be equal to the number of rows of matrix B.
C must be dimensioned to be a doubly subscripted variable. The product
matrix C will have the same number of rows as matrix A and the same
number of columns as matrix B. Thus, if A is an M by N matrix and B
is an X by P matrix then C will be an M by P matrix.

ND-60. 040. 02

6-4

While the statements

100 MATA - A + B
110 MATA - A - B

.
are allowed, the statement

120 MATA = A *B

will result in an error message and the termination of the program.
When adding or subtracting two arrays, any entry of the array is only
used once so that the answer may be stored immediately in the array.
If entries of the matrix being operated on during a multiplication are
replaced, components needed to complete the matrix multiplication are
destroyed.

The following matrix multiplication is valid, provided A is a square
matrix.

100 MAT C = A * A

Performing more than one arithmetic operation in a single MAT state
ment is illegal. Thus, to evaluate the expression A + B - C two MAT
statements are required. One way of evaluating the expression follows.
We assume all dimensions are correct.

100 MAT D = A + B
110 MATE = D -C

In general these MAT statements ignore row 0 and column 0 of the arrays
on which they operate.

6.4 Functionsf i

'I' The transpose of a matrix may be found using the following statement.

100 MAT C = TRN (A)
h i

This statement sets matrix C equal to the transposed version of A if
enough space has been reserved for C. If A has N rows and P columns,
C will be redimensioned to have P rows and N columns. The statement!

110 MATA = TRN (A)

is legal.

ND-60. 040. 02

6-5

The statement

100 MAT C - (K) * A

causes each entry of array A to be multiplied by the value of K to form
the corresponding entry of the array C. Enough space must have been
stored for C, and C is redimensioned to be the same size as A. K may
be any constant, variable name or arithmetic expression and must be
enclosed in parentheses. The statement

100 MAT A = (K) * A

is legal.

The statement

100 MAT C = INV (A)

sets matrix C equal to the inverse of matrix A provided enough space
has been saved for C. A must be a square matrix, and C is redimension<L.
to be the same size as A.

The function DET is available after an inversion is performed, and it is
the value of the determinant of the matrix whose inverse was computed.
It is important to point out that even though a matrix whose determinant
is zero has no inverse, trying to compute the inverse of such a matrix
in the above MAT statement will not cause the program run to stop or
cause the output of any kind of error message. In this case DET is set
equal to zero and the resulting ’'inverse" matrix is obviously not correct.
It is up to the user to check the value of DET to determine whether or not
the matrix has an inverse.

Since DET is not available until after the inverse is found, if the value
of the determinant of a matrix is desired the inverse of the matrix must
be computed first.

The following statement is legal.

100 MAT A - INV (A)

All three of these functions may change the values stored in row 0 and
column 0 of the arrays involved. When inversion takes place, row 0
and column 0 of the inverse matrix are used to store intermediate cal
culations.

ND-60. 040. 02

6-6

6.5 Input and Output Operations

6.5.1 The MAT READ and MAT PRINT Statements

There are MAT statements that cause entire arrays to be input or output.
The program MATRIX

100 DIM M(3,5)
110 MAT READ M
120 DATA 1,2,3,4,5,6,7,8,9
130 DATA 10,11,12,13,14,15
140 END

will cause fifteen numbers to be read into the matrix M by rows. That
is, the first row of M is read in, then the second and finally the third.
Row 0 and column 0 are not affected. If the following line is added to
MATRIX

135 MAT PRINT M

and line 110 is retyped as

110 MAT READ M(2,6)

the program will yield the following output when it is run:

MATRIX

1 ' 42 3 5
6

8 9 107 11
12

DONEI

' M is redimensioned in line 110 to be a two by six matrix. These
dimensions do not exceed the total spaces reserved for M in line 100
(see Section 6.2). Twelve numbers are read into M. Line 135 causes
M to be printed in matrix format: the entries of each row are spaced
five to a line and each row begins on a new line. Row 0 and column 0
are not printed, and a blank line is output before the first row of the
matrix is printed.

-

If line 135 of MATRIX is changed to read

135 MAT PRINT M;

the following output is produced when MATRIX is run.

MATRIX
1 2 3 4 5 6
7 8 9 10 11 12
DONE

ND 60. 040. 02

6-7

The semicolon after the matrix name causes M to be printed with the
entries of each row closely packed on a line.

The MAT READ and MAT PRINT statements may be used with vectors
as well as with matrices. The format of the statements is that described
for matrices. The program VECTOR

100 DIM V(3)
105 MAT V = CON
110 MAT PRINT V
120 END

will cause V to be printed as a column of numbers:

VECTOR

1
1
1

DONE

If line 110 of VECTOR is changed to read

110 MAT PRINT V,

the entries of vector V are spaces five numbers to a line in row format
as follows.

VECTOR

1 11

DONE

If a semicolon replaces the comma in the new line 110, V is printed
in row format with the entries of V closely packed.

More than one array name may appear in a single MAT READ or
MAT PRINT statement. In the MAT READ statement commas and
semicolons are used both to delimit the names and to control the
format in which the arrays are printed. For example, in the state
ment

100 MAT PRINT V, M;

If V is a vector and M is a matrix, the entries of V are printed in rows
with five entries per row. M is printed as a matrix with the entries of
each row closely packed.

Only array names may follow the word PRINT in a MAT PRINT state
ment. The following statements are illegal:

100 MAT PRINT M(2,3)
110 MAT PRINT TRN(A)

ND-60. 040. 02

6-8

6.5.2 The MAT INPUT and MAT LINPUT Statements

A variable amount of input may be entered into a vector in response
to a MAT INPUT statement; this capability is explained in Section 4. 6. 2.
If an attempt is made to enter more input than the vector can hold,
the excess data are ignored, and the program continues running. The
function NUM is available after the execution of a MAT INPUT statement
and it returns the number of data which were input. The vector is
automatically re dimensioned to the value of NUM.

A variable number of data can only be input into a vector; if a matrix is
used in a MAT INPUT statement, the matrix name must be followed by
the desired dimensions of the matrix in parentheses. Enough data must
be input to entirely fill the matrix as the dimensions are given in the MAT
INPUT statement. These dimensions may not exceed the total spaces
reserved for the matrix as explained in Section 6. 2. The following state
ments

100 DIM M(2,12)
110 MAT INPUT M(3,8)

will call for the input of 24 numbers. After statement 110 has been
executed M is redimensioned to have rows 0 through 3 and columns 0
through 8.

The function NUM is available after a matrix has been input in a MAT
INPUT statement. The value of NUM is the product of the dimensions
specified for the matrix in the MAT INPUT statement.

A vector may also be explicitly redimensioned in the MAT INPUT state
ment. The desired dimension follows the vector variable name and is
enclosed in parentheses. However, this format does not allow for the
input of a variable amount of data. An amount of input data equal to the
specified new dimension is required. The statements

100 DIM V(8)
110 MAT INPUT V(5)

will call for the input of five numbers. V will be redimensioned to
have entries 0 through 5.

String vectors and matrices may also be used in the MAT LINPUT
statement.

The LINPUT statement is described in Section 4.6.1; the MAT LINPUT
statement allows more than one line of information (possibly containing
commas, leading blanks, etc.) to be input in response to a single state
ment. The statements

100 DIM A#(6)
110 MAT LINPUT A#

ND-60. 040. 02

<>-9

call for the input of six strings. A variable amount of input is not
allowed. String matrices may appear in a MAT LINPUT statement
as well as string vectors and redimensioning may occur in the MAT
LINPUT statement by placing the desired dimensions in parentheses
following the variable name, as discussed for the MAT INPUT state
ment.

As with the other MAT statements, MAT INPUT and MAT LINPUT
ignore row 0 and column 0.

More than one array name may be listed in a MAT INPUT statement
if the names are separated by commas. The effect of listing more
than one array name in a MAT INPUT statement is the same as listing
each name in a separate MAT INPUT statement: a *?' is issued at the
beginning of a new line for each variable.

As described earlier, a variable amount of input data is allowed only
with vectors with no dimension in parentheses following the vector name.
The value returned for the function NUM is the amount of data input into
the last array listed.

100 DIM V(5), A(3), M(3,4)
110 MAT INPUT V, A(2), M(2,3)
120 PRINT "NUM ="; NUM
130 END

A sample run of this program is

? 1,2 &
? 3
? 1,2
? 1,2,3,4,5,6
NUM = 6
DONE

A variable amount of data may be entered for V (see Section 4. 6. 2 for
the use of the & with the MAT INPUT statement), two data must be
entered for A and six for M. The number 6 is printed for the value of
NUM.

More than one array name may be listed in the MAT LINPUT statement;
the array names are separated by commas, and a new '?* appears for
each variable in the list.

ND-60. 040. 02

6-10

6.5.3 MAT Statements and Files

The MAT PRINT#, MAT INPUT# and MAT LIN PUT# statements may be
used to write into and read from Teletype-format files. The formats of
these statements are

100 MAT PRINT # N : cLIST OF ARRAYS>
110 MAT INPUT #N: <LIST OF ARRAYS>
120 MAT LINPUT # N : -cLIST OF STRING ARRAYS>

where N is the file number of the file being read or written. Rules
governing the use of the MAT PRINT# statement are the combination
of rules applying to the PRINT# statement and the MAT PRINT state
ment. Analogous statements can be made for the MAT INPUT# and
MAT LINPUT# statements.

For a complete discussion of files see Chapter 5.

Examples using MAT Statements

The following two examples illustrate some of the MAT statements
discussed in this chapter.

6.6

Example One6.6.1

100 READ N, P
110 MAT READ A(N,N)
120 MAT B = CON(N,N)
130 MAT C = A + B
140 PRINT "SUM OF A AND MATRIX OF i'S IS"
150 MAT PRINT C
160 PRINT
170 PRINT "INPUT"; N*P; "VALUES FOR MATRIX B";
180 MAT INPUT B(N,P)
190 MAT C = A * B
200 PRINT
210 PRINT "PRODUCT OF A AND B IS"
220 MAT PRINT C;
230 MAT D = TRN (C)
240 PRINT
250 PRINT "TRANSPOSE OF THIS PRODUCT IS"
260 MAT PRINT D
270 DATA 2,3
280 DATA 1,2,3,4
290 END

Since the matrices used in this example do not appear in a DIM statement,
BASIC implicitly dimensions them to be ten by ten and reserves 121
spaces for each matrix. Line 110 dimensions A to be 2 by 2, while it
reads values for the entries of A from the DATA statement in line 280.
Line 120 dimensions B to be 2 by 2 and sets all entries of B equal to 1.
Line 130 adds A and B and stores the result in C. C is redimensioned to
be a 2 by 2 matrix as is shown when it is printed in line 150. Line 180

ND-60. 040. 02

6-i 1

requests the user to input enough values to fill a 2 by 3 matrix and B
takes on these new dimensions. Line 190 sets C equal to the product
of A and B and C is redimensioned to be 2 by 3. C is printed in closely
packed format in line 220. Matrix D becomes the transpose of C in
line 230 and D is redimensioned to 3 by 2. D is printed in regular format
in line 260.

A run of this example follows:

EXAMPLE 1

SUM OF A AND MATRIX OF l'S IS

32
4 5

INPUT 6 VALUES FOR MATRIX B? 2,-1,7,18,6,-10

PRODUCT OF A AND B IS

38 11 -13
78 21 -19

TRANSPOSE OF THIS PRODUCT IS

38 78
11 21

-13 -19
DONE

Example Two6.6.2

The second example inverts an N by N Hilbert matrix which has the
form

1/2 1/3 1/N1
1/41/2 1/3 1/(N+l)

1/N 1/(N+l) l/(N+2) 1/ (2N-1)

ND-60. 040. 02

6-12

A listing of the program follows:

100 REM THIS PROGRAM INVERTS AN N BY N HILBERT MATRIX
110 DIM A (20,20), 1(20,20), B(20,20)
120 DIM C(20,20), D(20,20)
130 READ N
140 MAT A =CON(N,N)
150 FOR I = 1 TO N
160 FOR J = 1 TO N
170 LET A(I,J) = 1/(I+J-1)
180 NEXT J
190 NEXT I
200 MAT B = INV(A)
210 PRINT MINV(A) ="
220 MAT PRINT B,
230 PRINT
240 PRINT ’’DETERMINANT OF A = ";DET
260 MAT I = IDN (N,N)
270 MAT C = A * B
280 MAT D - I-C
290 FOR I = 1 TO N
300 FOR J = 1 TO N
310 IF X > = ABS(D(I, J)) THEN 330
320 LETX = ABS (D(I,J))
330 NEXT J
340 NEXT I
350 PRINT
360 PRINT ’’LARGEST ABSOLUTE DIFFERENCE =" ; X
370 DATA 4
380 END

5

1
■

'
i

The double loop in lines 150 - 190 sets up the Hilbert matrix A after the
correct dimensions have been set up in line 140. A single instruction
results in the computation of the inverse (line 200) and one more instruction
prints it out in closely packed format (line 220). The value of the deter
minant of A is available after the inversion and is printed in line 240. I is
set equal to the indentity matrix having N rows and N columns in line 260.
Lines 270 through 340 find the largest absolute difference between an entry
of the product matrix A * B and the corresponding entry of the identity
matrix. This value is printed in line 360 and is a measure of the accuracy
of the inverse since the product of a matrix and its inverse is the identity
matrix.

The following run uses a value of 4 for N.

HILMAT
INV(A) =

16 -120 -140
1680

-4200
2800

240 ;
-120 1200 -2700

6480
-4200

-2700
1680

240
-140
DETERMINANT OF A - 1.65344 E -07

LARGEST ABSOLUTE DIFFERENCE = 1.66893E -06

DONE

ND-60. 040. 02

G—13

While this example shows how several MAT statements are used, it
also points out that the accuracy of the matrices generated by using
MAT statements depends on the structure of the matrices and on the
fact that the computer stores any number to only a limited number of
significant digits. These two factors combine in this example when N
is greater than or equal to 7 to cause severe roundoff errors which in
turn cause a highly inaccurate inverse to be returned. When N = 7, a
value for the absolute difference described previously is greater than
one and continues to grow as N increases.

Simulating an N-Dimensional Array

Although arrays having more than two dimensions are not allowed in
BASIC, the method outlined in the following program can be used to
simulate an array having any number of dimensions. It makes use of
the fact that defined functions may have any number of arguments, and
a one to one correspondence is set up between the entries of the array
and the entries of a vector. Formatting techniques cause the entries
of the vector to be printed in a format reflecting the dimensions of the
array.

6.7

This example simulates an array having three dimensions; it can easily
be rewritten to accomodate four or more dimensions.

100 DIM V(1000)
110 MAT READ D(3)
120 -DEF FNA(I, J, K) = ((1-1)* D(2) + (J-l)) * D(3) + K
130 FOR I = 1 TO D(l)
140 FOR J = 1 TO D(2)
150 FOR K = 1 TO D(3)
160 LET V(FNA(I,J,K)) =1 +2* J+ Kt 2
170 PRINT V(FNA(I,J,K)),
180 NEXT K
190 PRINT
200 NEXT J
210 PRINT
230 NEXT I
240 DATA 2,3,4
250 END

When the program is run, the vector is printed as two 3 by 4 matrices.

3-ARRAY
4 197 12
6 9 14 21

118 16 23

85 13 20
107 15 22
129 17 24

DONE

ND-60. 040. 02

6-14

The Row Zero and Column Zero6.8

As mentioned earlier, BASIC reserves room for an entry numbered
zero in vectors and for entries in row zero and column zero of matrices.
In general the MAT statements ignore these components; they do not
enter into computations except to store intermediate calculations and
are not normally printed in MAT PRINT statements.

However, one condition under which the MAT statements do employ
the zero component of arrays is when at least one of the arrays involved
in the MAT operation is dimensioned to have only a row and/or column
zero. For example, the statements

100 DIM A(0,5), B(0,5)
110 MAT C = A + B
120 MAT PRINT C

cause C to be the sum of A and B while C is redimensioned to 0 by 5.
Usually the MAT PRINT statement does not print row 0 of a matrix;
however, C is printed in regular matrix format in line 120.

For some operations with matrices, vectors are treated like matrices
having columns numbered zero. For example

100 DIM V(5), M (0,5), N(5,0), P(5,5)
110 MAT C = V* M
120 MAT D = P* V
130 MAT M = TRN(V)

V is treated in the MAT statements as if it were dimensioned 5 by 0,
making the three MAT statements legal. Product matrix C is redimen
sioned 5 by 5 in line 110 and D is redimensioned 5 by 0 in line 120.

These examples are not to be interpreted as illustrating general rules
about the way row 0 and column 0 of arrays are used in MAT statements.
They should be thought of as showing what happens in a particular case
and suggesting what might take place in another instance.

It is best to avoid using entry 0 in vectors and row 0 and column 0 of
matrices in conjunction with MAT statements. In many cases these
components are not operated on by the MAT statements as one might
expect. Also, the manner in which BASIC handles the entry 0 of vectors
and row 0 and column 0 of matrices may be changed.

ND-60. 040. 02

7-1

MISCELLANEOUS INFORMATION7

Roundoff Errors7.1

The smallest number BASIC can handle is approximately 1 *10 t -4920
and the largest number is 1 *10 t +4920, but input and output are restricted
to be within the following limits: l*10t-100<|x|<la104 100.

!

BASIC stores numbers correct to approximately nine significant digits
and prints generally numbers to six significant digits.

As mentioned in Section 2.3, the values of the expressions in the FOR
statement need not be integers. However, the user must be cautioned
that using a non-integer step size may result in Roundoff errors. These
errors occur because the computer can only store about nine significant
digits for each number it computes. The cumulative effect of these
Roundoff errors over a loop executed many times may be significant:
the expected value of the running variable may differ from the actual
value.-

!
100 FOR X = 0 TO 200 STEP 0.001
110 LET Y = Y + 1
120 REM Y COUNTS THE NUMBER OF TIMES
130 REM THE LOOP IS EXECUTED
140 NEXT X
150 PRINT X, Y
160 END

This program gave the following output when it was run:

100 FOR X = 0 TO 200 STEP 0.001
RUN

199.999 199998

DONE

For the same program, X had a value of a little more than 199.999 on
the last pass through the loop; it was not equal to 200 as we might expect.
With the next addition of . 001, however, the value of X would be greater
than 200, so the conditions for ending the loop are satisfied. Also note
that Y, which counts the number of times the loop is performed, is not
200001, the expected value, but 199998; the loop has been executed three
times less than might be expected. Consequently, calculations involving
the running variable or depending on the number of times the loop was
performed would be in error because of Roundoff errors.

Thus, in general, use integer step sizes and integer FROM and TO
elements to avoid Roundoff errors. If you want to step over a series
of non-integer values, appropriate operations may be performed on the
running variable within the loop to achieve this result. For instance,
in the example above X may be made to range from 1 to 200 in steps of
. 001 using the following technique:

ND-60. 040. 02

7-2

100 FOR I = 0 TO 200000
110 LET X =1/1000
120 LET Y = Y + 1
130 NEXT I
140 PRINT X,Y
150 END
160 END

This program prints a value of 200 for X and 200001 for Y. These
values are the expected ones, and no Roundoff error has occurred.

Some Specifications and Limits7.2

: 32767Largest line number

Upper limit for numbers input/output: i. 0E+100

Lower limit for numbers input/output: 1. OE-100
: Approximately 9 significant digitsAccuracy

Maximum nesting of FOE NEXT loops: 10 deep
Maximum nesting of GOSUB

Size of statements is restricted to one line (80 characters).
: 12 deep

Entering the BASIC System7.3

7.3.1 Using NORD TSS

When using the NORD Time Sharing System you press the Teletype
pushbutton ESC. The system log-in procedure is initiated as follows:

NORD TSS
USER NAME
PASSWORD

KRISTIANSEN

Only users identified to the system will be admitted and you must know
the password, which is some sequence of characters terminated by
carriage return. When the character <a) is printed, the TSS command
processor is active. You may then just print:

BASIC

and the BASIC system will be entered printing:

BASIC ON LINE
NEW OR OLD -

ND-60. 040. 02

7-3

Using the BASIC Time Sharing System

A NORD-i without mass memory which is furnished with BASIC Time
Sharing System may service BASIC users. The system is entered into
the computer as follows:

7.3.2

Get the paper tape marked BASIC Multi User.a)

b) Put the tape in the tape reader and turn on the reader.

Press the pushbuttons marked MASTER CLEAR and
LOAD on the NORD-1 operators panel.

c)

The tape should now be read and entered into core. The
input is checked, and if it is considered correct, the system
is started by printing:

d)

i

BASIC ON LINE
NEW OR OLD----

on the console Teletype (provided this Teletype is turned on).
All Teletypes in the system may now be activated. This is
done by pressing the Teletype pushbutton ESC. The Teletype
will respond by typing:

BASIC ON LINE
NEW OR OLD —

7.3.3 NORD BASIC One User System

In this system all the monitoring routines are omitted to enable bigger
user programs. Accordingly only one user is admitted and breaks are
executed manually. The system is loaded as follows:

Get the tape marked BASIC ONE USER SYSTEM.a)

b) Put the tape in the tape reader and turn on the reader.

Press the pushbuttons marked MASTER CLEAR and LOAD
on the NORD-1 operators panel.

c)

d) The tape should now be read and entered into core. The
input is checked, and if it is considered correct, the system
is started by printing

BASIC ON LINE
NEW OR OLD----

on the Teletype (provided the Teletype is turned on).

A break is executed as follows:

Press the pushbutton STOP on the NORD-1 operators panel. Set the
OPR register to the restart address printed on the tape. Press the
push-buttons SET ADR and CONT on the NORD-1 operators panel.

ND-60. 040. 02

7-4

BASIC Error Messages7.4

The messages you may encounter when writing or running a BASIC
program are listed in this chapter. These error messages may originate
in different parts of the system. In systems without mass memory,
error messages are normally given as error codes.

Compiling

When you are writing statements the compiler will check for syntax
errors. These error messages are denoted with error codes CE
followed by an error number to be looked up in Section 7.4.1. The
system will now check the input character. If this is a question mark,
the erroneous line will be printed with the errors marked.

Run Time

When executing programs the BASIC system may print error messages
like: RE 3 IN LINE s. The error number may be looked up in Section
7.4.2.

The arithmetic functions SIN, COS, LOG, eto. have a special error
format documented in Section 7.4.3.

in TSS

BASIC systems with mass memory use the general NORD file system.
The error messages you may obtain from that system are documented
in Section 7.4.4.

\

ND-60.040. 02

7-5

!

Compiler Error Messages7.4.1i
l

Illegal character in this context.

Minor arithmetic error, probably operator missing.

Something wrong with parentheses.

No line number or illegal line number.

Expected variable not found.

Expected number not found

Illegal word in this context.

Only string variables legal in this context.

= used illegally or omitted.

11 omitted or used illegally.

Illegal string format.

Mixed mode string - arithmetic.

No relational operator found in IF statement.

Word (GOTO, GOSUB, TO, THEN) expected, not found.

No value for variable with FOR, LET.

Illegal FOR looping variable.
Illegal use of CHR$ or SEG$.

Array must have an index in this context.

Array index not legal in this context.

No end of array subscript found.

Illegal array index format.

Program name too long.

Illegal use of files.

Illegal file terminator.

FN-function used recursively.

Illegal format for FN-function.

CON legal only in execution code.

Array previously defined two-dimensional.

Array previously defined one-dimensional.

Only numeric arrays legal in this context.

Only two-dimensional arrays legal in this context.

Array dimensions not matching.
Illegal operator in MAT statement.

MAT multiply does not allow same array on both sides of
assignment operator.

Print Using must start with string.

CE1

CE2

CE3

CE4

CE7

CE8

CE9

CE10

CE11

CE12

CE13!
CE14

CE15

CE16

CE17
■ CE18

CE19

CE20
CE21

CE22

CE23

CE26

CE30

CE31

CE32

CE33
CE39

CE40

CE41

CE42

CE43

CE44

CE45

CE46

CE55

ND-60.040.02

7-6

Run Time Error Messages7.4.2

Out of numeric data for READ statement.

Out of string data for READ statement.

END not last statement.

Division by zero tried, overflow.

Undefined string variable used.

GOSUB nested too deeply, table full.

No return address with RETURN statement.

FOR - NEXT nested too deeply.

More NEXT than FOR.

More FOR than NEXT.

FOR-NEXT illegally nested, variables do not match.

FOR-NEXT loop illegally entered.

Increment 0 with FOR statement.

DEF FN and FNEND illegally nested.

Number of input data incorrect.
Input Data terminated illegally.

Negative index illegal.

Index too big, overflow.

Array dimensions not matching.

Only square matrices with MAT IDN and MAT INV.

Illegal file number.

Illegal file name, file used illegally.

Program tried to read EOF.

ETB (end-of-file mark) read.

Tried to read/write sequentially in random file.
System out of core.

Too many core tables used, table full, use the
command TABLE.

RE1

RE2

RE3

RE5

RE6

RE8

RE9

RE 10

RE11
;

RE12

RE13

RE14

RE15

RE16

RE17
RE18

RE20

RE 21

RE22
:

RE23:
RE 25

RE26

RE 27

RE28

RE29
RE30

RE31

ND-60. 040. 02

7-7

Input buffer overflow.

Core table full, probably too may errors in the program.

Illegal FN-name

Statement reached illegally, only legal within multiple
line DEF FN.

Illegal number of arguments in FN-function.

Undefined FN-function called.

Command CON used illegally.

Zero or negative margin illegal.

No margin with random file.

Illegal string size.

String too long.

MAT is used with disc arrays.

Print Using not allowed with disc strings.

Print Using format error.

RE32

RE33

RE34

RE35

RE36

RE37

RE39

RE40

RE41

RE44

RE46

RE47

RE60

RE61

i

?
:
’!

!

=

ND-60. 040. 02

7-8

7.4.3 Mathematical Library Error Messages

The library routines are documented independently in the manual:
Re-entrant FORTRAN Mathematical Library.

Error condition:Function:Error messages:

For A t B if A = 0 and B < 0
Result: A t B =0.

RUN ERR AA t

For A f B if B log2 A i. 2 t 14

Result: A tB = 1 -E + 99.

I

For A t B if A ^ 0 and B not integer.
Result: A t B = 1/A t ABS(INT(B)).

tEXPONENT ROUNDED

t For A tB if B log2 A»2 fl4

Result: A tB = i -E + 99.
RUN ERR AI

16If argument £ 2 radians.

Result set equal to 0.

COSRUN ERR CO

RUN ERR SI SIN

16RUN ERR EX For EXP(x) if x/ln2 £ 2
Result set equal to 1 E99.

EXP

RUN ERR LN LOG Argument (x) less or equal to zero.
Result is set equal to 1.E99.

RUN ERR SQ SQR Argument < 0.
Result is set to 0.

ND-60. 040. 02

7-9

Error Messages from NORD TSS7.4.4

For further information consult the manual: The NORD Time Sharing
System.

NO MORE TRACKS AVAILABLE
NO SUCH USER
USER INDEX BLOCK FULL
FILF ALREADY EXISTS
NO SUCH FILE
OBJECT TABLE FILLED
OPEN FILE TABLE FILLED
INSUFFICIENT ACCESS
ALREADY OPEN FOR WRITE
BAD FILE NUMBER
NO SUCH TRACK
BAD TRACK NUMBER
TRACK ALREADY EXISTS
NO SUCH PAGE
FATAL ERROR
TRANSFER ERROR
BAD DEVICE TYPE
DISK AREA ALREADY IN USE
WRITE NOT PERMITTED#
NOT A SEQUENTIAL FILE
FILE MUST BF CLOSED BY EVERYONE
AMBIGUOUS FILE NAME
BAD CHARACTER

Other Messages printed by the System7.4.5

see the RESERVE command.DEV RESERVED BY TTY n
UNKNOWN LINE NO si
REQUESTED IN LINE s2

SYSTEMS ERROR

- self-explanatory.

- an error in the BASIC compiler.

- the system requests input.

- STOP statement executed in line s.

- a break has been processed.

- END statement executed.
- A transfer is started.

?

STOP IN LINE s

BREAK

DONE
WAIT FOR READY —

:• PROGRAM INTERRUPTED
IN EXECUTION OF DEFFN.
SAVE AND RE-COMPILE
BEFORE FURTHER
EXECUTION Caused by STOP, Run Error or

Escape.

ND-60. 040. 02

7-10

7.5 ASCII Character Set

Decimal
Value

ASC
Abbreviation Comments

Octal
Graphic Value

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal tabulation
Line feed
Vertical tabulation
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block
Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus
Comma
Hyphen (Minus)
Period (Decimal)

NUL00
SOH1i
STX22
ETX
EOT
ENQ
ACK
BEL

33
44
55
66
77

BS810
HT911
LF1012
VT1113
FF1214

13 CR15
SO1416

15 SI17
DLE1620
DC11721
DC 21822
DC 31923
DC 42024
NAK2125
SYN2226

23 ETB
CAN

27
2430

31 EM25
SUB32 26

27 ESC33
28 FS34

GS2935
36 30 RS

3137 US
32 SP40i

41 33 t

3442»t

43 35a
i $3644
% %45 37
& 46 38 &

47 39 »
50(40 (
51 41))
52* 42 *
53 43+ +
54 44
55 45
56 46

ND-60.040.02

7-11

Octal
Graphic Value

Decimal
Value Abbreviation Comments

/ / Slant
Zero
One
Two
Three
Four
Five

57 47
0 60 48 0
1 61 149
2 62 50 2
3 5163 • 3
4 64 52 4
5 65 553
6 66 54 6 Six
7 67 55 7 Seven

Eight
Nine
Colon
Semi-colon
Less than
Equals
Greater than
Question mark
Commercial at
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase H
Uppercase I
Uppercase J
Uppercase K
Uppercase L
Uppercase M
Uppercase N
Uppercase O
Uppercase P
Uppercase Q
Uppercase R
Uppercase S
Uppercase T
Uppercase U
Uppercase V
Uppercase W
Uppercase X
Uppercase Y
Uppercase Z

8 70 56 8
9 71 57 9

72 58
73 59
74 60< <
75 61

> >76 62
? 77 63 ?

100ra> 64
101A 65 A
102B 66 B
103C 67 C
104D 68 D
105E 69 E
106F 70 F
107G 71 G
110H 72 H
1111 73 I
112J 74 J
113K 75 K

L 114 76 L
M 115 77 M

116N 78 N
117O 79 O
120P 80 P

Q 121 81 Q
122R 82 R
123S 83 S
124T 84 T
125 85U U
126V 86 V
127W 87 W
130X 88 X
131Y 89 Y
132 90Z Z

ND-60. 040. 02

7-12

Octal Decimal
Value Value

ASC
Abbreviation CommentsGraphic

91133 C Opening bracket
, Reverse slant

Closing bracket
Circumflex, up-arrow

UND,BKR Underscore, back arrow
Grave accent
Lowercase a
Lowercase b
Lowercase c
Lowercase d
Lowercase e
Lowercase f
Lowercase g
Lowercase h
Lowercase i
Lowercase j
Lowercase k
Lowercase l
Lowercase m
Lowercase n
Lowercase o
Lowercase p
Lowercase q
Lowercase r
Lowercase s
Lowercase t
Lowercase u
Lowercase v
Lowercase w
Lowercase x
Lowercase y
Lowercase z
Opening (left) brace
Vertical line
Closing (right) brace
Hide
Delete, rubout

C
\\ 92134

135 93 1
136 94A. A

95137or *-
140 96 ',GRA

a, LCA
b, LCB
c, LCC
d, LCD
e, LCE
f, LCF
g, LCG
h, LCH
i, LCI
j, LCJ
k, LCK
l, LCL
m, LCM
n, LCN
o, LCO
p, LCP
q, LCQ
r, LCR
s, LCS
t, LCT
u, LCU
v, LCV
w, LCW
x, LCX
y, LCY
z, LCZ
{, LBR
I , VLN
} , RBR

TTL
DEL

97141a
98142br
99143I c

100d 144
101145e

f 146 102
103147g

h 150 104
105151i
106152J
107k 153

1 108154
109155m
no156n
111157o
112160P
113161q
114162r
115163s
116164t

165 117u
118166v

167 119w
170 120x
171 121y
172 122z

{ 173 123
174 124

} 175 125
176 126
177 127

I

}
;

■

-

ND-60. 040. 02 '
:

|

7-13

Line Edit Commands7.6

In TSS versions of BASIC the following control characters are available
when typing a line on the terminal.

&A Backspace one character (types f).
Copy one character from old line.
Copy rest of old line and terminate edit.
Change insert/replace mode (types^or>).
Copy rest of old line (without typing) and terminate edit.
Copy rest of old line without terminating edit.
Space to next tab stop.
Terminate edit.
Terminate edit (CR).
Copy old line up to but not including character €.
Skip characters in old line up to but not induing
character C (% is typed for each character skipped).
Backspace to the beginning of the new and old lines
(types --CR).
Retype fast.
Skip one character in old line (types %).
Retype aligned.
Copy up to next tab stop.
Take character C literally.
Backspace one "word" (types \).
Since &W also means "end of file”, it must be preceded by
&V to reach the BASIC system.
Skip characters in old line up to and including the
character C (% is typed for each character skipped).
Append rest of old line to new line and edit the result.
Copy old line up to and including character C.

&C!
&DI
&E
&F
&H
&I
&L
&M!

&OC
&PC

&Q

&R
&S
&T
&U
&VC
&w

&XC

&Y
&ZC

The BASIC command LIST -^line-number> will copy the actual line to
old line. Accordingly line edit commands may be used to edit this line.

t

ND-60. 040. 02

7-14

7.7 The LIB COMMAND

This command is availabe in TSS versions only.
Syntax:

LIB <Library-file name> (<Sub-file name>)

The LIB command is used to read BASIC programs from library
files. The following example reads sub-file SUBR1 in the library-
file LIB6.

LIB LEB6 (SUBR1)

The SIZE Command7.8

This command prints on the terminal the size of your program and
the statement number of the first and last line.

i

!

.

i

ND-60. 040. 02

A-l

APPENDIX A

CALUNG ASSEMBLY AND FORTRAN ROUTINES
!

IntroductionA. 1

This section describes how the BASIC user may link his program to a
subroutine written in MAC II assembly code or NORD FORTRAN IV.

This system gives access to ND's large subroutine libraries written
in assembly or FORTRAN source language. Examples of such libraries
are Scientific subroutine package (about 200 subroutines), Commercial
subroutine package, Plot package, etc.

The possibility of accessing assembly subroutines enables the BASIC
user to utilize all the features of the computer. He may for instance
control devices such as analog multiplexers, digital input/output de
vices etc. from a BASIC program.

The combination of BASIC’s many advantages as a high-level langia ge
and this new feature has really made NORD BASIC system a tool suitable
for many applications.

It is assumed that the user is familiar with the following documentation:

MAC Users' Guide

NORD FORTRAN IV Reference Manual

Binary Relocatable Loader

MAC and FORTRAN both produce an object representation of the source
code called Binary Relocatable Format (BRF). This format allows
machine instructions and data to be loaded anywhere in core memory.
The loading is done by a Binary Relocating Loader (BRL). A version
of this loader is used in the BASIC system to allow BASIC to utilize
programs in BRF format.

A.2 De sc r iption

The new commands for loading BRF subroutines are:

MLOAD

Load one subroutine. Terminated by)9END in MAC;
END in FORTRAN.

< File name>

A LOAD < File name >
Load several subroutines. Terminated by)9EOF in MAC;
EOF in FORTRAN.

File name includes standard I/O equipment.Note:

ND-60. 040. 02

A-2
i
■

.!
:

The new BASIC statement for calling a BRF subroutine is:

.CALL
The CALL statement must be followed by the subroutine name and
parameters, if any.

t

i
General description:

<no.> , <N. param. >)CALL <Subr.name> (<1. param >,

This statement and the load command may of course be typed in any order.

Subroutine NameA.2.1

The name may consist of one to five alphanumeric characters where the
first one must be a letter. If more than five characters are used, only
the leftmost five are recognized.

One should not use more than five characters, because MAC
uses only the rightmost five in a label.

Note:

A. 2. 2 Parameters

Actual parameters are specified in the calling program (CALLER) which
is BASIC in this case. See example below.

Formal parameters are specified in the subroutine called (CALLEE).
This specification is necessary only with FORTRAN subroutines. See
example below.

The type and number of parameters must always correspond.

If the subroutine name in the CALL statement is terminated by carriage
return or comment, then no actual parameters are passed to the BRF sub
routine.

One may specify up to 30 parameters when calling a FORTRAN subroutine.
The number of parameters to a MAC subroutine is restricted by BASIC
itself. (Only one statement per line.)

■

.
i: The parameters must be enclosed by parentheses and separated by commas.

A parameter must be written as an expression, i.e., a variable, a number,
a function, or a combination of these.

!

The CALL statement is a call by reference. Hence the actual parameters
are delivered to the CALLE as addresses from the CALLER. The
CALLEE is then permitted to change the value of the actual parameters.
This value is returned to BASIC if the parameter is a variable.

ND-60. 040. 02

A-3

Following is an example which illustrates use of parameters:

Call a subroutine written in MAC or FORTRAN which multiplies two
numbers and returns the result:

10 CALL MULT(X,Y,Z)

The variables X, Y, and Z are actual parameters now
accessible by subroutine MULT. Assume that X is the
multiplicand, Y the multiplier and Z the result of the
operation.

Subroutine MULT written in FORTRAN:

SUBROUTINE MULT(A,B,C)
C=A*B
END

If an indexed variable is used as actual parameter in the
BASIC CALL statement, a pointer to this element may be
found using the A-register as described in Section A. 3. 2.
Addresses of other elements may be found recognizing that
subscripted variables in BASIC have a column zero and a
row zero and elements are stored with entries of a column
in consecutive core addressing.

There is no restriction on the names in the formal para
meter list. However, it is important that the parameter
types correspond to the representation in BASIC. A, B
and C are all real variables in FORTRAN. Parameter
types are discussed later. Multiplicand A corresponding to
actual parameter X is multiplied by B corresponding to Y
with the result being placed in C which corresponds to Z.

ND-60. 040. 02

A-4

Subroutine MULT written in MAC:

)9BEG
)9ENT MULT
MULT, SWAP SA DB

STA SAVB

% 1. PARAMETER (X)LDF I 0 ,B
% 2. PARAMETER (Y)FMU I 1 , B

% 3. PARAMETER (Z)STF I 2 ,B

LDA SAVB
COPY SA DB
EXIT

0SAVB.

)9END
) LINE

In the above example 0 , B refers to parameter X, 1 , B
to Y and 2 , B to Z. Note that it is the sequence of the
parameters which is important, and not the names.

Usage1.3

Calling a FORTRAN SubroutineA.3.1

All variables in a BASIC program are represented in floating point
format. In FORTRAN, however, there are several types of variables:

Logical
Integer
Real
Double
Complex

The formal parameter types are checked by BASIC at run time; thus
only reals and integers are accepted. Before entering the subroutine,
BASIC converts the actual parameters to integer, if specified. This
process is reversed upon return.

The value of such parameters must be within range of the
integer representation (signed 15 bit number).

Note:

ND-60.040. 02

A-5

If the formal parameter is an integer array, no conversion takes place,
but the parameter is accepted.

Subscripted variables in FORTRAN are indexed from one, whereas
BASIC uses an index zero. This must be recognized especially when
using two dimensional arrays.

With an array designator used in a FORTRAN subroutine, the element
used as actual parameter will be identified by FORTRAN as the first
FORTRAN array element.

When the last FORTRAN routine is loaded, the user must always re
member to load the FORTRAN run time system with the command ALOAD.

Example with actual and formal parameters:

10 CALL EXECU (-5, A, SIN(X)/COS(Y), B(5), Z(1))

SUBROUTINE EXECU(I, A, SINCO, B, ARAY)

BASIC FORTRAN COMMENT

Call and declaration

Subroutine name

Converted to integer/real

Real variable

Real variable

Real array element

Real array. Declared DIMEN
SION in FORTRAN. Index
must be one to correspond
with FORTRAN. Subroutine
EXECU is now able to access
(change) all the elements in
the array ARAY (Z).

SUBROUTINECALL
EXECU EXECU

I-5
A A
SIN(X)/COS(Y) SINCO
B(5) B
Z(l) ARAY

:

ND-60. 040. 02
*

A-6

Calling a MAC Subroutine

When entering the subroutine, the A register points to a string of the
actual parameter addresses (if any). The L register contains the return
address. The value of the B register upon return from the subroutine
must not differ from the one upon entry. The other central registers
may be used freely.

An extraction of the compiled code generated from the following BASIC
statement is listed below:

A.3.2

BASIC statement:

10 CALL MACR(A, B+C, "TEXT", 4)

Extraction of object representation:
% Number of parameters
% Address of variable A
% Address of the result B+C
% Start address of the string "TEXT"
% Address of the number 4
% Return

000004
014560
023412
023430
023507

(A reg.)

(L reg.)

The MAC routine must be programmed according to the facts mentioned
above for successful access to the parameters.

Example:

)9BEG
)9ENT MACR

SWAP SA DB
STA SAVB

MACR,
% Save B reg.

% Value of ALDF I 0,B

% The sum B+CLDF I 1 ,B

% First two bytes
% of the string

LDA I 2,B

% The value 4LDF I 3 , B

% B reg

% Entering value
% Return to BASIC

LDA SAVB

COPY SA DB
EXIT

SAVB,
)9END
) LINE

0

ND-60. 040. 02

A-7

As mentioned all values in BASIC are represented in floating point
format (LDF-STF).

Strings are represented in the standard format: The ASCII values
are packed two by two in consecutive order. (Corresponding to string
assembly in MAC and A format in FORTRAN.)

i
i !

New Error MessagesA.4
i

Compile time:

ARGUMENT SYNTAX ERRORCE60

i
I Run time:

SUBROUTINE REFERRED TO IN CALL STATEMENT
NOT LOADED

RE50

RE51 FORTRAN PARAMETER DESCRIPTORS NOT FOUND
System error.

NOT ACCEPTABLE SUBROUTINE TYPE
Acceptable types: Subroutine, Real Function, Integer
Function.

RE52

NOT CORRESPONDING NUMBER OF ACTUAL AND
FORMAL PARAMETERS

RE53

NOT ACCEPTABLE FORMAL PARAMETER.
Acceptable types: Real Variable, Real Array, Integer
Variable, Integer Array. (The last type is not converted.)

RE 54

SUBROUTINE(S) CALLED FROM OTHER SUBROUTINE(S)
NOT LOADED
This message is preceded by a list of the actual names.

RE55

The user may also receive error messages from the loader. (Documen
tation: Binary Relocatable Loader.) These errors will always reset
the loader, i.e. , everything is forgotten about previous loaded
BRF routines.

Fatal FORTRAN run time errors will return to BASIC and print
BREAK, preceded by the actual error message.

ND-60.040.02

A-8

1

Program ExamplesA.5

Example 1:

Plot (2 x 3) cm rectangles in step of 2 degrees from the
same origin:

10 FOR A=0 TO 360 STEP 2

20 CALL RECT(0, 0, 3, 2, A, 3)

30 NEXT A

40 END

ALOAD T-R (Load NORD BASIC PLOT PACKAGE)
ALOAD T-R (Load FORTRAN RUN TIME SYSTEM)

RUN

:

The step may easily be changed by re-writing statement
no. 10; for instance:

10 FOR A=0 TO 360 STEP 10

- 4
*
:

ND-60.040. 02
$

A/S NORSK DATA-ELEKTRONIKK
Lorenveien 57, Oslo 5 - Tlf. 21 73 71

COMMENT AND EVALUATION SHEET

NORD BASIC Reference ManualND-60. 040. 02

In order for this manual to develop to the point where it best
suits your needs, we must have your comments, corrections,
suggestions for additions, etc. Please write down your comments
on this pre-addressed form and post it. Please be specific
wherever possible.

from:

t:

ii
i

!•

1

I

'

:
■

i

!

1

!

:

V

•: • .

BASICN 0 R D

Reference Manual

