

| =t 2 = e =

| NORD-10/S

Reference Manual

NORSK DATA AS

@

SET &-d¢ 000 0000000
0000 000 00000000
00000 000 000000000
000000000 000 4 4
0000000000 000 dd
000 00000 000000000
000 0000 00000000
I TIRrrr

S
M :

NORD-10/S

Reference Manual

REVISION RECORD

evision . Notes

04/77 Original Printi

06/77 Revision A

The following pages have been revised: 2—7, , 3—2, 3-23, 3—31, 3—38,

3-46, 3-56, 3—57, 3—60, 3—63, 3—65, 4—1, 42, 4—3, 51, 5-2, 5-3, 513

6—2, 6—5, 66, 6—7, 6—8,6—10, 7-3, 8—7, 8—10 —2,B—

NORD-10/S — Reference Manual

Publication No. ND-06.008.01

NORSK DATA A.S.

 Lorenveien 57, Postboks 163 Qkern, Oslo 5, Norway

TABLE OF CONTENTS

+ + +

Section:

1 INTRODUCTION

1.1 General Characteristics

1.2 Peripheral Equipment

1.3 Software

2 SYSTEM ARCHITECTURE

2.1 Introduction

2.2 Central Processor

2.2.1 Register Block

2.2.2 Indicators

2.3 Memory Configurations

24 Remote Operation

2.5 Instruction and Data Formats

2.56.1 Instruction Formats

2.5.2 Data Formats

2.6.2.1 Single Bit

2.5.2.2 8-Bit Byte

2.5.2.3 16-Bit Word

2.5.2.4 32-Bit Double Word

2.5.2.56 48-Bit Floating Point Word

2.5.2.6 32-Bit Floating Point Word

2.6 Interrupt System

2.7 Memory Management System

3 INSTRUCTION REPERTOIRE

3.1 Memory Reference Instructions

3.1.1 Addressing Structure

3.1.2 Store Instructions

3.1.3 Load Instructions

3.1.4 Arithmetical and Logical Instructions

3.1.5 Sequencing Instructions

3.1.6 Byte Instructions

3.1.7 Register Block Instructions

ND-06.008.01

3—4

34

3-13

3-15

3-16

3-19

3-21

3-22

Section:

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.2

3.2.3

3.2.3.1

3.2.3.2

3.2.33

3.24

3.2.6

3.2.6

3.2.6.1

3.2.6.2

3.2.6.3

3.2.7

3.2.7.1

3.2.7.2

3.3

3.3.1
3.3.2

3.4

3.4.1

3.4.2

3.4.3

34.4

3.5

4.1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

Operate Instructions

Floating Point Conversion Instructions

Standard 48-Bit Floating Point Conversion

Optional 32-Bit Floating Point Conversion

Shift Instructions

Register Operations

ROP Register Operation Instructions

EXTended Register Operation Instructions

Inter Level Register Instructions

Skip Instructions

Argument Instructions

Bit Operation Instructions

Bit Skip Instructions

Bit Setting Instructions

One Bit Accumulator Instructions

Accumulator Transfer Instructions

Transfer to A Register

Transfer from A Register

Input/Output Control Instructions

Recommended Device Addresses

Format of Status and Control Word

System Control Instructions

Interrupt Control Instructions

Memory Management Control Instructions

Monitor Call Instruction

Wait or Give Up Priority

Customer Specified Instructions

THE INPUT/OUTPUT SYSTEM

Input/Output Hardware

General Description

Input/Output Bus Architecture

Vectored Interrupt ldentification

Input/Output Programming

Programming Examples

Input/Output interrupt Programming

Design of an Input/Output Handler Routine

ND-06.008.01

Page:

3-24

3-24

3—24

3—-26

3-26

3-29

3-31

3-37

3-39

3-41

3—44

3-46

3-47

3-47

3-48

3—49

3-51

3-51

3-58

3-58

3-61

3-62

3-63

4>
.1

>4
>4

>

W
w
W
w
=
 =

-
b
-
b
-
f
-
b

a
o
g
b
d
b
h

Section:

5

5.1
5.1.1

5.2

5.3

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

5.4.6

5.4.7

5.4.8

5.4.9

5.4.10

5.5

5.5.1

5.6.2

5.6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3

6.4
6.5
6.5.1
6.5.2

6.6

7.1

7.2

7.3

7.4

7.5

THE INTERRUPT SYSTEM

Control of Program Levels

Program Level Activation

Initialization of Interrupt System

Interrupt Program Organization

Internal Hardware Status Interrupts

Monitor Call Interrupt
Protect Violation Interrupt

Page Fault Interrupt

Illegal Instruction Interrupt

Error Indicator Interrupt

Privileged Instruction Interrupt

10X Error Interrupt

Memory Parity Error Interrupt

Memory Out of Range Interrupt

Power Fail Interrupt

Memory Control and Status

Error Detection

Error Correction Control

Vectored Interrupts

MEMORY MANAGEMENT

Memory Management Architecture

Virtual to Physical Address Mapping

Control of Memory Management System

Control of Paging Control Registers

Control of Page Index Tables
Turning the Memory Management System On or Off

Memory Protection System

Ring Protection System

Privileged Instructions

Paging Status Register

Timing

OPERATOR'S PANEL

Panel Elements

18-Bit Switch Register

18-Bit Light Emitting Diode Register

16 Selector Push-buttons and 16 Associated Light

Emitting Diodes

Display Level Select

ND-06.008.01

Section:

7.6

7.6.1

7.6.2

7.6.3

7.6.4

7.6.5

7.6.6

7.6.7

7.6.8

7.6.9

7.6.10

7.7

8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.56
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10

8.2
8.2.1
8.2.2
8.2.3
8.24
8.2.5

9.1

9.2

9.2.1

9.2.2

9.23

9.24

9.2.5

Vi

Control Buttons

Master Clear

Restart

Load

Decode Address

Set Address

Deposit

Enter Register

Single Instruction

Continue

Stop

Mode Indicators

OPERATOR’'S COMMUNICATION

Functions

Start a Program

Memory Examine

Memory Deposit

Register Examine

Register Deposit

Internal Register Examine

Internal Register Deposit

Current Location Counter

Break Function

Bank Number

Bootstrap Loaders

Octal Format Load

Binary Format Load

Mass Storage Load

Automatic Load Descriptor

Examples

CACHE MEMORY

Cache Memory Architecture

Cache Memory Access

Definitions

Cache Addressing

Read Access

Write Access

Cache Inhibit Area

ND-06.008.01

g %
1
]

~

©
W
O
O
O
O
0
0
0

0
0
N
N

~J
 |

[
—_

o

oo L
|
N

S
AN

 A
N

|
N
N
N
o

O
O

o
o
o
o
o
o
o
o
o
o
?
o
o
o
o
o
o
o
o
o
o
o

Section:

9.3
9.3.1
9.3.2
9.3.3

9.4

vii

Control of the Cache Memory

Setting of Cache Inhibit Limits

Cache Initialization

Cache Status Register

Cache Timing

Appendix:

A

B

Figure:

2.1

2.2

23

2.4

2.5

2.6

2.7

2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1

6.1

NORD-10 Mnemonics and Their Octal Values

NORD-10/S Instruction Code

Medium Sized NORD-10/S Computer System

NORD-10/S CPU Bus Structure

CPU Block Diagram
NORD-10/S Two-processor System

NORD-10/S Four-processor System

Remote LOAD from Master CPU
Example of Remote LOAD via Telephone Line and

HCLC Protocol

Automated TEST System

NORD-10/S Bit Numbering Convention

Program Level Control

Schematic lllustration of P-relative Addressing

Schematic lilustration of Indirect P-relative Addressing

Schematic lllustration of B-relative Addressing

Schematic lllustration of Indirect B-relative Addressing

lllustration of the Effect of the Stack Code
Schematic lllustration of X-re lative Addressing

Schematic Illustration of B-relative Indexed Addressing

Schematic lllustration of Indirect P-relative Indexed

Addressing

Schematic lllustration of Indirect B-relative indexed

Addressing

NORD-10/S Bus System

Virtual to Physical Address Mapping

ND-06.008.01

Page:

9-6

—6

-7 0

©

9-8

Figure:

8.1

9.1

9.2

Table:

3.1

3.2

3.3

3.4
3.6

3.6

5.1

5.2

6.1

8.1

viii

Binary Load Format

Cache Memory Organization

Cache Limits

Addressing Modes

The ROP Instruction

Survey of Registers Controlled by Accumulator

Transfer Instructions

Accumulator Transfer Instructions

Standard Device Addresses for Norsk Data Produced

Equipment
Standard 10X addresses and IDENT codes

Internal Hardware Status Interrupt

Correction Codes

Use of Alternate Page Table

ALD Setting

ND-06.008.01

1.1

INTRODUCTION

GENERAL CHARACTERISTICS

The NORD-10/S computer system is a medium scale general purpose

computer system which, because of the modular design, is actually a

family of computer systems.

A basic instruction set is common to all NORD-10/S machines, and

this set is highly optimized to produce effective code; hardware floating

point arithmetic is standard as are the instructions to manipulate

individual bits at high speed.

The register structure and addressing scheme facilitate the processing

of structured data with high efficiency.

The NORD-10/S is micro-programmed, and all NORD-10/S instructions
are executed by means of a micro-program located in a very fast (65 ns)

read-only memory. Micro-programming gives the NORD-10/S computer

flexibility and a very large growth potential. New instructions may be

added to the NORD-10/S and instructions for special applications may

be optimized for a particular use.

The NORD-10/S provides up to 1024 customer-specified instructions.

These instructions are micro-programmed in a programmable read-only

memory, which is added onto the standard read-only memory.

Micro-programming in NORD-10/S is also used to control the operator’s

panel and to perform operator communication between the operator

and the console Teletype or display.

Bootstrap loaders, both for character oriented devices and mass storage

devices are also controlled by a micro-program.

The NORD-10/S is designed to be equipped with a wide range of main

memories. Memory size may vary from 1K to 256K 16-bit words, and

both read-only memories and read/write memories may be used. The

speed range is from a high-speed bipolar memory of 100 ns cycle time

to core memories, which require 900 ns cycle time.

Standard memory type is MOS semiconductor memory with a cycle

time of 400 ns. Parity checking with a parity bit for each byte is

standard, while memory error correction with 21 bit memory modules

is optional.

As an option, the NORD-10/S CPU may be equipped with 1K words

of bipolar cache memory, which significantly increases the CPU

performance.

ND-06.008.01

The speed of the NORD-10/S standard processor is 260 ns per micro-

instruction, and the NORD-10/S CPU will make efficient use of main

memories with a cycle time of 300 ns.

The input/output and interrupt systems of NORD-10/S are designed

for ease of use and very high speed. NORD-10/S has 16 program levels

each with its own set of registers, making possible a complete context

switching from one program level to another in only 1 us. In addition,

2048 priority vectored interrupts are standard, as well as 10 priority

internal hardware status interrupts.

As an option, the NORD-10/S may have a Memory Management System

which includes a Paging System which performs program relocation,

dynamic memory allocation and Ring Protection and Memory Protection

Systems.

ND-06.008.01

1.2 PERIPHERAL EQUIPMENT

The range of standard peripherals includes paper tape reader and punch,

punched card reader and punch, Teletypes, alphanumeric and graphic

displays, sémigraphic colour terminals, line printers, matrix plotters/printers,

magnetic tape stations, fixed head drums, disk systems with capacities from

5 to 2000 million bytes, floppy disks, modem controllers including

HDLC/SDLC controllers and CAMAC crate controllers.

ND-06.008.01

1.3 SOFTWARE

The standard operating system for NORD-10/S computers is SINTRAN

111, which has capabilities for concurrent real-time, batch and time-sharing

processes.

— The version of SINTRAN |11 for machines without mass storage

devices is intended for real-time applications in process control

and data communication.

— The mass storage version of SINTRAN 111 includes a general file

system with permanent files, scratch files and peripheral device

files.

— Subsystems: compilers, text editors, assembler, remote job entry

emulators, etc.

For further information, please contact Norsk Data A.S.

ND-06.008.01

2.1

SYSTEM ARCHITECTURE

INTRODUCTION

Figure 2.1 shows a typical medium sized NORD-10/S single processor

system.

Operators

Panel

Local

Memory Bus Memory

Modules

(96K words)

NORD-10/S

CPU

Main Input/
Output Bus

Bus Local Input/Output Bus

Receiver t

4 Video
Display
Units

Floppy

Disk
v

To additional

Bus Receivers

HDLC

Modem

Figure 2.1: Medium Sized NORD-10/S Computer System

In this example, the size of the main memory is 96K 16-bit words, based

on 32K MOS semiconductor memory. Details concerning memory

flexibility and options are presented in Section 2.3.

ND-06.008.01

66

Mbyte

Disk

Parts of the Input/Output System are shown separated from the rest of

the Bus Receiver which efficiently combines flexibility, simplicity and

reliability. The Bus Receiver provides the necessary fan out and reduces

complexity of device control units. Reliability is increased because errors,

in most cases, have only limited consequences on the Local Input/Output

Bus.

An important factor in designing the completely modular Input/Output

System with all device interfaces made to a common standard, has been

the frequent field installations of expanded systems typical to Norsk

Data’s customers. Interface modules plug directly into prewired positions.

Substantial effort was made to prepare the NORD-10/S for multi-CPU

applications and remotely operated installations.

ND-06.008.01

2.2 CENTRAL PROCESSOR

The connection of main modules in the CPU is through the common

data bus, 1B, and common address bus, MR, as shown in Figure 2.2.

For simplicity, control lines and inter-register buses are omitted in this

figure.

When the optional Memory Management System is not included, the

R-bus is connected directly to the MR-bus.

A more detailed diagram of the control section and register block is

given in Figure 2.3.

The register block contains 8 general registers for each program level

and two scratch registers for each level to be used by the micro-processor.

The arithmetic unit is normally operated in a 16-bit format. The full

32-bit format is used for floating point and double precision operations.

The arithmetic unit contains the necessary buffer registers to do the

complete inner loop in the floating point micro-programs using only

260 ns. :

Some instructions in the NORD-10/S instruction set are general

two-address inter-register instructions. Due to the generality of these

instructions, 2048 inter-register instructions (see Section 3.2.3) are con-

verted directly to the three-address format of the micro-instruction and

fed directly into the micro-instruction register, The remaining bits, i.e.,

cycle control, etc. are read from the read-only memory.

ND-06.008.01

a1manag
sng

Nd2
S/0L-AHON

2'g
3inbig

VI
aw

L
I
o
w
a
y

T1e207T

T
2
u
e
q
g

s
1
0
3
e
x
2
d
p

\

T
o
a
l
u
o
)

+

S
u
t
w
I
y

P
un

I
s
A
T
e
O
U
B
I
]

s
n
g

A
I
O
W
I
R

U
T
I
B
K

s
n
g

s
n
g
-
1
d
9
d

cz
€

i

)
¥

S
I
9
A
T
D
O
U
B
R
I
]

L
a
o
w
a
j
y

1
1
0
d
1
3
1
n
R

2
T
3
1
9
W
Y
I
T
I
Y

m
o
3
s
A
g

+
Yo0T14g

J
u
s
w
a
8
r
U
B
Y

1931s1392yg
L
i
o
w
a
y

1
1
0
d
T
I
1

[N
W
O
o
I
f
/
O
L

P
a1

w
o
3
s
L
g

3
d
n
a
x
s
a
u
g

ND-06.008.01

B
u
t
w
t
?
l

1
0
1
3
U
0
D

2
1
8
0
7

S
u
t
w
T

*
8
u
r
8
e
d

o3
S
s
o
i
1
p
p
e

T
e
n
I
a
T
A

oTI°UWYITAY
S
S
9
I
P
P
Y

wng

=4

A
2
0
1
9

213
[
F
—
—

1
9
3
1
8
7
1
8
9
y

-
2
W
Y
3
I
T
I
H

n
i
v

|

]

J
o
a
3
z
u
o
?

9
1
8
0
7

a1

AMHEM@mME

 d I K

3
T
q
z
e

A1
o
Y

_

O
d
N

1
0
3
1
B
I
9
U
9
Y
H

j
u
t
o
d

L
1
3
u
j
g

Figure 2.3: CPU Block Diagram

ND-06.008.01

2.2.1 Register Block

There are 16 register sets in NORD-10/S, one for each of 16 program

levels. Each of the register sets consists of 8 general programmable

registers. There is a total of 128 general registers, referred to as the

register block.

The 8 general registers are:

Status register:

A register:

D register:

T register:

L register:

X register:

B register:

P register:

This register holds the indicators described in

Section 2.2.2.

This is the main register for arithmetic and logical

operations directly with operands in memory.

This register is also used for input/output com-

munication.

This register is an extension of the A register

in double precision or floating point operations.

It may be connected to the A register during

double length shifts.

Temporary register. In floating point instruc-

tions it is used to hold the exponent part.

Link register. The return address after a sub-

routine jump is contained in this register.

Index register. In connection with indirect

addressing it causes post-indexing.

Base register or second index register. In con-

nection with indirect addressing, it causes

pre-indexing.

Program counter, address of current instruction.

This register is controlled automatically in the

normal sequencing or branching mode. But it

is also fully program controlled and its contents

may be transferred to or from other registers.

Two instructions, ROP and SKP, may specify a register whose content

is always zero.

ND-06.008.01

2.2.2 Indicators

Eight indicators are accessible by program. These 8 indicators are:

c

Q

TG

PTM

Carry indicator. The carry indicator is dynamic.

Dynamic overflow indicator.

Static overflow indicator. This indicator remains set after

an overflow condition until it is reset by program.

Error indicator. This indicator is static and remains set until

it is reset by program. The Z indicator may be internally

connected to an interrupt level such that an error message

routine may be triggered.

One bit accumulator. This indicator is used by the BOP bit

operations, instructions operating on one-bit data.

Rounding indicator for floating point operations.

Multi-shift link indicator. This indicator is used as temporary

storage for discarded bits in shift instructions in order to ease

the shifting of multiple precision words.

Page table modus. Enables use of the alternate page table.

These 8 indicators are fully program controlled either by means of the

BOP instructions or by the TRA or TRR instructions where all indicators

may be transferred to and from the A register.

ND-06.008.01
Revision A

2.3

2-8

MEMORY CONFIGURA TIONS

The NORD-10/S CPU main frame has eight general slots for memory

modules, and two slots reserved for optional multiport memory interface

buffers.

The following standard memory modules are available at printing time

for direct connection into each of the eight slots:

8K by 18 bits, 300 ns access time

8K by 21 bits, 300 ns access time

32K by18 bits, 350 ns access time

32K by 21-bits, 350 ns access time

32K by 18 bits, 300 ns access time

32K by 21 bits, 300 ns access time

Memory modules with 18 bits word length provide one parity bit per

byte, while 21 bit modules are used for memory error correction.

Maximum memory size addressable from one CPU is 256K words.

The NORD-10/S multi-processor system is shown in Figure 2.4.

Common main memory is connected via the multiport memory interface

unit, which is capable of handling requests from both CPU’s in parallel if

they do not address the same 64K module. The “local’’ 84K modules

shown in the figure may, of course, be omitted; they are shown to demon-

strate the flexibility of the system.

The connection of Input/Output devices and mass storage unitsin a

multi-processor system is described in Chapter 4,

The total capacity of the dual memory interface is four independent

channels as shown in Figure 2.5.

The memory access priority for the CPU’s is normally allocated in a

different order for each 64K unit.

By omitting three of the CPU’s in Figure 2.5, we obtain a one-processor

system with a maximum memory configuration of 256K.

ND-06.008.01

Multiport
Mémorfi Ports

Nord=~10Q/$S Nord-10/S
CPU CPU

Figure 2.4: NORD-10/S Two-processor System

ND-06.008.01

2-10

Nord-10/S Nord-10/S

CPU — — CPU

Nord-10/S ’ ‘ Nord-10/S

CPU CPU
 Multiport

1

Memory Ports
\ \

. b
Sl g y

-~

Memory
Bank

(64K) M

Figure 2.5: NORD-10/S Four-processor System

ND-06.008.01

2.4 REMOTE OPERATION

Several facilities for the remote operation of the NORD-10/S are available.

Remote operation here means one NORD-10/S being controlled by

another NORD-10/S. In some cases, the two machines may be in the

same room, or they are connected over telephone lines using low or high

speed modem.

The simplest form of remote operation is shown in Figure 2.6.

MASTER SLAVE

Nord-10/S

CPU

Nord-10/S

CPU

1 Bit
Binary
Qutput

- Data Data

Link Link
Figure 2.6: Remote LOAD from Master CPU

In this case, the automatic LOAD function built into the micro-

programmed control unit of all NORD-10/S CPU’s is used to start reading

data via the data link. The LOAD function is described in Section 8.2.

ND-06.008.01

MASTER SLAVE

 Remote

Load

Module

Nord-10

CPU

Nord-10 s §
CPU

 HDLC

Contr.

 Telephone :

Line

Figure 2.7: Example of Remote LOAD via Telephone Line and HDLC

Protocol

In the example shown in Figure 2.7, the SLAVE computer is equipped

with a Remote Load Module, which decodes a special ‘“Remote Load

Trigger” frame sent by the MASTER Computer, thus, activating a load

micro-program in the slave. A remote load operation may be initiated

both by the MASTER computer and by an operator at the SLAVE
computer site.

A closer control of the slave computer is obtained by using the test

connector developed for automatic debugging of CPU and micro-

processor. This system is shown in Figure 2.8.

{n the automated TEST system, the operator’s panel connections of

the slave computer are replaced by a TEST connector, which is con-

trolled by a special interface in the master computer. The master CPU

thereby obtains direct control of buses and micro-processor in the slave

computer. This may be used for automatic checkout, diagnostics, and
microprogram debugging.

ND-06.008.01

2-13

MASTER SLAVE

Nord-10/8

CPU

Nord-10/S

CPU

Test

driver

Figure 2.8: Automated TEST System

ND-06.008.01

2.5

25.1

25.2

2-14

INSTRUCTION AND DATA FORMATS

The NORD-10/S has a 16-bit word format. The bits are conventionally

numbered 0 to 15 with the most significant bit numbered 15 and the

least significant bit numbered O.

15 0

16-bit NORD-10/S word

Figure 2.9: NORD-10/S Bit Numbering Convention

The content of a NORD-10/S word is conventionally represented by a

6-digit octal number. Thus, the content of a word with all 16 bits set

to zero is represented as 000000, while the contents of a word with all

bits set to one is represented as 177777.

Instruction Formats

All NORD-10/S instructions are contained in one single 16-bit word.

The instruction set is divided into the following five subclasses:

— Memory Reference Instructions

— Operate Instructions

— Input/Output Control Instructions

— System Control Instructions

— Customer Specified Instructions

In Chapter 3, each instruction is given a short description. This includes

a diagram showing the instruction format.

Data Formats

The standard NORD-10/S instruction set provides instructions for the

following six different data formats:

Single bit

8-bit byte

16-bit word

32-bit double word

48-bit floating point word

32-bit floating point word (optional, instead of 48-bit floating point) o
L
~

ND-06.008.01

25.2.1

25.2.2

25.2.3

2—-15

Single Bit

A single bit data word is typically used for a logical variable; the bit

instructions (see Section 3.2.6) are used for manipulation of single bit

variables. The bit instructions specify operations on any bit in any of

the general registers, as well as the accumulator indicator K.

8-Bit Byte

Two instructions are available in the standard NORD-10/S instruction

set for byte manipulations, i.e., load byte and store byte (see Section

3.1.6).

A byte consists of 8 bits, giving a range of 0 < X < 2b5.

The byte addressing (see Section 3.1.6) is such that when two bytes

are packed into a word, the even byte address points to the left half

of the word.

15 8 7

Even address 0Odd address

n n+1

Byte Format

16-Bit Word

The most common data word format is the 16-bit word contained in

one memory location or one register.

Representation of negative numbers is in 2's complement. The skip

instruction (see Section 3.2.4) also contains instructions to treat num-

bers as unsigned (magnitude) numbers.

Range

—32768 < X < 32767

or

0< X <65535

ND-06.008.01

25.24

25.25

2—-16

32-Bit Double Word

Two instructions are available to handle double word formats, load

double and store double (see Sections 3.1.2 and 3.1.3).

A double word is a 32-bit number which occupies two consecutive

locations (n, n + 1) in memory, and where negative numbers are in

2’s complement.

31 A 16 15 D 0

Most significant Least significant

n n+1

Double Word Format

A double word is always referred to by the address of its most significant

part. Normally, a double word is transferred to the registers so that

the most significant part is contained in the A register and the least

significant in the D register. Range as integers:

—2 147 483 648<X<2 147 483 647

48-Bit Floating Point Word

The standard NORD-10/S instruction set provides full floating point hard-

ware arithmetic instructions, load floating, store floating, add, subtract,

multiply, and divide floating, convert floating to integer, and convert

integer to floating.

The data format of floating point words is of 32 bits mantissa magnitude,

one bit for sign and 15 bits for a biased exponent.

The mantissa is always normalized, 0.5 < mantissa < 1. The exponent

base is 2, the exponent is biased with 214, A standarized floating zero

contains zero in all 48 bits.

In main memory, one floating point data word occupies three 16-bit core

locations, which are addressed by the address of the exponent part.

n exponent and sign

n+1 mostsignificant part of mantissa

n+2 least significant part of mantissa

ND-06.008.01

2526

2-17

In CPU registers, bits 0-15 of the mantissa are in the D register, bits 16-31

in the A register and bits 32-47, exponent and sign, in the T register.

These three registers together are defined as the floating accumulator.

47 T 32 31 A 16 15 D 0

+| Exponent Man- | tissa

n n+1 n+2

Floating Word Format

The accuracy is 32 bits or approximately 10 decimal digits; any integer

up to 2 2 has an exact floating point representation.

The range is

2~ 16384 05 < x < 216383 . 1orx=0

or

10—4920 y « 104920

Examples (octal format):

T A D

0: 0 0 0
+1: 040001 100000 0
—1: 140001 100000 0

32-bit Floating Point Word

As an option, the NORD-10/S may be equipped with microprogram for

32-bit floating point format instead of the standard 48-bit format des-

cribed in Section 2.5.2.56. The instructions affected are:

FAD Floating Point Add

FSB Floating Point Subtract

FMU Floating Point Multiply

FDV Floating Point Divide

NLZ Convert Integer to Floating Point

DNZ Convert Floating Point to Integer

The data format of 32-bit floating point words is of 23 bits mantissa

magnitude, one bit for sign and 9 bits for a biased exponent. These

33 bits are packed in two 16-bit words by omitting the most significant

bit of the mantissa, which is always a one in non-zero numbers.

ND-06.008.01

2-18

The mantissa is always normalized, 0.5 < mantissa < 1. The exponent

base is 2, the exponent is biased with 28.

A standarized floating zero contains zero in all 32 bits.

In main memory, one 32-bit floating point data word occupies two

16-bit memory locations, which are addressed by the address of the

exponent part.

n exponent, sign and mantissa bits 16-21

n+1 mantissa bits 0-15

In CPU registers, bits 0-15 of the mantissa are in the D register, bits

16-21 and exponent and sign are in the A register. These two registers

together are defined as the 32-bit floating accumulator. The T register

is not affected by 32-bit Floating Point operations.

31 30 A 2221 16 15 D 0

+ | Exponent Man-| tissa

n n+1

32-bit Floating Point Word Format

The accuracy is 23 bits or appoximately 7 decimal digits. Any integer up

to 223 has an exact floating point representation.

The range is

27256 . 05<x <2255 . 10rx=0

or

1076 < X < 1076

Examples (octal format):

A D

0: 0 0
+1.0: 040100 0
—-1.0: 140100 0
+3.0: 040240 0

ND-06.008.01

2.6 INTERRUPT SYSTEM

The NORD-10/S Interrupt System allows priority interrupt handling at

extremely high speed. The interrupt system consists of 16 program levels

in hardware, each program level with its own complete set of general

registers and status indicators. The program levels are numbered from 0

to 15 with increasing priority; program level 15 has the highest priority,

program level O has the lowest. The context switching from one program

level to another is completely automatic and requires only 1 us.

All program levels can be activated by program. In addition, program

levels 10-13 and 15 can be activated by external devices and program

level 14 by CPU internal hardware status interrupts.

As many as 2048 vectored interrupts may be connected.

By using these program levels, large programming systems may be greatly

simplified. Independent tasks may be organized at different program

levels with all priority decisions determined by hardware and with almost

no overhead because of the rapid context switching.

The program level to run is controlled from the two 16-bit registers:

PIE Priority Interrupt Enable

PiD Priority Interrupt Detect

Each program level is controlled by the corresponding bits in these

registers. The PIE register is program controlled and the PID register is

controlled by both program and vectored interrupts.

At any time, the highest program level, which has its corresponding bits

set in both PIE and PID is running. This level is called PL.

A change from a lower to a higher program level is caused by an interrupt

request. A change from a higher program level to a lower takes place

when the program on the higher program level gives up its priority.

ND-06.008.01

1
2
4
9
7

m
e
a
8
o
x
d

2
3
u
e
y
n

2—-20

u
O
T
3
0
9
7
T
9
S

1
2
4
3
1

&

J

m
e
x
i
d
o
i
g

U
O
T
I
R
P
W
I
O
I
U
T

1
9
4
9
7

S
N
O
T
A
D
I
J

N
O
I

1
A

i
s
p
o
o
u
y

L
1
t
x
o
1
a
g

1043U07)
[9A37

weibold
Q
L
 g

@inbi4

q qd I

s
3
d
n
x
a
9
a
j
u
r

I

ND-06.008.01

2.7

2-21

MEMORY MANAGEMENT SYSTEM

The Memory Management System is designed to extend the NORD-10/S’s

physical address space to provide a virtual memory and to provide a

sophisticated memory and privileged instruction protection system.

The basic parts of the system are the:

— Paging System

— Memory Protection System

— Ring Protection System

The Paging System is an automatic address interpretation system which

maps a 16-bit virtual address, as seen from the program, into an 18-bit

physical address. This implies that the maximum memory size may be

extended from 64K words to 266K words. The system also allows

programs to be written for 64K virtual memory with only parts of the

program residing in physical memory at a given time, the rest being

kept on mass storage.

The Paging System divides the memory into memory blocks or pages

of 1024 words or 1K words. The pointers to these pages are found in

the page-index-tables. In NORD-10/S there are four page-index-tables

each consisting of 64 words, which each yield a full 64K address space.

The tables are kept in high-speed registers with 16 bits word length.

Two independent protection systems are also included in the Memory

Management System: the Memory Protection System and the Ring

Protection System.

The Memory Protection System is a protection system for each individual

page of memory. Each individual page may be protected against:

— read accesses

— write accesses

— instructions fetch accesses

and any combination of these. Thus, there are eight modes of memory

protection for each page.

The Ring Protection System is a combined privileged instruction and

inter-page memory protection system. The system divides the pages

into four classes called rings: ring O, ring 1, ring 2 and ring 3. Ring 3

is called the highest ring and ring O the lowest ring. A program located

on a particular page is said to run on the ring the page belongs to.

Programs running on ring 2 and ring 3 may use the whole NORD-10/S’s

instruction repertoire while programs running on ring 0 and 1 may only

operate on a restricted instruction set.

ND-06.008.01

The inter-page protection feature allows programs on a high ring to access

pages on a lower ring while programs on a lower ring are not permitted

to access pages on a higher ring. |f a prohibited ring access or privileged

instruction execution is attempted, the illegal operation will not proceed

and an internal hardware status interrupt will occur to indicate an error.

This Ring Protection System will protect large programming systems

against illegal operations by allowing independent tasks to be placed

on different rings. The recommended way of organizing a system is as

follows:

Ring 0: User programs

Ring 1: Compilers, assembler

Ring 2: Operating systems

Ring 3: Kernel of operating systems

One should note that the two protection systems are independent of each

other and that both the individual memory protection mode and the ring

mode must be satisfied before an operation is performed. For example,

if a program PROG tries to read from page P belonging to ring 2, then

PROG must be running on ring 2 or 3 and page P’s individual memory

protection mode must allow P to be read.

ND-06.008.01

INSTRUCTION REPERTOIRE

In the NORD-10/S all instructions occupy a single word, 16 bits, yielding

a very efficient user of memory and also producing code with unusual

efficiency with regard to speed. Floating point arithmetic operations and

floating/integer conversions are standard.

Note that in this chapter one is always referring to the register set on

the current program level, for example, “‘the A register’’ means ‘the A

register on current program level”’.

In this manual, the instruction set of NORD-10/S is divided into the

following five subclasses:

— Memory Reference Instructions

— Operate Instructions

— Input/Output Control Instructions

— System Control Instructions

— Customer Specified Instructions

Each instruction is given a short description. This includes its mnemonic

as used in the assembly language, octal code, a diagram showing its

format, timing information and special comments. For each instruction,

the systems and indicators that can be affected by the instruction are

listed.

The definitions used in the descriptions are as follows:

General Registers:

A register

D register

T register

L register

X register

B register

Program counter

STS Status register containing PTM, TG, K, Z,Q, O, C, M

T
w
X
r
-
H
o
»

ND-06.008.01

Revision A

Status Word:

Bit

0 PTM Page table mode

1 TG Rounding indicator for floating point operations

2 K One bit accumulator

3 Z Error indicator

4 Q Dynamic overflow indicator

5 O Static overflow indicator

6 C Carry indicator

7 M Multi-shift link indicator

8-11PL Program level indicator

14 PONI Memory Management On indicator

15 I1ONI Interrupt System On indicator

internal Registers:

STS

OPR

LMP

PGS

PCR-

PVL

[

IHE

PID

PIE

ALD

PES

IR

PEA

CILR

ECCR

CCLR

Status word (see above)

Operator’s panel

Lamp register
Paging status register

Paging control register

Previous level register

Internal interrupt code

Internal interrupt enable

Priority interrupt detect

Priority interrupt enable

Automatic load descriptor

Memory error register

Instruction register

Memory error address

Cache inhibit limits register

Error correction control register

Clear cache

Abbreviations:

EL

EW

AD

FA

DwW

FW

sr

dr

A
V

V

()
us

ns

Effective location

Effective word

Double accumulator

Floating accumulator

Double word

Floating word

source register

destination register

Logical AND

Logical inclusive OR

Logical exclusive OR

The contents of

Microsecond

Nanosecond

ND-06.008.01

Revision A

The NORD-10 instructions are controlied from a micro-processor which

takes its instructions from a high speed bipolar read-only memory (cycle

time -— 65 ns).

The execution time of a NORD-10/S instruction is primarily given by the

number of micro instructions and the speed of the main memory.

The NORD-10 may efficiently utilize memories of different type and

speed. It will make full use of a bipolar TTL memory and may also run

with , for example, a slow core memory.

With the cache memory option, one is able to obtain a speed nearly as

fast as that of a bipolar TTL memory.

The instruction times given in Chapter 3 are as measured from a program

running on a standard NORD-10/S with all references in cache memory.

If this is not the actual case, the following changes should be made:

For indirect addressing add 0.45 us.

For each read reference to Local Memory add 0.45 us.

For each write reference to Local Memory add O us.

For each read reference to Multiport Memory via 0.5 m cable add 0.85 us.

For each write reference to Multiport Memory via 0.5 m cable add

0.35 us.

ND-06.008.01

3.1

3.1.1

34

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions specify operations in words in memory.

For all the memory reference instructions in NORD-10/S, the addressing

mode is the same, with the exception of the conditional jump, the byte

and the register block instructions. The addressing structure for these

memory reference instructions is given under the specific instruction

specification.

The NORD-10/S has the following groups of memory references instruc-

tions:

— Store Instructions
— Load Instructions
— Arithmetic and Logical Instructions

— Sequencing Instructions

— Byte Instructions

— Register Block Instructions

Addressing Structure

In memory reference instruction words, 11 bits are used to specify the

address of the desired word({s) in memory, 3 address mode bits and an

8-bit signed displacement using 2‘s complement for negative numbers

and sign extension. (Note that excluded from this is the conditional

jump, the byte and the register block instructions.)

15 1110 9 8 7 0

op. code X H],B displacement

NORD-10/S uses a relative addressing system, which means that the

address is specified relative to the contents of the program counter or

relative to the contents of the B and/or X registers.

The three addressing mode bits called ““,X**, ““I* and “,B*’ provide eight

different addressing modes.

The addressing mode bits have the following meaning:

— The | bit specifies indirect addressing.

— The ,B bit specifies address relative to the contents of the B register,

pre-indexing. The indexing by ,B takes place before a possible

indirect addressing.

ND-06.008.01

— The ,X bit specifies address relative to the contents of the X register

post-indexing. The indexing by ,X takes place after a possible

indirect addressing.

if all the ,X, | and ,B bits are zero, the normal relative addressing mode is

specified. The effective address is equal to the contents of the program

counter plus the displacement, (P} +disp.

The displacement may consist of a number ranging from —128 to + 127.

Therefore, this addressing mode gives a dynamic range for directly

addressing 128 locations backwards and 127 locations forwards.

Generally, a memory reference instruction will have the form:

<operation code> <addressing mode> <displacement>

Note that there is no addition in execution time for relative addressing,

pre-indexing, post-indexing or both. Indirect addressing, however, adds

one extra memory cycle to the listed execution time.

The address computation is summarized in Table 3.1. The symbols used

are defined as follows:

X Bit 10 of the instruction

I Bit 9 of the instruction

,B Bit 8 of the instruction

disp. Contents of bits 0-7 of the instruction (displacement)

(X) Contents of the X register

(B) Contents of the B register

{P) Contents of the P register

() Means contents of the register or word

The effective address is the address of that memory location which is

finally accessed after all address modifications (pre- and post-indexing)

have taken place in the memory address computation.

X ,B | Mnemonic Effective Address

0O 0 O (P) +disp.

0 1 0 | ((P) +disp.)

0 O 1 ,B (B) +disp.

0 1 1 B 1 {(B) +disp.)

1 0 0] X (X) +disp.

1 0 1 B ,X (B) +disp. + (X)

1 1 01X ((P) +disp.) +(X)
1 1 1| BI,X ((B) +disp.) + (X)

Table 3.1: Addressing Modes

ND-06.008.01

Wise and competent use of the NORD-10/S addressing modes will result

in efficient programs. Advanced readers may wish to skip the rest of this

section after perusing Table 3.1, which summarizes the addressing struc-

ture.

P-relative Addressing . X=0 =0 B=0

The P-relative addressing mode is specified by setting the , X, | and ,B

bits all to zero. In this mode, the displacement bits (bits 0-7) specify a

positive or negative 7-bit address relative to the current value of the

program counter (P register).

Example:

Suppose memory location 403 contains the instruction 004002, which in

this chapter we shall represent by STA * 2, and this instruction is

executed. The ,X, | and ,B bits are all set to zero indicating P-relative ad-

dressing and a positive displacement of 2 is given; the contents of the A

register will therefore be stored in memory location 405. If, instead,

location 403 contains the instruction JMP * —2 and it is executed, the

next instruction to be executed will be taken from location 401. While

there is an obvious limitation to this mode of addressing {locations more

than 128g words away from the instruction being executed cannot be

accessed), this mode of addressing is still quite useful for doing local

jumps and accessing nearby constants and variables.

Memory
—128

Range with

P-relative

addressing

P register

127 Displacement

Effective address

Figure 3.1: Schematic Illustration of P-relative Addressing

ND-06.008.01

Indirect P-relative Addressing ,X=0 1=1 ,B=0

Since one must be able to access memory locations more than 1284

words away from the instruction being executed, the simplest method

of doing this is to use the indirect P-relative addressing mode, specified

by setting the | bit to one and the ,X bit and ,B bit to zero in memory

address instructions. In this mode an address relative to program counter

is computed, exactly as for P-relative addressing, by adding the displace-

ment to the value of the program counter, but rather than the addressed

location actually being accessed, the contents of the addressed location

are used as a 16-bit address of a memory location which is accessed

instead.

Example:

Suppose location 405 contains the instruction LDA | * 2 (0450028) and

that this instruction is executed. Let us also suppose memory location

16003 contains the value 17 and that memory location 407 contains

016003. The net result of executing the instruction in location 405 is

to load the value 17 into the A register. First the displacement 2 of

the LDA instruction is added to the value of the location counter 405,

giving the result 407; then the contents of location 407, 16003 are used as

an address and the contents of this address 17 are finally loaded into the

A register.

Memory

P register

Displacement

Pointer to any location

within 64K

-— Effective address to any

location within 64K

Figure 3.2: Schematic lllustration of Indirect P-relative Addressing

ND-06.008.01

B-relative Addressing . X=0 =0 ,B=1

The above two addressing modes are quite sufficient, in fact, theoretically,

either one alone is sufficient. However, if the NORD-10/S provided only

one or both of the two addressing modes already described, it would not

be particularly convenient for program efficiency. For instance, suppose

that two subprograms, each a couple of hundred words long, need to

communicate. Within each subprogram memory accesses are commonly

made using P-relative addressing or occasionally, indirect P-relative

addressing. But between the subprograms indirect P-relative addressing

would have to be used almost exclusively since, in general, locations in

one subprogram, which instruction in the other subprogram must access,

will not be less than 128 words apart. But this is very inefficient since

both subprograms must contain indirect pointers to data and instructions

local to the other subprogram.

To overcome this difficulty another addressing mode is available B-relative

addressing, which permits both subprograms to directly address a com-

mon data area. B register relative addressing is specified by setting the

,X and 1 bits to zero and the ,B bit to one in memory address instructions.

This addressing mode is quite closely related to P-relative addressing,

but instead the displacement is added to the current value of the B

register, the resultant sum is used to specify the memory location

accessed.

Memory

B register

Displacement

Effective address

Figure 3.3: Schematic Illustration of B-relative Addressing

ND-06.008.01

Example:

Let location 405 contain the instruction LDA — 4 ,B (0447748) and

the B register contains the value 10035. Execute the instruction in

location 405. This causes the contents of location 10031 to be loaded

into the A register. The minus 4 in the displacement field of the LDA

instruction in location 405 is added to the contents of the B register,

10035, giving a sum of 10031, and the contents of location 10031 are

loaded into the A register.

Indirect B-relative Addressing . X=0 1=1 _,B=1

Naturally, there is also an indirect B-relative addressing mode which is

specified by setting the ,B and | bits to one and the ,X bit to zero in

memory reference instructions. This mode has the same relationship

to B-relative addressing that indirect P-relative addressing has to P-relative

addressing. This permits a subprogram to access data or locations in

other subprograms indirectly via pointers in an area common to several

subprograms. This address mode is used extensively for calling library

routines.

Example:

Let location 10031 contain the instruction JPL | 3 ,B (1354038) and the B

register contain 400, a pointer to an area common to several subprograms.

Furthermore, let location 403 contain the value 2000. If the instruction in

location 10031 is executed, the subroutine beginning at location 2000 will be

called. The displacement, 3, in the JPL instruction is added to the contents

of the B register, 400, giving a result of 403. The contents of location 403,

2000, are then used as a pointer to the subroutine.

Memory

B register

Displacement

Pointer to any location

within 64K

Effective address

Figure 3.4: Schematic Il/lustration of Indirect B-relative Addressing

ND-06.008.01

3-10

X-relative (or indexed) Addressing . X=1 1=0 B=0

The other four addressing modes all involve use of the X register. The

simplest of these is X-relative addressing which works like P- and B-relative

addressing, but the displacement is added to the X register’s contents

during the address calculation instead of to the contents of the P or B

register. This addressing mode is often used for randomly accessing the

elements of a block of data.

Example:

Let a recursive subroutine, when being called, save the contents of the L,

A and B registers in a three word block on a push down stack, and the X

register point to the first free register in the stack. The following code

might then be found at the beginning of the recursive subroutine:

SUB, STA 1.,X

COPY SL DA

STA 2 X

COPY SB DA

STA 0,X

AAX 3

X register upon entry

to the subroutine

B register saved here

A register saved here

L register saved herz

X register after execution

of AAX instruction

Stack

Figure 3.5: //lustration of the Effect of the Stack Code.

For another example reread B-relative addressing, substituting ‘X

register’’ for B register”’.

ND-06.008.01

3-11

Memory

X register

Displacement

Effective address

Figure 3.6: Schematic Illustration of X-relative Addressing

B-relative Indexed Addressing ,X=1 =0 ,B=1

When the ,X and ,B bits are set to one and the | bit to zero in memory

reference instructions, the mode is called B-re/ative indexed addressing.

In this mode, the contents of the X and B registers and the displacement

are all added together to form the effective address.

B-relative indexed addressing is often very useful, for instance, when

accessing row by row elements of a two-dimensional array stored column

by column,

Memory

B register

Displacement

Content of X register

Effective address

Figure 3.7: Schematic Illustration of B-relative Indexed Addressing

Indirect P-relative Indexed Addressing X=1 1=1 ,B=0

The last two addressing modes are difficult to describe, but very useful.

Indirect P-relative indexed addressing is selected by setting the ,X and

| bits to one and the ,B bit to zero in the memory address instruction.

This mode allows successive elements of an array arbitrarily placed in

memory to be accessed in a convenient manner.

ND-06.008.01

The address calculation in the mode takes place as follows. The contents

of the P register, say 4002, are added to the displacement, say —1, and

produce a sum, 4001. The contents of the location 4001, say 10100, are

added to the contents of the X register, say —100, to produce a new

sum, 10000, the effective address. By incrementing the X register, suc-

cessive locations may be accessed. For instance, using the above example,

locations 10000 through 10100 can be successively accessed by stepping

the contents of the X register from —100 to zero.

Readers are advised to go over this example carefully. Stepping through

an array in this fashion is done very often.

Memory

P register

Displacement

— Pointer to any location
within 64K

Content of X register

Effective address

Figure 3.8: Schematic llustration of Indirect P-relative Indexed

Addressing

Indirect B-relative Indexed Addressing ,X=1 I=1 ,B=1

The final addressing mode, indirect B-relative indexed addressing, is

identifical to indirect P-relative indexed addressing except that the

contents of the B register are used instead of the contents of the P

register in the effective address computation. This mode can therefore

be used to step through arrays pointed to from a data area common to

several subprograms.

ND-06.008.01

3.1.2

B register

Displacement

- Effective address

Content of X register

Figure 3.9. Schematic lllustration of Indirect B-relative Indexed

Addressing

Store Instructions

STZ Store zero

Format: STX <address mode> <disp.>

The effective location is cleared.

Affected: (EL)

STA Store A register

Format: STA <address mode> <disp.>

The contents of the A register are stored

in the effective location.

Affected: (EL)

STT Store T register

Format: STT <address mode> <disp.>

Code:

Time:

Code

Time:

Code

The contents of the T register are stored in the

effective location.

Affected: (EL)

ND-06.008.01

Time:

000 000

1.3 us

: 004 000

1.3 us

: 010000

1.3 us

STX

STD

STF

MIN

3-14

Store X register Code:

Format: STX <address mode> <disp.>

The contents of the X register are stored in

the effective location. The address of this

instruction may be modified by the contents

of the X register.

Affected: (EL) Time:

Store double word Code:

Format: STD <address mode> <disp.>

The contents of the A register are stored

in the effective location, and the contents

of the D register are stored in the effective

location plus one.
Affected: (EL),(EL+1) Time:

Store floating accumulator Code:

Format: STF <address mode> <disp.>

The contents of the floating accumulator

are stored in three memory locations,

starting with exponent part in effective

location.

014 000

1.3 us

020 000

2.2 us

030 000

Affected: (EL), (EL+1), (EL+ 2 Time 2.8 us

Increment memory and skip if zero Code:

Format: MIN <address mode> <disp.>

Effective word is read and incremented

by one and then restored in the effective

location. If the result becomes zero, the

next instruction is skipped.

040 000

Affected: (EL), (P) True Time: 2.9 us
False Time: 2.6 us

ND-06.008.01

3.13

3-15

Load Instructions

LDA

LDT

LDX

LDD

LDF

Load A register

Format: LDA <address mode> <displ.>

The effective word is loaded into the A

register.

Affected: (A)

Load T register

Format: LDT <address mode> <disp.>

The effective word is loaded into the T

register.

Affected: (T)

Load X register

Format: LDX <address mode> <disp.>

The effective word is loaded into the X

register. The address of this instruction

may be modified by the previous contents

of the X register.

Affected: (X)

Load double word

Format: LDD <address mode> <disp.>

The contents of the effective location are

loaded into the A register, and the contents

of the effective location plus one are loaded

into the D register.

Affected: (A}, (D)

Load floating accumulator

Format: LDF <address mode> <disp.>

The contents of the effective location and

the two following locations are loaded into

the floating accumulator, i.e., T, Aand D

registers.

Affected: (T), (A), (D)

ND-06.008.01

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time:

Code:

Time

044 000

1.0 us

050 000

1.0 us

054 000

1.0 us

024 000

1.6 us

034 000

: 2.0us

3.14 Arithmetical and Logical Instructions

ADD

SUB

AND

Add to A register Code: 060 000

Format: ADD <address mode> <disp.>

The effective word is added to the A register

with the result in the A register. The carry

indicator is set to 1 if a carry occurs from

the sign bit positions of the adder, other-

wise the carry indicator is reset to 0. If

the sign of the result is different, overflow

has occurred, and both the dynamic and

static overflow indicators are set to one.

If the condition for overflow does not exist,

the dynamic overflow indicator is reset to

0, while the static overflow indicator is left

unchanged.
Affected: (A), C, 0O, Q Time: 1.0 us

Subtract from A register Code: 064 000

Format: SUB <address mode> <disp.>

The 2‘s complement of the effective word

is formed and added to the contents of

the A register with the result in the A

register. The same rules as for ADD apply

for the setting of the overflow and carry

indicators.
Affected: (A}, C, O, Q Time: 1.0 us

Logical and Code: 070 000

Format: AND <address mode> <disp.>

The logical product of the effective word

and the contents of the A register are

formed, with the result in the A register.

The logical product contains a one in each

bit position for which there is a corresponding

one in both the A register and the effective

word, otherwise the bit position contains a

zero.

Affected: (A) Time: 1.0 us

ND-06.008.01

ORA Logical inclusive or Code: 074 000

Format: OR <address mode> <disp.>

Logical inclusive or is formed between the

effective word and the contents of the A

register, with the result in the A register.
Logical inclusive or contains a zero in each

bit position for which there is a corresponding

zero in both the A register and the effective

word, otherwise the bit position contains

a one.
Affected: (A) Time: 1.0 us

MPY Multiply integer Code: 120 000

Format: MPY <address mode> <di:p.>

The effective word and the A register are

multiplied and the result is placed in the

A register. Both numbers are regarded as

signed integers and the result as a 16-bit

signed integer. If the result in absolute

value is greater than 32767, overflow has

occurred and the static and dynamic overflow

indicators are set to one.
Affected: (A), O, Q Time: 8.7 us

FAD Add to floating accumulator Code: 100 000

Format: FAD <address mode> <disp.>

The contents of the effective location and

the two following locations are added to

the floating accumulator with the result in

the floating accumulator. The previous

setting of the carry and overflow indicators

are lost.
Affected: (T), (A}, (D), C,0,Q, TG Time: 3.6 - 14.0 us*

For 32 bit floating point operation, add

5 us.

* Time dependent of operands mantissa overlap.

ND-06.008.01

3-18

FSB Subtract from floating accumulator Code: 104 000

Format: FSB <address mode> <disp.>

The contents of the effective location and

the two following locations are subtracted

from the floating accumulator with the result

in the floating accumulator. The previous

setting of the carry and overflow indicators

are lost.

Affected: (T), (A), (D), C, 0O, Q, TG Time: 3.9 - 16.6 us*

For 32 bit floating point operation, add

5 us.

FMU Multiply floating accumulator Code: 110000

Format: FMU <address mode> <disp.>

The contents of the floating accumulator

are multiplied with the number of the

effective floating word locations with the

result in the floating accumulator. The

previous setting of the carry and overflow

indicators are lost.

Affected: (T), (A), (D), O, Q, TG Time: 13.5 us

For 32 bit floating point operation, add

2 us.

FDV Divide floating accumulator Code: 114 000

Format: FDV <address mode> <disp.>

The contents of the floating accumulator are

divided by the number in the effective

floating word locations. Result in floating

accumulator. If division by zero is attempted,

the error indicator Z is set to one. The error

indicator Z may be sensed by a BSKP instruc-

tion (see BOP). The previous setting of the

carry and overflow indicators are lost.

Affected: (T), (A), (D), Z,C,0,Q, TG Time: 4.3 - 156.2 us*

For 32 bit floating point operation, add

0 us.

* Time dependent of operands mantissa overlap.

ND-06.008.01

3.156 Sequencing Instructions

JMP

JPL

cJpP

JAP

Jump Code: 124 000

Format: JMP <address mode> <disp.>

The effective address is loaded into the

program counter and the next instruction

is taken from the effective address of the

JMP instruction.

Affected: (P) Time: 1.1 us

Transfer P to L and jump Code: 134 000

Format: JPL <address mode> <disp.>

The contents of the program counter are

transferred to the L register, the effective

address is loaded into the program counter

and the next instruction is taken from the

effective address of the JPL instruction.

Note that the program counter points to the

instruction after the jump (it has been

incremented before transfer to the L register)

Affected: (P), (L) Time: 1.1 us

Conditional jump

Instruction bits 8-10 are used to specify one

of 8 jump conditions. If the specified condition

becomes true, the displacement is added to the

program counter and a jump relative to current

location takes place. The range is 128 locations

backwards and 127 locations forwards. If

the specified condition is false, no jump takes

place. Execution time depends on condition,

but is the same for all instructions.

A conditional jump instruction must be specified

by means of the eight mnemonics listed below.

It is illegal to specify CJP followed by any

combinations of ,B, | and ,X.

The eight jump conditions are:

Jump if A register is positive or zero, Code: 130000

Abit 15=0.

Format: JAP <disp.>

ND-06.008.01

3-20

JAN Jump if A register is negative, A bit= 1. Code: 130400

Format: JAN <disp.>

JAZ Jump if A register is zero. Code: 131 000

Format: JAZ <disp.>

JAF Jump if A register is filled (not zero) Code: 131400

Format: JAF <disp.>

JXN Jump if X register is negative, i.e., Code: 133400

Xbit15=1.

Format: JXN <disp.>

JXZ Jump if X register is zero. Code: 133 000

Format: JXZ <disp.>

JPC Count and jump if register is positive or Code: 132000

zero.

Format: JPC <disp.>

X is incremented by one, and if the X bit

15 equals zero after the incrementation,

the jump takes place.

JNC Count and jump if X register is negative. Code: 132400

Format: JNC <disp.>

X is incremented by one; if then the X bit

15 equals one, the jump takes place.

Affected: (P) and (X) for JPC and JNC. Time:

Conditional false: 0.8 us

Conditional true: 1.1 us

ND-06.008.01

3-21

Byte Instructions

To facilitate the handling of character strings, the NORD-10/S provides two

instructions for byte handling, load byte, LBYT, and store byte, SBYT.

Because of the requirement of full 64K addressing, the LBYT and SBYT

use an addressing scheme different from the normal NORD-10/S addressing.

For byte addressing, two of the NORD-10/S registers, the T and X registers

are used for addressing the byte.

The contents of the T register point to the beginning of the character string,

and the contents of the X register point to a byte within this string. Thus,

the address of the word which contains the byte equals

(T) +7% (X).

If the X register is even (,Xg = 0,) the byte is in the left part of the word,

if Xg =1, the byte is in the right part of the word.

A byte consists of eight bits.

T register -
0 1

2 3

X register

2

n n+1

n+2|n+3
The specifications for the two byte instructions are then as follows:

LBYT Load byte Code: 142 200

Format: LBYT

The 8-bit byte specified by the contents of the

T and X registers is loaded into the A register

bits 0 - 7, with the A register bits 8- 15

cleared.

Affected: (A) Time:

Left byte: 5.5 us

Right byte: 3.2 us

ND-06.008.01

3-22

SBYT Store byte Code: 142 600

Format: SBYT

The byte contained in the A register bits

0-7 is stored in one half of the effective

location pointed by the T and X registers,

the second half of this effective location

being unchanged. The contents of the A

register are unchanged.
Affected: (EL) Time:

Left byte: 8.1 us

Right byte: 5.9 us

3.1.7 Register Block Instructions

To facilitate the programming of registers on different program levels, two

instructions, SRB and LRB, are available for storing and loading of a com-

plete register block to and from memory.

A register block always consists of the following registers in this sequence:

Program counter

X register

T register

A register

D register

L register
Status register, bits 1-7, bit 0 and bits 8-15 are zero.

B register W
2
I
_
0
>
—
|
X
'
U

w

The addressing for these two instructions is as follows:

The contents of the X register specify the effective memory address from

where the register block is read or written into.

The specifications for the two instructions are as follows:

15 7 6 3 2 0

LRB 000
SRB level 010

ND-06.008.01

SRB

LRB

3-23

Store Register Block Code: 152 402

Format: SRB <levelg h 10g>

The instruction SRB <levelg * 10g> stores

the contents of the register block on the

program level specified in the level field of

the instruction. The specified register block

is stored in succeeding memory locations

starting at the location specified by the con-

tents of the X register.

If the current program level is specified, the

stored P register points to the instruction

following SRB.

Affected: (EL),+1+2+3+4+45+6+7 Time 9.5 us

P- X T A DL STSB

Example:

Let the contents of the X register be 042562,

then the instruction

SRB 140g

stores the contents of the register block on

program level 12 into the memory addresses

042562, 042563, ..., 042571.

Load Register Block Code: 152 600

Format: LRB <Ieve|8 * 10g>

The instruction <LLRB levelg * 10g> loads

the contents of the register block on pro-

gram level specified in the level field of the

instruction. The specified register block is

loaded by the contents of succeeding

memory locations starting at the location

specified by the contents of the X register.

If the current program level is specified, the

P register is not affected. The LRB

instruction is privileged, see Section 6.5.1.

Affected: All the registers on specified

program level are affected. Note: If the

current level is specified, the P register is

not affected. Time: 7.1 us

ND-06.008.01

Revision A

3.2

3.2.1

3.2.11

3-24

OPERATE INSTRUCTIONS

Floating Point Conversion Instructions

15 8 7 0
NLZ .
DNZ scaling

Two instructions are avallable A smgle precision_fixed point number

may be converted to a floating point number A floating point number

may be converted to a fixed point single precision number. For both

instructions the scaling factor is specified in the displacement part of

the instruction. The range of the scaling factor is from —128 to + 127,

which gives a conversion range from approximately 10739t 10

The execution time depends on the scaling factor and the argument to

convert.

The two subinstructions are described in Section 3.2.1.1 for the standard

48-bit floating point format, and in Section 3.2.1.2 for the alternative

optional 32-bit floating point format.

Standard 48-bit Floating Point Conversion

NLZ Normalize Code: 151 400

Format: NLZ <scaling>

Converts the number in the A register to a

standard form floating number in the floating

accumulator, using the scaling of the NLZ

instruction as a scaling factor. For integers,

the scaling factor should be +16, a larger

scaling factor will result in a higher floating

point number. Because of the single precision

fixed point number, the D register will be

cleared. . i

Affected: (T), (A), (D) ! . Time: 2.1-6.6 us*

* Time dependent upon number of shifts.

ND-06.008.01

DNZ

3-25

Denormalize Code: 152 000

Format: DNZ <scaling>

Converts the floating number in the floating

accumulator to a single precision fixed point

number in the A register, using the scaling of

the DNZ instruction as a scaling factor.**

When converting to integers, the scaling

factor should be —16, a greater scaling factor

will cause the fixed point number to be

greater. After this instruction the contents

of the T and D registers will all be zeros.

If the conversion causes underflow, the T,

A and D registers will all be set to zero.

If the conversion causes overflow***, the

error indicator Z is set to one. Overflow

occurs if the resulting integer in absolute

value is greater than 32767.

The conversion will truncate and negative

numbers are converted to positive numbers

before conversion. The result will again be

converted to a negative number.

Some examples:

T—A—D before conversion (in decimal) A after conversion

0.9 DNZ -20g 0

3.141592 DNZ —20g 3

3.141592 DNZ —17g 6

3.141592 DNZ —16g 12

3.7 DNZ —20g 3

3.7 DNZ —-17g 7

3.7 DNZ -21g 1

—-3.1415692 DNZ —20g -3

—-3.7 DNZ —20g -3

32768.0 DNZ —20g Overflow

—32768.0 DNZ —20g Overflow

Affected: (A), (T), (D), Z Time: 2.6 - 7.6 18*

* Time dependent upon number of shifts.

** When converting an exact floating point zero, scaling factors more negative

than —16 will give erroneous results.

*** The overflow test is fail-proof for a scaling constant of —20g only.

ND-06.008.01

3.2.1.2

3.2.2

3-26

Optional 32-bit Floating Point Conversion

The normalize and denormalize operations for 32-bit floating point use

the same instruction codes as for 48-bit floating point operations, but do

not affect the T register. For the 32-bit DNZ operations, the scaling factor

should a/ways be —16, other scaling factors will not cause a different result,

but will affect the test for overflow.

Time for NLZ:

1.6-104%

Time for DNZ:

2.1-10.9*

Shift Instructions

15 1110 98 7 b 0

shift type |register number

Shift instructions operate on registers. A shift instruction consists of three

parts: the register to be shifted (specified by the shift register fields), type

of shift to be performed (specified by the type field) and the number of

shifts to be performed (specified by the number field. A shift instruction

will have the form:

<shift register> <type> <number>

Every shift instruction causes the last bit which is discarded to be contained

in the M: the multi-shift indicator. This may then be used as an input

for the next shift instruction.

Note that bit 6 in the instruction is ignored.

The time of a shift instruction is independent of the type of shift.

The following four specifications of the <shift register> are available:

SHT Shift the T register (reg. field 00) Code: 154 000

Format: SHT <type> <number>

The T register is shifted as specified by the <type>

and <number>.

Affected: (T), M Time: 1.6 +0.26 - N

* Time dependent upon number of shifts.

ND-06.008.01

SHD

SHA

SAD

3-27

Shift the D register (reg. field 01) Code: 154 200

Format; SHD <type> <number>

The D register is shifted as specified by the

<type> and <number>.

Affected: (D), M Time: 1.6 +0.26 - N

Shift the A register (reg. field 10) Code: 154 400

Format: SHA <type> <number>

The A register is shifted as specified by the

<type> and <number>.

Affected: (A), M Time: 1.6 +0.26 - N

Shift the A and D registers connected Code: 154 600

(reg. field 11)

Format: SAD <type> <number>

Bit O of the A register is connected to bit

15 of the D register.
Affected: (A), (D}, M Time: 2.4 +0.26 - N

type field

For each shift instruction, the following four types of shift can be specified,

one at a time:

Mnemonic type field

nil

ROT

Arithmetical shift. 00 Code: 000 000

During right shifts, the sign bit

(bit 15) is extended during the

shifting, in left shift zeros are

fed into vacated bit positions.

Rotational shift. 01 Code: 001 000

In single register shift bit 0 is

connected to bit 15, in double

shifts bit 0 of the D register is

connected to bit 15 of the A

register.

ND-06.008.01

3—-28

Mnemonic type field

ZIN Zero end input 10 Code: 002 000

LIN Link end input 11 Code: 003 000

The contents of the M indicator

will be shifted into the vacated

bit(s).

number field

The <number>> of the instructicn in the number field is a signed number,

5 bits plus sign, which specifies the shift direction (positive or negative

shift) and the number of shifts.

N >0, i.e., if bit 5= 0 then shift left

N <0, i.e., if bit 5= 1 then shift right

The maximum number of shifts is 31 left shifts and 32 right shifts.

Only the A, T and D registers may be shifted. |f any other register is to be

shifted, its contents must first be placed in the A, T or D register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as an octal number.

A right shift may be specified either by the correct 6 bit negative shift

count or by writing the mnemonic code SHR followed by the positive

number of right shifts. A shift instruction to shift the accumulator 3

positions to the right may be specified by one of the following identical

instructions:

SHA 75g
SHA 100-3g
SHA SHR 3g

In a right shift, nothing should be written between the SHR mnemonic

and the number of shifts* (a space to distinguish between SHR and the

number is necessary). SHR must be the last mnemonic used in the instruc:

tion.

Some examples of correctly specified shift instructions:

Example 1:

Shift the A and D registers connected 8 positions (octal 10) left.

SAD 10g

* This is an assembler pecularity.

ND-06.008.01

3.2.3

3-29

Example 2:

Rotate the T register 6 places to the left.

SHT ROT 6

Example 3:

Shift the connected A and D registers 16 positions to the left. Rotate shift

is specified which, in this case, will cause the contents of the A and D registers

to be exchanged. The same effect may be obtained by means of a SWAP SA

DD instruction.

SAD ROT 20

Example 4:

Shift the D register two places to the right. Feed zeros into the left end during

the shifting. Bits 15 and 14 in the D register will become zero.

SHD ZIN SHR 2

Register Operations

The register operaion instructions specify operations between any two

general registers; a source register (sr) and a destination register (dr). Any

instructions may consist of the parts:

<register operation> <sub-instruction> <sr> <dr>

There are ten basic register operations belonging to the two groups:

ROP register operations (Section 3.2.3.1)

EXTended register operation instructions (Section 3.2.3.2)

In addition, there are two instructions for accessing single registers outside

current program level (see Section 3.2.3.3) and two instructions for accessing

a whole register block outside current program level (see Section 3.1.7).

Only the ROP instructions have sub-instructions.

The ROP register instructions are:

RADD Register addition, dr < dr +sr Code: 146 000

RSUB Register subtraction, dr < dr —sr Code: 146 600

ND-06.008.01

3-30

RAND Register logical AND, dr < dr A sr Code: 144 400

RORA Register logical OR, dr < dr V sr Code: 145 500

REXO Register logical exclusive OR, dr < dr
Nsr Code: 145 000

SWAP Register exchange, sr < dr and dr < sr Code: 144 000

COPY Register transfer, dr < sr Code: 146 100

The EXTended register instructions are:

RMPY Integer inter-register multiply, AD < dr * sr Code: 141 200

RDIV Integer inter-register divide

AD/ <sr> - A < Quotient
D < Remainder Code: 141 600

EXR Execute register, Instruction register < sr Code: 140600

MIX3 Multiply index by 3, X < ({(A) — 1) * 3 Code: 143 200

The source registers <sr> are specified as follows:

sSD D register as source Code: 10

spP Program counter as source Code: 20

SB B register as source Code: 30

SL L register as source Code: 40

SA A register as source Code: 50

ST T register as source Code: 60

SX X register as source Code: 70

If no source register is specified, zero will be taken as the source register.

The destination registers <dr>> are specified as follows:

DD D register as destination Code: 1

DP Program counter as destination Code: 2

DB B register as destination Code: 3

ND-06.008.01

3.2.3.1

3-31

DL L register as destination Code: 4

DA A register as destination Code: 5

DT T register as destination Code: 6

DX X register as destination Code: 7

i eration Instructions

15 1110 9 8 7 6 65 3 2 0

ROP RAD C I [CMICLD sr dr

The instruction decodes bits 0-10 as follows:

Bits 0-2 specify one out of seven registers to be the destination register.

The destination register will be loaded with the result of the ROP instruc-

tion.

dr=0: Normally, a no operation instruction, except that the carry
indicator will be reset if RAD = 1.

Bits 3-5 specify the one out of eight registers which contain the value to

be used as the source register operand.

sr=0: Produces a source value equal to zero.

CLD = 1: Clear destination register before operation. If the source and

the destination register are the same, the register as source is

not cleared.

CM1 = 1: Use complement (one’s complement) of source register as

operand. The source register remains unchanged.

Bits 8 and 9 are decoded in two different ways, depending on whether

the RAD bit is zero or one.

RAD = 1: Add source to destination.

When RAD = 1, bits C and | are decoded as follows:

c=1,
1=0: Also add old carry to destination, ADC.

1=1: Also add 1 to destination, AD1.

ND-06.008.01

Revision A

3-32

It is not possible to both add previous carry and to add 1 in the same ROP

instruction. (If this is attempted, 1 will be added regardless of the status

of the carry indicator.)

RAD = 0: Binary register operations.

The C and | bits are decoded as follows:

C,1=0,0: Register swap, destination and source exchanged, SWAP

C,1=0,1: Logical and, RAND

" C,1=1,0: Logical exclusive or, REXO
C,I=1,1: Logical inclusive or, RORA

If RAD = 1, the overflow and carry indicators are set according to the same

rules as apply for ADD: if RAD = 0, the overflow and carry indicators

remain unchanged.

The following groups of ROP mnemonics are mutually exclusive, i.e., only

one may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)

Only one source register must be specified.

(DD, DP, DB, DL, DA, DT, DX)

Only one destination register must be specified.

(ADC, AD1)

Both 1 and old carry cannot be added in the same instruction.

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY)

Only one type of operation must be specified.

(ADC, AD1, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the binary register

operations.

(RSUB, CM1, ADC, AD1)

RSUB uses CM1 and AD1.

The recommended way to specify ROP instructions is to use the following

mnemonics which will be correctly translated by the assembly language.

ND-06.008.01

3-33

RADD, dr< dr+sr Register addition

RSUB, dr < dr — sr Register subtraction

RAND, dr < dr A sr Register logical AND

RORA, dr< drV sr Register logical OR

REXO, dr < dr ¥ sr Register logical exclusive OR

SWAP, dr<sr Register exchange

COPY, dr<sr Register transfer

Note that the ROP instruction is included in the above mentioned

mnemonics.

Time: RADD, RSUB, RAND, REXO, RORA 0.6 us

Time: SWAP 1.4 us

If the P register is used as destination (DP), an additional micro cycle (260 ns)

will be required.

The assembly language will also permit use of the following combined

mnemonics:

CM2 =CM1 AD1 Two'’s complement

EXIT = COPY SL DP Return from subroutine

RCLR =COPY O Register clear

RINC = RADD AD1 Register increment

RDCR = RADD CM1 Register decrement

The mnemonics RCLR, RINC and RDCR should be followed only by the

destination register specifications.

Some examples of use of the ROP instruction.

Example 1:

Add the contents of the A and X registers with the result in the X register:

RADD SA DX

Example 2:

Complement (two’s complement) the A register:

COPY CM2 SA DA

ND-06.008.01

3-34

Decoding of

Instructions

Result of

Instructions

—,
e,

N
0
0
0
0
,

2
=

0
0
0
0
,

=
2

0
0
0
0
2
0
0
0
0

SWAP

SWAP

SWAP
SWAP

RAND

RAND

RAND

RAND

REXO

REXO

REXO

REXO

RORA

RORA

RORA

RORA

RADD

RADD

RADD

RADD

RADD

RADD

RADD

RADD

RADD

RADD

RADD

RADD

CM1

CM1

CcM1

CM1

CcMm1
CM1

CM1

cM1

1)

. CM1
R CM1
1)AD1
2)AD1
1. AD1

D1
ADC
ADC
ADC
ADC

CM1

CM1

1)

CcM1

! CcMm1

not applicable

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CcLD

CLD

CLD

CLD

CLD

CLD

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

<sr> <dr>

sr < dr

dr <sr,sr <0

dr <§F, sr <dr
dr < 5F, sr <0
dr < dr A sr

dr< 0

dr < drA sr
dr< 0

dr < dr ¥ sr

dr < sr

dr< dr Vsr

dr < sr

dr< dr Vsr

dr < sr

dr< dr Vsr

dr< sr

dr< dr +sr

dr < sr

dr< dr +sr
dr< sr

dr< dr +sr+1

dr< sr+1

dr< dr —sr

dr< —sr

dr< dr+sr+c

dr< sr+c

dr< dr+sr+c

dr< sr+c

Table 3.2: The ROP Instruction

This table shows all possible combinations of the ROP instructions and

their results.

dr

sr

ST

c

destination register

source register

one’‘s complement of sr

old carry

1) RADD CLD is equal to COPY

2) RADD AD1 CM1 is equal to RSUB

ND-06.008.01

3-35

Example 3:

Subtract the contents of the T register from the contents of the B register,

with the result in the B register:

RSUB ST DB

Example 4:

Increment the X register by one:

RINC DX

Example 5:

Decrement the L register by one. (One’s complement of zero equals —1 in

two’s complement.):

RDCR DL

Example 6:

Clear the T register:

RCLR DT

Example 7:

Set the X register equal to one:

RCLR AD1 DX

Example 8:

Set the B register equal to minus one:

RCLR CM1 DB

Example 9;

Copy the contents of the X register into the T register:

COPY SX DT

ND-06.008.01

3-36

Example 10:

Exchange the contents of the A and D registers:

SWAP DA DD

Example 11:

Form logical AND between the contents of the L and X registers with the

result in the X register:

RAND SL DX

Example 12:

Copy the contents of the A register into the X register and clear the A

register (the CLD code causes a destination register of zero to be swapped):

SWAP CLD SA DX

Some short programs using ROP instructions:

Example 13:

Form the two‘s complement of the 32 bit double word in A and D:

COPY CM2 SD DD

COPY CM1 ADC SA DA

Example 14:

Add together the two double word length numbers N1 and N2 with the

result in the A and D registers:

LDD N1

SWAP SA DD

ADD N2+

SWAP SA DD

RADD ADC DA

ADD N2

ND-06.008.01

3.2.3.2

3-37

Example 15:

Subroutine jump, and return from subroutine to main program:

JPL SUBR % ERROR STOP
ERR, WAIT

NORM,

SUBR, LDA OLA

SUB PER

SKP IF DA EQL O

EXIT % ERROR EXIT
EXIT AD1

The JPL instruction will place the address of the WAIT instruction into
the L register. (When JPL is executed, the program counter points to the
address after this instruction.)

The subroutine SUBR has two exits, one to the location immediately follow-
ing the jump (EXIT), which in this case is an error exit, and one to the location
two addresses after the jump.

Note: If the P register is used as source (SP), the P register has already been
incremented and points to the next instruction.

EXTended Regijster Operation Instructions

RMPY Integer inter-register multiply Code: 141 200

Format: RMPY <sr> <dr>

The sr and dr fields are used to specify the two

operands to be multiplied (represented as two's

complement integers), the codes are the same

as for ROP (see Section 3.2.3).

The result is a 32-bit signed integer which will

be placed in the A and D registers with the 16

most significant bits in the A register and the

16 least significant bits in the D register.

Affected: (A), (D) Time: 7.9 us

ND-06.008.01

RDIV

EXR

3-38

Integer inter-register divide Code: 141 600

Format: RDIV <sr>

The 32-bit signed integer contained in the double

accumulator AD is divided by the contents of

the register in the sr field, with the quotient

in the A register and the remainder in the D

register, i.e., AD/sr > A < quotient, D < remainder.

The sign of the remainder is always equal to the

dividend (AD). The destination field of the in-

struction is not used. |f the division causes

overflow, the error indicator Z is set to one.

The numbers are considered as fixed point

integers with the fixed point after the

right-most position.

 o«
Affected: (A), (D), Z,C,0,Q Time: 11.8 us

Example:

Before Division: After Division:

Double éccumulator Divisor A D z

22 4 5 2 0

-22 4 -5 —2 0

378452 -16 - 23653 —4 0

32767 1 32767 0 0

32768 1 1

65635 2 32762 1 0

Execute register Code: 140600

Format: EXR <sr>

The contents of the register specified in

the <sr> field of the instruction are trans-

ferred to the instruction register, and the

contents are then executed as an instruction.

ND-06.008.01

Revision A

3.23.3

3-39

Note: If the instruction specified by the

contents of <sr> is a memory reference

instruction with relative addressing, the

address will be relative to the EXR <sr> in-

struction. |If the instruction specified by

the contents of <sr>is a JPL instruction,

the L register will point to the instruction

after the EXR <sr>. Note also that it is

illegal to have an EXR <sr>, where the

contents of <sr> are a new EXR <sr>,

if it is tried, the error indicator Z is set

to one.
Affected: (IR), affections of the specified

instructions. Time: 2.0 us

MIX 3 Multiply index by 3 Code: 143 200

Format: MIX3

The X register is set equal to the contents

of the A register minus one multiplied

by three, i.e.,

(X) < [(A) —1] *3

Affected: (X) Time: 1.0 us

Inter Level Register Instructions

In the NORD-10/S there are 16 complete sets of registers and status indicators,

one set for each level.

The access to and from registers outside the current program level is by two

instructions:

IRR Inter Register Read

IRW Inter Register Write

The format of this instruction is as follows:

15 6 32 0

i level dr
 IRW

ND-06.008.01

340

Bits 0-2 specify the register to be read, using the same codes and

mnemonics as are used for specifying destination registers for the register

operations. Refer to Section 3.2.3.

Bits 3-6 specify the program level number. [t is possible to read the cur-

rent program level as well as all outside program levels.

IRR Inter register read Code: 153 600

Format: IRR <levelg * 10g> <dr>

This instruction is used to read into the A

register on current program level one of the

general registers inside/outside current program

level. [f bits 0-2 are zero, the status register

on specified program level will be read into

the A register bits 1-7, with bits 8-15 and

bit O cleared. The IRR instruction is

privileged. Time: 1.4 us

Example:

The instruction IRR 160 DP will copy the contents of the program

counter on program level 14 into the A register on current program

level.

IRW Inter register write Code: 153 400

Format: IRW <levelg * 10g> <dr>

This instruction is used to write the A

register on current program level into

one of the general registers. Itis also

possible to write into the registers on

current level. Then, if the P register

is specified, the IRW instruction will

be a dummy instruction. If bits 0-2

are zero, the A register bits 1-7 are

written into the status register on

specified level. The |RW instruction

is privileged. Time: 1.4 us

Example:

The instruction |RW 110 will copy the bits 0-7 of the A register on

current program level into the status register on program level 9.

ND-06.008.01

3-41

3.24 Skip Instructions

15 1110 87 6 5 32 0

SKP cond. 00 sr dr

SKP Skip next instruction if specified condition Code: 140 000

is true.

Format: SKP <dr> <cond.> <sr>

The cond. field specifies one of eight con-

ditions between the registers dr and sr.

If the specified condition is true, the next

instruction is skipped. If not, the next

instruction is not skipped. The register

dr (destination register) and sr (source

register) are specified as for register

operation registers. See Section 3.2.3.

Note that bits 6 and 7 are both zero.

Otherwise, the instruction would belong

to the EXTended instruction. See

Section 3.2.3.2.

The SKP conditions test upon the result

of the arithmetic expression (dr) — (sr)

which set the four indicators:

S sign

z result zero

c carry

o overflow Time:

No skip: 0.8 us

Skip: 1.1 us

The eight SKP conditions are as follows: (next page)

ND-06.008.01

3—42

Mnemonic

Condition

field

EQL

GEQ

GRE

MGRE

UEQ

LSS

LST

000

001

011

100

101

Condition

true if:

z=1

s=0

sVo=0

c=1

z=0

s=1

sYo =

Equal. The condition tests

for equality between the

source and destination reg-

isters (dr) = (sr) = 0.

Greater or equal to. (dr) —

(sr) = 0. The contents of

the source and destination

registers are treated as

signed numbers. Overflow

is not taken care of.

Greater or equal to. (dr) —

(sr) = 0. The contents of

the source and destination

registers are treated as

signed numbers. Overflow

is taken care of.

Magnitude greater or equal

to. (dr) — {sr} = 0. The

contents of the source and

destination registers are

treated as unsigned mag-

nitudes, where 000 000 is

the lowest and 177 777 the

highest number. Overflow

is taken care of.

Unequal to. The condition

tests for equality between

the source and destination

registers (dr) # (sr) # 0.

Less than (dr) — (sr}) < 0.
The contents of the source

and destination registers

are treated as signed num-

bers. Overflow is not taken

care of.

Less than (dr) — (sr) < 0.

The contents of the destin-

ation and source registers

are treated as signed num-

bers. Overflow is taken

care of.

ND-06.008.01

343

Condition Condition

Mnemonic field true if:

MLST 111 c=0 Magnitude less than (dr) —

(sr) < 0. The contents of

the source and destination

registers are treated as un-

signed magnitudes, where

000 000 is the lowest num-

ber and 177 777 is the

highest number. Overflow

is taken care of.

By swapping the register code in the sr and dr fields and inverting the

relationship code, it is also possible to test these relationships.

> Greater than

< Less than or equal

The programmer is advised to use the same format as in these examples

when specifying a skip instruction. (The mnemonic IF and the number O,

which both have the value zero, are used for easy readability.)

Comparing a register with zero:

SKPIF DL UEQ O Skipif L register # 0

SKP IF DX GRE 0 Skip if X register =0

SKPIF DB LSS O Skipif B register <O

SKPIF O LSS ST Skip if T register >0

SKPIF 0 GRE SD Skipif D register <O

Comparing the arithmetic value of the contents of two registers:

SKP IF DD EQL SL Skip if D register = L register

SKP IF DT UEQ SX Skip if T register # X register

SKP IF DB LSS SA Skipif B register < A register or
Skip if A register > B register

SKP IF DX GRE SB Skip if X register = B register or
Skip if B register < X register

Comparing two magnitude numbers:

SKP IF DL MGRE ST Skip if L register = T register or

Skip if T register < L register

SKP IF DB MLST SX Skip if B register < X register or

Skip if X register > B register

The magnitude tests are especially useful when comparing the relationship

between memory addresses which are represented as magnitude numbers

in a computer with more than 32K memory.

ND-06.008.01

3.25

344

Argument Instructions

15 1110 9 8 7 0

ARG fuPction number

Argument instructions operate on registers. The function field is used to

specify one out of eight argument instructions. The number field is used to

specify the argument, a signed number ranging from —128 to 127.

Bits 8 and 9 in the function field specify one out of four registers, B, A, T

or X, and bit 10 one of the operations: set argument to or add argument to.

The eight argument instructions are:

SAA Set argument to A register Code: 170400

Format: SAA <number>

AAA Add argument to A register Code: 172400

Format: AAA <number>

SAX Set argument to X register Code: 171400

Format: SAX <number>

AAX Add argument to X register Code: 173 400

Format: AAX <number>

SAT Set argument to T register Code: 171000

Format: SAT <number>

AAT Add argument to T register Code: 173000

Format: AAT <number>

SAB Set argument to B register Code: 170 000

Format: SAB <number>

ND-06.008.01

3—-45

AAB Add argument to B register Code: 172 000

Format: AAB <number>

Time: 1.1 us

An argument instruction should be specified by means of one of the eight

mnemonics listed above.

Examples of argument instructions:

Example 1:

Set the contents of the T register equal to 13g. Bits 8-15 will become zero:

SAT 13g

Example 2:

Set the contents of the B register equal to —26g. Bits 8-15 will become one,

sign extension:

SAB —26g

Example 3:

Add 3 to the contents of the X register. The addition is modulo 215

AAX 3

Example 4:

Subtract 6 from the contents of the A register (module 21 5).

AAA —6

Example 5:

The contents of the A register will be 177 40g after the execution of this

instruction (sign extension).

SAA —140g

In an add argument instruction the carry and overflow indicators are set

according to the same rules as apply for the ADD instruction. See Section

3.1.4.

ND-06.008.01

Revision A

346

3.26 Bit Operation Instructions

15 11 _10 76 3 2 C

BOP sub-instruction bn dr

BOP Bit Operation

The BOP instruction specifies operation on single bits in one of

the seven general registers, or the status register.

The specific bit to be manipulated is specified by the <dr> and

<bn> fields in the instruction. The <dr> field specifies the

particular register and the <bn> field the particular bit in that

register.

The register dr is specified by means of the same mnemonics as

used for destination registers in the ROP and SKP instructions

(see Section 3.2.3), except if dr = O the status register is

specified.

The BOP instruction may use a one bit accumulator register, K,

to hold temporary results.

Sixteen different sub-instructions are available in the BOP in-

struction.

In the following description ““bit'’ means the bit specified by

destination register dr and bit number bn. Note that bn is

specified by octal numbers and the "bits" are numbered 0, 10,

20, 30, ..., 170.

The eight control indicators of the status register which may be

operated upon by means of the BOP instruction should be

specified with the following mnemonics: (Subscriptq signifies

the complement of the specified bit.)

SSPTM Page table mode (SSPTM = 0)

SSTG Rounding indicator for floating point operations

SSK One bit accumulator indicator

SSZ Error indicator

SSQ Dynamic overflow indicator

SSO Static overflow indicator

SSC Carry indicator

SSM Multi-shift link indicator

ND-06.008.01
Revision A

3-47

3.26.1 Bit Skip Instructions

Four sub-instructions are available to test the setting of the specified bit.

BSKP ZRO <bn> <dr> Skip next instruction if bit = 0.

Time: 1.1/1.4 us*

BSKP ONE <bn> <dr> Skip next instruction if bit= 1

Time: 1.1/1.4 us*

BSKP BCM <bn> <dr> Skip next instruction if bitg = K

Time: 1.7/1.9 us*

BSKP BAC <bn> <dr> Skip next instruction if bit= K

Time: 1.7/1.9 us*

3.2.6.2 Bit Setting Instructions

Four sub-instructions are available to set the specified bit.

BSET ZRO <bn> <dr> bit <~ 0

Time: 0.6 us

BSET ONE <bn> <dr> bit < 1

Time: 0.6 us

BSET BCM <bn> <dr> bit < bitg, complement bit

-Time: 0.6 us

BSET BAC <bn> <dr> bit « K

Time: 1.4 us

* False/True

ND-06.008.01

3.2.6.3

3-48

One Bit Accumulator Instructions

Eight sub-instructions are available to specify operations between the

specified bit and the one bit accumulator, K.

BSTA <bn> <dr>

BSTC <bn> <dr>

BLDA <bn> <dr>

BLDC <bn> <dr>

BANC <bn> <dr>

BORC <bn> <dr>

BAND <bn> <dr>

BORA <bn> <dr>

bit+ K, K< 0

bit < Kg, K < 1

K <« bit

K*—bito

K < bitg A K

K < bitg V K

K< bitAK

K< bitVK

ND-06.008.01

Store and clear

Time: 1.6 us

Store complement

and set.

Time: 1.6 us

Load

Time: 1.4 us

Load complement

Time: 1.4 us

L.ogical AND

complement

Time: 1.4 us

Logical OR

complement

Time: 1.4 us

Logical AND

Time: 1.4 us

Logical OR

Time: 1.4 us

3.2.7

3-49

Some examples of correctly specified bit operation instructions.

Example 1:

Skip next instruction if the carry indicator is set.

BSKP ONE SSC

Example 2:

Reset the static overflow indicator.

BSET ZRO SSO

Example 3:

Complement the sign bit in the T register (complement a floating point

number).

BSET BCM 170g DT

Example 4.

Set bit 6 in the X register to one.

BSET ONE 60g DX

Example 5:

Copy A register bit 14 into X register bit.

BLDA 160g DA % K < A bit 14

BSET BAC 150g DX % X bit 13 <, K« 0

Accumulator Transfer Instructions

The internal registers in NORD-10/S which cannot be reached by the register

instructions are controlled by the following four instructions:

TRA Transfer to A register (Section 3.2.7.1)

TRR Transfer from A register (Section 3.2.7.2)

MCL Masked clear (Section 3.2.7.2)

MST Masked set (Section 3.2.7.2)

ND-06.008.01

3-50

The registers which are read and/or controlled by these instructions are:

Name Codeg Description

STS 1 Status register. Bits 0-7 may be read or set, while

bits 8-11 (PL), bit 14 (PONI) and bit 15 (IONI) may
only be read.

OPR 2 Operator’s panel switch register (see Section 7.2).

LMP 2 Operator’ panel lamp register (see Section 7.3).

PGS 3 Paging status register (see Section 6.5.2).

PCR 3 Paging control register (see Section 6.3.1)

PVL 4 Previous level. The contents of the register are:

IRR <previous level * 10g> DP (see Section 5.4).

lc b Internal interrupt code (see Section 5.4)

IHE 5 Internal interrupt enable (see Section 5.4)

PID 6 Priority interrupt detect (see Section 5.1)

PIE 7 Priority interrupt enable (see Section 5.1)

CCLR 10 Clear cache (see Section 9.3.2)

CSR 10 Cache status register (see Section 9.3.3)

ALD 12 Automatic load descriptor (see Section 8.2.4)

CILR 12 Cache inhibit limits register (see Section 9.2.5)

PES 13 Memory error status (see Section 5.4.11)

ECCR 15 Error correction control register (see Section 5.5.2)

PEA 15 Memory error address {see Section 5.4.11)

Table 3.3: Survey of Registers Controlled by Accumulator Transfer

Instructions

Codes not shown should not be used. See also Table 3.4.

There are also two instructions for accessing single registers outside current

program level (see Section 3.2.3.3).

ND-06.008.01

3.2.71

3.2.7.2

[ransfer to A Register

TRA Transfer to A register Code: 150 000

Format: TRA <register name>

The register which may be transferred to

the A register with the TRA instruction

is shown in Table 3.4. The contents of

the register specified by the <register

name>> are copied into the A register.

The operator‘s panel and the paging

systems are optional, and without these

options a TRA instruction, which tries

to read a non-implemented register, will

cause the A register to be cleared. The

TRA instruction is privileged.

Time: 2.1 us

Transfer from A Register

The transfer from the A register may be either an ordinary transfer of

all 16 bits or a selective setting of zeros and ones.

The three sub-instructions are:

TRR

MCL

Transfer to regsiter Code: 150 100

Format: TRR <register name>

The contents of the A register are copied

in the A register specified by <register

name>. The registers which TRR may

operate on are shown in Table 3.4. The

TRR instruction is privileged.

Time: 2.4 us

Masked clear Code: 150 200

Format: MCL <register name>

For each bit which is a one in the A register

the corresponding bit specified by <register

name> will be set to zero. The register which

MCL may operate on is shown in Table 3.4.

The MCL instruction is privileged.

Time: 2.9 us

ND-06.008.01

3-52

MST Masked set Code: 150 300

Format: MST <register name>

For each bit which is a one in the A register

the corresponding bit in the register specified

by <register name>> will be set to one. The

registers which MST may operate on are

shown in Table 3.4. The MST instruction is

privileged.

Time: 2.9 us

Register
Name Codeg TRA TRR MCL MST

STS 1 X X X X

OPR 2 X

LMP 2 X

PGS 3 X

PCR 3 X

PVL 4 X

HC 5 X

IE 5 X
PID 6 X X X X

PIE 7 X X X X

CCLR 10 X

CSR 10 X

ALD 12 X

CILR 12 X

PES 13 X

ECCR 15 X

PEA 15 X

Table 3.4: Accumulator Transfer Instructions

ND-06.008.01,

3.3

3.3.1

3-63

INPUT/QUTPUT CONTROL INSTRUCTIONS

I0X Input/Output execute Code: 164 000

Format: 10X <device register address>

Time: 1.7 us

15 1110 0

10X device register address

All program controlled transfers between the CPU A register and the

external devices are controlled by using the 10X instruction. The 10X

instruction is loaded into the instruction register, IR, of the CPU. The

CPU in its turn generates the Input/Output timing and enables the

selection of the appropriate device, which is specified by its device register

address, <device register address>, bits 0-10. These 11 bits define an

upper limit of 2048 device register addresses to the number of registers

that may be addressed. Some registers may require two device register

addresses, one for reading and one for writing. Different devices will,

however, require different number of devices register addresses. Thus,

the maximum number of physical devices that may be connected will

depend on the specific configuration of devices.

Simple devices will usually require at least three different instructions

(addresses), write control register, read status register, and read or write

data buffer register. More complex devices like magnetic tape units

may need up to eight instructions. Instructions for the same device are

assigned successive device register addresses.

The 10X instruction is privileged. See Section 6.5.1.

Recommended Device Addresses

Device addresses used for Norsk Data A.S. produced equipment on a

standard Input/Output bus follow a preset assignment. The standard

address formats for the different groups of devices are shown in Figure

3.5.

ND-06.008.01

3-54

Standard Address Bits

Device Group Group 10 9 8 7 6 56 4 3 2 1 0

Address

Directly controlled e 000 Ole| O] 0| O] register number

registers

Synchronous e 100 0O|e|[0|0|1|modem |2|% |2
Modems no. 2158

Asynchronous e 200 Ole| 0| 1] O] display T ls|s

Modems no. §le|5

Teletypes e 300 O|le| 0| 1| 1| Teletype g 3 &
no. SIE|s

o o +

Paper tape devices, e 400 O|lel| 1| 0| O device B3|

line printers, etc. type 1 E|S

Mass storage e 500 O|le| 1| 0[] 1] mass reg. | ;

devices storage | no. | E
no. &

Plotters, other e 600 O|e| 1| 1| O] devicetype | 5| &

DMA devices +reg. no. £l §

Miscellaneous e 700 Ofef[1|11 8

88 88 8 ¥~
]2 ¥8 <

Table 3.5: Standard Device Addresses for Norsk Data Produced J:'quipment

The e bit is used for extension of the groups, extension: e= 1.

The e is normally equal ‘to zero.

channel = 0 input channel, i.e., input devices

1 output channel, i.e., output devices

0 data register
control =

0 input transfer
transfer = 1 output transfer

ND-06.008.01

1 status or control registers

3-55

Bit 10 is used to distinguish between Norsk Data produced and customer

produced equipment, bit 10 equals zero: Norsk Data produced equipment.

In the following, some examples are given of device addresses. For further

programming specifications a NORD-10 Input/Output manual should be

consulted.

Example 1:

Teletype Addresses

The codes below are relevant for the first Teletype, Teletype number Q.

The codes for the first eight Teletypes are found by adding 10g * N for

the codes given, where N is the specific Teletype number.

Input Channel

I0OX 300 Read Data Register

I0X 302 Read Status Register

IOX 303 Write Control Register

Output Channel

I0X 305 Write Data Register

IOX 306 Read Status Register

I0X 307 Write Control Register

Example 2:

Paper Tape Reader Addresses

I0OX 400 Read Data Register

IOX 402 Read Status Register

I0OX 403 Write Control Register

Example 3:

Paper Tape Punch Addresses

10X 411 Write Data Register

10X 412 Read Status Register

I0X 413 Write Control Register

ND-06.008.01

3-56

Example 4:

Line Printer Addresses

I0X 431 Write Data Register

IOX 432 Read Status Register

{OX 433 Write Control Register

Example 5:

The standard device addresses for some of the mass storage devices are as

follows:

500 Disk | with four units

510 Disk |1 with four units

520 Magnetic tape | with four units

530 Magnetic tape || with four units

540 Drum |

550 Drum {I

560 Drum [il

570 Drum |V

and the standard register addresses within each device:

0 Core Address Register

3 Sector Block Address Register

4 Status Control Register

7 Word Count Register

Example 6:

Drum Addresses

The codes below are relevant for drum |.

I0OX 540 Read Core Address

I0X 541 Load Core Address

IOX 542 Read Sector Counter

I0OX 543 Load Block Address

IOX 544 Read Status Register

IOX 545 Load Control Register

IOX 547 Load Word Count Register

ND-06.008.01

Revision A

3-57

3.3.2 Format of Status and Control Word

The format of status and control word may be assigned by the designer

of each device controller. The following standard is used by Norsk Data

for its own device control cards (when applicable) and is recommended

for customer use.

Status Word

Bit Ready for transfer, interrupt enabled

Error interrupt enabled

Device active

Device ready for transfer

Inclusive OR of errors

Error indicator

Error indicator

Error indicator

Error indicator

Error indicator

10 Error indicator

11 Operational mode of device

12 Operational mode of device

13 Operational mode of device

14 Operational mode of device

16 Operational mode of device

O
C
O
N
O
O
O
A
P
_
L
W
N
-
—
-
0
O

Control Word

Bit Enable interrupt on device ready for transfer

Enable inerrupt on errors

Activate device

Test mode

Device clear

Address bit 16

Address bit 17

Not assigned

Not assigned

Unit

10 Unit

11 Device operation

12 Device operation

13 Device operation

14 Device operation

15 Device operation

C
o
~
N
O
O
A
A
P
W
N
-
—
_
O

ND-06.008.01

Revision A

3.4

3.4.1

3-58

SYSTEM CONTROL INSTRUCTIONS

The following seven instruction are denoted as the system control

instructions: = -

ION Interrupt system on

IOF Interrupt system off

IDENT Identify Input/Output interrupt

PON Memory management on

POF Memory management off

MON Monitor call

WAIT Wait or give up priority

Except from the MON instruction, all the system control instructions

belong to the class of privileged instructions. See Section 6.5.1.

Interrupt Control Instructions

Note: A complete description of the NORD-10/S Interrupt System is

found in Chapter b.

The NORD-10/S computer has a priority interrupt system with 16 program

levels. Each program level has its own set of registers and status indicators.

The priority is increasing: program level 15 has the highest priority, pro-

gram level O the lowest.

The arrangement of the 16 program levels are as follows:

15 Reserved extremely fast user interrupts

14 Internal hardware status interrupts

13-10 Vectored interrupts, maximum 2048 vectored interrupts

9-8 System programming

7-0 User programming levels

All 16 program levels can be activated by program control. In addition,

program level 15, 13, 12, 11 and 10 may also be activated from external

devices.

The program level to run is controlled from the two 16-bit registers:

PIE Priority interrupt enable

PID Priority interrupt detect

Each bit in the two registers is associated with the corresponding program

level. The PIE register is controlled by program only.

ND-06.008.01

3-59

The PID register is controlled both by program and hardware interrupts.

At any time, the highest program level which has its corresponding bits

set in both PIE and PID is running, i.e., the contents of the PL register.

The PIE and PID are controlled by the TRA, TRR, MST and MCL instruc-

tions. See Section 3.2.7.

When power is turned on, the power-up sequence will reset and PID and

the register set on program level zero will be used. Two instructions are

used to control the on-off function of the interrupts system.

ION Interrupt system on Code: 150 402

Format: ION

The ION instruction turns on the interrupt

system. At the time the ION is executed,

the computer will resume operation at the

program level with highest priority. If a

condition for change of program levels

exists, the ION instruction will be the last

instruction executed at the old program

level, and the old program level will point

to the instruction after ION. The interrupt

indicator on the operator’s panel is lighted

by the ION. The ION instruction is

privileged. See Section 6.5.1.

Time: 1.1 us

IOF Interrupt system off Code: 150 401

Format: 10F

The IOF instruction turns off the interrupt

system, i.e., the mechanisms for changing of

program levels are disabled. The computer

will continue operation at the program level

at which the IOF instruction was executed,

i.e., the PL register will remain unchanged.

The interrupt indicator on the operator’s

panel is reset by the IOF instructions. The

IOF instruction is privileged. See Section

6.5.1.

Time: 1.1 us

Initialization of the interrupt system is described in Section 5.2,

ND-06.008.01

In addition, the following three registers are available to ease the interrupt

programming: i !

-HE Internal interrupt enable

IC Internal interrupt code

PVL Previous level causing internal hardware status interrupt

Their uses are found in Section 5.4. In NORD-10/S there are possibilities

for 2048 vectored Input/Output interrupts where each physical Input/

Output unit will have its own unique identification code and priority.

The IDENT instruction is used to distinguish between vectored interrupts.

IDENT ldentify vectored interrupts Code: 143 600

Format: IDENT <program level number>

When a vectored interrupt occurs, the IDENT

instruction is used to identify and service the

actual Input/Output device causing the inter-

rupt. Actually, there are four IDENT instruc-

tions, one to identify and serve Input/Output

interrupts on each of the four levels 10, 11,

12 and 13. The particular level to serve is

specified by the program level number.

The four instructions are:

IDENT PL10 lIdentify Input/Qutput interrupt on Code: 143 604

level 10

IDENT PL11 Identify Input/Output interrupton Code: 143611

level 11

IDENT PL12 Identify Input/Output interrupt on Code: 143 622

level 12

IDENT PL13 Identify Input/Output interrupt on Code: 143 643

level 13

The identification code of the Input/Output

device is returned to bits 0-8 on the A register

with bits 9-15 all zeros.

Hf the IDENT instruction is executed, but

there is no device to serve, the A redister
is unchanged. An IOX error interrupt to

level 14 will occur if enabled. Refer to

Section 5.4.7.

ND-06.008.01

Revision A

3-61

If several devices on the same program level

have simultaneous interrupts, the priority

is determined by which Input/Output Slot

the device is plugged into, and the interrupt

line to the corresponding P1D bit will remain

active until all devices have been serviced.

When a device responds to an IDENT, it

turns off its interrupt signal. The IDENT

instruction is privileged. See Section 6.5.1.

Time: 1.9 us

For NORD-10/S the identification codes are standarized for Input/Output

devices delivered from Norsk Data.

Table 3.6 shows the 10X addresses and IDENT codes used in standard

software.

34.2 Memory Management Control Instructions

A full description of memory management is given in Chapter 6. The

paging system is controlled by the two privileged instructions:

PON and POF

PON Memory management on Code: 150410

Format: PON

This instruction should only be used with

the interrupt system on and with the neces-

sarry internal hardware status interrupts

enabled. The page index tables and the

PCR registers should be initialized before

PON is executed. The PON instruction

is privileged. See Section 6.5.1.

The instruction executed after the PON

instruction will use the page index table

specified by PCR.

Time: 1.1 us

ND-06.008.01

POF

3-62

Memory management off Code: 150404

Format: POF

This instruction is a privileged instruction and

may only be executed if the ring bits are 11

or 10. See Section 6.5.

The instruction will turn off the memory

management system, and the next instruc-

tion will be taken from a physical address

(in lower 64K), specified by the virtual

address following the POF instruction.

The CPU will be in an unrestricted mode

without any hardware protection features,

i.e., all instructions are legal and all memory

"available’’.

Time: 1.1 us

3.4.3 Monitor Call Instruction

MON Monitor Call Code: 153 000

Format: MON <number>

The instruction is used for monitor calls,

and causes an internal interrupt to program

level 14. The parameter <number> follow-

ing MON must be specified between —200g

and 177g. This provides for 256 different

monitor calls. This parameter, sign extended,

is also loaded into the T register on program

level 14.

Time: 1.6 us

ND-06.008.01

3-63

344 Wait or Give Up Priority

WAIT Wait Code: 151 000

Format: WAIT <number8>

The WAIT instruction will cause the com-

puter to stop if the interrupt system is

not on. The program counter will point

to the instruction after the WAIT.

In this programmed wait the STOP button

on the operator’s panel is lighted. To

start the program in the instruction after

the WAIT, push the CONTINUE button

or type ! on the console TTY.

If the interrupt system is on, WAIT will

cause an exit from the program level now

operating (the corresponding bit in PID

is reset), and the program level with the

highest priority will be entered, which

normally will then have a lower priority

than the program level which executes the

WAIT instruction. Therefore, the WAIT

instruction means '‘Give up priority”’.

If there are no interrupt requests on any

program level when the WAIT instruction

is executed, program level zero is entered.

A WAIT instruction on program level zero

is ignored.

Note that it is legal to specify WAIT fol-

lowed by a number less than 400g. This

may be useful to detect in which location

the program stopped. The WAIT instruction

is displayed at the operator’s panel, IR

register. The WAIT instruction is privileged.

See Section 6.5.1.

Time: 2.4 us

ND-06.008.01

Revision A

3.5 CUSTOMER SPECIFIED INSTRUCTIONS

The remaining free codes on the skip instruction may be used to augment

the NORD-10/S instruction set. The codes to be used for customer

specified instructions are as follows:

1401 XX 1403XX 1406XX 1407XX
1411XX 1413XX 1415XX 1417XX

1421XX 1423XX 1425XX 1427XX

1431XX 1433XX 1435XX 1437XX

These 16 instructions have provisions for 16 new entry points in a

Read-only-memory outside the address space in the 1K standard

Read-only memory.

If these instructions are not implemented, they will cause an internal

hardware status interrupt to level 14 (ROM out of range).

All the 16 customer specified instructions have the source (sr) and destina-

tion (dr) fields available for further specifications.

These fields may either be used to let the customer specified instruction

operate on the general registers, or used to augment the number of cus-

tomer specified instructions.

If the sr and dr fields are used to increase the number of customer

specified instructions, up to 1024 instructions may be added.

Norsk Data A.S. should be contacted for further information on specifica-

tions and programming rules for the NORD-10/S micro-processor.

ND-06.008.01

3-65

DEVICE STANDARD EXTENSION
I -

: Level IDENT {OX IDENT 10X

Tape punch 10 2,22 410-413, 414-417| 32 +1000

Tape reader 12 2,22 400-403, 404-407| 32 +1000

Line printer 10 3,23 430-433, 434-437| 33 +1000

Card reader 12 3,23 420-423, 424-427| 33 +1000

Sync. modem 10, 12| 4,14 100-107, 110-117| 20, 24 120-127, 130-137

Digital registers 10, 12 17 770-777 27 +1000

Teletype 10,12| 1,5,6,7, | 300-377 50-57 +1000

44-47

Async. modem 10, 12| 60-67 200-277 70-77 +1000

Analog/digital

converter 720-727 +1000

Digital/analog

converter 730-737 +1000

Versatec plotter 11 4 600-607 14 +1000

Disk, 10 MB 11 1,5 500-507, 510-517,

Drum 11 2,6 540-547, 550-557

Mag. tape 11 3,7 520-527, 530-537

Disk, 33/66/250

MB 11 1540-1547

Floppy Disk 11 1660-1567

Real-time clock 13 1 10-13 2 14-17

Table 3.6: Standard 10X addresses and IDENT codes

ND-06.008.01

Revision A

4.1

4.1.1

THE INPUT/OUTPUT SYSTEM

INPUT/OUTPUT HARDWARE

General Description

In NORD-10/S all Input/Output device interface cards are made to a com-

mon standard. The Bus Control modules contain a prewired bus with a

number of identical interface slots permitting any mixture of devices with-

out changing the backwiring and plug panel. Device plugs are also to a

common standard.

This system permits the use of printed backplane wiring for all wiring

within one module. Cable connectors are plugged directly into the back-

plane.

A Local I/0O Bus is controlled by a Bus Receiver, and all devices connected

to this module may be programmed for transfer of characters or words

one by one via the A register or for transfer directly to memory, direct

memory access.

The direct memory access channel, DMA, has a transfer capacity of 1M

word/second. There may be a single very high-speed device requiring

this speed, or several different slower devices sharing the channel. In the

latter case, there will be no channel time overhead in switching between

devices. Thus, several devices using the channel simultaneously, will be

given a total throughput equivalent to the maximum speed of the channel.

An optional controller which permits control of the devices from two
different CPU’s, multi-machine environment, is also available.

All modules shown in Figure-4.1 are standard 19’ modules. The maxi-

mum size memory is 266K. The CPU module contains the CPU and 8

standard memory slots.

The connection between the CPU module and the Bus Control module

is through the Main Input/Output Bus. The local bus in the Bus Control

module is logically the same general Input/Output bus only separated

from the first by electronic switches. Each new Bus Control module

requires a Bus Receiver that contains the necessary buffer and control

and also 16 memory address registers to be used by the local Input/Output

devices in that control module. Thus, in case of DMA transfer, the

individual device need not supply the memory address, since this is

integrated in the controller.

ND-06.008.01

Revision A

4-2

OPTIONAL MULTIPORT MEMORY MODULE

£

< Memory Bus

Modules, Memory Modules,
Max.64K Port Max.64K

1 (Max.4)

another

Multiport
CPU MODULE Mem.Module

QOptional
Multipor
Memory

Bus

Trans~—

celver Registers, Arithmetic, In-
terrupt System, Operator's
Panel, Memory Management

Option, Cache Memory Op-
tion, Control.’

For details, see fig. 2.

{
|
|
|

: < CPU Bus

|
|
|
|
|
|

Y

Optional Local I/0 Bus >
Bus '

Memory

Brancher

Input/
Qutput
Interfaces

 Bus

Receiver

N

Figure 4.1: NORD-10/S Bus System

ND-06.008.01

Revision A

4.1.2

4.1.3

The position of the device interface in the modules determines the inter-
rupt priority of the device. If several devices within one module are con-
nected to the same program level, the device closest to the controller has
the highest priority within that level. Also, if two devices in the same
module compete for a direct memory access, the device closest to the
controller has the highest priority and will win the first access.

Input/Output Bus Architecture

The general layout of the Input/Output Bus system is shown in Figure 4.1.
One of the important features in this structure is the electronic separation

of the local 1/0 bus at each Bus Receiver.

Within each Bus Receiver there are provisions to protect the system from
being influenced by malfunctioning devices. This is done by giving each
Bus Receiver the possibility of disconnecting the local 1/0 bus controlled
by the Bus Receiver.

For maximum DMA throughput, a Multiport Memory and Bus Memory
Brancher should be used. See NORD-10 Input/Output manual (ND-06.004)
for hardware details of signal levels, signal definition and timing.

Vectored Interrupt Identification

The NORD-10/S has a multiprogram system with 16 program levels.

Each program level has a complete set of registers. Of these 16 program

levels, 5 are available to external devices. These are: 15, 13, 12, 11 and
10.

Several different interrupt sources may be connected to the program levels

10, 11, 12 and 13, while program level 15 is reserved for extremely fast
user Input/Output.

To identify which device is interrupting, a ““‘who are you'’ type of instruc-

tion is used. This returns a 9-bit identification from the interrupting device
to the A register. The instruction has the format:

IDENT <program level number>

and is described in Section 3.4.1.

For program level 15, which is exclusively reserved for user Input/Output,

there is no identification system, and identification is obtained by reading

a status word.

ND-06.008.01

Revision A

4.2

4.2.1

INPUT/OUTPUT PROGRAMMING

The recommended way to perform Input/Qutput in a software system

is to use standard Input/Output subroutines. Input/Output subroutines

and drivers for all standard devices are available from Norsk Data A.S.

Dafa trans;fer between‘the_ A register and an external dévice will be con-

trolled by 10X instructions containing an 11-bit “Device Register Address”

— DRA.)

For direct memory access devices, such as disks, drums and magnetic tape,

the 10X instruction is used to write or read control information to or

from the controller of the specific device. Complex devices, such as those

mentioned, may need several DRA‘s. A punch, reader, Teletype input or

Teletype output will require at least three DRA instructions.

The three instructions are:

I0X <load device control register>

{OX <read davice status register>

IOX <read device data buffer register> or

<write device data buffer register>

Norsk Data’s standard for use of the bits in device status and device control

register is shown in Section 3.3.1.

The Input/Output system makes it possible for the programmer to control

external devices in a tight and flexible manner.

Detailed information about DRA, status, control, etc., for different devices

is found in the “‘Programming Specification’’ for each device type.

Programming Examples

The following example shows.a simple subroutine which reads a byte from

the tape reader:

INPUT, SAA 4
IOX DEVC + RDR % SET CONTROL (ACTIVATE

% DEVICE)

i{OX DEVS +RDR % READ DEVICE STATUS

BSKP ONE 30 DA % DEVICE READY?

JMP * — 2 % NO

IOX RDEVB + RDR % READ DEVICE BUFFER

EXIT

RDR =400 % 1. DRA FOR TAPE READER

DEVC = 3

DEVS = 2

RDEVB = 0

ND-06.008.01

4.2.2

4.2.3

Programming examples for complex devices may be found in the appropriate
programming manuals.

Input/Output Interrupt Programming

Input/Output via waiting loops as shown in the previous section is very

ineffective due to the fact that most of the computer time will be spent

in the Input/Output loops. This may be avoided by utilizing the interrupt

system. An interrupt will occur every time the device is ready for transfer.

The necessary software will normally be:

— Input/Output subroutines which will put a byte into a device buffer.

(Software buffers.)

— Interrupt identification sequences on the programming levels which

the devices are connected to (using the IDENT instructions).

— Interrupt drivers for each device type. The identification sequence

will branch to the driver of the interrupting device. The driver will

fetch a byte from the device buffer and output it to the device (output

device) or read a byte from the device and put it into the device buffer

(input device). The user of such a system, however, will only “see’
the Input/Output subroutines and does not have to bother with details.

Design of an Input/Output Handler Routine

This is an example of a simple Input/Qutput driver system:

% PROGRAM ON LEVEL 12

RET, WAIT

INT12, SAA O

IDENT PL12 % GET INTERRUPT IDENTIFCATION

RADD SA DP % ADD NUMBER TO

% P REGISTER

JMP ERROR % IDENT 0 MEANS 1/0

% SYSTEM ERROR
JMP DRIVER1 % GO TO 1. DRIVER

JMP DRIVER2

JMP DRIVERN

JMP RET

% DRIVER FOR AN INPUT DEVICE

ND-06.008.01

DRIVERT, IOX STATUS % READ DEVICE STATUS

BSKP ZRO 40 DA

JMP ERRORD % DEVICE ERROR

IOX RBUF % READ DEVICE BUFFER

PUT BYTE INTO BUFFER ETC.

ENABLE AND ACTIVATE DEVICE FOR NEXT TRANSFER

JMP RET

ND-06.008.01

THE INTERRUPT SYSTEM

The NORD-10/S interrupt system is designed to simplify programming,
and to allow multiprogramming at extremely high efficiency.

This is achieved by use of a complete set of registers and status indicators
for each program level.

There are 16 program levels in NORD-10/S and, therefore, 16 sets of regis-
ters and status indicators. Each set consists of: A, D, T, L, X and B
registers, program counter and each of the status indicators 0,Q,2¢C,
M, K, PTM and TG.

The context switching from one program level to another is completely
automatic and requires only 1.0 us; the saving and unsaving of all regis- s
ters and indicators are included.

In addition to the 16 program levels, there are 10 internal hardware status
interrupts connected to program level 14, and a maximum of 512
vectored interrupts connected to each of the program levels 13, 12, 11
and 10.

For both internal hardware status interrupts and vectored interrupts
there is an automatic priority identification mechanism, thus, no polling
of interrupts is necessary.

The arrangement of the 16 program levels are as follows:

15: Reserved extremely fast user interrupts

14: Internal hardware status interrupts, 10.

13-10: Vectored interrupts, up to 2048 vectored interrupts.
9-8: System programming

7-0: Programming levels

The priority is increasing, program level 15 has the highest priority,
program level O, the lowest.

The structure of a large programming system may be greatly simplified
by the user of these program levels where independent tasks may be organ-
ized at different program levels with all priority decisions determined by

hardware, and with almost no overhead because of the rapid context

switching.

All 16 program levels can be activated by program control. In addition,

program levels 15, 13, 12, 11 and 10 may also be acitvated from external
devices.

ND-06.008.01

Revision A

5.1 CONTROL OF PROGRAM LEVELS

The program level to run is controlled from the two 16-bit registers:

PIE Priority Interrupt Enable

PID Priority Interrupt Detect

Each bit in the two registers is associated with the corresponding pro-

gram level. The PIE register is controlled by program only. The PID

register is controlled both by program and hardware interrupts. At

any time, the highest program !evel which has its corresponding bits

set in both PIE and PID is running.

The actual hardware mechanisms for this are as follows:

The number of the current program level is called PL (0 <PL < 15),

and this 4-bit PL register controls which register set (context block)

to use.

The PL number is constantly compared to a 4-bit register PIK. PIK

always contains the number of the highest program level which has

its corresponding bits set in both PIE and PID. Whenever PIK is un-

like PL, an automatic change of context block will take place through

a short micro-program sequence. This sequence will do the following:

1. Read PL and store it in the PVL register, previous program level.

2. Read PIK and store it into PL.

3. Resume operation with a new register set determined by PL.

This complete sequence requires only 1.0 us from the completion of

the instruction currently working when the interrupt took place, and

until the first instruction is started on the new level with its new set

of registers and status.

The programming control of the interrupt system is as follows:

PID and PIE may be read to the A register with the instructions:

TRA PID and TRA PIE.

Three instructions are available for the setting of these registers:

1. TRRPIDand TRRPIE

The TRR instruction will copy the A register into the specified register.

2. MSTPID and MST PIE

ND-06.008.01

Revision A

The MST, masked set, instruction will set the bits in the specified register

to one where the corresponding bits in the A register are ones. (The A

register is used as a mask for selection of which bit to set.)

3. MCLPID and MCL PIE

The MCL, masked clear, instruction will reset to zero the bits in the

specified register where the corresponding bits in the A register are ones.

In addition to TRA, TRR, MCL and MST, the PID register is also con-

trolled in the following ways.

External interrupts may set PID bits 15, 13, 12, 11, 10 and internal

hardware status may set PID bit 14.

The resetting of PID bits is also controlled by the WAIT instruction,

which will reset PID on current program level. (The WAIT instruction

is also called ““Give up Priority*’.)

For example, a program on program level 14, which issues a WAIT in-

struction, will cause P1D bit 14 to be zero, which again will cause a

new program level to be entered because PIK became different from

PL (= 14).

The interrupt system is also controlled by the two instructions:

ION Turn on interrupt system

I0F Turn off interrupt system

When power is turned on, the power-up sequence will reset PID, PIE

and PL, and the register set on program level zero will be used.

The ION instruction will resume operation at the highest program level

at the time ION is executed, if a condition for change of program levels

exists, the ION instruction will be the last instruction executed at the

old program level, and the P register at the old program level will point

to the instruction after ION.

The IOF instruction will turn off the mechanisms for changing of program

level, and PL will remain unchanged.

IOF and ION may also be used to disable the interrupt system for short

periods, for example in order to prevent software timing hazards.

ND-06.008.01
Revision A

5.1.1 Program Level Activation

All program levels may be activated by program, by setting the

appropriate bits in PIE and PID.

Example:

If program level 9 is already enabled, bit 9 in PIE is set, then the program

level is activated from a lower program level by setting bit 9 in PID.

SAAO

BSET ONE 110 DA % SET BIT 9 TO ONE

MST PID % SET PID BIT 9

NEXT,

The MST PID will be the last instruction executed, and the P register at

the lower program level will point to the NEXT instruction.

Note that it is not possible to program-activate a program level which

has already been activated (i.e., has its PID bit set to one), if it is
attempted, the program level will only be entered once.

ND-06.008.01 .

5.2 INITIALIZATION OF INTERRUPT SYSTEM

The initialization of the NORD-10/S interrupt system is simple. After

power-up, PIE and PL will be zero and register block zero is used. The

initialization sequence must include the following:

1; Enabling of the desired program levels by setting PIE. The IIE,

internal interrupt enable register, must also be set according to

which internal hardware status interrupts are enabled.

The program counter on all program levels used, must be initialized.

The program counter must point to the entry point of that particular

program level.

The remaining initialization of registers may be performed either at

program level itself at the time of the first entry, or together with the

initialization of the program counter. Note that if error indicator Z
has enabled internal hardware status interrupt, the Z indicator in the

status word must be set to zero on all active program levels before

the interrupt system is turned on.

A TRA IIC and TRA PEA should be executed to reset any internal

interrupt and the memory error address register.

The PID register should be set to trigger desired initial level.

The last instruction in the initialization sequence is ION.

ND-06.008.01

5.3 INTERRUPT PROGRAM ORGANIZATION

A program at a program level will be organized as a loop, which is

executed once each time the program level is activated.

ENTRX, — % FIRST ENTRY POINT

WAIT % GIVE UP PRIORITY

JMP ENTRX

Note that a WAIT instruction on program level zero will reset PID bit

zero, but since there are no program levels with lower priority, the program

on program level zero will be re-entered at the instruction following the

WAIT.

ND-06.008.01

54 INTERNAL HARDWARE STATUS INTERRUPTS

All internal hardware status interrupts are connected to program level

number 14,

Internal hardware status interrupts are individually enabled by an 11-bits

register called IIE, internal interrupt enable. IIE is set by the TRR {IE

instruction.

The internal hardware status interrupts are assigned to the |IE register

in the following way :

15 10 8 5 2 0
= i

o| o E| 8| | ~ | & &| g| S

Bit No. 11C Code| Cause

0 0 Not assigned

MC 1 1 Monitor call

PV 2 2 Protect Violation.

Page number is found in the Paging

Status Register.

PF 3 3 Page fault.

Page not in core.

1 4 4 Illegal instruction.

Not implemented instruction.

Z b B Error indicator

The Z indicator is set

Pl 6 6 Privileged instruction

10X 7 7 10X error

No answer from external device

PTY 8 10 Memory parity error

MOR 9 11 Memory out of range

Addressing non-existent memory

POW 10 12 Power fail interrupt

11-15 Not assigned
Table 5.1: /nternal Hardware Status Interrupt

ND-06.008.01

In order to optimize the processing of internal hardware status interrupts,

the instruction

TRAIIC

will return to the A register, bits 0-3, the contents of I|C, with bits 4-15

zero. (Only power fail interrupt may cause more than one source for

internal hardware interrupts, and if that is the case, power fail interrupt

will have priority immediately.)

The instruction TRA I1C will automatically reset 11C.

Note that if the interrupt is caused by the error indicator Z, the Z

indicator on that program level must be cleared by program control from

program level 14. (Otherwise, another interrupt will occur.)

Example:

LDA (3777 % ENABLE ALL INTERRUPTS

TRR IE

TRA 11C

TRA PEA % RESET ERROR LOCK

ION (Refer to Section 5.2.)

LEV14, TRA HC

RADD SA DP % COMPUTED GO TO

JMP ERROR % 0 NOT ASSIGNED

JMP MONCL % 1 MONITOR CALL

JMP PROTV % 2 PROTECT VIOLATION

EXIT14, WAIT

JMP LEV14

When an internal interrupt occurs, the P register on the offending level

has been incremented and points to the instruction after the one that

caused the interrupt.*

Note: If MOR, PF or PV occur during an instruction fetch cycle,

the P register is NOT incremented. For PF and PV, this situation

is indicated by bit 15 of the PGS register. See Section 6.5.2.

ND-06.008.01

5.4.1

54.2

In some cases, it is necessary to know which program level caused the

interna! hardware status interrupt. This is done with the instruction

TRAPVL

which reads the PV L register, previous program level (level causing inter-

nal interrupt) into bits 3-6 in the A register, with remaining bits in the

A register being equal to the code for inter-register read the P register,

i.e., the contents of the A register:

IRR <previous IeveI8 * 10g > DP

This technique gives quick access to the P register of the program level

causing the internal interrupt.

Example:

TRA PVL % A:=IRR <level> DP

EXR SA % A:=P register on offending level

COPY SA DX
LDA -1 .,X % A:=0ffending instruction

Note: PVL is only set when entering level 14 from a level with Jower

priority. Care should be taken so that programs on level 14 and level

15 do not cause internal interrupts.

Monitor Call Interrupt

A monitor call has been executed. The level may be found as previously

explained. The number of the call is automatically set to the T register

on level 14.

Note that this number is 8-bit with sign-extension, i.e., in the range

200g to 177g. See Section 3.4.3.

Protect Violation Interrupt

A protect violation has occurred. Two types of violations are possible :

— Memory protect violation

This means that an illegal reference type (Read, Write, Fetch or

Indirect) has been attempted.

ND-06.008.01

5.4.3

5.44

545

5.4.6

— Ring violation

This means that a program has tried to access an area with higher

Ring Status.

Details regarding this interrupt is found in the Paging Status register.

See Section 6.5.2.

Page Fault Interrupt

The program has tried to reference a page that is presently not in core.

Information regarding page number, etc. is found in the Paging Status

register, Section 6.5.2.

lllegal Instruction Interrupt

Attempted execution of an instruction that is not implemented causes

this interrupt.

Error Indicator Interrupt

The Z indicator in the STS register has been set. This may be caused by

several conditions:

— FDV with 0.0

— EXR of an EXR instruction

— DNZ overflow

— RDIV overflow

— Programmed setting of Z (BSET, MST or TRR)

Note: Level 14 must always reset the Z indicator on the offending

level, otherwise, a new interrupt will occur as the level is re-entered.

Privileged Instruction Interrupt

Attempted execution of a privileged instruction causes this interrupt.

The privileged instructions are listed in Section 6.5.1.

ND-06.008.01

b.4.7

5.4.8

5.4.9

5.4.10

10X Error Interrupt

The addressed Input/Output device gives no connect signal. This may

be due to a malfunctioning or missing device, or no device answers to an

IDENT instruction.

Memory Parity Error Interrupt

A memory parity error has occurred. The least significant 16 bits of

the failing address can be read from the PEA register {TRA PEA).

Further information may be read from the PES register.

Memory Out of Range Interrupt

This interrupt occurs when the program addresses non-existing memory.

The least significant 16 bits of the referenced address can be read from the

PEA register.

Further information may be read from the PES register.

Power Fail Interrupt

This interrupt is triggered by the (optional) Power Sense Unit. It is

possible for this interrupt to occur simultaneously with some other

internal interrupt. In this case, the Power Fail Interrupt has priority.

ND-06.008.01

5.5

b.6.1

MEMORY CONTROL AND STATUS

Error Detection

Two kinds of memory modules may be used:

° 18 bits; 16 data + 2 parity bits

or

® 21 bits; 16 data +5 error correction control bits

(The two kinds of modules may be mixed in local memory.)

Utilizing the error correction feature, all single errors will be corrected

and normally not reported.

All multiple errors will be reported.

Error correction on single errors is automatically done and adds 80ns to

the memory cycle.

Two internal registers will give additional information about memory

errors (Parity error or Memory out of range).

The registers can be read by the

TRA PES and

TRA PEA

instructions.

PEA (Parity Error Address) normally holds the lower 16 bits address of

the latest memory reference, while PES (Parity Error Status) holds further

information regarding the error.

As soon as a memory error occurs, the PES and PEA will be blocked, thus

preventing overwriting.

The PES has the following format:

15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0

fl g
= ~ ©

<313 lalal <l o & 5] 9<| <« 5|83 %
z o o 0 o 0 o w 0 m| Z z o s 2 =

ND-06.008.01

Bits 0-1:

Bit 2:

Bit 3:

Bits 4-5:

Bit 6:

Bit 7:

Bit 8:

5—-13

Address bits 16 and 17 of the offending address.

Error occurred during instruction fetch.

Error occurred during a DMA reference.

Not assigned.

Blocked. Memory error has occurred.

Overrun.

Error Correction. Error has occurred on a 21-bit module.

Bits 9-13 will hold a code giving additional Error infor-

mation.

Note: If a parity error has occured on an 18-bits module, this bit will

remain a zero. Bits 9-12 do not give any relevant information, while bits

13 and 14 indicate which byte the parity error occurred in.

Bits 9-13:

Bit 14:

Bit 1b:

If bit 8 is set, the code given by these bits will indicate

what kind of error occurred. Refer to Table 5.2.

If bit 8 is cleared, bits 9-12 do not hold valid information,

while bit 13 indicates parity error in upper byte.

Parity error occurred in lower byte.

Not assigned.

The blocking of PES and PEA is released as PEA is read. This means that

PES should always be read ahead of PEA.

ND-06.008.01

Revision A

Correction codes given by PES bits 9-13:

(13) (12) (11) (10) (9) No Single data | Single code| Multiple

C4 C3 C2 C1 CO Error Error Error Errors

0 0 0O O 0 Good

O 0 o0 0 1 ECO

0O 0 0 1 0 EC1

0 0 0 1 1 EO

0 0 1 0 0 EC2

0 0 1 0 1 E1

0 0 1 1 0 MEO

0 0 1 1 1 E2

0o 1 0 0 O EC3

O 1 0 0 1 1E3
0 1 0 1 0 ME1

0 1 0 1 1 E4

0 1 1 0O O E5

0 1 1 0o 1 EG

0 1 1 1 0 E7

0 1 1 1 1 h ME2

1 0O 0 O O EC4

1 0 0 0 1 E8

1 0 0 1 0. E9

1 0 0 1 1 E10

1 0 1 0 0 E11

1 -0 .1 0 '1 ' ME3

1 0 1 1 0 E12

1 0 1 1 1 ME4

1 1 0 0 O E13

1 1 0 0 1 MEDb

1 1 0 1 0 E14

11 0 1 1 ' ME6
1 1 1 0 0 E15

1 1 1 0 1 ME?7

1 1 1 1 0 MES8

1 1 1 1 1 ME9

Table 5.2.

ND-06.008.01

5.5.2

5-15

EQ-E15: Indicates which data bit was in error.

ECO-EC4: Indicates which error correction bit was in error.

MEO-ME9: Indicates multiple errors have occurred.

The blocking of PES and PEA is released as PEA is read. This means

that PES should always be read ahead of PEA.

Error Correction Control

An error correction control register gives control information to the

error correction logic. These control informations will be set by

executing a

TRR ECCR.

The format is as follows:

3 2 1 0

e 2 % ‘E’e .E’i 9

Note: Bits 0, 1 and 3 are used for test purposes only.

Bit O: will force data bit O to a one, thus giving parity error

Bit 1: will force data bit 15 to a one, thus giving parity error.

Bit 2: Parity interrupt control bit.
If this bit is a zero, only multiple errors will generate a parity

error interrupt.

If this bit is a one, all errors will generate a parity error inter-

rupt.

Note: This bit has effect on 21 bits memory modules onlv.

Bit 3: Disable. When this bit is set, error correction and parity error

interrupt are disabled.

ND-06.008.01

5.6

5-16

VECTORED INTERRUPTS

In NORD-10 there may be up to 2048 vectored interrupts, typically

each physical input/output unit will have its own unique interrupt

response code and priority.

These vectored interrupts must be connected to the four program levels

13,12, 11 and 10.

The standard way of connecting is as follows:

Level 13: Real-time clock

Level 12: Input devices

Level 11: Mass storage devices

Level 10: Output devices

The vectored interrupts are connected to the corresponding bits in the

PID register.

When a vectored interrupt occurs, the IDENT instruction is used to find

out which device gave interrupt on this program level, if several devices

have simultaneous interrupt. The priority is determined by which

Input/Output slot the device is plugged into. For further information,

see Section 4.1.3, or the Input/Output manual.

The IDENT instruction provides a very fast response time, and no polling

of devices is required.

Programming example:

LEV13, WAIT % GIVE UP

SAA 0

IDENT PL13 % IDENTIFY DEVICE ON LEVEL 13

RADD SADP % COMPUTED GO TO

JMP ERR13 % CODE 0, ERROR

JMP DRIV1 % CODE 1

JMP DRIV2 % CODE 2

JMP DRIVN % CODE N

Note that only four instructions are required from time of the interrupt

until the specific Input/Output driver is entered.

The IDENT instruction will turn off the interrupt signal of the device

which gave interrupt. If several devices have their interrupt signals on,

the interrupt line to the corresponding PID bit will remain active, and

as soon as the WAIT instruction has reset one bit in PID, this bit will be

set again, and the WAIT instruction will have no effect.

ND-06.008.01

MEMORY MANAGEMENT

The Memory Management System includes a Paging System, a Memory

Protection System and a Ring Protection System.

The Memory Management System may be used for several purposes, such

as:

- dynamic memory allocation or paging

— program relocation

maximum physical address space size is 266K words

Memory Protection of each individual page

— privileged instructions and ring-structured program protection

ND-06.008.01

6.1 MEMORY MANAGEMENT ARCHITECTURE

The Memory Management System consists of four page index tables,

16 paging control registers and control circuits.

Each page index table consists of 64 high-speed registers with a word

length of 16 bits.

The page size is fixed to 1K words, thus each page index table will map

the full 64K virtual address space of the NORD-10.

Each entry in a page index table has the following format:

15 14 13 12 11 18 9 8 7 0
g

§ E fiEL % é[E [E physical page no.

Bits 13-15: Memory protect bits.
See Section 6.4.

Bit 12: Written in page.
This bit is automatically set by hardware.

See Section 6.3.2.

Bit 11: Page used.
This bit is automatically set by hardware.

See Section 6.3.2.

Bits 9-10: Ring bits.
These bits decide which ring this page belongs to.

See Section 6.5.

Bit 8: Not used.

Bits 0-7: Physical page number.

Eight bits give a maximum of 256 physical pages or 256K

words.

Each program level has its own paging control register (PCR). The PCR'’s

make it possible to let different program levels utilize different page index

tables and ring protection.

ND-06.008.01

Revision A

6.2 VIRTUAL TO PHYSICAL ADDRESS MAPPING

A virtual address is a 16-bit address as seen from the program. By means

of the Memory Management System a virtual address (VA) may be

mapped into a physical address (PA).

This may be illustrated with Figure 6.1.

DIP: Displacement within page 0<DIP<1023

VPN: Virtual page number 0<VPN<63

PT: Page index table O0<PT<3

APT: Alternative page index table O0<APT<3

PL: Program level O0<PL< 15

PPN: Physical page number 0 < PPN <2565

R: Ring

PM: Permit flags

PTM: Page table mode (status bit 0)

PTS: Page table select flag

PL determines which PCR to use (illustrated in Table 6.1). That PCR

determines which page index table to select and VPN address an entry in

the selected page index table. The contents of this entry (PPN) together

with DIP determines the 18-bit physical address.

At the same time the protect bits of the page index table is compared

with the reference type. A Memory Protect Violation interrupt may

possibly result.

Also, the ring bits of the appropriate PCR are compared with the ring

bits of the actual page index table entry. A Permit (protect) Violation

interrupt may result. The ring bits in the page index table entry are

moved to the PCR if no Permit Violation occurs. Thus, a program can

go from a higher ring to a lower ring, never from a lower to a higher one.

ND-06.008.01

Buiddeyy
s
s
a
i
p
p
y

182I1sAY4

01
[
e
n
i
p

:1°9
dinbl4

s
s
2
1
p
p
e
®
e

T
e
2
1
s
£
y
g

)
 NS

ILd
P
®
3
1
0
9
1
2
s

UTIYlIIAM
U
O
0
I
3
D
2
1
0
S

j
u
s
w
e
o
e
T
d
S
T
I
(

v

Ld

m
u

I
z

=
SLld

@)
©

X

(0
319

sn3eis)
Wid

UoTl192°2719S
=

=

4
|LdV

Ld
4
0
d

a
d

'

-

-
7

T
\
\

m
.
\
.
fi
\

S
s
2
1
p
p
®

I
s,

¥
0
d

TBN3IITA
d1d

|
NdA

0
01

61

ND-06.008.01

6.3 CONTROL OF MEMORY MANAGEMENT SYSTEM

The Memory Management System is «controlled as follows:

6.3.1 Control of Paging Control Registers

The PCR's are set with the instruction:

TRR PCR

This instruction operates together with the contents of the A register.

The A register has the following format:

15 10 9 8 76 3 2 1 0

PT APT level 0 fring|ring

Note: Bit 2 should always be 0 when writing to PCR. Bit 2 equals

1 carries a special meaning relevent for micro-program and hardware

test programs only.

Bits 9-10: Page table number (0-3)

Bits 7-8: Alternative page table number (0-3)

Bits 3-6: Program level (PCR number) (0-15)

Bit 2: Equals zero

Bits 0-1: Ring number (0-3)

6.3.2 Control of Page Index Tables

All four page index tables are accessed as main memory residing in the

topmost 256 locations in the 64K virtual address space, i.e.:

177400g -- 177477g Page index table O

177500g — 177577g Page index table 1

177600g — 177677g Page index table 2

177700g — 177777g Page index table 3

When the program runs in ring 3 {or paging off), the virtual addresses

from 177400g to 177777g are interpreted directly as page index table

addresses and the automatic address mapping is inactive for these

addresses. For programs in ring 0, 1 or 2 the mapping function is active

for all virtual addresses and the page index table is not accessible.

ND-06.008.01
Revision A

All entries in a page index table are under program control only, except

for the two bits PGU and WIP, which are also controlled automatically

by the Memory Management System.

Bit 12: WIP — Written in page

If this bit is set, the page has been written into, and it needs to

be written back to mass storage. If it is zero, the page has

not been modified and need not be rewritten. This bit

is automatically set to one the first time a write occurs and

then remains set. It is cleared by program (whenever a

new page is brought from mass storage).

Bit 11: PGU - Page used

PGU = 1; the page has been used. The bit is automatically

set whenever the page is accessed and then remains set.

The bit is cleared by program. This bit may be used in

operating systems to determined which page should be

swapped.

The alternative page index table is used if the memory reference is not

P relative, and status bit O (PTM) is 1. This feature has two uses:

- The Operating System may easily reference data through a users’

page index table while still using its own page index table for in-

struction fetch and P relative data references.

— Special user programs may access 64K of instructions and 64K

data.

For a detailed description of mapping in different addressing modes,

refer to Table 6.1.

Addressing mode Address mapping with PTM = 1

X ,B | Mnemonic Via PT Via APT

0O 0 O (P) +disp. —

o 1 0 |1 (P) +disp. ((P) +disp.) -

0O 0 1 ,B - (B) +disp.

o 1 1 |,BI - (B) +disp.; ((B) +disp.)
1 0O 0 |, X — (X) +disp.

1 o 1 B X — {B) + (X) +disp.

1 1 0 | X (P) +disp. ((P) +disp) +(X)

1T 1 1 |,BI.X - (B) +disp.; ((B) +disp) + (X)

Instruction fetch (P) —

Table 6.1: Use of Alternate Page Table

ND-06.008.01

Revision A

6.3.3

The main principle is that all P-relative memory references are mapped

via PT and all other references are mapped via APT. This feature is used

only by processes which require access to two segments with different

virtual address spaces and gives one process access to 128K of virtual

memory.

Note: With PTM= 0, ALL addresses are mapped via PT. This is the normal

user mode.

Turning the Memory Management System On or Off

The Memory Management System is controlled by the two privileged

instructions PON and POF.

PON Turn on Memory Management System Code: 150410

{Paging on) Time: 1.1 us

The instruction executed after the PON instruction will go through

the address mapping mechanisms.

POF Turn off Memory Management System Code: 150 404

Time: 1.1 us

The instruction will turn off the Memory Management System and the

next instruction will be taken from a physical address in the lower 64K,

specified by the virtual address following the POF instruction.

The machine will then be an unrestricted mode without any hardware

protection feature, i.e., all instructions are legal and all memory

“available’.

ND-06.008.01
Revision A

6.4 MEMORY PROTECTION SYSTEM

The Memory Management System is also used for memory protection.

The system also works in 1K memory blocks (pages) and three bits in

each index table entry are used for memory protection purposes.

A protection violation will cause an internal hardware status interrupt

to level 14 and the instruction causing the violation is not executed.

The three bits used, 15-13 have the following meaning:

Bit 15: WPM — Write permitted.

WPM = 0. It is impossible to write into locations in this

page regardless of the ring bits.

WPM = 1. Locations in this page may be written into

if the ring bits allow. See Section 6.5.

If an attempt is made to write into a write protected

page, an internal interrupt to program level 14 will occur,

and no writing will take place.

Bit 14: RPM — Read permitted.

RPM = 0. Locations in this page may not be read (they may
be executed).

RPM = 1. Locations in this page may be read if the ring

bits allow. See Section 6.5.

If an attempt is made to read from a read protected page,

an internal interrupt to program level 14 will occur.

Bit 13: FPM — Fetch permitted

FPM = 0. Locations in this page may not be executed as

instructions.

FPM = 1. Locations in this page may be used as instruc-

tions.

If an attempt is made to execute in fetch protected

memory, an internal interrupt to program level 14 will

occur and the execution is not started. '

Indirect addresses may be taken both from pages which have FPM = 1

and from pages which have RPM = 1.

ND-06.008.01

Revision A

All combinations of WPM, RPM and FPM are permitted. If WPM, RPM

and FPM all are zero, this is interpreted as page not being in core, and

an internal interrupt to program level 14 is generated. The remaining

bits 0-12 may then be used, for example, to specify the mass storage

address of this page.

ND-06.008.01

6.5

6—10

RING PROTECTION SYSTEM

The Memory Management System includes a Ring Protection System,

where 64K virtual address space is divided into four different classes of

programs, or rings.

Two bits in each page index table entry are used to specify which ring

the page belongs to.

One of these ring bits, bit 10, also specifies a mode bit. If bit 10 is one,

the program executing from this page is said to be in system mode, and

it can execute all NORD-10 instructions. If this bit is zero, privileged

instructions may not be executed from this page.

The ring bits have the following meaning:

Bit 10 9

0 0 Ring O:

Programs executing from this page may not

execute privileged instructions. The program may

only access locations with ring zero. This access,

is controlled by the RPM, WPM and FPM bits.

Locations outside ring O are completely inaccess-

ible.

0 1 Ring 1:

Programs executing from this page may not

execute privileged instructions. The program may

access locations in ring 1 and ring 0. Access is

controlled by the RPM, WPM and FPM bits.

1 0 Ring 2:

All instructions are permitted when executed

from this page. The program may access locations

in ring 2, 1 and 0. This access is controlled by the

RPM, WPM and FPM bits.

1T 1 Ring 3:

All instructions are permitted and the whole

address space is accessible if not protected by the
RPM, WPM and FPM bits. The page tables may be

accessed.

ND-06.008.01
Revision A

6.5.1

An illegal ring access or illegal execution of privileged instruction will

cause an internal hardware status interrupt to program level 14, and the

instruction which caused the interrupt will not be executed.

The recommended way of using the ring bits is as follows:

Ring 0: User program

Ring 1: Compiler, assembler

Ring2: Operating system (utilities, commands)

Ring 3: Kernel of operating systems

By mapping all these programs into each other, the highest rings will have

straight-forward access (through the same page index table) to all lower

rings, and the passing of information between rings is greatly facilitated.

Associated with the ring bits in a page index table entry are the two ring

bits in each PCR.

The ring bits are initialized by means of the TRR PCR instruction. Refer

to Section 6.3.1.

A program is said to run on the ring which is indicated by the ring bits

in the page index table entry that was referenced on the last instruction

fetch cycle. For each program level, there is a PCR that holds the valid

ring bits at any given time.

It is only possible to go from a higher ring level to a lower. Attempts

to go from a lower ring level to a higher, causes an internal hardware

status interrupt and the instruction is not executed.

Privileged Instructions

The instructions available only to programs running in system mode

(ring 2 or 3) are termed privileged instructions, which are:

IOF Turn off interrupt system

ION Turn on interrupt system

POF Turn off memory management

PON Turn on memory management

WAIT Give up priority, reset current PID bit

10T NORD-1 compatible Input/Output

IDENT Identify interrupt

[0)4 Input/Qutput

ND-06.008.01

6.5.2

6—12

TRA Transfer to A register

TRR Transfer to register

MCL Masked clear of register
MST Masked set of register

LRB Load register block

SRB Store register block

IRW Inter-register write

IRR Inter-register read

Paging Status Register

The paging status register is used for further specifications when a page

fault or a memory protect violation occurs.

The instruction TRA PGS is used to read this register.

Errors lock the PGS register, TRA PGS unlocks it again.

The bits in PGS have the following meaning:

15 14 7 5 0

IF 'PM PT VPN

PGS Format

Bit 15: Memory management interrupt occurred during an instruc-

tion fetch.

Bit 14: 1 = Permit violation interrupt

0 = Ring protect violation interrupt

Permit violation has priority if both conditions occur.

Bits 6-7: Page index table number

Bits O0-5: Virtual page number

Note that bits 0-7 are the eight least significant bits of the physical page
index table entry.

If bit 15is a one, the page fault or protection violation occurred during

the fetch of an instruction. In this case, the P register has not been

incremented, and the instruction causing the violation {and the restart

point) is found from the P register on the program level which caused the

interrupt.

ND-06.008.01

If bit 15 is zero, the page fault or protection violation occurred during the

data cycles of an instruction. In this case, the P register points to the

instruction after the instruction causing the internal hardware status

interrupt. When the cause of the internal hardware status interrupt has

been removed, the restart point will be found by subtracting one from the

P register.

It is possible that to execute a floating point instruction, four page faults

may occur before the instruction can be computed. (Fetch fault. a new

page fault, data cycle fault and a new data cycle fault because the data

was placed on a page boundary.) Therefore, a minimum of four pages

in main memory is necessary in order to execute a general program

requiring 64K virtual memory space.

ND-06.008.01

6.6 TIMING

Page table access is performed in parallel with cache memory look-up,

and consequently there is no timing overhead associated with the memory

management system. However, if the cache memory option is not

installed and the memory management system is turned off, execution

times are reduced by 0.1 us for each reference to local memory (i.e.,

LDA will use 1.8 usinstead of 1.9 pus).

ND-06.008.01

7.1

OPERATOR’S PANEL

PANEL ELEMENTS

The operator’s pane! for the NORD-10/S computer has the following

elements:

An 18-bit switch register

An 18-bit light diode register

16 selector push-buttons and 16 associated light emitting diodes.

6 mode indicators
A two-digit display and two push-buttons

10 control buttons

Power on/off button

Panel key-lock O
N
O
O

A
N

ND-06.008.01

7.2 18-BIT SWITCH REGISTER

This register is used to present 18-bit data to the CPU. Normally, only

16 of these are used. The switches may be read from program with the

TRA OPR instruction. In installations with big memory (more than

64K) 18 switches and lamps may be needed to represent the possible

18-bit addresses for the ““examine memory’’ function. When the paging
system is on, switches 16 and 17 select page table number.

ND-06.008.01

7.3 18-BIT LIGHT EMITTING DIODE REGISTER

This is used to display 16-bit data or 18-bit addresses from the CPU.

Register contents, addresses and contents of memory locations may be

displayed in this register. The register 16-bits, ¢an be set with the TRR
LMP instruction {the user register — see below — must be selected).

ND-06.008.01

Revision A

7.4 16 SELECTOR PUSH-BUTTONS AND 16 ASSOCIATED LIGHT
EMITTING DIODES

These push-buttons are used to select one of 16 possible registers to be

displayed in the data display register. When one button is pushed (a

register selected), this is indicated with light in the associated diode

above the button.

The possible register selections are:

ACTIVE LEVELS

When this button is pushed, the data display (described above)

will show the active program levels. 16 diodes (0-15) are used,

one for each of the 16 levels. In this mode the lamps are provided

with after-glow so that it is possible to observe a single instruction

on a program level.

DMA ADR

If this button is pushed, the data display will show the active DMA

(Direct Memory Access) address. (See also Section 7.6.4.)

ADR

This register shows the actual memory address being referenced,

excluding DMA references and instruction (program) addresses.

P ADR

This is the memory address each time an instruction is read (fetch

cycle). Effictively the data display will show the program address.

This is the user register set by the TRR LMP instruction.

Note: If the U register is set from program by TRR LMP and

the U is NOT selected, the setting of U will disturb the displaying

of the selected register. The degree of disturbance will depend on

the frequency of the U updating related to the panel interrupt

frequency.

ND-06.008.01

DATA

Displays data going to and from memory and on the 1/0 bus.

EXM

This selection has two uses:

CPU in STOP

The data display will show the contents of the memory location

whose address is set in the switch register when the SET ADDRESS

button was last pushed {see below). When the CPU stops, this

address is preset to zero. (The selected address is always zero after

pushing the SINGLE INSTR button.) Use of the ‘/* (see Section

8.1.2) in MOPC will also set the memory address displayed.

CPU runs

The data display will show the contents of the memory location

whose address is set in the switch register. The memory location

is sampled after each panel interrupt (about every 2-3 ms). The

panel interrupt is handled directly by microprogram.

This selection will display the CPU instruction register.

STS,P,L,B, X, T,AD

If one of these is selected, the data display will show the contents of

that register. The register is sampled at each panel interrupt. There

is a complete set of these registers on each of the 16 interrupt levels,

so one has to select the appropriate level when one of these registers

is examined. See Section 7.5.

ND-06.008.01

7.5 DISPLAY LEVEL SELECT

This consists of two push-buttons, “+ and ‘‘—", and a two-digit display.

By means of the two buttons, the level may be stepped up or down. The

contents of the display show the selected level. If the display is stepped

outside the limits 0-15, the 2 digit display will shown the active program

level and the selected registers (STS, P, L, B, X, T, A or D) is taken from

the active level,

ND-06.008.01

7.6

7.6.1

7.6.2

7.6.3

CONTROL BUTTONS

These 10 push-buttons are used to control the CPU and to modify regis-

ters and memory. The function of each of the buttons is given below.

Master Clear

Pushing this button will generate a hardware master clear signal. This

signal sets the control logic in the CPU and the Input/Output system to

a defined state and the micro-programmed operator’s communication
{(MOPC) is started. If the CPU is running when “MASTER CLEAR"

is pushed, the program cannot be restarted by pushing the CONTINUE

button, because the contents of the P and A registers are lost. The PIE

register is reset by the master clear function.

Light in the MASTER CLEAR button indicates an error input to the

CPU from the operator’s communication program or one of the load

programs. The light is reset when the MASTER CLEAR button is pushed.

Restart

This button generates a restart signal. When this signal is detected by the

micro-program in stop mode, the CPU will start in address 20. The

RESTART button has no effect when the CPU is running. If the CPU

is running, the STOP button must be pushed before the RESTART. To

be sure that the program has been started on level zero, the MASTER

CLEAR button should also be pushed.

Load

The LOAD button starts automatic program load from a device. The

device may be an Input/Output device or a mass storage device, depending

on the setting of a switch register (ALD) on the Panel Control Card. The
use of this register is explained in Section 8.2.4.

When a load program is active, the LOAD button lights.

ND-06.008.01

7.6.4

7.6.5

7.6.6

7.6.7

Decode Address

This button is used in connection with the displaying of addresses (DMA

ADR, ADR or P ADR selected). When this button is pushed, the address

is not displayed directly. The address space is divided into 4K segments

and each bit in the display register represents one segment. Bit O is lighted

if address 0 - 7777g are used, etc. Light in the buttons indicates the state

of the address display register.

Set Address

When the machine is in stop mode and a memory examine is wanted, the

address must be set up in the panel switch register and the SET ADDRESS

button pushed. The address is now saved and is not changed before the

SET ADDRESS button is pushed again with a new content in the switch

register. This address is also changed when a memory examine is executed

from the console device (character ““/** used).

Note that this button is used in stop mode only. When the machine is

running, the address in the switch register is used directly.

When the machine enters stop mode, the register used by the set address

function is set to zero. This means that after a single instruction the

examined address is zero.

Deposit

When an address is selected with the SET ADDRESS button, the contents

of this cell may be changed with the DEPOSIT button. The new contents

are set up in the switch register and the DEPOSIT button pushed. The

display selection must be EXM.

Enter Register

This button is used to load a register. One of the registers STS, P, L, B,

X, T, A or D is selected with the register selection switches. Level is

selected with the level selector. The contents of the switch register are

now stored in the selected register when the ENTER REGISTER button

is pushed.

ND-06.008.01

7.6.8

7.6.9

7.6.10

Single Instruction

Pushing the SINGLE INSTRUCTION button causes a program to advance

one instruction. The address is taken from the P register and the CPU goes

back to stop mode after execution of one instruction. The instruction is

executed on the level given by the PIE and PID registers.

Continue

When this button is pressed, the machine starts running from the address

specified by the P register. The level is given by the contents of the PIE and

PID registers. If the MASTER CLEAR is first pressed, PIE is cleared and

the program is started on level 0.

If the light on the CONTINUE button is on, it indicates that the CPU is

running.

Stop

Pushing this button stops the machine, i.e., the micro-program running in

stop mode is started. The stop mode is indicated by light in the STOP

button.

ND-06.008.01

1.7

7-10

MODE INDICATORS

INTERRUPT

Indicates that the interrupt system is turned on, i.e., an ION instruction

has been executed.

PAGING

Indicates that the paging system is turned on, i.e., a PON instruction has

been executed.

RING

Four indicators show active program protect rings. These indicators

are provided with after-glow so that it is possible to observe even

the shortest execution run on each ring.

ND-06.008.01

7-11

T
O
H
L
N
O
D

=

V
e

=

.
:
m
c

m
w
m

.
_
u
<

_
.
u

m
o

._mwmm
h
m
m
_

E
—

—
3
1
5
I
1
D
3
d
E

O
O
0

O
O
0

O
O
0

O
O
0

D

Q

_1
a

v
1

X
a

1
d

S1S
HI

Wx3
®ea

n

O
O
0

O
O
0

0
0
O

0
0
O

A
P
V

.,
I
p
v

s|ena

O

d
V
N
G

a
1
V

O

l

68

o

00
OC

5606
600

606
00O

© o O

O &

Oo

S
/
0
L
-
Q
H
O
N

'S’V
V
.
L
V
A

A
S
H
O
N

ND-06.008.01

OPERATOR’S COMMUNICATION

The NORD-10/S has a micro-program in the read only memory for

communication between the operator and the machine. This program

is called MOPC (Micro-programmed Operator’s Communication).

MOPC is always running when the machine is in stop mode, or the state

of the machine, when MOPC is running, is defined as the stop mode.

The NORD-10/S may either be controlled from the NORD-10/S

operator’s panel (see Chapter 7) or from a Teletype or visual display unit.

The micro-program is designed in such a way that either the operator’s
panel or the Teletype (visual display unit) may control the NORD-10/S.

The NORD-10/S operator’s communication includes bootstrap programs

and automatic hardware load from both character oriented devices and

mass storage devices.

When communicating with the MOPC program, the following characters

are legal input characters:

Characters: Use:

0,1,2,3,4,5,6,7 Octal digits used to specify addresses

and data

@ Restart MOPC, clear PIE

$ Octal load

& Binary load

Start program in main memory

/ Specifies register or memory cell

examine

CR (carriage return) Terminator of line

LF (line feed) Echoed, no other effect

t (space) Octal number before the space is ignored

B Used to specify 64K bank number (page

table number when paging is on)

I Internal register examine

R Specifies operation on one of the eight

registers STS, D, P, B, L, A, T, Xon a

specified level

ND-06.008.01

 Characters: Use:

* Current location counter for memory

examine

All other characters are ignored and followed by “?".

ND-06.008.01

8.1

8.1.1

8.1.2

FUNCTIONS

Start a Program

Format:

<octal number> !

The machine is started in the address given by the octal number. If the

octal number is omitted, the P register is used as start address, i.e., this

is a “continue function’. The program level will be the same as when the

computer was stopped (if Master Clear has not been pushed or @ typed).

Memory Examine

Format:

<octal number> /

The octal number before the character /" specifies the memory address.

When the “/** is typed, the contents of the specified memory cell are

printed out as an octal number.

If a CR (carriage return) is given, the contents of the next memory cell

are printed out.

When the paging system is on, the Bank number (see Section 8.1.8)

specifies which page table is used, and page faults and protected violations

are ignored. In this case, <octal number> specifies a virtual address.

Example:

717/003456 % EXAMINE ADDRESS 717

717/003456 (CR) % EXAMINE ADDRESS 717

003450 (CR) % EXAMINE ADDRESSES 720

000013 % AND 721

ND-06.008.01

8.1.3 Memory Deposit

Format:

<octal number> (CR)

After a memory examine, the contents of the memory cell may be

changed by typing an octal number terminated by CR.

Example:

717/003456 3475 (CR) % THE CONTENTS OF

003450 1700 (CR) % ADDRESS 717 IS CHANGED

000123 (CR) % FROM 3456 TO 3475 AND 720

123456 % 1S CHANGED FROM 3450 TO

% 1700. 721 CONTAINS 123 AND

% REMAINS UNCHANGED

Register Examine

Format:

<octal number> R <octal number> /

The first octal number specifies the program level (0-17), if this number is

omitted, program level zero is assumed.

The second octal number specifies which register on that level to examine,

the following codes apply:

Status register, bits 0-7

D register

P register

B register

L register

A register

T register

X register N
O
O
d
W
N
-
=
0

After the "/ is typed, the contents of the register is printed out.

Examples:

R5/ A register level 0
7R2/ P register level 7

ND-06.008.01

8.15 Register Deposit

Format:

<octal number> (CR)

After a register examine, the contents of the register may be changed by

typing an octal number terminated by CR.

Examples:

R5/ 123456 54321(CR) % CONTENT OF A REGISTER

% ON LEVEL O IS CHANGED

% TO 054321

7R2/ 000044 55(CR) % CONTENT OF P REGISTER

% ON LEVEL 7 IS CHANGED

% TO 000055

Internal Register Examine

Format:

| <octal number>/

The octal number specifies which internal register is examined, the following

codes apply:

0 PANS Operator’s Panel Status, used by operator’s panel micro-program

only.

1 STS Status register, program level is contained in bits 8-11, bit 14 =

PONI and bit 15 = IONI

2 OPR Operator's panel switch register

3 PGS Paging status register

4 PVL Previous program level (GETR PVL DP)

5 I1IC Internal interrupt code

6 PID Priority interrupt detect

7 PIE Priority interrupt enable

10 CSR Cache status register, for maintenance only

11 ACTL Active level, decoded

ND-06.008.01

8.1.7

12

13

14

16

16

17

ALD

PES

MPC

PEA

Automatic load descriptor

Memory error status

Micro-program counter (will show a constant)

Memory error address

I/O transfer. Do not use.

Will show an arbitrary register. Do not use.

Internal Register Deposit

Format:

<octal number> (CR)

After an internal register examine the contents of the internal register

with the same internal register code. It may be changed by typing an

octal number terminated by CR. For deposit, the following internal

register codes apply:

0

10

1

PANC

STS

LMP

PCR

MISC

IE

PID

PIE

CCLR

Operator’s panel control, used by operator’s panel micro-

program only.

Status register, only bits 0-7 will be changed.

Operator’ panel famp register (will be overwritten unless

U register is selected)

Paging control register

““Miscellaneous’’ register (used by micro-program to con-

trol IONI, PONI, MCALL and MOPC)

Internal interrupt enable

Priority interrupt detect

Priority interrupt enable

Cache Clear

Not used

ND-06.008.01

8.1.8

8.1.9

8.1.10

12 CILR Cache inhibit limits register . ,

13 CAR Instruction-register, used by rfi‘iérdfpfbgram subrotitine only.

14 IR Instruction register, used by the EXR ‘instruction only.

15 ECCR Error correction control registler'ffij

i6 Te] - /O\tra'nsfer. Do not use.

17 - Will change an arbitrary register. Do not use.

Examples:

17/ 030013 O(CR) © 1% EXAMINE PIE AND CHANGE

% TO 000000

112/ 021540 20044 % EXAMINE ALD AND CHANGE

% CILR:TO 020044

Current Location Counter -

When * is typed; an octal iumber is printed indicating the current address

on which a memory examine or memory deposit will take place. ‘The

current location counter is set by the memory examine command /, and it

"is also incremented for each time carriage return is typed.

Break Function

When @ is typed, the MOPC is restarted. This function is also used to

terminate an octal load. PIE is set to zero.

Bank Number

Format:

<octal number> B

This command is used when the computer has more than 64K memory. The

memory is divided into 64K banks (0-3).

This command has to be used to specify the bank number when a memory

examine/deposit has to be done.

ND-06.008.01

Revision A

8.2

8.2.1

8.2,2

BOOTSTRAP LOADERS

The NORD-10 has bootstrap loaders for both mass storaae and character

oriented devices. Three different load formats are standard:

—~ Qctal format load

Binary format lpad

Mass storage |oad

Octal Format Load

Octal load is (normally) started by typing:

<physical device address> $

The operator’s communication will start taking its input from the device

with the specified device address. The actual device must conform with

the programming specification of either Teletype or tape reader. The

device address is the lowest address associated with the device.

During octal load there is no echoing of characters. All legal operators’

commands are accepted. Illegal commands terminate the loading and

2 is typed on the console. (In installatipns without console an

attention lamp is tfurned on.) Normally, @ or ! is used to terminate an

octal load.

If no device address precedes the $ command, then $ is nearly equivalent

to pushing the LOAD button on the operator’s panel. See also Section

8.2.4.)) e

Binary Format Load

Binary load is {(normally) started by typing:

<physical device address> &

Loading will take place from the specified device. This device must

conform with the programming specifications of either Teletype or

tape reader. The device address is the lowest address associated with the

device.

ND-06.008.01

The binary information must obey the following format:

Calofefrfe] [Qofu[] | <
Figure 8.1: Binary Load Format

A Any types not including ! (ASCII 41g)

B (Optional) octal number (any number of digits) terminated with a

non-octal character™® :

C (Optional) octal number terminated with the character ! (see below)

! Signals start of binary information (ASCII 41g)

E Block start address. Presented as two bytes (16 bits), most signifi-

cant byte first.

F Word count. Presented as two bytes (16 bits), most significant byte

first. (E, F and H is not included in F.)

G Binary information. Each word (16 bits) presented as two bytes,

most significant byte first.

H Checksum. Presented as two bytes (16 bits), most significant byte

first. The checksum is the 16-bit arithmetic sum of all words in G.

I Action code. If | is a blank (zero), then the program is started in

the address previously found in the octal number B (see above). If

B is not specified, B = 0 is assumed. If | is not a blank, then control

is returned to the operator‘s communication, which decodes I.

(The number B will be found in the P register on level 0.)

If no device address precedes the & command, then the & is nearly

equivalent to pushing the LOAD button on the operator’s panel (see

Section 8.2.4).

If a checksum error is detected, “?*' is typed (in installations without

console an attention lamp is turned on) on the console and control

is returned to the operator’s communication.

Note that the binary loader does not require any of the main memory.

The binary load will change the registers on level 0.

The binary load format is compatible with the format dumped by the

}BPUN command in the MAC assembler.

* Line feed (ASCII 12g) is ignored within octal numbers.

ND-06.008.01

8.2.3

8.24

Mass Storage Load

When loading from mass storage, 1K words will be read from mass storage

address O into main memory starting in address 0. After a successful load,

the CPU is started in main memory address O.

It an error occurs, the loading is terminated and /?** is typed on the con-

sole and control is returned to the operator’s communication. (Note: in

installations without console, an attention lamp is turned on.)

The actual mass storage must conform with either drum or disc program-

ming specification.

Mass storage load must be started by typing $ or &, or pushing the LOAD

button on the operator’s panel. However, this requires a special setting of

the ALD. Refer to Section 8.2.4 for details.

Automatic Load Descriptor

The NORD-10 has a 16-bit switch register called Automatic Load Descrip-

tor (ALD) (located on the Panel Driver Card). This register specifies the
load procedure to use when the LOAD button is pushed or when a single

$ or & is typed.

The ALD format is as follows:

15 14 13 12 11 0

E| R| M| O Address

Automatic Load Descriptor (ALD) Format

E Extensions

If this bit (bit 15) is 1, then the load function is extended.

Effectively, the micro-program jumps to the micro address found in

ALD, bits 0-11.

(The E bit is used when starting micrd-programmed diagnostic pro-

grams. The start address is put in ALD bits 0-11.)

ND-06.008.01

Revision A

R Restart*

If this bit (bit 14) is 1, the load function degenerates to a jump to

main memory address:

Address = 4 * {(ALD bits 0-13)

This bit is used when the bootstrap program is held in read only

main memory. {Note: E=0.)

M Mass Storage Load

If this bit (bit 13) is 1, mass storage load is taken from the device

whose {lowest) address is found in ALD bits 0-10 (unit 0). (Note:

E=R=0)

O Octal Format Load

If this bit (bit 12) is set, octal format load will take place from the

device whose {lowest) address is found in ALD bits 0-10.

If bit 12 is not set, binary format load will take place from the

device whose {lowest) address is found in ALD bits 0-10.

Note: $ will override this bit, a single $ will start an octal format

load from the device whose {lowest) address is found in ALD bits

0-10. (Note: E=R=M=0.)

* Not to be confused with the RESTART button on the operator's

panel.

ND-06.008.01

8—-12

Examples 8.2.6

Following is a table showing possible use of the ALD setting.

L'g
3lqel

000€
000€

000€
000¢

000€

ssalppe
1

ssaippen
ssaippen

ssaippen
ssaippen

000€01

o1
d
w
n
p

01
d
w
n
p

ol
d
w
n
p

ol
d
w
n
p

o1
dwnrp

ooLLLL
00LLLL

<
u
>

wody
00LLLL

<
u
>

woJ}

ssaippe
ssalppe

ssalppe
0
9
.
L
.
0

Ul
1
e
g

ul
1ie1g

peo|
Aseulg

ul
11818

peoj
|e190

0Og
wod}

peoj
0tg

woJi
peof

<
U
>

wody
0¥G

wol}
peoj

<
u
>

woly
0
¥
5
0
2
0

abeiols
sse|n

abe.ols
ssej

peo|
Aieulg

abelols
ssen

peoj
|;190

001
wo4y

00%
wouy

<
u
>

wolj
00t

wo4j
<
u
>

wodiy
0
0
%
0
1
0

peoj
|e190

peoj
|e190

peoj
Aieuig

peoj
1190

peoj
|e120

00€
wo4y

00¢
wouy

<
u
>

wody
00¢€

wo4y
<u>>

wody
0
0
€
0
0
0

peo|
Ateulg

peo|
Aseuig

peo|
Aseulg

peoj
|
1
0

peoj
|e190

a
v
o

B
B
<
u
>

$
$
<
u
>

a
i
v

buiysngd
p
u
e
w
w
o
)

ND-06.008.01

CACHE MEMORY

The Cache Buffer Memory is an option which significantly reduces the

average memory access and cycle times. This effect is particularly notice-

able when the Multiport Memory System is used, since this system has the

longest access time (see Chapter 3). This increase in average memory

speed is achieved by keeping copies of the most recently referenced

memory words in a 1K word bipolar memory called a Cache Memory.

ND-06.008.01

9.1 CACHE MEMORY ARCHITECTURE

The Cache Memory is organized as a 1K by 25 bits look-up table, as

illustrated in Figure 9.1. A word in Cache is identified with the main

memory word of which it is a copy by means of

address.

DIP PPN

Used

¥

its main memory physical

IB

 r
I
|
|
|
I

9 bits 1K x 16 bits of Data
Directory

= | I 1
CcPN UL CPU-woxd LA

I
|
|

l

PPN 8 8

Compare

 L @

AND

Data

AVAILABLE ¢

U: Used (Data valid)

DIP: Displacement within page (R 0-9)

PPN: Physical page number (MR 10-17)

CPN: Cache page number

Figure 9.1: Cache Memory Organization (not

IB

shown are the two limit

registers which hold the Cache inhibit limits.)

ND-06.008.01

The Cache Memory is homogenous, i.e., the Cache Memory does not dis-

criminate between data words, instructions or indirect addresses stored in

main memory.

Each word in the Cache Memory has the following format:

CPN, 8 BITS U DATA WORD, 16 BITS

DATA WORD: This is a copy of a word in main memory.

U: Use bit. Indicates that the Cache word

in this location is valid.

CPN: Cache Page Number. This is the physical

page number of the main memory word

of which the cache data word is a copy.

The connections between the Cache Memory and the CPU bus structure

is shown in Figure 2.2.

ND-06.008.01

9.2

9.2.1

9.2.2

9.2.3

9.24

CACHE MEMORY ACCESS

Definitions

DIP: Displacement within page 0<DIP<1023

PPN: Physical page number 0 < PPN < 255

CPN: Cache page number 0<CPN <2565

Cache Addressing

The Cache is addressed by DIP, which means that all memory locations

with the same DIP will share one location in Cache. This location will

be occupied by the word with this DIP that was accessed most recently

by the CPU.

Read Access

When the CPU presents a request for a word from memory, the DIP is

used to access the word in Cache Memory that may possibly be the re-

gested one. This is the case if CPN = PPN and U = 1, and in this case the

data is presented to the CPU registers from the Cache Memory.

If CPN #PPN or U = 0, this particular word is not present in the Cache,

and the request is forwarded to the main memory control. When the main

memory presents the data to the CPU registers, a copy is written into the

Cache Memory, at the same time setting CPN: = PPN and U: = 1 to iden-

tify this word for possible later use. The previously held word in this

location is simply overwritten.

Write Access

Requests from the CPU to write into memory are always forwarded to

the main memory control. In parallel with the main memory access, a

copy is written into the Cache Memory along with its corresponding

PPN and setting U: = 1, In this manner, the main memory will always

contain only relevant and correct information. This is of special impor-
tance in case of power failure, and when several processors have access

to a shared memory.

ND-06.008.01

9.25

Limits

set

by

the

operating

system

Cache Inhibit Area

The Cache Memory system contains two 8-bit registers which define a con-
tiguous area in memory which will not be copied into Cache when accessed.

The inhibited area includes all pages with: J

Lower limit << PPN << Upper limit
-

The inhibit feature is intended for use on memory areas that are operated

upon by high-frequency DMA transfers and/or parallel processors, to ensure

that the CPU does not operate on stale data that might reside in Cache.

Note that data is not removed from Cache when the Cache inhibit area is

expanded, therefore, expansion of the Cache inhibit area should always

be accompanied by Cache initialization (see Section 9.3.2).

“Master Clear’’ will cause all of main memory to be inhibited.

Main Memory

L
0

—_— w _______________ -1

E
R

This area will

LIMIT PPN L~ not be mapped
_ [through CACHE

U
P

— e P _______________ -1

E
R

Figure 9.2: Cache Limits

ND-06.008.01

9.3

9.3.1

9.3.2

9-6

CONTROL OF THE CACHE MEMORY

The operating system must perform two actions to control the Cache Memory:

-- Setting of the Cache inhibit limit registers.

— Initialization of the Cache Memory after a DMA transfer outside the

Cache Inhibit area. ’

Note that the Cache control instructions have no effect on machines without

the Cache Memory installed.

Setting of Cache Inhibit Limits

The €ache Inhibit Limits may be set by performing the instruction

TRR 12g

with the following contents in the A register:

15 8 7 0

Upper limit (page no.) Lower limit (page no.)

Note: An expansion of the cache inhibit area should always be followed

by the ‘‘Clear Cache’’ instruction (see Section 9.3.2).

Cache Initialization

Cache initialization is obtained by performing the ““Clear Cache’’ instruction

TRR 10g

which will clear all U-bits in the Cache Memory. After the ‘“Clear Cache’’

instruction, the Cache Memory will be disabled for 35 while the U-bits are

being cleared.

ND-06.008.01

Revision A

9.3.3 Cache Status Register

This register is only used by diagnostic programs. |t may be transferred to the

A register by performing the

TRA 108

instruction, and it has the following format:

15 210

Not used (all zeros) J

CACHON ‘
cup

Bit O: CUP (Cache up-date) is a ““1* if the last memory reference (i.e., the

instruction read-out for the TRA 108) caused writing into cache.

Bit 1: CACHON (Cache on); is a "*1** on all machines with the Cache

Memory installed, except during the 35us period following a

“TRR 10g" instruction or “Master Clear”’, while the U-bits
are being set to zero.

ND-06.008.01

Revision A

9.4 CACHE TIMING

The Cache Memory access runs in parallel with the Memory Management

Page Table look-up, on the same time-base, so that the tests on CPN and

U are completed at the same time as the physical memory address is ready.

if the data word is available in cache, it will at this time be present at the

CPU register inputs, giving a cache access time of 0.2us. This is the same

as the Memory Management delay, so that the Cache Memory system will
not incur any extra delay on memory accesses that must be forwarded to

main memory. However, the 0.2us delay will now occur on references
to main memory also when the Memory Management System is turned

off.

ND-06.008.01

APPENDIXES

APPENDIX A

NORD-10 MNEMONICS AND THEIR OCTAL VALUES

AAA

AAB

AAT

AAX

ACT

ADC
ADD

AD1

ALD

AND

,B

BAC

BANC

BAND

BCM

BLDA

BLDC

BORA

BORC

BSET

BSKP

BSTA

BSTC

CCLR

CILR

CLD

CM1

CMm2

COPY

CSR

DA

DB

DD

DL

DNZ

DP

DT

DX

ECCR

EQL

EXIT

EXR

172400
172000
173000
173400

: 000400
: 001000
: 060000
: 000400
: 000012
: 070000
: 000400
: 000600

177000
177200

: 000400
176600
176400
177600
177400
174000
175000
176200
176000

: 000010
: 000012
: 000100
: 000200
: 000600

146100
: 000010
: 000005
: 000003

000001
000004
152000

: 000002
: 000006

000007
000015

: 000000
146142
140600

FAD

FDV

FMU

FSB

GRE

I

IDENT

IF

lc

IHE

IOF

ION

10T

10X

IRR

{RW

JAF

JAN

JAP

JAZ

JMP

JNC

JPC

JPL

JXN

IJXZ

LBYT

LDA

LDD

LDF

LDT

LDX

LIN

LMP

LRB

LST

MCL

MGRE

MIN

MIX3

MLST

MON

100000
114000
110000
104000

: 001000
: 001000

143600
: 000000
: 000005
: 000005

150401
150402
160000
164000
153600
153400
131400
130400
130000
131000
124000
132400
132000
134000
133400
133000
142200

: 044000
: 024000
: 034000
: 050000
: 054000
: 003000
: 000002

152600
: 003000
;" 150200
: 001400
: 040000

143200
: 003400

153000

ND-06.008.01

MPY

MST

NLZ

ONE

OPR

ORA

PCR

PEA

PES

PGS

PID

PIE

PIN

PL10

PL11

PL12

PL13

POF

PON

PVL

RADD

RAND

RCLR

RDCR

RDIV

REXO

RINC

RMPY

RORA

ROT

RSUB

SA

SAA

SAB

SAD

SAT

SAX

SB

SBYT

SD

SHA

SHD

120000
150300
151400

: 000200

: 000002

: 074000

: 000003

: 000015
: 000013

: 000003

: 000006

: 000007

: 002000

: 000004

: 000011

: 000022

: 000043

150404
150410

: 000004
146000
144400
146100
146200
141600
145000
146400
141200
145400

: 001000
146600

: 000050
170400
170000
154600
171000
171400

: 000030
142600

: 000010
154400
154200

SHR
SHT
SKA
SKP
SL
SP
SRB
'SSC
SSK
SSM
SSO

000200

: 154000
: 001000

140000
: 000040
: 000020

152402
: 000060
;000020
: 000070
: 000050

SsQ

SSTG
SSZ

ST

STA

STD
STF

STS
STT
STX

STZ

ND-06.008.01

Revision A

: 000040

000010
: 000030
: 000060
: 004000
: 020000
: 030000
: 000001-
: 010000 |
: 014000 -
: 000000

SuB
SWAP
SX
TRA
TRR
UEQ
WAIT

ZIN
ZRO

. 064000

. 144000
. 000070

150000
150100

: 002000
: 151000
: 002000
: 002000
: 000000

APPENDIX B

NORD-10/S INSTRUCTION CODE

514131211109 8 7 6 56 4 3 2 1 O

000.000 STZ 0/|0(0]0]O0

0 004.000 STA 0/0|0]|0 |1

010.000 STT 0/0/0]1]0

014.000 STX 0|00 [1]1

020.000 STD 0(0(1]0]0

1 024.000 LDD 0O|O0[1]0]1

030.000 STF 0|0j1]|1]|0

034.000 LDF O/O0[1]1]1

040.000 MIN 0|1]0|0|0

9 044.000 LDA 0|1]0|0 |1
XIB DISPLACEMENT

050.000 LDT 0O|1(0]1]0 A

054.000 LDX O|1T]0]1[1

060.000 ADD 0|1]1]010

3 064.000 SUB oOl1(1]0]1

070.000 AND ol1(1]1]0

074.000 ORA Ol1]1]1[1

100.000 FAD 110[{0]0]0

4 104.000 FSB 1T1]0]0|0 (1

110.000 FMU 1/0(0[1]0

114.000 FDV 110]0(1][1

120.000 MPY 110]1(0(0

5 124.000 JMP 110111011

130.000 CJP 11011 1]0]| susIn.

134.000 JPL 110111111

140.000 SKP + EXT 111]0]0([0] susin. EXT) 5

6 |144.000 | ROP 1[1]0] 0] 1] ragapdapifcmilcro
1560.000 MIS 1{1]0]1[0] susin.

154.000 SHT 111101111 Z|N|ROTlSHASHDl |NUMBEROFSHIFTS

160.000 N.A. 11111]0]0

164.000 10X 11111]0|1 DEVICE ADDRESS

7 170.000 ARG 111111110/ FuncTion l ARGUMENT

174.000 BOP 11111111 FuncTioN |BITNO. D

288888888888 ev -
© Q Q 9 Q QO Q ¥ N =

EEERRE

ND-06.008.01

Revision A

NORSK DATA A.S.

Lorenvn 57 - Postboks 163, (Qkern

OSLO 1

COMMENT AND EVALUATION SHEET
NORD-10/S — Reference Manual ND-06.008.01

April 1977

In order for this manual to develop to the point where it best suits
your needs, we must have your comments, corrections, suggestions
for additions, etc. Please write down your comments on this pre-
addressed form and post it. Please be specific wherever possible,

FROM:

— we make bits for the future

NORSK DATA A.S L@RENVEIEN 57 OSLO 5 NORWAY PHONE: 21 7371 TELEX: 18284

T

f
fl
w

