

Norsk Data

SINTRAN Il Tuning Guide

SINTRAN Il Tuning Guide

ND-30.049.1 EN

NOTICE

The information in this document is subject to change without notice Norsk Data

A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk
Data A.S.

Copyright © 1984 by Norsk Data A.S

This manual is in loose-leaf form for ease of updating. Old pages may be

removed and new pages easily inserted if the manual is revised.

The loose-leaf form also allows you to place the manual in a ring binder (A)

for greater protection and convenience of use. Ring binders with 4 rings

corresponding to the holes in the manual may be ordered in two widths, 30

mm and 40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more

suitable for manuals of less than 100 pages than for large manuals. Plastic

covers may also be ordered below.

N (e i
P w e

|| NORSK DATA AS
N

Bil= &

-‘ ®

A: Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM

| would like to order

..... Ring Binders, 30 mm, at nkr 20,- per binder

...... Ring Binders, 40 mm, at nkr 25,- per binder

...... Plastic Covers at nkr 10,- per cover

Company

Address

 PRINTING RECORD
Notes

Printing

05/85 VERSION 01

SINTRAN Il Tuning Guide
Publ.No. ND—-30.049.1 EN

) @4 ¢

Norsk Data A.S

3 Graphic Center

P.0.Box 25, Bogerud
Norsk Data 0621 Oslo 6, Norway

+
+

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSI) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department

Norsk Data A.S
P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or {(in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:

THE PRODUCT

The Tuning Guide deals with various tuning and performance

aspects of ND systems.

THE READERS

The manual will be of interest to System Supervisors,

(system) programmers and ND users with a general interest in

the area of performance and tuning.

PREREQUISITE KNOWLEDGE

No specific prerequisite knowledge is required, but a general
acquaintance with ND systems will be a great advantage.

THE MANUAL

The first chapters are mainly for personnel responsible for

getting the best out of their systems. Measurement methods,

interpretation of results and possible actions are covered
in detail. ‘

The remaining chapters give practical hints to system
programmers on how to make their programs perform more

efficiently.

RELATED MANUALS

ND-500 Loader/Monitor ND-60.136
SINTRAN III Reference Manual ND-60.128

SINTRAN III Real Time Guide ND-60.133
SINTRAN III System Supervisor ND-30.003

ND-30.049.1 EN

vii

TABL OF CON E TS

Section Page

INTRODUCTION v v v i e v e e e e e e e e s 1

SOME BASIC PERFORMANCE ASPECTS« « « « « « « « 2

MEASUREMENT TOOLS
ND-100 . . . e e e

RT-PROGRAM-LOG

Parameters for RT-PROGRAM-LOG

oOutput from RT-PROGRAM-LOG .

sources of Erroxr « < .+ o+ e e e 0 e e e e . 8

PROGRAM-LOG v v v v e v e e e e e e e e e e e 10

HISTOGRAM o v v e v e e e e e e e e e e e 10

SYSTEM-HISTOGRAM « +« « « « o « & 4 o « =« 11

TIME-USED + v v v e e e e e e e e e e e e e e 13

Combination of SYSTEM-HISTOGRAM and PROGRAM-LOG 14

Tools in SINTRAN-SERVICE-PROGRAM 15

Monitor Call Log (MONCALL-LOG) 15

SWAPPING-LOG v o v e e e e e e e e e e e e e 16

CPU-LOG . . . v v o e e e e e e e e e e e e e e e e 18

DISC-ACCESS-LOGC . . . + & o o v o v e e e e e e e s 19

ND-500 . . . v . o e e e e e e e e e e e e e 20

HISTOGRAM v v v e e e e e e e e e e e e s 21

Monitor Call Log « « « « .+ e e e .. . 23

Process-10g e e e e e e e e e 25

A Process-log-all o . 25

.2 Process-log-oneo e e e e s 26

SWAPPING-LOG« « v v e v e e e e e e e e e e 27

List-execution-queue o e s e e e 27

-

W

N

-

N
N

N
S
O

N

@

W
N

=

A
=

W

w
w
w
w
i
w
w
W
w
w
W
w
W
W
w
w
w
w
w
w
w
w
w
w
w
w
w

S

B

W

N

-

N
N

N
N
R
N

=

-

a
3

3

e

e
d

a
2

D

W

W
N

-

DIAGNOSIS o v o v i v e e e e e e e e e e e 28

ND=100 & &« & o v« e & = & & s e e e e e e e e s 28

CPU Bound« « v« e e e e e e e e e e e 29

Memory Bound o . . e e e e e e s e e e e 29

I/O Bound e e e e e e e e e e 29

ND-500 . . v v o e e e e e e e e e e e e e e e e e e 29

CPU Bound e e e e e e e e e e e e e e e e 30

Memory Bound e e e s e s e e e e 30

I/O Bound . o o o « 5 @i £ omom o ox eoce now & @ [8 4 e 30

W
M

-

B

B

D

N
N

N
N
D

=2
-

w—
he

W

N

SOLUTION o o v v e e e e e e e e e e e e e 31

ND-100 . . . o v e 32

CPU Bound & « v e e e e e e e e e e 32

Memory Bound o+ s s s e e s e e e e e e 32

I/0 Bound e e e e e e e e e e 33

ND-500 v e e e e e e e e e e e e e e e e e 33

CPU Bound o v e e e e e e e e e e e e e e e s 33

Memory Bound 4 e e e e e e e e e 33

I/0 Bound e e e e e e e e e e e e e e 34

W
I
N
 —=

M
m
o
o

g

o

—_

N
N

N
D
N

=

N

ND-30.049.1 EN

viii

Section Page

6 I/70-CAPACITY« . « v v v « v v . ¢ A W oW w & U 35
6.1 Functional Overview o o v & « e e o . 35
6.2 "Time-shared" System cow R W B B oa e B R W @ W 36
6.3 "Tailored Application" System ; 36

7 USE OF MEMORY IN AN ND-500 SYSTEM 37
7.1 Memory Allocation+ 38
7.2 ND-500 Memory Configuration e e e e 38

8 MEMORY USED BY ND-100 IN AN ND-500 SYSTEM) 40
8.1 Memory Shared by All Users R 40

8.2 Memory per User G 40

8.3 Graph oL e e e e e e e e e e e 41

9 EXAMPLE OF I/0-SYSTEM CONFIGURATION , 42

10 TIME SLICING IN SINTRAN III 44
10.1 General Wow w w & A N M & ® w6 R an T 44

10.2 Illustration « « « .« i 44

10.3 Additional Information : 46

11 SYSTEM PARAMETERS FOR ND-500 « « 47

12 PRIORITIES FOR SYSTEM PROGRAMS 48

13 (SYSTEM) PROGRAMMING« « « v v v v v v v u 49
13.1 ND-100 e e e e e e e e e e e 49
13.2 ND-500 T EEEEETE 49
13.2.1 FORTRAN I/0 from ND-500 Programs 49

14 TUNING OF SIBAS SYSTEMS « « v « v « v v v 4. 54
14 .1 Bottlenecks in SIBAS Systems o 54
14.2 Several SIBAS Systems i ow ow e 56

14.3 SIBAS Macros v v v e e e e e e e e e e e 56

14.4 Database Structure R 57

14.5 Memory Considerations 57
14.6 Distribution of Database on SINTRAN files 58

14.7 SIBAS logging e e e e e e e 58

19 MISCELLANEOUS« « o v e e v e e v e e i 59
15.1 Scratch Files & v i e e e e e e e e e e e e 59

15.2 Use of Files in General C e e e e e . 59

15.3 Buffered Terminal Interface 59
15.3.1 ND=100 & o . e e e e e e e e W 60
15.3.2 ND-500o e e e e e e e e e e e e e 60

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

1 INTRODUCTION

This figure shows how the manual is structured. ND-100 and

ND-500 systems are discussed separately.

General

information

I
[|

System (System)

Supervisor programmer

ND-100 ND-500 Hints

Measurements Measurements

Diagnoses Diagnoses

Suggested Suggested

action action

ND-30.049.1 EN

2 Tuning Guide for ND Computer Systems

000

2 SOME BASIC PERFORMANCE ASPECTS

The two performance measures of greatest interest to us are

RESPONSE TIME and CAPACITY. From the users' point of view,
response time is regarded as the most relevant performance

measure especially as regards the time sharing and

transaction processing ones. However, from a system

configuration point of view, capacity is a more natural
performance measure.

A computer system can be regarded as a system of shared

resources with queues, a so-called queueing system. A job

submitted to the system will circulate between the various
resources until it has been rendered. Resources may be

physical resources, such as CPUs, disks and communication
lines, or logical resources such as SIBAS or background

programs for remote terminal access (TADs).

A job may have to wait in a queue for every requested
resource. A long queue for a resource usually means that the

resource is working at almost maximum capacity. So the

underlying problem of a poor response time is often that one

or several resources in the computer system have insufficient
processing capacity. Such resources are referred to as system

bottlenecks.

Thus, too long response times show the presence of

bottlenecks with long queues. In order to improve

performance, such bottlenecks must be removed. Basically,

this is accomplished in two different ways:

1. The processing capacity must be increased at the critical
resources, in general by adding more hardware.

2. The load on these resources must be reduced, by tuning
the system or by changing the external load pattern

(batch jobs delayed until the evening etc).

If response times are critical, one should not configure a
system in which a shared resource is utilized close to 100%
of its capacity. When this limit is approached, response
times will usually skyrocket. As a rough rule (although this
often represents worst case), the response time from a shared

resource will be about twice, three times and ten times the
average service time when the resource is utilized at 50%,
67% and 90% of its capacity, respectively (see fig. 1).

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 3

Response +

time R = T/(1-U) |
+

R T = Service time (response time |
on empty system)

U = Utilization of a bottleneck + |
resource

. |

+ |

2T i o e e i } |
+

v | |
T | |

| Utilifation U
1 ¥

0 50 100 %

Fig. 1. Response time versus utilization of a shared resource

A response time of two to three times the service time, or
two to three times the sum of the service time if several
resources are involved each of which may be visited more

than once, is usually acceptable. However, one should keep

in mind that peak hour resource utilizations may be
considerably higher than the average over the workday. In

general, if fast responses are critical, you might say:

ied ave oa ould not exceed out 65% o

axim em C city.

In fact, unless estimates are quite conservative, one should
plan for even lower utilizations.

On the other hand, the importance of good response times

depends a good deal on the type of work involved - or job

class. In many systems one strives for a happy coexistence of

different job classes with different demands on response
times.

For instance, many users do not mind too much if a batch job
takes one or two hours instead of half an hour, provided

that on-line work can go on simultaneously with little or no
degradation of response times.

Proper handling of these matters is not only a capacity
problem, but also a question of how the operating system

ND-30.049.1 EN

4 Tuning Guide for ND Computer Systems

handles jobs of different importance (scheduling). To a

certain extent, this can be controlled by tuning a number of
system parameters.

20060000000

3 MEASUREMENT TOOLS

A number of measuring facilities is present in SINTRAN III
and ND-500-MONITOR. Each of them is described in detail in
this section. "Standard" parameter values are suggested and
hints given for the effective use of the tools.

3.1 ND-100

For ND-100 the following SINTRAN III measurement tools are

available in a standard system:

- RT-PROGRAM-LOG
- PROGRAM-LOG
- HISTOGRAM
- SYSTEM-HISTOGRAM
- TIME-USED
- SYSTEM-HISTOGRAM and PROGRAM-LOG in combination

In addition, the SINTRAN-SERVICE-PROGRAM can be used for:

Moncall-log (monitor call log)
Swapping-log

CPU-1lo0g

Disk-access-log

These last four tools were included in the J-version of
SINTRAN III. The CPU log facility is standard in all
systems, but the other three have to be ordered when

SINTRAN III is generated.

A significant difference between the traditional measurement

tools and the newer ones in the SINTRAN-SERVICE-PROGRAM, is

that the former are based on interrupt-driven sampling, while

the latter are based on event tracing.

In the case of SAMPLING, various system parameters are read

each time a sample is taken. The sources used for interrupts

are the system hardware clock and various character devices.

EVENT-TRACING, on the other hand, registers certain events

when they occur, and must therefore be contained in the code

used for generating or handling these events.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 5

For example, the CPU log is based on counting the number of

loops executed in the dummy program during a specific time

interval, thus counting the number of occurrences of the

event "CPU is idle", and comparing this with the

corresponding number on an empty machine. The method used by

tools of the sampling type to measure CPU load is to read

the “"previous level" register in the system. This registers

the hardware level active immediately before the level from

which sampling takes place. If the "previous level" was

different from zero (idle level, see the section TIME-USED on

page 13) then the sample registers the CPU as husy.

3. 1.1 RT-PROGRAM-LOG

The RT-PROGRAM-IOG measures resource usage for a particular

Real-Time program and/or the system as a whole. It is also

possible to measure the resource demands submitted

from any background terminal or batch processor, as each of

them is internally connected to a Real-Time program (BAKxX,

BCHxx or TADXxX).

3.1.1.1 PARAMETERS FOR RT-PROGRAM-LOG

In this example SIBAS (RT NAME: SIBA) is measured. If you

are interested only in measuring the overall system

utilization, then just give «! instead of the name of an

RT-program.

@QRT-PROGRAM-LOG
RT NAME: SIBA

INTERVAL(SEC): 10

INTERRUPTS/SAMPLE: 1

LOG. UNIT NO.: 1207

INPUT/OUTPUT (O OR 1):

LOG. UNIT NO.:

OUTPUT FILE:

INTERVAL:

The time during which results of the sampling will be

accumulated before writing a report line on the log device.

Use a short interval (5-10 seconds) if you are interested in

rapid fluctuations. If the overall load is of interest, use

a longer time (30-120 seconds). Default value (give «') is

60 seconds.

INTERRUPTS/SAMPLE:
The log device is the "clock" for the RT-PROGRAM-LOG.

Non-printing characters are output to the terminal. This is

why the cursor will disappear on some screen terminals, and

also why it is impossible to use this function from a remote

ND-30.049.1 EN

6 Tuning Guide for ND Computer Systems

terminal. Every “Nth" character a sample is taken of the
current system state. "N" is the number of interrupts per
sample. This parameter has a default value of 8.

Example:

The number of character interrupts per secand from a 3600

baud terminal is given hy 9600/11 = 873, Division hy 11 iy

done because it takes 11 bits to represent one character in

the asynchronous protocol. Likewise, the number of inter-

rupts per second from a 600 baud terminal (a KSR Hardcopy

system console, for instance) is given hy 600/11 = 5§5.

Example:

Say we choose an INTERVAL of 10 seconds. We then want the

number of samples taken during edach 10 second period to be

large enough to produce statistically significant results.

If we use 1 interrupt/sample for a 600 haud terminal, we

would be sampling at a rate of 55 samples/second. A 10

second period gives 550 samples, which is larye enough to

give us reliable results. If we were using 4 interrupts/

sample, the number of samples in:the 10 second period would

be 550/4 = 137. This number is on the edge of being toa

small to produce reliable results. The calculaltion procedure

is the same for all other line-speeds, only the numbers are

different.

LOG. UNIT NO.:
This parameter may be used to identify one or two I/O

devices for which the degree of utilization is to be logged.
If a device is reserved, it is defined as being in use.

Example:
The RT-PROGRAM-LOG by default only logs activiiy on the

tirst disk controller in the system. IF your system has Llwo

contrellers, logical unit 1207 [octal) has to be given tao

look at the use of this second controller., A list of loyical

device numbers in a system can be found near the beginning

of the SINTRAN III listing for the configuration dependent

part (Part II).

3.1.1.2 OUTPUT FROM RT-PROGRAM-LOG

CPU SWAP FILES DISK PASSIVE IO-WAIT ONIT 1207
25/38 02/05 00/05 10 00 75 00/32

The first figure of each pair for CPU, SWAP, FILES and the
two logical units, shows the named RT-program's utilization
in percentage of the corresponding resource. The figures for
PASSIVE and IO-WAIT also refer to the named RT-program. The

second figure in each pair and the DISK figure show the

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 7

total utilization in percentage of that resource.

CPU:
In the above output, the RT-program used 25% of the CPU,

the total use of the CPU being 38%.

SWAP:
out of 100 samples, the given program was performing paging

2 times and some other program was paging 5 times.

FILES:

This means "normal" use of files (user I/0).

DISK:
The approximate sum of the total SWAP and FILES-figures,
as these two are the only sources for the disk-traffic.

These figures arise as follows: At each sample, it is
checked whether the datafields for the DMA controller and

the ND-100 swapper are free or reserved. How much the DMA

controller and the ND-100 swapper are used, is reflected in

the DISK and SWAP figures respectively. If the DMA datafield
is reserved, while the swapping datafield is free, the
sample is registered under FILES. Sometimes, the sum SWAP +
FILES is slightly higher than the DISK figure. Apart from
rounding errors, this may be due to the delay from

reservation of the swapping datafield to reservation of the
DMA datafield. Normally, this delay is very short, but it
may be significant if there is heavy activity on high
interrupt levels. A consequence of this mechanism is that
swap-I/0 from ND-500 will be registered under FILES, since
it does not involve the swapping system in the ND-100-part
of the system.

All percentages are related to the INTERVAL-time given.

Example:;

If the INTERVAL is set tao 10 seconds, and the DISK-figure

becomes 40%, then the disk-system (disk-datafield)] has been

occupied 4 seconds out of 10. This includes time to set up

transfers, seek-time and transfer-time.

The CPU, PASSIVE, and IO-WAIT-figures for a specific
RT-program, add up to a certain percentage figure. (In the
above example they are 25 + 0 + 75 = 100%). This percentage

will be equal or close to 100% if the load on the system is
small, but starts dropping below 100% when the load

increases. The missing percentages give us an idea of the
queue-lengths in the system. When an RT-program is waiting
for the CPU (or is in the queue waiting to reserve some
I/0-device), it will not be classified into any of the groups
defined by RT-PROGRAM-LOG. If a sample is taken when the
RT-program is in the waiting queue of some device, this will
be a "missing" sample.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

3.1.1.3 SOURCES OF ERROR

For

For

For

For

For

For o
o

e
 300 baud terminal, use

600 baud terminal, use
1200 baud terminal, use
2400 baud terminal, use
4800 baud terminal, use 16 interrupts/sample

9600 baud terminal, use 32 interrupts/sample

The overhead from a 600 baud or about 55 characters/second

terminal at 1 interrupt per sample is negligible (about 1% of

the CPU). A 9600 baud terminal sampling at maximum rate (873

samples/second) will use approx. 17% of the CPU on an

ND-100/CX.

The following table states the CPU-overhead (in%) on

ND-100/CX as a function of line speed and the number of

interrupts/sample (For ND-100 standard the overhead will be

appoximately 25% larger):

Line speed Interrupts/sample

1 2 4 8 16 32 64

300 1 0 0 0 0 0 0

600 1 1 1 1 1 1 1

1200 2 2 2 2 2 2 2

2400 4 4 4 3 3 3 3

4800 9 8 8 7 7 7 7

9600 17 16 15 15 14 14 14

19200 35 32 30 29 28 28 28

PROGRAM-LOG and the combination of PROGRAM-LOG and

SYSTEM-HISTOGRAM are based on the same sampling method as

RT-PROGRAM-LOG, and the overhead is nearly the same.

An easy-to-remember way of selecting the INTERRUPTS/SAMPLE-

parameter is given in the table below. Divide the baud rate

of the terminal being used by 300, and use this result as

the number of interrupts per sample. This means that the

sampling rate will be about 27 samples per second:

interrupts/sample

interrupts/sample
interrupts/sample

(CPU-overhead)

(
(

interrupts/sample (
(
(

CPU-overhead)

CPU-overhead)

CPU-overhead)

CPU-overhead)

CPU-overhead)

0

N

=

o®

o

o

o

o°

o°

B

W

N

=

=

1

The table on CPU-overhead shows that the usage of higher

sampling rates gives more accurate measurements, without

increasing the overhead significantly.

The accuracy of the RT-PROGRAM-LOG is limited by the fact

that the sampling itself runs on hardware level 10, and

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 9

therefore is not able to register activity on level 10 and
higher correctly. Thus, for most "normal" workloads the
results are quite reliable. However, in cases where the
activity on hardware level 10 and upwards is a large part of
the total CPU-consumption, the results are less reliable,
and can only be used as an indication. (See the paragraph
"Combination of SYSTEM-HISTOGRAM and PROGRAM-LOG" if you
want to find out about the distribution of CPU-load over the
various hardware levels.)

If there is a heavy load on the system, the report lines

(which should be printed every INTERVAL) may be delayed

because of the normal time slicing system,which is also used
for the logging device. To correct this, you use the command
"REMOVE-FROM-TIME-SLICE" in the SINTRAN-SERVICE-PROGRAM and

then @PRIOR BAKxx <high priority, e.g. 100B> on the BAKxx of
the logging device

A rather strange error occurring once in a while for the
RT-PROGAM-LOG, is the following:
When the system is idle, the RT-PROGRAM-LOG may still show a
rather high CPU-usage. For instance, a figure of 17 percent
CPU has frequently been observed on idle systems with the
log running from a 300 baud console, with

INTERRUPTS/SAMPLE = 1.

The explanation is:
Since each character contains 11 bits, the time between
successive samples from a 300 baud device will be 11/300

seconds. The time between successive interrupts from the

system clock is 1/50 second. Let us assume that an interrupt
from the logging device happens to arrive while the software
clock on level 13 is active. The former interrupt, which is
to level 10, will be queued, and as socon as the activity on

level 13 stops, sampling will take place and register
"previous level" as non-zero, i.e. the CPU was busy. If this
takes place at time zero, then 6 samples (i.e.
6 x (11/300) = 11/50 = 11 "clock ticks") later, the two

interrupts "collide" again and the sample shows "CPU busy"
once more. Thus, over a time period of length INTERVAL, 1/6
(=17%) of the samples indicates a busy CPU. This phenomenon

is called phasing.

This occurs every time one out of 6 successive samples hits

a clock interrupt, 1.e. 6 out of 100 times. The best way to
avoid this is to escape the log and start over. If possible,
the log should run on an empty system until the first report
line is displayed, in order to check whether phasing occurs
or not.

ND-30.049.1 EN

10 Tuning Guide for ND Computer Systems

3.1.2 PROGRAM-LOG

The PROGRAM-LOG measures the relative amount of CPU time used

by each RT-program during a given time interval. The log is
started by the command START-PROGRAM-LOG, which has one

parameter, INTERRUPTS/SAMPLE. This is the same as the
parameter used in the RT-PROGRAM-LOG command described on

page 5. To stop the log, STOP-PROGRAM-LOG must be given

together with the name of the output file for the results.

Example:

@START-PROGRAM-LOG
INTERRUPTS/SAMPLE: 30

@STOP-PROGRAM-LOG
OUTPUT FILE: TERMINAL

PERCENT SAMPLES
DUMMY 82 997
STSIN 00 0
RTERR 00 0
RTSLI 01 1

BAKOS 17 205

In other words, during the time the log was operating, the
program BARO8 (representing one of the terminals in the
system) used the CPU in 17% and the DUMMY in 82% of the
samples.

DUMMY is the current RT-program when no other program is

ready for for execution (the system is idle).
It has priority O.

3.1.3 HISTOGRAM

The CPU HISTOGRAM measures the amount of CPU time spent in

different parts of the logical address space of an

RT-program. The DEFINE-HISTOGRAM command defines the

parameters for the histogram. They are: The name of the

RT-program, the start address of the logical area to be

logged, and the address interval. 64 equally sized intervals
are logged. This means that the parameters you choose must

satisfy the following equation (all figures and parameters
are octal):

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 11

START-ADDRESS + INTERVAL * 100 < 200000

The START-HISTOGRAM command and the STOP-HISTOGRAM may start

and stop the log. The results is printed by the

PRINT-HISTOGRAM, which has one parameter, the name of the

output file.

Example:

@DEFINE-HISTOGRAM

RT NAME: GARP

START-ADDRESS: O

INTERVAL: 2000B

Q@START-HISTOGRAM

@5TOP-HISTOGRAM

@PRINT-HISTOGRAM
OUTPUT-FILE: TERMINAL

PERCENT SAMPLES

OUTSIDE 0 0 OUT OF 12571

SYSTEM: 1 126
o- 1771 0 0

2000- 37717 7 880
4000- 5777 9 1131

176000-177777 0 0

"SYSTEM" here means CPU-time spent on hardware level 1,

protection ring t, 2 or 3, i.e. monitor call code is

executed on behalf of the specified RT-program. Sampling for

the histogram is done by the system clock at each "tick".

These occur at 20 ms intervals. Therefore, statistically,

each sample represents 20 ms CPU time. So by multiplying a

number of samples by 20 ms, you get the corresponding

amount of CPU time.

3.1.4 SYSTEM-HISTOGRAM

The SYSTEM-HISTOGRAM command measures the relative (and

absolute) amount of CPU time used within sections of the

physical memory on a specified interrupt level. The

interrupt level, the start address, and the size of the

increments of the memory area to be logged, must be defined

by the command DEFINE-SYSTEM-HISTOGRAM. 64 equally sized

intervals are logged. To start and stop this log you use the

ND-30.049.1 EN

12 Tuning Guide for ND Computer Systems

START-HISTOGRAM and STOP-HISTOGRAM commands. The results is

be printed by PRINT-HISTOGRAM, which has one parameter, the

name of the output file.

Example:

If you are interested in the CPU use on level 1 and in the

address area [(physical) 2000B to 3000B, then use the

following command sequence:

@DEFINE-SYSTEM-HISTOGRAM

LEVEL: 1
S5TART-ADDRESS: 2000
INTERVAL: 10

@QSTART-HISTOGRAM

@STOP-HISTOGRAM

@PRINT-HISTOGRAM
OUTPUT FILE: TERMINAL

PERCENT SAMPLES
OUTSIDE: 03 127 OUT OF 3868
2000-2007 00 0
2010-2017 00 0

2740-2747 97 3740

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 13

3.1.5 TIME-USED

The TIME-USED command (or monitor call 114 - TUSED) returns

the sum of the CPU time used in inbyte/outbyte-routines

(hardware level 4) and in the user program itself (hardware

level 1, protection ring O) since the terminal logged on (or

since a batch job started).

It is important to notice that this is never the total

CPU time used, since time spent on levels 14, 13, 12, 11,

10, 5, 3 and 1 (ring 1, 2 or 3) is not included. To cut it

short, we can say that the operating system overhead (apart

from monitor calls for certain character handlings) is not

included in TIME-USED.

Here is a list to give an idea of the activities on the 16

different hardware levels:

Level Activity

0 The system is in the idle loop (DUMMY is current

RT-program)

All RT-programs execute on this level

Not used

The kernel of SINTRAN III executes here

Inbyte/outbyte monitor calls

XMSG
Not used

Not used

Not used

Not used

10 Driver routines for character device output

11 Driver routines for mass storage devices

12 Driver routines for character device input +

ND-500 driver + HDLC output driver

13 Updating of real-time clock + HDLC input driver

14 Internal interrupts (page faults, power fail, ..)

15 Not used

W
O
~

W
K

—

The fraction of CPU time not included in TIME-USED varies

from program to program, and is cften in the area of 1-50% of

total CPU time used. If we exclude certain monitor calls for

handling characters, we might say that the more monitor calls

a program is executing, the greater is the fraction of

CPU-time not included in TIME-USED.

ND-30.049.1 EN

14 Tuning Guide for ND Computer Systems

3.1.6 COMBINATION OF SYSTEM-HISTOGRAM AND PROGRAM-LOG

This combination will give some extra information. The
following command sequence could be used:

Example:

@DEFINE-5YSTEM-HISTOGRAM
LEVEL: 1

START-ADDRESS: 2000
INTERVAL: 10

@START-PROGRAM-LOG
INTERRUPTS/SAMPLE: 30

@STOP-PROGRAM-LOG
OUTPUT FILE: TERMINAL

The output could look like this: '

PERCENT SAMPLES

DUMMY :

STSIN:

BAK14:

BaK15:

BAK16:

LEVEL O
LEVEL 1
LEVEL 2
LEVEL 3
LEVEL 4
LEVEL 5
LEVEL 6
LEVEL 7
LEVEL 8
LEVEL 9
OTHER L

OUTSIDE:
2000~

2770-

: 00

: 00

: 00

: 00

: 00

2007: 00 O

2777: 00 O

95 1252

00 O

. W — This is as before
00 O (PROGRAM-LOG)

02 29

00 0

ENT SAMPLES —

93 1225
¢ 03 44
: 00 0
: 01 19

5

6 — This 1s new
0
0
0

00 O
LS: 01 19 i

PERCENT SAMPLES This is as before

100 44 OUT OF 44 (SYSTEM-HISTOGRAM),

except that sampling
is done by the terminal
output driver rather
than the system clock

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 15

The extra information we get here is a picture of how the CPU

load is distributed over the various hardware levels. In this

example the system has been on level 0 (idle) 93% of the

time, on level 1 (user RT-programs) 3% of the time and on

level 3 (operating system) 1% of the time. Other levels (10,

11, 12, 13, 14) account for 1% of the time the log has been

running. We also see that there has been some activity on

level 4 (byte I/0) and level 5 (XMSG).

It may seem a little strange that the number of samples

registered for the RT-program DUMMY is higher than the

number on level O (1252 versus 1225). The reason for this is

that the system has at all times one RT-PROGRAM which is

defined as "current", and which is the basis for the

PROGRAM-10G part of the measurement. An RT-program may well

be "current" though the system is handling information

completely irrelevant to that particular program,

particularly various interrupt handlings. That is why the

number of samples under DUMMY is generally a few percent

higher than the number of samples on level O.

3.1.7 TOOLS IN SINTRAN-SERVICE-PROGRAM

These tools were implemented in the J-version of

SINTRAN III.

3.1.7.1 MONITOR CALL LOG (MONCALL-LOG)

By means of this function you can count the number of

monitor calls executed in the system as such, or by one

specific program.

Example:;

@SIN-SER
*MONCALL-LOG
FUNCTION: START-MONCALL-LOG

LOG MONCALLS FOR ONLY ONE PROGRAM (DEFAULT IS YES)? NO

FUNCTION: STOP-MONCALL-LOG
FUNCTION: PRINT-MONCALL-LOG
OUTPUT FILE: MONCALLS
FUNCTION: EXIT
*EXIT

ND-30.049.1 EN

16 Tuning Guide for ND Computer Systems

The MONCALLS file might look like this:

MONCALL NUMBER NUMBER OF TIMES USED

0: 0

1: 19

2: 32

3: 0

4. 0

5z 0

6! 0

7: 0

10: 0

374: 0

375: 0

376: 0

377: 0

This output should require no further explanation.

Use the HELP command (after FUNCTION:) to find out which

commands are available in MONCALL-LOG.

For programmers who want to use as little CPU time (and

I1/0-time) as possible, the basic rule is to write programs
that execute the smallest possible number of monitor calls.

3.1.7.2 SWAPPING-LOG

This command is useful for getting a picture of how many
disk accesses are generated because of swapping (in the
total system, or by one specific program).

Example:

We could use the following command sequence:

@SINTRAN-SERVICE-PROGRAM
*SWAPPING-LOG
FUNCTION: START-SWAPPING-LOG
LOG SWAPPING FOR A SPECIFIC PROGRAM (DEFAULT IS YES)? NO
FUNCTION: READ-SWAPPING-LOG

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 17

TOTAL NUMBER OF PAGE FAULTS WITHOUT DISK ACCESS 101948

TOTAL NUMBER OF PAGE FAULTS IN RT-COMMON 0

TOTAL NUMBER OF PAGE FAULTS ON LEVEL 4 3

TOTAL NUMBER OF PAGE FAULTS ON LEVEL 1 7515

TOTAL NUMBER OF PAGES SWAPPED OUT (WRITTEN TO DISK) 3230

FUNCTION: EXIT
*EXIT

Explanation of the previous table:

1. PAGE FAULTS WITHOUT DISK ACCESS

Gives the number of times there has been a page fault due to

the "window" mechanism in SINTRAN ITII. A window page is used

for example to access data in the terminal datafields

outside the first four banks in SINTRAN III. This always

generates an internal page fault (which means that a certain

amount of CPU time is spent handling the fault), but never

disk access.

2. PAGE FAULTS IN RT-COMMON

This is the same type of page faults as in 1, but in the

RT-COMMON instead of in the window. No disk access is

generated.

3. PAGE FAULTS ON LEVEL 4

These are page faults generated by the SINTRAN III byte-I/O

routines running on hardware level 4. In most cases no disk

access is generated. The uncertainty about whether a page

fault like this leads to a physical disk access or not,

should cause no worry, because these page faults are

normally very few.

4, PAGE FAULTS ON LEVEL 1

This is the normal type of page faults which causes access

to the segment files on disk. Each fault generates one disk

access if no page has to be written back, and two disk

accesses if a used page (WRITTEN-IN-PAGE-bit set) has to be

written back before the new page can take its place.

5. PAGES SWAPPED OUT (WRITTEN TO DISK)

This is the case where a page has to be written back to disk

(swapped out, WIP-bit set) before a new page can be swapped

in. In our example this occurred 3230 times out of 7515

possible times.

ND-30.049.1 EN

18 Tuning Guide for ND Computer Systems

The total number of physical disk accesses in this example
may therefore be calculated as:

7515 + 3230 = 10745

The command READ-SWAPPING-LOG can be executed at any time to

find out how swapping accesses accumulate.

The command SWAPPING-LOG should be used if you would like to

have a report line printed at fixed intervals (use the
the INTERVAL command).

Use the HELP command (after FUNCTION:) to find out the

available commands in in SWAPPING-LOG.

3.1.7.3 CPU-LOG

The command CPU-LOG prints the CPU-utilization as a
percentage number at specified intervals.

Example:

@SINTRAN-SERVICE-PROGRAM
*CPU-LOG
INTERVAL IN SECONDS (DEFAULT IS 30 SECS): 60
OUTPUT FILE:

10
12
13
12

We see that the average CPU-load is around 12%.

The CPU load calculation is based on the number of times the
CPU runs through an idle loop when the system is completely
idle. This number is stored in location 342 in resident
(J-version), and the default value is approximately (1750B)
for ND-100/CX CPUs. It must (may) be calibrated on each
individual system (when idle) by the command
FIND-CPULOOPTIME. After executing this command (it uses 30
seconds to count), the number of CPU loops per second

(decimal) is printed on the terminal. The variable
CPULOOPTIME may then be changed to this value by

CHANGE-VARIABLE, a SINTRAN-SERVICE-COMMAND, to make the

CPU-LOG as accurate as possible for your system.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 19

3.1.7.4 DISC-ACCESS-L0G

This command is used when you want a count of disk accesses.

Various conditions may be specified, such as controller to

log, which unit, read or write. In addition, if a certain

part of a disk is particularly interesting, it may be

logged.

The results may be displayed directly on your screen, as in

the following example, or they may be written to a disk file.

This file must be contiguous and of type :LOG. The results

will be stored in binary format. You must either write a

special program to read the file, or you may find the disk

address of the file in location 36-37B in the file's object

entry and use the command @DUMP-PAGE on the pages of

interest.

Let us look at a simple example where we count all disk

accesses in the system:

@SINTRAN-SERVICE-PROGRAM
*DISC-ACCESS-LOG

FUNCTION: START-DISC-ACCESS-COUNTER
COUNT ALL DISC ACCESSES (DEFAULT IS YES)? YES

FUNCTION: LOG-DISC-ACCESS-COUNTER

INTERVAL IN SECONDS (DEFAULT IS 60 SECS): 30

TOTAL DISK ACCESSES WRITE ACCESSES READ ACCESSES

IN INTV./ACCUMULATED IN INTV./ACCUMULATED IN INTV./ACCUMULATED

5/ 5 2/ 2 3/ 3

8/ 13 3/ 5 5/ 8

15/ 28 5/ 10 10/ 18

In addition, special error information may be read from the

disk driver. Use the HELP command (after FUNCTION:) to list

the commands available under DISC-ACCESS-LOG.

ND-30.049.1 EN

20 Tuning Guide for ND Computer Systems

T T T S P S S B s T e S S e S

The front end part of any ND-500 system is a regular

ND-100/CX processor, which means that the measurement tools

for the front end CPU are the same as those described for

ND-100. However, as regards a 500 system, you must to be

aware of:

ND-100 and ND-500 have their own (independent)
swap systems. So, when the 500 processor is swapping,

RT-PROGRAM-LOG will not see this as swapping for ND-100,
and therfore classify it as "FILES":

CPU SWAP FILES DISK

25 02 08 10

L- Swap for ND-500 + User file I/0

Swap for ND-100

All other measurement tools for ND-500 can be accessed from

the ND-500 monitor. These tools are described in the "ND-500
Loader/Monitor" manual. They are:

HISTOGRAM
MONITORCALL-LOG
PROCESS-LOG
SWAPPING-LOG
LIST-EXECUTION-QUEUE

The HISTOGRAM and PROCESS-LOG are based on interrupt-driven

sampling by the system clock (the measurement runs entirely

in the 100 CPU). The MONITORCALL-LOG and SWAPPING-LOG are

based on event-tracing in the 500 monitor (which runs in the
100 CPU) and the 500 swapper (which runs in the 500 CPU),
respectively.

Since the 500 processor does not have an interrupt system and

no I/0-system of its own, and sampling for HISTOGRAM and

PROCESS-LOG is done by drivers running in the 100-part,
results are more correct than the corresponding tools for the

100-CPU. In particular, it is possible to measure accurately
the resource usage by one process in the 500-part even though

other processes are active simultaneously. Such measurements

are often very inaccurate on a 100-system.

The formal use of these commands (parameters and so on) is

shown in the Loader/Monitor manual, and is not repeated

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

here. In the following sections is some additional

information.

3.2.1 HISTOGRAM

This command is used to find out where the 500 CPU time is

spent inside the address area of one program {domain).

Remember that the 32-bit addresses may be given a

“short-form". The normal start-address 10000000004B may be

specified as 1'4B.

Example:

The address area 2000B - 50000B cn segment 1 is

histogrammed.

@ND
ND-500 MONITOR VERSION E

N500:

N500:

N500:

N560:

N500:

N500:

SET-HISTOGRAM 1'2000B, 1'500008B, ,
START-HISTOGRAM
<DOMAIN-NAME>

OUTPUT-FILE HISTO

PRINT-HISTOGRAM
EXIT

ND-30.049.1 EN

83.12.20 / 83.12.21

21

22 Tuning Guide for ND Computer Systems

The HISTO tile could look like this:

HISTOGRAM OF <DOMAIN-NAME>
PRINTED: 11. 9.36 29 NOVEMBER 1984

1000002000B:
100000246 1B:
1000003142B:
1000003623B:
1000004304B:
10000047658
1000005446B:
1000006127B:
1000006610B:
1000007271B:
10000077528
1000010433B:

1000011114B:
1000011575B:

1000012256B:
1000012737B:
10000134208B:
1000014101B:

Xk kX kx

ISR RS ER RS R R R RS & &

KXXXXX XX

Xxkkktk

XKk KKKKX

*

XEk %k

~
N
O
M
N
O
O
O
Q
O
O
O
0
O
N
M
N
W
O
N
O
O

O
O

W

N
e
w

W
W
w

O
O

N
W
Y
O

-~
N
0

-
0

XXXk XXKKAXRX KKK

* % 1000033473B:
1000034154B:
1000034635B:
1000035316B:
1000035777B:
1000036460B:
1000037141B: 2
1000037622B:
1000040303B:
1000040764B:
1000041445B:
1000042126B:
1000042607B:
1000043270B:
1000043751B:
1000044432B:
1000045113B:
1000045574B:
1000046255B:
1000046736B:
1000047417B:
OUTSIDE:
NO. OF SAMPLES: 1041B

LEE RS SR SRS

*

IS S 2SR R R RS R SRR RES RS REE SR SRR RS R RS R R T RS S

* %k k%

XXX XXXXKRKKXA AR I XA KRR A%

Xkkkkkk k¥

* %k

%

Xkk%kxk

2

O
0
O
N
O
O
O
0
O
O
0
O

=
2
0
0

O
W
—
2
A
a
0
0
Q
0
O
0
O
U
V
N
M
O

=

O
O
0

~
-
N
W
W
W
a
=
0
O

W
O

+
2
W
O
H

O

-
a
d
w
w
a

-

6.1 A AR EX KX KRR ERKA KRR KRR XA XA KRR AR R AR Rk k k%

We can easily see where the program's CPU time 1s spent, and
it is common to "zoom" in on smaller address areas of

particular interest (for example from 1'37141B to 1'37622B

in this case).

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 23

Note that each sample represents 20 ms of CPU, so the total

number of samples multiplied by 20 ms gives the total

CPU-time used. It corresponds with the information obtained

by using the ND-500-MONITOR command TIME-USED.

3.2.2 MONITOR CALL LOG

This command counts the number of monitor calls

executed, and is very useful if the ND-100 part of a

500 system is overloaded. The command-sequence:

@ND-500-MONITOR
N500:

N500:

N500:

N500:

N500:

START-MONCALL-LOG ALL
{DOMAIN-NAME>

OUTPUT-FILE "MON-CALLS"
PRINT-MONCALL-LOG

EXIT

will log all monitor calls executed in the system, and might

produce the following MON-CALLS file:

ND-30.049.1 EN

24 Tuning Guide for ND Computer Systems

MONITOR CALL LOG OF <DOMAIN-NAME)

PRINTED: 18.42. 2 13 NOVEMBER 1984

OB - 1B 5B 0B oB
OB 0oB 0B OB

10B - OB 0B OB 3B
OB OB 3B 3B

20B - OB 0B 0B OB

0B 0B OB 0):]
30B - 1B OB OB 0B

0B OB OB OB
40B - 0B 2B 0B 6B

OB 4B OB OB
50B - 11B)] 1B OB

0B 0B OB 0B
60B - 0):] 0B 3B OB

OB 0B OB OB
70B - 0B 1B 1B 0B

6B OB 2B OB
100B - OB 0B OB OB

OB OB OB 0B
110B - 0B op’ 0B 5B

0):] OB 0B 5B
120B - OB 0B 0B OB

oB OB 0B OB
130B -):] OB 0B 0):]

0B 0):] 0B OB
140B - 0B -] 0B 4B

6B 0B 0):] 0B
150B - OB 4026B OB oB

500B - OB OB 2614B 56B
16330B 0B OB 0):]

The left column contains the monitor call number. The other

columns contain the number of executions of the various
monitor calls. In this case we notice that most monitor
calls have been executed a reasonably low number of times. A

few calls have a very high number count (monitor call number

504 has been executed 16330B times). The next step would be

to find out which program causes this, and if it really is
necessary to use that many monitor calls.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

3.2.3 PROCESS-LOG

3.2.3.1 PROCESS-LOG-ALL

o

W

O
O
 -

This command gives the best overall picture of what is goin

on in a 500 system. The output looks something like this:

25

g

44
89
57

PROCESS LOG ALL 12.39. 3 29 NOVEMBER 1984

1 2 3 4 5 6 17 8 9 10 11 OTHERS IDLE SWAP

0 2 55 3 1 o 0 o o O o0 O 38

0 1 54 5 1 o 0 o O o o o 39

0 5 71 " 2 0 0 0 o0 o0 o0 0 1

0O 18 42 6 1 0o 0 o o o o0 O 30

There are a number of factors we can observe from this

table:

- All figures are in percent of the INTERVAL given (as for

RT-PROGRAM-LOG) .

- Process 0 is the 500 swapper itself, so we can get an

idea of how much CPU resources it takes to administrate

the swapping system (in this case only 0-3%).

- The total CPU load on the system has been 61-93% (100

minus IDLE-figure).

- Total swap rate has been 44 - 89%. The problem is that

this SWAP figure does not distinguish between real

swapping (lack of physical memory for code and its lokal

data), and swapping caused by programs using the

"file-as-segment” facility for data files, which is

actually user-I/0.

- Process number 3 is using most of the CPU resources (42-

75%), which most often implies that this user is running

some heavy job like compiling or text formatting.

- Process number 5 is only using 1-2% of the CPU, and this

is typical for a light edit session (PED, NOTIS-WP).

- Process 2 and 4 are medium heavy users.

ND-30.049.1 EN

69

26 Tuning Guide for ND Computer Systems

- To find out what the users are really working with, use
the WHO-IS-ON command in the ND-500-MONITOR, and then the

TERMINAL-STATISTICS command in STNTRAN IIl. The

PROCESS-STATUS command is also very useful to see how

CPU time is distributed among the various 500 processes.
To look more closely at one specific process, see next

paragraph.

3.2.3.2 PROCESS-LOG-ONE

We select one 500 process of particular interest (number 15D

in this example), and get the following output:

LOGGING OF PROCESS 15 14.13.10 29 NOVEMBER 1984

........................ IDLE
.................... WAITING FOR SWAPPER

................ USING SWAPPER
............ IN MONITOR CALL
e ACTIVE

I
i

l .

0 2
16 32 24 18

1 36 55 5
0O 49 46 4
2 50 3% 6 O

O

O
B

O
i—

=
o

am

o

2
O
O

W
O

=
o=

o=
o=

From this we can tell:

- WAITING FOR CPU is low, so the ND-500 execution queue has

been relatively short most of the time.

- ACTIVE shows that this program has been using 24-55%
of the 500 CPU.

- IN MONITOR CALL gives an idea of how much time is spent
on I/0. If this figure gets very high, we must expect
that the program is not performing as good as one would

like.
There is one exception: A program waiting for input from
the user will normally be logged as IN MONITOR CALL most

of the time (close to 100%). This does not mean the
program is inefficient, but only that the system spends
most of its time waiting for the user to type something.

- USING SWAPPER tells us how this program is using the
paging system.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 27

- WAITING FOR SWAPPER means somebody else is using the

swapper, and this program is in a queue to get access to

it.

- IDLE means the program is passive.

3.2.4 SWAPPING-LOG

This log is meant mainly for testing purposes. It is not of

general interest, and therefore not described here.

3.2.5 LIST-EXECUTION-QUEUE

This is a very useful command to get an idea of what

priorities the different tasks are executing on. The output

looks like this:

CURRENT EXECUTING PROCESS : NONE
PROCESS NO PRIORITY

OB 300B +— ND-500 swapper

1B 55B

6B 55B Very interactive users

7B 55B — PED, NOTIS-WP, NOTIS-CALC

10B 44B User applications

11B 44B
3B 41B

2B 41B :1— SIBAS Processes

4B 40B

5B 40B :l— SIBAS Servers

12B 30B

13B 24B j:}— Heavy interactive jobs

14B 20B Compiling, formatting

30B 20B

15B 16B :]—-Batch jobs

- See the chapter on Time Slicing in SINTRAN III on page 44

for a closer description of how priorities are assigned

to different users.

- This execution list is sorted by priority, and the

swapper (process 0) is the highest priority process.

- Very interactive users (typing break characters often)

are mostly on priorities 55B and 44B.

- SIBAS and its servers are on priorities 41B and 40B.

ND-30.049.1 EN

28 Tuning Guide for ND Computer Systems

These are RT processes in the ND-500 (can be verified by

using the command WHO-IS-ON). They are not time sliced,
as are the monitor calls (or commands), because

SET-PRIORITY has bheen used. This means the priority is

static, but can be changed (tuned) by the SET-PRIORITY
command. This command has no meaning for time sliced

processes.

- Heavy interactive jobs (or MODE jobs) are generally in the
priority area 20B - 30B.

- Batch jobs spend most of their time on priorities
16B and 20B.

4 DIAGNOSIS

The most important question to answer in a system with
performance problems is this:

What is the real bottleneck ?

The way to find out is to use the measurement tools
described in this manual, and to interpret the results
correctly. Let us look at some typical problem situations
for ND-100 systems and ND-500 systems.

Note that I/O is used in the sense of mass storage I/0, as
terminal I/0 only contributes to the use of CPU resources.

S A T e O e e S S S e 57 D D D D G D P S R D D D D M D Ml A S e S S S S S S S o -
0 R D et e Mt e et S Y S e Y S B Y S D bt S5 et M B B G M M it b i S U M B B S S e S S S ey s S S ot St S o e i e o o s ot e B

4.1 ND-100

ND-100

| |
CPU Memory 1/0

bound bound bound

Measurements will have to lead us to one of the three

conclusions in the above picture, unless they reveal same

obvious explanation (like an RT program on high priority
using most of the CPU, which makes it even simpler to
diagnose).

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 29

4.1.1 CPU BOUND

This is the conclusion if RT-PROGRAM-LOG or CPU-LOG show a

very high utilization of the CPU (70-100%) over long periods

of time, while SWAP and FILES are at considerably lower

levels. This situation is quite typical for ND-100 systems.

4.1.2 MEMORY BOUND

This is the situation where SWAP (from RT-PROGRAM-LOG) grows

higher than 10-20% over long periods of time (several

minutes). This is a problem in many of the installed

ND-systems today, and has a very negative impact on response

times.

4.1.3 1/0 BOUND

Occurs if FILES (from RT-PROGRAM-LOG) grows higher than

both CPU and SWAP for long periods of time. You will almost

never see this in an ND-100 system.

4.2 ND-500

ND-500

I l

CPU Memory I/0

bound bound bound

I I I I
100| | 500 100{ | 500

We can use the same categorization for an ND-500 performance

ND-30.049.1 EN

30 Tuning Guide for ND Computer Systems

problem as for an ND-100. However, due to the fact that any
ND-500 system is a multi CPU system, the diagnoses are more
complex, as illustrated above.

Furthermore, we will limit the diagnose to an ND-500 system
where no user jobs are run in the ND-100 part of the system.

We do this to simplify some of the arguments, and also
because it is the way any ND-500 system should be run.

The reason for this is the fact that the front end ND-100
has sufficient work to do acting as the ND-500
I/0 processor. If more work is put on it, we must expect

that either the users of ND-100 programs, or the users of

ND-500 programs (or both !) will not be satisfied. The

only tuning tool in a case like this (apart from allocating
memory correctly) is the time slicing mechanism (to get the
best out of a far from ideal situation).

4.2.1 CPU BOUND

We have two possible situations here. Either the front end
ND-100/CX CPU is overloaded (use RT-PROGRAM-LOG or CPU-LOG),

or the main ND-500 CPU is running at a very high average
utilization (use PROCESS5-LOG-ALL).

4.2.2 MEMORY BOUND

Again, either the front end CPU is running with a high SWAP
rate, or the ND-500 CPU is swapping heavily (can be seen from

PROCESS-LOG-ALL). The two CPUs have their own independent
swapping systems, and both situations may reduce total system
performance considerably. See the next section for further

explanation.

Be aware of the fact that even if the system has sufficient
memory in its hardware, it may not be optimally distributed
(by software) between the two CPUs. See more about this in
chapter Use of Memory in an ND-500 System, chapter 7.

4.2.3 170 BOUND

This state may easily arise in an ND-500 system, as the main
CPU is quite powerful. It will manifest itself in one of two

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 31

possible ways, depending on whether the "file-as-segment"

facility is in heavy use or not:

1. File-as-segment not heavily used

The FILES column in the RT-PROGRAM-LOG shows the highest

usage at the same time as no or little SWAP (from

PROCESS-LOG-ALL) goes on in the ND-500.

2. File-as-segment in heavy use

The FILES column in the RT-PROGRAM-LOG shows the highest

usage in the system, and the SWAP rate in the ND-500 is

equally high (or higher). This situation occurs bhecause

the file-as-segment concept uses the swapping system

instead of the normal I/O-system, and because the

RT-PROGRAM-LOG classifies everything which is not ND-100

SWAP, as FILES.

So, this is the case where the SWAP for an ND-500 seems

to indicate a memory bound system, but where it in fact

reflects an I/O0-bound system. A typical example could be

a SIBAS backend system. Most of ND's system software use

the file-as-segment I/0-method.

There is also one more trap to avoid: ND-500 programs doing

I1/0 in a very inefficient manner (wrong monitor calls, too

many monitor calls). The result is always a situation where

the ND-100 front end CPU is overloaded, which then is just a

symptom of the real problem.

5 SOLUTION

At this point, we have performed the necessary measurements,

and we have been able to pin point the most critical factor

of the system (the bottleneck resource). We now know that

the computer system is running badly due to the scarcity of

this resource. There are usually only two ways of solving

this kind of problem:

1. Add more of the bottleneck resource to the system.

2. Use less of it.

The first option means buying more hardware. The second one

involves finding out where the resource is being used up.

That is, in which programs and where in these programs.

After the program (area) has been isolated, the choice is

between:

ND-30.049:1 EN

32 Tuning Guide for ND Computer Systems

. Optimizing the program with respect to the resource.

. Lowering the relative priority of the program,
accepting that it will run slower.

3. A mixture of alternatives 1 and 2 above.

N

—

We will now look more closely into the possible problem
states, and again it seems natural to distinguish between
ND-100 and ND-500 systems.

5.1 ND-100

5.1.1 CPU BOUND

If the CPU can no longer be upgraded (hardware), and the

programs running in the system are reasonably effecltive (use

PROGRAM-L.0G and HISTOGRAM), then this system has reached its

capacity limit. Only one specific hardware upgrade may help:
Substitute the non-buffered terminal interfaces with buffered

_ones. The effect of this upgradeing is described in section
Buffered Terminal Interface, page 59.

Total capacity can, of course, be increased by adding
another complete system (normally connected by COSMOS), or

upgrading to some ND-500 system (if possible).

Note that a very high utilization of the CPU (70-100%) does
not necessarily mean that the situation is disastrous. If the
different tasks in the system have priorities according to
their importance, this can - on the contrary - be an ideal

situation (maximum throughput). However, if the very time
critical tasks consume more than 60-70% of the CPU, we must
expect the response-times for those tasks to be too long.

5.1.2 MEMORY BOUND

This problem is very easily cured by installing more memory
(hardware). Without installing more memory, it can only be
solved by running fewer tasks and/or users.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 33

5.1.3 1/0 BOUND

ND-100 systems with this problem (very few) can be

hardware-upgraded with for instance extra I/0 controllers.

But this only helps if the program systems can use this extra

hardware effectively (files spread over several drives,

balanced use of files, etc.). This must be considered in each

case (see chapter 9). In software, the most common

improvement potential lies in increasing block sizes in

I/0-transfers.

5.2 ND-500

5.2.1 CPU BOUND

If the ND-500 CPU is heavily used, we are normally in a

situation where the system is running all right, assuming

that programs are fairly optimized and that priorities in
the system is in order. In the hardware, an upgrade from the

smallest ND-500 CPU to the higgest one is no problem -

(user/program transparent), and the AX option can be used

for vector operations to get more out of the CPU.

If the ND-100 front end CPU is the hottleneck, we must find

out why (see chapter on Diagnuses, I/0 bound ND-500 system).

If no software adaptions can be made, the system can be

upgraded with buffered terminal interfaces.

See the description of this in the section Buffered Terminal

Interface on page 59.

5.2.2 MEMORY BOUND

If total memory size is too small, more memory must be added.
The allocation of memory done by software (see chapter 7)

between the ND-100 and ND-500 processors should always be

checked. The system should be tuned so that the

front end ND-100 swaps no more than 5-10% of the time (run

RT-PROGRAM-LOG). A higher swapping level effectively reduces
the total ND-500 system performance.

ND-30.049.1 EN

34 Tuning Guide for ND Computer Systems

Note that the physical size of local memory versus the size

of multiport memory, is also a tuning point (explained
in chapters 7 and 8).

5.2.3 1/0 BOUND

If the file-as-segment access method is in extensive use,
the situation can always be improved by adding more memory,
as this reduces the overall swap rate. However, there is a

limit to this. We can not expect to install sufficient
memory to keep a large fraction of databases in memory

(several hundred megabytes), but we should try to keep

substantial portions of the index tables in memory, to make

the system less I/0 bound.

If file-as-segment is not very much used, the solution is
the same as for an I/O bound ND-100 system. For more

information, see the chapter Example of I/0-system
Configuration, page 42.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 35

6 1/0-CAPACITY

6.1 FUNCTIONAL OVERVIEW

500

P||D 17 MB/Sec

MPM V

T T

LOCAL ND-100 || |l

bus 2-3 2-3

2-3 II MB/Sec || MB/Sec

DISK MB/Sec

I"'LL'I |"LL'I

100 1PToK) LM

Figure 1. ND-500 system - functional overview.

The figure shows a standard ND-500 system, with optional

controllers and channels stipled. The bandwidth over the two

32-bit ND-500 ports (one for program and one for data) is 17

MB/second in a standard system using MPM V. This bandwith may

limit the speed of the CPU if cache hit is low, and if

programs are very memory intensive.

The ND-100 bus has a capacity of 2 - 3 MB/second when

accesses go into Multi Ported Memory, and close to 4

MB/second when accesses are to Local Memory.

Additional DMA-channels (stipled) also have a capacity of 2 -

3 MB/second each. A more accurate figure than 2 - 3 MB/second

is difficult to state, as a certain amount of buffering takes

place in the memory system on write accesses. The combination

of read and write accesses in each individual program will

decide the exact effective speed of the bus.

ND-30.049.1 EN

36 Tuning Guide for ND Computer Systems

- ———— - S S e S S S T R S R S S e S S W
e B B B B S e B i o o B o i o i o o Bt i S S o i ot e S S i

6.2 "TIME-SHARED" SYSTEM

By the expression "Time-shared" system, we mean a system

where most users are doing work that generates disk accesses

on a page by page basis.

Example:

A typical page fault in ND-500 i1s caused by the use of

file-as-seyment for file I/1). The column (o Lhe Ieflt shows

the best case/fastest hardware, the column to the right

the worst case/slowest hardware.

SK- S TRANSFERRING AGE

Elapsed tim

500-CPU 3 - 4MS (ND-500 swapper)
100-CPU 4 - 5 MS (Disk driver in ND-100)
SEEK 20 - 33 MS {Average)

LATENCY 8 - 8 MS (Average)

TRANSFER 1 - 3 MS (Time for 2 KB)

Sum 36 - 53 MS

— Max 19-28 ACCESSES/SEC
—— TRANSFER RATE: 38-56 KB/SEC
~—— CHANNEL LOAD : 2-3%

This means that one disk drive, reserved (used) 100% of

the time, can only account for a 2-3% average channel

{bus] load when used in a page by page mnde. Therelore,

adding an extra DMA-channel for disk I/0 will have a

negliable effect in this siluatlion.

6.3 "TAILORED APPLICATION" SYSTEM

This is a case where user applications take advantage of the
possibilities of doing I/0 in a very efficient way.

Example:

Transfers to contiguous files (can also be used for

magnetic tapel)] are run wilh a physical lransfer size of 186

pages (32 KBJ):

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 37

ONE DISK-ACCESS TRANSFERRING 16 PAGES

Elapsed time

500-CPU 0 - 1MS (ND-500 swapper)

100-CPU 4 - 5 MS (Disk driver in ND-100)

SEEK 0 - 5 MS (Usually same or neighbour)

LATENCY 8 - 8 MS (Average)

TRANSFER 16 - 48 MS (Time for 32 KB)

Sum 28 - 67 MS

——— Max 15-36 ACCESSES/SEC
——— TRANSFER RATE: 0.5-1.2 MB/SEC

+ CHANNEL LOAD : 25-60%

This job now makes heavy use of the channel vcapavity

[25-60%). If we want to run two or more of these jobs

simultaneously, the effect of a second DMA-channel will be

very gaod.

7 USE OF MEMORY IN AN ND-500 SYSTEM

As shown, ND-100 and ND-500 have separate swap systems, and

they will each reserve a certain number of pages for

swapping:

100 500

SEPARATE
SWAP SYSTEMS

[l |

MEMORY 1

This is a static allocation, but it can be changed (checked)

by:

@AND-500-MONITOR
N500: GIVE-N500-PAGES O
NO OF PAGES AVAILABLE FOR ND-500 PROCESSES : 796

NO OF PAGES USED BY SWAPPER PROCESS : 44

NO OF PAGES AVAILABLE FOR SWAPPING IN SIN-III : 456

The information from this command tells us how much memory

each CPU has available for swapping. NUMBER OF PAGES USED BY

ND-30.049.1 EN

38 Tuning Guide for ND Computer Systems

SWAPPER PROCESS is the code and data area size occupied by
the 500 swapper (fixed in MPM memory, as the swapper is

always the privileged ND-500 process number 0).

Tuning should be done so that the ND-100 part of the system

has just sufficient memory not to swap significantly
{swapping less than approximately 10% as measured hy

RT-PROGRAM-LOG). The rest of the memory available for
swapping will then be used hy the ND-500 CPU.

7.1 MEMORY ALLOCATION

The default 100/500 memory allocation at start up, from the

I-version and onwards of SINTRAN I11, is as follows:

N = total no. of pages for swapping (local + MPM)

100 500

N ¢ 2 MB N/2 MB N/2 MB

4MB ¢ N < 8 MB T "5 MB | N- 1.5MB

7.2 ND-500 MEMORY CONFIGURATION

The physical memory configuration of any ND-500 system may be

set up as one of these three possibilities:

1. Sufficient local memory

100 500

LOCAL MPM

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 39

This is the case where ND-100 operates almost all the time

in its own local memory. It is the ideal case, and the size
of this local memory can he calculated from the formula in
the next chapter.

The advantage of having sufficient local memory in the system
is twofold:

- Local memory 1s about twice as fast as MPM (seen from the

ND-100)
- There will be no memory contention between ND-100 and

ND-500

In effect, this means the ND-100 CPU runs as fast as possible
when its memory references go to local memory.

If we compare a situation with no local memory to one with

sufficient local memory, the possible speed difference

(throughput) is in the 5-30% range. A typical gain will be

around 15%.

2. Some local memory

o o

Loc MPM

This is the most common situation for installed ND-500
systems. More local ND-100 memory should be added to the

system.

3. No local memory

100 500

MPM]

Some systems look like this. Local ND-100 memory should be

installed.

ND-30.049.1 EN

40 Tuning Guide for ND Computer Systems

000

8 MEMORY USED BY ND-100 IN AN ND-500 SYSTEM

The memory which is used by the ND-100 CPU in a 500 system
should be installed as local ND-100 memory. This chapter

describes how to arrive at an estimated size of this memory
when running SINTRAN versions up to J. For K-version and

onwards the sizes will increase.

i T S S T " o S S S g B S S S B S B B S S S P N N S N S W S S o
S o T P S o B S8 o S B S S S B Bk Bk S e S A (a0

8.1 MEMORY SHARED BY ALL USERS

This table shows which parts of the operating system and the
system programs that should be allowed to stay in memory (the

main work-set):

Full size(MB) Workset(MB)

SINTRAN FIXED 0.250 0.250
FILE SYSTEM (SHARED) 0.076 0.076
ND-500-MONITOR, CODE (SHARED) 0.084 0.084
ND-500-MONITOR, DATA ({35HARED) 0.256 0.040
COMMAND SEGMENT 0.052 0.020
SPOOLING, ONE PROCESS RUNNING 0.032 0.032
REMOTE FILE ACCESS (OUT) 0.088 0.044
FILE SERVER (TIN) 0.256 0.054

= 0.6 MB

We have allowed for one spooling process running, and also

for the use of remote file access and file server.

S ———— ——— T T T T S S e o B S S S B S B B S S R S S T S -
- . S S S . A S RS D S SO S S Y e e A e B s SO S S S B S e Y S S P S G S A A S S SN S S S S 00 S S S nd S S et i

8.2 MEMORY PER USER

For each active 500 user, we must allow space for:

S5YSTEM SEGMENT : 0.010 MB
ATA-SEGMEN R ND-500 : Q. B

0.020 MB

TOTAL: 0.6 + N x 0.02 MB

N = number of users

Observe that this formula allows for no ND-100 applications.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 41

Memory referenced by

ND-100 in an ND-500 system

MB

X

1.5 4 = = = = = = = = = = = = : —_ T

*x

1.0 * ’ l
. - | |

g iy *

0.5 ' l I I

' | | I
Number of

| | | active users

10 20 30 40 50 '

We can see that 1 MB of local memory should be used to

support 20 active users.

ND-30.049.1 EN

42 Tuning Guide for ND Computer Systems

000

8 EXAMPLE OF 1/0-SYSTEM CONFIGURATION

The following example is meant to illustrate an J/O-system

configuration for maximum throughput in an ND-500 system.

Three disk controllers have been used to show all possible

tasks that may be run in parallel. The controllers are run in
parallel, except for the fact that the disk driver code is
executed in the ND-100 CPU. This driver cost is, however,

only around 5 ms CPU per DMA access. Also, queues have been

indicated at single thread points in the system (by the
letter Q).

Three different jobs are being served simultaneously in the
example. One is an ND-100 background job using controller 1,
the second is a 500 job causing swapping on controller 2, and
the third a 500 process accessing controller 3 (could be

direct transfer to/from contiguous files).

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 43

Queue of requests for:

ontro 1 Controller 2 Controller 3

| | N B

ND-100 ND-500 ND-100

00— swap process P— RT prog

I I [
ND-100 ND-500 ND-500

bha.gr prog 00— Swap process

Memory (disk cache)

ND-100 Additional Additional

bus channel 1 channel 2

Controller Controller Controller

1 2 3

Unit O Unit O

t
System disk (SINTRAN, Unit 1
segment files, spooling

files, scratch files..)
Unit 2

t t
ND-500 swap file(s) User files
and user files

- ND-100 swapping and ND-500 swapping will run in parallel if
the ND-100 segment file(s) and the ND-500 swap-file(s) are
on different controllers, as shown. Note that they are both

single thread, as indicated by the letter Q. This means
that if more than one job of this type appears, it will

have to queue up.

- I/0 from RT-programs in ND-100 may run completely in
parallel with swapping in 100/500, if the files accessed
are on a third controller, as shown. More ND-100

RT-programs requesting I/0 will have to queue up, due to

the common stack for RT-programs in SINTRAN (I/O0 goes

through RWRTX).

ND-30.049.1 EN

44 Tuning Guide for ND Computer Systems

- ND-100 background programs doing I/0 will run completely in
parallel if on different controllers. So will ND-500
processes (time shared and RT processes).

000

10 TIME SLICING IN SINTRAN III

S S {0 T { f
o e . o o e e S e S S et S S e e S S e o o S o o S T o

10. 1 GENERAL

A resident RT program changes the priorites of processes
according to the CPU time they are using, in order to share
the CPU resources between them. This program is called the

time slicer program, RTSLI.

By default, all ND-100 background programs and all ND-500

processes - including batch - are time sliced. RT programs in
ND-100 cannot be time sliced. RT processes in ND-500 will be
time sliced, unless the SET-PRIORITY command (with a priority
different from 0) has been executed for that process. The

priority of a process, and the CPU time it can consume on
that priority, are defined by the characteristics of the time
slice class to which the process belongs.

There are 8 (0-7) time slice classes in the system, of which
6 (0-5) are used by the system. Classes 6 and 7 are free, and

the use of these can be defined by SINTRAN-SERVICE-PROGRAM

(DEFINE-TIME-SLICE).

A process running in ND-500 has two priorities, one in
ND-500 and one in ND-100. The same algorithm is used for
time slicing in ND-500 as in ND-100, except that ND-500
CPU time is used instead of ND-100 CPU time. The ND-100
priority of an ND-500 job is mainly used when the ND-100
"shadow" process executes monitor calls on behalf of the

ND-500 process.

o ot e ot o ot it ot o e o o ot St ot S b B o S o et o o ot i o o o o o R S S S S S R B B B S o o S o o S o o ot Bt S
e i e e i o Bt . S o e S S o o B o S Bt B o o Bt B o S S S B e . B B S o o W e S e B e S S o B e S e S o S

10.2 ILLUSTRATION

The diagram on the next page illustrates the time slicing
mechanisms. Note that all numbers are in octal formati!

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

\
i

45

Priority duie
ND-500 » Interactive jobs in

message ND-100 and ND-500.

priority + Batch jobs in ND-100

++—(71) and ND-5Q0.

70+ ~———————————— ND-100 shadow process for

+¢— ND-500 interactive jobs

Anti- and ND-500 mode jobs.

jamming + ND-100 shadow process for

priority ND-500 batch jobs.

(67) + ND-500 mode jobs.
— File servers.

604 Escape| 1|60 C

Break-+| 3|55 |

50+ ! 3150¢

24617

Break 4|45 ¢
limit+| 6]44 2 2(44" i

l 6l42"°
422|417 10|41 2

40+ 14140 % T

w||10]36 *°
1435 T

10|34 1
10[33 7%

30t 30[30 ¢ 3030 4 I -
10127 ¢

< \/* 9
[~50 24 5 [-40 24 [—50 24

L I 40(21 _l. L |

204 4|20t 22|20 10 K al20 b
|_ I 1017 74

I--22 16 11

10+

Notlused

0 1 ! ! E ! ! +

Classes O 1 2 3 4 5 6 7

ND-30.049.1 EN

46 Tuning Guide for ND Computer Systems

T T

10.3 ADDITIONAL INFORMATION

The previous diagram illustrates the time slice mechanism

included as standard in the I-version of SINTRAN III

Release Information. Note that:

- The number of time slices on each priority level is given
inside the square in the diagram, the priority itself to
the right of 1it.

- The time slice process (RTSLI) runs twice a second.

- One time slice is by default equal to 240 ms (decimal) of

CPU (ND-100 or ND-500 CPU time).

- A process 1s reset to break priority (55B) only if current

priority is less than 44B (break limit) when a break
condition is met. '

-~ In interactive mode, a process is reset to escape

priority (60B) if an escape is typed, when escape is
enabled.

- Due to the fact that the time slicer program (RTSLI) is

running at an interval of 0.5 seconds, a delay of max 0.5
seconds can occur when typing a break or

escape character, before the priority is raised.

- The number of time slices on each priority level has been
slightly adjusted from the I-version to the J-version.

(J-version values are shown.)

- Classes for ND-500 mode jobs and for file server (TADXX)
were included from the J-version.

- Manipulation of time slice parameters is done via

SINTRAN-SERVICE-PROGRAM (standard from J-version, patch
to I-version).

- Processes always move steadily to a lower priority, except

from break conditions, back arrows (from the lowest
priority), antijamming priority (67B) conditions for
system semaphores in ND-100, and message priority

conditions (71B, between 100/500) for ND-500 jobs. A
system semaphore is defined as a datafield with the

protection ring value (in the Typring location) set to 2
or 3. Examples of messages from the ND-500 to the ND-100

are examine/deposit ND-500 registers, read/write monitor
call parameters. The ND-500 message priority is used only
in the ND-500.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 47

- Antijamming priority and message priority are only used

for very short periods, until the semaphore is released

or the message handled. The priority is then reset to its

original value. These special priority changes are made

"outside" the time slicer, and they are done whenever

needed, and not at the fixed 0.5 second interval.

Antijamming is only used if a queue (two requests or

more) starts to build up at a certain resource, and not

when just one job requests a resource.

- In ND-500, the priority of a process is increased by one

for each monitor call executed by the process, provided

that current priority is in the range lowest to second

lowest for the class of the process. This is done to

distribute resources evenly between heavy jobs.

- A special algorithm has been included to avoid a

situation where the time slicer becomes too "stable"

(phasing). This algorithm checks for the number of

time slices to be consumed at the current priority level.

If this number is greater or equal to 22B, then a random

number of time slices in the interval OB - 17B is added

to the number of slices which can be consumed.

11 SYSTEM PARAMETERS FOR ND-500

Use the ND-500-MONITOR command LIST-SYSTEM-PARAMETERS to

check the current values of these parameters. Starting with

version J of SINTRAN III, the following system parameters

are valid:

NO-OF-PHYSICAL-SEGMENTS
CLEAN-SEGMENT-N-PF
SWAPOUT-SEGMENT-N-PF
DISC-CACHE-BUFFER-SIZE
NUMBER-OF-DISC-CACHE-BUFFERS
MAX-PAGES-FIXED
DEFAULT-EXTRA-PAGES-TO-ND-500

NO-OF-PHYSICAL-SEGMENTS is just the maximum number of

physical segments that can be used at any given time. It must

be increased if the error message NO FREE PHYSICAL SEGMENT

appears.

The parameters CLEAN-SEGMENT-N-PF, SWAPQUT-SEGMENT~-N-PF,

DISC-CACHE-BUFFER-SIZE and NUMBER-OF-DISC-CACHE-BUFFERS have

to do with the internal workings of the ND-500 swapper. See

the manual ND-500 Loader/Monitor for more information.

ND-30.049.1 EN

48 Tuning Guide for ND Computer Systems

MAX-PAGES-FIXED is the maximum number of pages that can be

fixed in the 500 memory at any given time. The default value
is approximately half the size of the available memory for
ND-500 swapping. If some user tries to exceed this limit, the
system will have to start unfixing other pages, if possible.

DEFAULT-EXTRA-PAGES-TO-ND-500 adjusts the allocation of

memory between 100/500 if used, as shown in the chapter "Use

of memory in an ND-500 system". Normally, it is easier to
insert a GIVE-N500-PAGES or TAKE-N500-PAGES in the LOAD-MODE

file to achieve the same result.

000

12 PRIORITIES FOR SYSTEM PROGRANS

The following is a list of normal priority levels for
different tasks in a system. An arrow indicates that the
default priority has been adjusted from the C or E release of
the product (see below).

PRIORITIES (DECIMAL)
SPRTX 44
COSPO 44

BAKXX, TADXX 16-20-24-32-36-45-48
BCHXX 14-16-37
XFTRA 56 — 22 (C-release)

SI1B2A, .. for ND-500 46 —+ 33 (E-release)

SIB2A, .. for ND-100 39 —+ 33 (E-release)

SERV2A, .. 40 —+ 32 (E-release)

FILE-SERVER (TADXX) 23-27-30-33

These priorities should fit most standard systems. But they
may of course be changed to meet special requirements.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 49

13 (SYSTEM) PROGRAMMING

13.1 ND-100

ND-100 background users do not have the same direct transfer

possibilities as for ND-500. Only RT-programs can fix the

necessary segments in memory, and do I/0 to/from these

segments directly (SIBAS is a good example). I/0 from

background programs will always have to go through the file

system, and therefore use the internal buffer (cache) of the

file system. This buffer can be up to 64 pages big, and the

size is decided when SINTRAN is -generated. The size can be

checked by the (octal) value of the symbol 5BUFA found in the

file SYMBOL-2-LIST under user 5YSTEM.

1f the user program requests more than one page (2 KB) in one

I/0-operation, the file system will chop it up into physical

accesses of one page at the time.

i o " - o - = o S o S S S 0 G 0 S e S S S S S S S S e S S S e S ot e S

13.2 ND-500

13.2.1 FORTRAN 1/0 FROM ND-500 PROGRAMS

There are a number of ways to do file I/0 from ND-500

FORTRAN. The "file as segment" method has been mentioned

before. It is available from ND-500 FORTRAN via an OPEN

statement of the following type:

When a file is opened for ordinary I/0, the access

parameters "R" and "W" should never be used. The

compiler will warn against these.

In case of sequential I/0 to contiguous files, there are two

methods that can be used to speed up I/O considerably. Both

are based on facilities in the ND-500-MONITOR for fixing

contiguous areas in physical memory, in order to use DMA on

large blocks. The first method is available when the monitor

calls RFILE and WFILE are used directly in the program. If

ND-30.049.1 EN

50

N
G
O

Tuning Guide for ND Computer Systems

the file has been opened with

OPEN(..... ,ACCESS="5PECIAL',.....)

the pages affected by RFILE or WFILE calls will be fixed

{contiguously) by the ND-500-MONITOR. The fixing takes place
when the first RFILE or WFILE call is encountered, and may

involve a full data segment or only a part of it. Every time
an RFILE or a WFILE to a logical address area occurs, the
monitor fixes that area if it has not done so before. In
this way, a large part of available physical memory may be

fixed on hehalf of a single 500 process. Since only a
certain portion of the 500 memory can be fixed, theres may
not be memory available for fixing, and then the I/0 calls
will be broken down to the customary 2 KB (1 page).

The fixing and unfixing of memory pages are time consuming
task. This should be taken into consideration when using
this method. In other words, one should try to do many DMA

operations to and from the same fixed data area to get a

good effect. Unfixing takes place upon return from an RFILE

or a WFILE call if the monitor finds out that too much
memory has been fixed, i.e. the system parameter
MAX-PAGES-FIXED has been exceeded. If this limit is not
exceeded during execution, unfixing takes place upon exit
from the ND-500-MONITOR.

Example:

PROGRAM FASTIO

ifiiEGER TABLE(8192)

C This array has a size of 32 KB, since an integer on ND-500 1is

C 32 bits.

OPEN(INFILE, ...,ACCESS='SPECIAL'.....)

CALL RFILE(INFILE,O,TABLE(1),IBNO,NWORDS)

The second parameter is set to 0, which means that the process
will be suspended until the transfer is complete. The "nowait"

mode may also he used. The third parameter

points to the memory address of the first data element to be
transferred, the fourth to block number on the file, and the last

parameter specifies the number of words to be transferred.

Another method is availabhle from FORTRAN version I. This

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 51

method is used for ordinary FORTRAN READ and WRITE, and uses

a fixed I/0 buffer inside the FORTRAN I/0O-system. I/0O to a

certain data area in the program will then involve copying to
or from the I/0 buffer. The amount of data transferred in an

actual disk access depends on the specification of
BUFFER_SIZE in the OPEN statement for the file involved
(number of bytes). If no BUFFER_SIZE is specified, the
SINTRAN III page size (2 KB) is used.

Example:

PROGRAM BUFTLTO

INTEGER TABLE1(2048)

INTEGER TABLE2(4096)
INTEGER TABLE3(1024)

OPEN(IFILE1,...,ACCESS='SPECIAL' ,BUFFER_SIZE=8192,.....)
OPEN(IFILE2, ...,ACCESS="'5PECIAL' , BUFFER_STZE=16384,....)
OPEN(IFILE3,...,ACCESS='SPECIAL', BUFFER_SIZE=4096,.....)

READ(IFILE)TABLE1

READ(IFILE)TABLE2

READ(TFILE)TABLE3

When the program is loaded, one must use the LINKAGE-LOADER

command :

L-L: SET-I0-BUFFERS <NUMBER-OF-BUFFERS>

The number of I/0 buffers must correspond to the total

buffer size needed for DMA. For instance, if one needs to

operate simultaneously on the three files in the example,
the number of I0-buffers should be at least (4+8+2) 14

pages.

If the command:

L-L: LINK FORT-LIB

is used, or none at all (automatic linking), then a certain

number of I/O-buffers will automatically be allocated. This
number is system dependent, but is usually set to 30.

The main difference between the "RFILE/WFILE" method and the

"BUFFER_SIZE" method is that the former uses dynamic memory
fixing directly on the data area(s) involved, while the
latter is based on a fixed I/0 buffer of preset size, and

ND-30.049.1 EN

52 Tuning Guide for ND Computer Systems

copying between the buffer and the data areas in connection

with each I/0 operation. The cost of such copying
(approximately 2 ms ND-500 CPU-time per KB in an ND-570) must
be weighed against the possible gains from doing I/0 on large
blocks.

However, one can of course use a similar mechanism for the
"RFILE/WFILE" method, in that all physical I/0 can be routed
through an auxiliary data area which serves as a buffer.
The various alternatives are illustrated with examples in
the following. It is of course assumed throughout that the
involved files are contiguous.

Example:

Method 1:

Use of RFILE or WFILE directly on relevant data areas. This

implies that the monitor will try te fix a lol of memory.

This may he desirahbhle if many I/0 operations from the same

memary areas are involved, and will then secure exlremely

fast I/0. But there may be a good deal of overhead in

connection with fixing and unfixing.

File

Memory

- — — — -~ RFILE — - — -) IARR1

(fixed)

————— RFILE — — - = > IARR2

(fixed)

- - — — —RFILE — — — — > TIARR3

(fixed)

ND-30.049.1 EN

Tuning Guide for ND Computer Systems

Method 2:

Use of RFILE or WFILE on an auxiliary data area only, and

copy to or from appropriate dala areas.

File

| — —RFILE- — — — — 1

- |
L — —RFILE~ — — 4

|
: |
- _RFILE- ¢ | [-

|] e)

ND-30.049.1 EN

Memory

IARR1

IARR2

IARR3

 IARR4

[(fixed)

54

Method 3:

Use of buffered I/0 with FORTRAN READ and

File

Tuning Guide for ND Computer Systems

- — —READ — — — 4

- — —READ — 4

Methods 2 and 3 will fix less memory Chan method 1.

| L

WRTTE.

Memory

IARRI

IARRZ

IARR3

 I/0

buffer

[fixed)

L

o

)

e

—

—
—

—

o
—

)

e

e

—
—
e
—
—

—

e
—
—

—

—

However

these methods will need more address space because auxiliary

data buffers are introduced.

14 TUNING OF SIBAS SYSTEMS

S ———————— T - " $. . S S . P B S e S P B o B S S S S S8 S e S o
ot S e o o S S T T T o . o e S o B B S ot o e o e B i i e e o St S e e S S St e B e 8 S e o e o e S B T

14.1 BOTTLENECKS IN SIBAS SYSTEMS

The first step in a tuning study of a SIBAS system should be

to get information on the loads on the various resources in
the system, and determine which resource is the bottleneck.
The most important resources are CPUs, disks and SIBAS

itself (since SIBAS can only serve one request at a time).

The most common bottleneck in an ND-100 system running SIBAS,
is the CPU. In singlemachine SIBAS 100 systems with much
screen I/0, it is practically certain that the CPU is the

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 55

bottleneck. This is because screen I/O in a transaction

processing system usually is considerably more CPU-consuming

than SIBAS itself.

At the other extreme, we have SIBAS ND-500 back-end systems,

where SIBAS, as a shared logical resource, frequently will

be the bottleneck. If STBAS processing is the only

significant activity in the 500 CPU, the CPU will mostly

stay idle while SIBAS is in I/O wait for a disk transfer.

Example:; .

This example illustrates haw you can determine the

hottleneck in a SIBAS 500 transaclkion processing system.

Suppose that typical loglines from PROCESS5-LOG-ALL read as

follows:

PROCESS LOG ALL 12.39. 3 29 NOVEMBER 1984

0 1 2 3 4 5 6 1 8 9 10 11 OTHERS IDLE SWAP

6 30 O 1 o o 0 1 1 6 o0 o0 3 58 60

6 28 0 0 O 1 o 1 o 0 0o 0 4 60 62

Corresponding output from RT-PROG- LOG coauld be

{no RT program specified]:

CPU SWAP FILES DISK UNIT 1207

45 00 49 00 49

43 00 47 00 47

The database disk [logical unit 1207) appears Lo be the mast

heavily used resaource in the system, wilth about 48%. The

utilization of the ND-100 CPU is ahout 44%, while the

utilization of the ND-500 CPU is ahaut 41%. Thus the system

seems well balanced, and you might think that it could be

even heavier loaded. However, a system like this may well

produce long response times! We have to look at the load on

SIBAS. Assuming that there is nao genuine swapping in the

NN-500, the load on the ND-500 swapping system is enlirely

due tao "file-as-segmenl" swapping generated by SIBAS.

Therefore, the total lnad on SIBAS will be:

CPU load from ND-500 swapper: 6

+ CPU load from SIBAS 500: 2

+ SIBAS I/0 wait (SWAP in the log): 61 %

Total load on STBAS: 9

Thus the diagnosis is entirely clear. SIBAS itself is the

hottleneck.

In the next sections, we discuss various methods that can be

used to enhance the performance of SIBAS systems.

ND-30.049.1 EN

56 Tuning Guide for ND Computer Systems

- o b — - - S S S S o e S S S e e et e S S o B S S P e S S S e . —
. o S =t ot i o = S S . S S S S S S B S S S et S0 e i S o S

14.2 SEVERAL SIBAS SYSTEMS

If the data structure is such that it can be split into two
or more databases (with one SIBAS system for each), one can

reduce or eliminate the limiting effect of SIBAS as a
logical resource (illustrated in the example above). In
short, one SIBAS system can use the CPU while another waits

for a disk transport. To get any significant effect, there

must be a suitable distribution of loads on the different
SIBAS systems.

Actually, many of our SIBAS customers already run their

systems in this manner, not because of performance
considerations, but because splitting the total data

structures in this way is natural.

—— T o i i T S ok S S o S S o o B S T B S T T o o T B o ot s

14.3 SIBAS MACROS

User written SIBAS macros by means of the SEXMC call is a
little used but highly advantageous method of reducing CPU

loads in SIBAS systems. The principle is that a sequence of
logically related S5IBAS calls are collected in a single

SEXMC call. SIBAS will be reserved for the entire SEXMC

call.

B very important benefit from this is that the "back and
forth" traffic between SIBAS and the various applications

will be reduced, and may thus reduce the CPU overhead

substantially. In SIBAS backend systems this may be of

enormous importance, because frequent SIBAS calls may

overload the ND-100 CPU with communication.

Generally, the communication cost of a single SIBAS call is

between 15 and 20 ms in the ND-100 CPU in the case of a
local area network, and between 100 and 150 ms in a public
network like ¥X.21. These costs depend very little on the

message lengths, so by using a SIBAS macro containing 5

SIBAS calls, the communication cost will be reduced to about
one fifth. In comparison, the CPU cost for the processing of
a single SIBAS call varies from an average of about 20 ms on

an ND-100/CX to about 7 ms on an ND-570/CX.

Another important effect is the use of SIBAS work area. Each
SIBAS call needs a certain data context, which SIBAS must

set up when processing the call. If the application contains
a sequence of logically connected calls that work on the

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 57

same data, it will of course be an advantage if SIBAS can

retain the data for the whole sequence without being

disturbed. For ND-100 SIBAS, this will even save disk

accesses, because data that has been thrown out of SIBAS

work area at some time, must be retrieved from the disk if

needed again. However, SIBAS macros should not be made too

long, in order that short transactions are not unduly

delayed.

e e o o o - o e o o o o o A O o = o o P S G S N O S A M et S S B S S e e P BT ST e S e e e

T T T L L L LI o o D L L o L L L e m e oo o o e e o o o o o o o o (o o o o o o i S e

14.4 DATABASE STRUCTURE

The time needed for a SIBAS call depends heavily on the

database structure. In general, many indexes and sets may

cause a very high number of disk accesses. A STORE call to a

realm with N indexes and M doubly linked sets may generally

cause

2 4 4xN + 4xM

disk accesses: There will be one access to read in the page

on which the record will be stored, and one to write it

back. 3 index levels may be read and the lowest written

back. The successor and predecessor in each set must be read

to have their set pointers updated and written back. 3o

there is a clear trade-off between functionality and number

of access ways on one hand and performance on the other. If

most of the on-line activity is read only, then such

complexity may not be of great importance, but if there is

heavy updating, it may have a disastrous effect on

performance.

e e o B . B S o i S o o P o S S P 08 SO0 D B P S S S S S S S S S S P i

14.5 MEMORY CONSIDERATIONS

The "file-as-segment" concept introduces the possibility of

adding physical memory to reduce disk I/O in ND-500 5IBAS

systems (there is no such effect on ND-100 SIBAS). In SIBAS

D, file-as-segment is automatically used for all database

files that do not exceed the maximum segment size of 132 MB.

Big files like this will be opened for ordinary file T/0.

From the E version of SIBAS it is optional whether a database

file should be opened as a segment or as an ordinary file.

Generally, data frequently accessed should stay in memory as

much as the swapping system will allow, whereas big files

with low access rates for each individiual record should not

be opened as segments. The reason for this is that the

ND-30.049.1 EN

58 Tuning Guide for ND Computer Systems

file-as-segment option will give that particular segment a

certain amount of space in memory, while it is unlikely that
the data on it will he accessed again within a short period
of time. Therefore, one might as well free this memory space
by using ordinary file access.

o i e e i o o S o o ot o o o S o S o o o B S S o B o S o S o ot S o o i et o o o o, . S

14.6 DISTRIBUTION OF DATABASE ON SINTRAN FILES

In SIBAS 100 systems it may be an advantage to keep a data

realm and its index tables on the same SINTRAN file, since
this may reduce both seek times and the number of disk
accesses (reduced number of index block accesses). For SIBAS

500, other factors must be considered. Due to

"file-as-segment", one should try to assess which data will

be most frequently accessed, relatively to the memory size.

The distribution of data and index tables on SINTRAN files
should reflect the frequency of use, so that often used and

rarely used data should preferably be stored on different

SINTRAN files.

- S S S S S S0 0 oy)

14.7 SIBAS LOGGING

SIBAS uses two different types of logging: Routine log
(often called "call-log" or "transaction log") and BIM log

(Before-Image-Log). The routine log registers all updates

that have taken place after a certain "initial" state, which
may be defined as the state of the database immediately
after installation of a correct backup or after a SIBAS
checkpoint.

The BIM-log collects the originals of the database pages that
are updated after a checkpoint. If a "crash" occurs, the

BIM-log can bhe used for a "Roll-back" to the "initial" state
(the state at the checkpoint), and then the routine-log is
used to "re-process" the database. To minimize logging,
answer "N" to the five first questions in NEW RUNFLAG? and
"Y" to the last.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 59

15 MISCELLANEOUS

15.1 SCRATCH FILES

The default size of the scratch file (when the user logs out)

has been increased from 32 pages in the I-version of SINTRAN

to 64 pages in the J-version. This is very useful if

relatively large files are being worked on, as no (or few)

new pages has to be allocated for the scratch file during the

terminal session.

15.2 USE OF FILES IN GENERAL

Contiguous files should be used whenever possible, as no

index pages have to be read/written for these files. Go

through the most commonly used files in the system (check the

number of times they have been opened), and see if they can

be copied to contiguous files.

Allocating new pages to an expanding indexed filed is .a very

heavy file system operation; it takes around 4 - 5 times as

much resources as using existing pages on a file.

15.3 BUFFERED TERMINAL INTERFACE

Let us look at the performance implications of buffered

terminal interface boards (ND 273 and ND 274):

- It requires the J-version or later of SINTRAN IIT.

- Buffered and nonbuffered interfaces can be mixed in a

system. SINTRAN IIT will find out which is which, and use

the optimum driver strategies.

- The interface buffers up to 16 characters on input and 64

on output per line.

- The ND 274 variant can run at line speeds of up to 19200

baud, ND 273 up to 9600 haud. :

ND-30.049.1 EN

60 Tuning Guide for ND Computer Systems

The performance improvements are realized by the fact that

the ND-100 CPU-cost for driving characters to a terminal
(output driver) is reduced. The input driver cost stays the
same as before.

15.3.1 ND-100

If we consider an ND-100/CX system (ar standard ND-100) used

mainly for screen-oriented tasks (NOTIS products, PED, FOCUS,

NSHS, ...), the overall CPU improvement by using buffered

interface cards will always be in the 5-15% range, and
generally around 10%. For less "interactive" systems, the

overall CPU improvement will be in the 0-5% area.

- T = M 8 S . S S . S e S S S P

15.3.2 ND-500

For ND-500 the picture is more complex, but the improvement
potential is much larger. The greatest improvement will be
seen in a "screen-oriented" 500-system where the ND-100 CPU
is the bottleneck. This is the case for many ND-500 systems.

ND-30.049.1 EN

Tuning Guide for ND Computer Systems 61

% Overall improvement
in system capacity

50

40 -

30

20

10 -
ND-100 ND-530 ND-550 ND-560 ND-570

This diagram illustrates approximately the overall capacity

improvements that can be expected in systems of the screen-

oriented type (frequent screen output).

For ND-500 systems that are CPU-bound (ND-100 CPU) or disk

bound (use of disk is higher than use of ND-100 CPU), the

effects will be marginal.

ND-30.049.1 EN

W S SEND US YOUR COMMENTS!!! 263 A AN N

* Are you frustrated because of unclear information in

this manual? Do you have trouble finding things?
Why don't you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you
* find errors
* cannot understand information
* cannot find information
* find needless information

Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

Manual name: SINTRAN Il Tuning Guide Manual number: ND—30.049.1 EN

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:

Company: Position:

Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S) —_—

documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Answered by, Date

Norsk Data A.S

Documentation Department
P.0. Box 25, Bogerud
0621 Oslo8, Norway

Systems that put people first

NORSK DATA A.S OLAF HELSETS VEI 5 P.O. BOX 25 BOGERUD 0621 OSLO 6 NORWAY
TEL.: 02 - 29 54 00 - TELEX: 18284 NDN

